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Abstract

These notes follow MATH 6111—Abstract Algebra 1 in the second half of the Fall 2023
semester at The Ohio State University, and mostly follow lectures by Professor Stefan
Patrikis (MWF') and recitation sessions (TR) by Dr. Ariel Weiss. These notes cover
rings, ideals,w zerodivisors, domains, monoid rings and group rings, ideals and subrings,

quotient rings, ring homomorphisms, the correspondence theorem, and polynomial rings.

We will then explore modules over rings, direct sums, and exact sequences. This is
followed by a study of ideals in commutative rings that includes the Chinese remainder
theorem, prime and maximal ideals, and the prime avoidance theorem. Next, we will
study local rings and their spectra, localizations, modules of fractions, and detecting
exactness with localization. We then examine finiteness conditions on modules, namely
by studying Noetherian and Artinian rings and modules, primary decompositions. This
leads us to factorization in rings, UFDs, and irreducibility in polynomials. Finally,
we will discuss the structure of modules over PIDs with applications in linear and
multilinear algebra.
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Definition 1.1.

A ring is a set R equipped with two binary operations +,-: R — R such that

(1) (R,+) is an abelian group,
(2) (R,-) is a monoid, and
(3) Forall z,y,zeR,z-(y+z2)=az-y+z-z,and (v +y) - z=x,2+y- 2.

for the identity of (R,-). We also tend to write xy to mean x - y.

Unless the context suggests otherwise, we usually write 0 for the identity of (R, +) and 1

Notation 1.2. e We allow 0 = 1, in which case R is called a (the) zero ring; such a ring
R is unique, since any x € R hasz =2 -1 = x -0 = 0, forcing R = 0; conversely, if a
ring RhasO0=1,thenz-0=2-(0+0) =2-0+ -0, and by adding —(x - 0) to be
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both sides we obtain z - 0 = 0, and hence 0 = 1 in R.

e We do not in general require multiplication to be commutative, although we will
mostly discuss this case. When multiplication in the ring is commutative, we call it a
commutative ring. #

Definition 1.3.
Let R be a ring.

e A unit of R is an element u € R such that there exist elements v, w € R satisfying
u-v=1=w-u.

(This forces v = w because w-1 =w-(u-v),sow = (w-u)-v=1-v=uv) We
denote by R* the set of units of R. We call any element v € R such that v-v a
right-inverse of x, and we call any element w € R such that w - u a left-inverse of
x. If R is noncommutative, there can exist elements x € R with right inverses but
without left inverses, and vice-versa.

e A nonzero ring R such that R\ {0} = R* is called a division ring.

e A commutative division ring is called a field.

We will leave the ring operations implicit as ‘+’ and ‘-’

Example 1.4. e Z is a ring with Z* = {+1}.
e Qis a field.

e M,(C), the set of all n-by-n matrices with entries in C, is a ring under the usual
matrix multiplication and addition. Likewise, M, (R) is a ring for any (not necessarily
commutative) ring R. One can check that associativity of matrix multiplication is
inherited from associativity of the ring R. This is one of the most important examples
of noncommutative rings. //

Example 1.5. Let H be the quaternions, which is defined as follows. Start with a 4-
dimensional real vector space with ordered basis (1,4, j, k). Then

H = 1R xR x jR x jR.
Endow H with the associative, but not commutative multiplication determined by
e IR~ R is central in H. For all ze R, x € H, zh = xz,
o ij=k, ji=—k i?=7j2=k>=—1.

Thus, the underlying abelian group of bH, that is, {*1, +i, +j, £k} under addition, is
isomorphic to the quaternion group QJs we have already seen. //

Proposition 1.6.

H is a division ring.

The proof of Proposition 1.6 can be found here.
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Example 1.7. For any set S and ring R, the set
RS = Map(S, R) = {set functions f: S — R}

is a ring under “pointwise” operations, by which we mean for all f, g € Map(S, R),

o (f+9g)(x)=f(x)+g(x) for all z € S, and

o (f9)x) = f(z) g(x) for all € S, y
Example 1.8. Let A be an abelian group. Define the endomorphism ring of A by

Endgp(A) == Homg,p (A, A).

Then Endg,,(A) a ring with operations

o (f+g)(x) = f(x)+g(x) for all z € A, and

o (f-9)(x) = flg(x)). //

1.2 Zerodivisors, Integral Domains, and Examples

Definition 1.9.

An element a in a ring R is a zerodivisor if a # 0 and there exists b € R ~\ {0} such that
a-b=0.

Definition 1.10.

A nonzero commutative ring with no zerodivisors is called an integral domain. In other
words, an integral domain is a nonzero commutative ring such that the product of nonzero
elements is nonzero.

Integral domains are named as such because they have the most important properties of the
integers (which consequently give division with remainder, and more)

Example 1.11. We have been using (Z/nZ)* to be the group of integers coprime to n, and
the notation (Z/nZ)* is because this subgroup is precisely the group of units of Z/nZ. This
is made precise by the following lemma. //

Proposition 1.12.

The ring Z/nZ is an integral domain if and only if n is prime.

The proof of Proposition 1.12 can be found here.

Exercise 1.13.

Z[\/n] = {a + by/n | a,be Z}, where n is any integer that is not a perfect square. This is
an integral domain. Its set of units depends on n.

Example 1.14. M, (C) is a noncommutative ring, so it cannot be an integral domain. But
we can say that (M, (C))* = GL,(C). //
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Example 1.15. Consider the collection of continuous functions on [0, 1], denoted C[0, 1].
Its additive identity element is the constant function 0, its multiplicative identity element
is the constant function 1, and for all z,y € [0,1] we have (f + g)(z) = f(z) + f(y) and

(f - g)(x) = f(z) - g(x). Now f~z)f(x) =1 for all x, f~1(x) = 1/f(z), and we see
C10, 1] = {continuous f: [0,1] — R*}.

But C[0, 1] is not an integral domain, because the product of the nonzero functions that are
nonzero (that is, that are supported) on disjoint parts of [0, 1] multiply to O. //

1.3 Monoid Rings, Group Rings, and Examples

Given everything we know about groups, we can construct a very rich plethora of rings with
the following construction.

Definition 1.16.

Let S be a monoid and let R be a ring. Define the monoid ring R[S] by the collection

R[S] = C—Dses R = {ZSES @s [S]
(where [s] is a formal symbol® indexed by elements s € S), with addition defined by

Yo gaslsl+ 2 blsl =D (a+b)[s),

and multiplication defined by

(Do) (b 1) =X, (3, b))

The multiplicative identity of R[G] is 1[1] = 1g[ls], which we will simply write as 1 in
R[G]. In the special case the monoid S is a group G, we call R[G] a group ring.

asER for all s€S and as=0 for all but finitely many s}

“We are writing [s] instead of s to avoid confusion, since it is possible that elements of R and elements
of S are denoted similarly.

Thus the elements of a monoid ring R[S] are formal finite linear combinations of elements of
the monoid GG, whose coefficients are elements of R. One can check that if S is a monoid and
R is any ring, then the monoid ring R[S] is indeed a ring.

Note 1.17. If R is a ring and G is a group, an equivalent definition of the corresponding
group ring is that R[G] is the set of functions f: G — R with finite support. One can show
the equivalence of these definitions by showing such functions f are determined by {f(¢)}ec,
which is an element of @ R[G]| = X, f(9) - [¢], and the reverse inclusion is similar. //

Example 1.18. Let R = Z and G = Dg = {p, 7 | p*, 72, prp7). Let us do a sample calculation
in R[G] = Z|Dg]. Consider the elements a = 2[p] + 2[7], b = [p*] — [7p] € R[G]. Then

ab = (2[p] + 2¢[7]) - ([p*] = [7p]) = 2[p°] = 2[p7p] + 2[7p] — 2[7*p]
=2[p°] = 2[7] + 2[7p°] - 2[p)-
On the other hand,
ba = ([p°] = [rp]) - 2lp] + 2[7]) = 2[p*] + 2[p°7] — 2[7p?] — 2[7p7]
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= 2[p°] + 2[7p*] = 2[7p"] = 2[p"] = 0.

Thus ab # 0 but ba = 0, which demonstrates how bizarre noncommutative rings can be. //

Example 1.19. Consider R = C, and let G = C,,, say with G = (z). The following is a
sample computation in the ring C[C,,]:
(== @+ [2] + [2*] 4+ -+ [2"]) =1—2" =0,
=[len]
since where G = C,,, 2" = 1, so [2"] = 1 in C[C,,]. In particular, note that 1 — [z] € C[C,]
is a zerodivisor. //

Exercise 1.20.

Show that if R is a commutative ring and G is a group, then R|G] is commutative if
and only if G is commutative (abelian). In this way we obtain an extremely rich class of
noncommutative rings.

Example 1.21. Consider R[G], where R = R, G = Qg = {1, £i, +j, £k}. Consider the
elements a = 7[i] + e[j] + V2[—k] and b = [1] + [-1](# [1] — [1]!). The computation of ab
and ba is left as a straightforward exercise.

Note that R[Qg] looks a lot like H, which we recall is H = R@® Ri ® Rj @ Rk. But in H we
have 1 + —1 = 0, whereas this is not true in R[Qs]. //

Theorem 1.22: Universal Mapping Property of Group Rings.

If R and A are commutative rings, ¢: R — A is a ring homomorphism, and a: G — A*
is a group homomorphism, then there exists a unique ring homomorphism ¢, : R[G] — A
such that both diagrams

o />A \
G| 4

AX

7 RG]

commute.

The proof of Theorem 1.22 can be found here.

1.4 Ideals and Subrings
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Definition 1.23.
Let R be a ring. A subset [ < R is

e a left ideal if (I, +) is a subgroup of (R, +) and forall re R,z e I, r-x € I,
e a right ideal if (/,+) is a subgroup of (R,+) and for all re R, x € I, - r € I, and
e a (two-sided) ideal if I is both a left and right ideal.

Exercise 1.24.

For commutative rings, the notions of left ideals, right ideals, and two-sided ideals all
coincide.

Definition 1.25.

Let X be any subset of R. The (two-sided) ideal generated by X, denoted (X), is
defined as smallest ideal of R containing X, that is,

(X) = ﬂideals Jof R J.

containing X

We define the left (resp. right) ideal generated by X using the same definition,
except with the intersection indexing over all left (resp. right) ideals of R containing X.

Exercise 1.26.
Show that

(X) = {Zj:1 X

Show that the left (resp. right) ideal generated by X is given by the same formula, except
with the “r/” (resp. the “r;”) omitted.

n € Zso and x; € X, r;,r; € R for allie{l,...,n}}.

Notation 1.27. If X = {xy,...,z,} € R, we will simply write
(X) = (z1,...25).

In particular, if X = {a} is a singleton, we write X = (a); such an ideal is called a principal
ideal.

When R is commutative, to say ideal I = (a) is principal means [ = Ra = aR = {r-a | r € R}.
(We cannot write principal ideals like this in the general case with noncommutative rings.) #

Definition 1.28.

A subset R’ — R is a subring if it is a subgroup of (R, +), contains 1, and is closed under
multiplication (that is, a submonoid under ).

Example 1.29. (1) nZ < Z for n € Z is an ideal (and is principal).
(2) Let k be a field. The only ideals of £ are (0) and k.
(3) R = Z[v/—5] = {a + by/=5 | a,b € Z} is a subring of C. Consider the ideal I =
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(2,1 ++/=5) of R. (Thatis, I = {2z + (1 + v/=5)y | z,y € R}). The ideal I is not
principal.

(3) For a noncommutative example, consider R = M,,(C), and let I be the left ideal

10 0 ap 0-----. ()
O e VO D T TACC 1IN0 I
0 0.....50 G000

Then one can show that I is not a right ideal. It turns out that M, (C) has no nonzero
proper (two-sided) ideals. We call any ring R with this property simple ring, so this is
to say M,,(C) is a simple ring. More generally, we will show in Exercise 7.4 that for any
(possibly noncommutative) division ring D, M, (D) is a simple ring. //

1.5 Operations on Ideals

There are several ways to construct new ideals from ideals of a commutative ring.

Theorem 1.30.

(i) Let R be a ring and let I and J be ideals of R. Then the following are ideals of R.
- IndJ.
—I+J={zx+ylerelyel}.
—1J=1-J={3" x| nelsyx;el,y;eJlorallie{l,... ,n}}.
(ii) In general, we have
I1-J < InJ < I,J < I+J,

and there exist examples where any of these inclusions are strict.

The proof of Theorem 1.30 can be found here.

Exercise 1.31.

If A is a commutative ring and a,b € A, then (a,b) = (a) + (b) and (ab) = (a)(b).

1.6 Quotient Rings and Ring Homomorphisms

The significance of ideals in ring theory mirrors that of normal subgroups in group theory: we
can quotient our ring by them, and ideals are kernels of ring homomorphisms (to be defined
soon).
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Theorem 1.32: Construction of Quotient Rings.

Let R be any ring and let I be a (two-sided) ideal. We define the quotient ring R/I by
letting (R/I, +) be the additive group quotient, and we define multiplication in R/I by

-t R/IxR/I — R/i,
(a+1)-(b+1)—ab+ 1.
Then R/I is indeed a ring under + and -.

The proof of Theorem 1.32 can be found here.
Example 1.33. If R = Z and I = nZ for some n € Z, then R/I = Z/nZ. /)

Definition 1.34.

Let A and B be any rings. A ring homomorphism ¢: A — B is a set map such that
(1) ¢ is a group homomorphism as a map (A, +) — (B, +) that is, p(z+y) = ¢(z)+p(y)
for all x,y € A (which we recall implies ¢©(0) = 0), and
(2) ¢ is a monoid homomorphism as a map (A,-) — (B,-), that is, for all x,y € A,
p(r-y) = ¢(x) - o(y) and p(1) = 1.

A ring homomorphism ¢: A — B is a ring isomorphism if there exists a ring homomor-
phism ¢: B — A such that o =idg and ¥ o p = id4.

Example 1.35. Let R be a ring, I an ideal of R. Then the surjective map 7: R — R/I
given by x — x + [ is a ring homomorphism. //

Note 1.36. (1) Just like for groups, a ring homomorphism is a ring isomorphism if and
only if it is bijective.

(2) For all ring homomorphisms ¢: A — B, kerp = {x € A | p(z) = 0} is indeed an ideal of

A. On the other hand, im ¢ = {p(z) | x € X} is only a subring of B, but not necessarily

an ideal. //
Example 1.37. R = ZxZ, (a,b) + (¢,d) = (a + ¢,b+ d), (a,b)(c,d) = (ac,bd), (1,0)(0,1) =
(0,0). Consider the ideal I = (2) = {2(a,b) | a,be Z}. Then R/I = Z/27 x 7./2Z. //

Example 1.38. Consider R = Z[i] = {a + bi | a,b e Z}. We call R the Gaussian integers.
We can think of the Gaussian integers as the integer lattice in the complex plane. Then
I = (2) = {2a + 2bi | a,b € Z}, which we can think of as the bottom-left corner of 2-by-2
squares with vertices at points whose coordinates are integers, and when these tile the complex
plane, the points of the ideal is all the bottom-left points of the squares in the tiling. Then

R/IIT={0+I1,1+1i+11+7+1}.
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X 0 1 l 1+
0 0 0 0 0
1 0 1 ? 1+ 1
) 0 ? 1 1+ 1
1+4]0 1+2 241 0

Table 1: Multiplication table of R/I

In particular, this shows that R/I is not an integral domain. //

Example 1.39. Let R = Z[w], where w = €2™/3. Then (w® — 1) = (w — 1)(w? + w + 1). The
roots of w?+w+1 are w = (—1++/=3)/2. Then (a+bw)(c+dw) = ac+(ad+bc)w+bdw? = ac—
bd+ (ad+bc—bd)w. Then, using the relation w?+w+1 =0, R/T = {0+, 1+1,w+1,1+w+1}.

X 0 1 w 1+w
0 0 0 0 0
1 0 1 w 14w
1 0 w 14w 1
14210 14w 1 w

Table 2: Multiplication table of R/I

From the multiplication table of R/I, we see that R/I is a field, and this field is denoted
F,. //

Example 1.40. Is there an ideal I such that (2) = I < Z[i]? Consider I = (2,1 + 4). Then
I'={2(a+bi)+(1+i)(c+di)} ={a+bi|a=0b(mod2)}. Is I principal? Well, we since
(1 +1)? = 24, we can write 2 = [(1 + ¢)][(1 4+ 4)(—¢)]. Thus 2 € (1 +14),so I = (1 + ). Hence
I is principal. The note that R/I =~ Z/27Z. /)

Example 1.41. Again R = Z|w] where w is as above, and let I = (2). Is there an ideal J
such that I ¢ J < Z[w]? No. And this is not a coincidence—no such ideal exists because I
is a maximal ideal, which we will soon define. To see, this one can use a to-be-seen fact that
R/I is a field, and an ideal I of any ring R is maximal if and only if R/I is a field. //

Example 1.42. Now consider R = Z[v/—5]. Then R = {a + b\/—5 | a,b € Z}. One can show
(2) < (2,1 ++/=5) € Z[/-5]. Is (2,1 + +/—5) principal? To answer this, suppose we can
write (2,1 + +/—5) = (a + b\/—5) for some integers a and b. Then

2 = (a+bv-=>5)(c+dv->).
Taking the square of the modulus of both sides, we obtain
4 = (a* + 5b%)(c* + 5d°).
But this forces b = d = 0, since otherwise one of the terms on the right-hand side exceeds 5,
and the product of two integers, one of which is 5, cannot equal 4. But then a + by/—5 = +2,
so (a + by/—5) = £2(c + dv/—5). But this is impossible, so (2,1 + +/—5) is not a principal
ideal. //
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Example 1.43. Again consider Z[+/—5]. Then (1 ++/-5< (2,1 ++/-5)) < (3,1 + v/—5H),
and

(1++vV=5)(1 —+v/~-5)=6=2"3,

so Z[+/—5] is not what we will soon call a unique factorization domain. //

1.7 The Correspondence Theorem and the Isomorphism Theorems

Theorem 1.44: Universal Mapping Property of Quotient Rings.

Let A, B be rings, let I < A be an ideal, and let ¢: A — B be a ring homomorphism such
that I < ker . Then there exists a unique ring homomorphism ® such that the diagram

A L s B

N4

A/I

commutes, where m: A — A/I is the natural quotient map. In the case I = ker ¢, then @
is a ring isomorphism A/ ker ¢ = ime.

The proof of Theorem 1.44 can be found here.

We also have analogs of similar results we proved for groups, and one of the most important
is the correspondence theorem:

Theorem 1.45: Correspondence Theorem.

Let I be an ideal of a ring A. Then, where w: A — A/I is the natural quotient map, there
exists a bijection

ideals J of A ideals J
{ containing [ } {loefaAs/I}7

J — 7T(J) = J/[,
7N (J) — J.

The proof of Theorem 1.45 can be found here.

Theorem 1.46: Second Isomorphism Theorem.

For all ideals J containing I, there exists a ring isomorphism
A/T

=5 A/
J/1 /

The proof of Theorem 1.46 can be found here.
Example 1.47. For any ring R, there is a unique ring homomorphism ¢: Z — R given by
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©(1) =1, so ¢(n) for n > 0 is determined as
pn)=p(l+1+- -+ =p(l)+ +pl)=1+-+1,

n copies of 1

and for n < 0, ¢(n) = —¢(—n). Note ker ¢ is an ideal of Z, and every such has the form
nZ for some n € Z. Thus for ker p = nZ, we get a canonical isomorphism of Z/nZ onto a
subring of R (Z/nZ — R). The integer n, which we may assume to be nonnegative, is called
the characteristic of R. In particular, if R has no zerodivisors, then n can only be 0 or a
prime number. We say, for example, Q has characteristic 0. //

Exercise 1.48.

Show that a ring R has characteristic 0 if the canonical map Z — R sending 1 — 1 is
injective.

1.8 Algebras and Polynomial Rings

Definition 1.49.

If R is any (possibly noncommutative) ring, an R-algebra is a (possibly noncommutative)
ring S equipped with a ring homomorphism ¢: R — S such that p(R) < S, where Z(.5)
denotes the center of S, that is, the collection of all elements x € S such that xy = yx for
all y € S. We call S finitely generated (as an R-algebra) if there exist s1,...,s, € S
such that B = p(R)[s1,- .-, Sn]-

Note 1.50. In the common situation A is a commutative ring and B is a finitely generated
commutative A-algebra, we obtain a surjective ring homomorphism sending x; to b; for each
i€ {l,...,n} such that the diagram

Alzy, .., 7] nd BN

~. A

A

commutes. //

Note 1.51. If A is a commutative ring, then any commutative A-algebra B is an A-module.
Indeed, since we have a ring isomorphism from A to B, B is an A-module with multiplication
given by the map ¢: A — B (from the definition of B being an A-algebra), and defining the
ring action on B to make B an A-module by a - b = ¢(a)b. //

Example 1.52. Z[+/—5] as a subring of C. In the notation of the construction above, we have
S = {+/=5}, so Z[/=5] is the collection of finite sums Y, _, a,(v/—5)" for some a, € Z.
Observe that since (v/—5)? = —5 € Z, we can write Z[v/—5] as by + bjy/—5 for some
b, by € Z. /
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Definition 1.53.

If I is any set and R is any (possibly noncommutative) ring, define the polynomial
ring (over R with variables indexed by I) as the monoid ring R[M], where M is the
commutative monoid

M= {{ai}id e@,, 2 ( a; > 0 for all i € I}.

Notation 1.54. In the context of Definition 1.53, we will usually write the element {a;};cs
as |[,.;x%. For example, the element (1,3,0,2,0,0,0,0,...) € M will be written as

el 1

riadxdrizdalzy - - | or simply zadx?. #
Note 1.55. Formally, polynomial rings are monoid algebras. //

Example 1.56. Applying Definition 1.53 in the case the ring R is a commutative ring A
and [ is any set, then the polynomial ring with variables over R with variables indexed by I,
Al{xi}ier], is the collection of finite formal sums of the form

diy, keZzo and a; 4€A }

diy ... g0
k| for all ieI®, deZk,

A[{afi}ie[] = {Z i=(i1,..., ik)elkic Q;,dT;,

d=(diy ,...,di}, )EZE o

- X

and is a ring under addition of coefficients and multiplication described in Example 1.56.
In the case I = {1,...,n} for n € Z>1, we will usually write A[{z}ics] as A[z1,...,x,]. For
example, 3z + 1(4x + 2) + 1 is an element of Z[{z,y, z}]. //

Example 1.57. In the special case A is commutative and the index set [ is a singleton, we
write A[z] for the ring of polynomials in variables indexed by I over A. Then by Example 1.56,
the underlying set of A[x] is

Alx] ={ap + a1z + -+ a,a" | n € Zso and ay, ..., a, € A}.
By Example 1.56, addition in A[z] is given by
(ap + a1z + -+ + ap2") + (bo + bix + box® + - -+ + byx™) = (ag + bo) + (a1 + by)x + -+ + A,

where A = (ay, + by)xz™ if m = n and A = (a, + b,)2" if m < n, and multiplication in A[z]

is given by
(ZZO aiﬂ) ' (Zj:o bjxj) - ka;n (Zm’:k aib; )xk’

that is, by the (unique) commutative, associative, and distributive multiplication such that
2t 27 = 2" in Alz]. In this setting, given an element f(x) = ag + a1z + -+ + a,a" € Alz]
with a, # 0, we call n the degree of f, and denote it by deg(f(x)). We call any term of
degree 0 a constant term, terms of degree 1 linear terms, terms of degree 2 quadratic
terms, and so on, and the terms with the highest degree are called max order terms or

leading terms. p
Example 1.58. The case n = 2 yields the ring R[x1,xs], whose element are of the form
@+ aXy + ao1X2“+(azoX12 +a X1 Xo + a02X22)| Fets //
Cotlgtrgnt linear terms quadratic terms max order terms
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Theorem 1.59: Universal Mapping Property of Polynomial Rings.

If p: A — B is any homomorphism of commutative rings, then for any choice of o € B,
there exists a unique ring homomorphism ev,: A — B such that the diagram

o > &
\ / Y
\/'
Alz]
et

commutes. More precisely, if o: A — B is a homomorphism of commutative rings, we get
a homomorphism

A[{l‘i}ief] — B,
fr—e(f),
where ¢(f) is the polynomial obtained by applying ¢ to the coefficients of f, and for all
choices of a = (;)ser € B, the map
B[{Xi}icr] — B,
f fla),

is a ring homomorphism (Our ev,, map in the 1-variable case was a composition of two
such maps.)

The proof of Theorem 1.59 can be found here.

Warning 1.60. Theorem 1.59 only applies to commutative rings. Indeed, if A is a non-
commutative ring R, then although the univariate polynomial ring over R makes sense by
Theorem 1.59, the evaluation homomorphism is not well-defined in general. For example,
consider A = H, B = H, and ¢ = idg. Indeed, in H[z], we have zj = jx but ij # ji, so ev;
is not well-defined.

Although we will mostly consider the case |I| < o0, the following result is an important result
that holds for arbitrary index sets 1.

Theorem 1.61.

Let A be any commutative ring. Then A is isomorphic to the quotient of a polynomial
ring of the form

Zl{xi} /]

A~ el
J Y

for some indes set / and some ideal J of Z[{x;},,].

The proof of Theorem 1.61 can be found here.

Note 1.62. The argument shows more than the statement: it says that if you can find a
generating set of A with n variables, then by indexing that set with a set I and using the
ring homomorphism obtained from the universal mapping property of polynomial rings, you
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can get the precise isomorphism A = Z[{X;}ie/]/ker ®. So, if you took A = C, you would
need a lot of variables, so the cardinality of the set would be quite large. //

2 Modules Over Rings

2.1 Definitions

Just a groups act on sets via group actions (and sometimes these objects are called G-
modules), rings act on abelian groups via scalar multiplication, sometimes called a ring
action, to form an R-module.

The theory of modules over rings is the analog of the theory of vector spaces over fields.

Definition 2.1.

Let R be any ring. A left R-module is an abelian group M equipped with a map
RxM — M,
(rym) — 1 -m,
such that for all m, mq, ms € M and all r,r{,75 € R,
(i) - (rg-m) = (rir2) -m and 1-m = m,
(i) (r1 +7m2)-m=rmr-m+re-m, and

(ili) r- (mq +mg) =1 -mq + 1 - ma.

Example 2.2. The set C" of n-dimensional column vectors with entries in C is a left M,,(C)-
module under matrix multiplication. The set (C")" of n-dimensional row vectors with entries
in C is a right M, (C)-module under matrix multiplication. //

There is nothing special about rings acting on abelian groups from the left; we define right
modules similarly:

Definition 2.3.

Likewise, a right R-module is an abelian group N and a map
NxR— N,
(n,r) —mn-r,
such that
(i) n-1=mnforallne N and n- (riry) = (ny -ry) - ry for all 1,79 € R and all n € N,
(i) ni(ry +172) =nory +n-ry, and

(i) (nq +mg)-r=mny-r+ng-rforall ny,nye N,r e R.

Notation 2.4. It is generally clear from context when one is referring to the additive identity
of the ring R or the additive identity of the abelian group M, so we will usually denote these
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both by 0 without issue. We may also write simply rm (resp. mr) instead of r - m (resp.
m - r) for the left (resp. right) scalar multiple of m € M by the ring element r € R. #

Example 2.5. If R is a field k, then a left (or right) R-module is a k-vector space. //

Example 2.6. If R is commutative, then any left R-module M is canonically a right R-module
by defining m -r =r - m.

Indeed, for all 1,75, € R and all m € M, our proposed definition of the right action is
m-(riry) = (rre) -m=mry-(ro-m) =7r1-(m-re) = (m-rg)-ry =m- (rary),

and this must equal m - (r;79) if R is commutative, so we are done. (Note that despite this
result, this is not a valid right R-module action in general!)

Thus, for commutative rings, we typically do not distinguish between left and right R-modules,
and instead simply say “ R-module”. //

Example 2.7. Consider R = Z. Then Z-modules and abelian groups are “the same”. More
formally, any abelian group is uniquely a Z-module (and Z-modules are abelian groups by

definition): given an abelian group A, for any n € Z and a € A, define
n copies of a

at+a+--+a ifn>0,
n-a=-<0 if n =0,
—((=n) - a) ifn<0.

(As an exercise, show that for any ring R and any left R-module M, we have 0-m = 0 for all
me M and (—r)-m = —(r-m) for all r € R and m € M.) //

Example 2.8. For any ring R, a left (resp. right) ideal is a left (resp. right) R-module under
left (resp. right) multiplication. Indeed, any additive subgroup I < R that is stable under
left (resp. right) R-multiplication is a left (resp. right) ideal. //

Example 2.9. In the special case of Example 2.8 above, the For any ring R, R is both a
left and right R-module via multiplication. (And these actions commute: (r17)ry = 71(7r72).)
More generally, the ring

R" = {(a1,...,a,) |a; e R for all 1 <i<n}
is a left (resp. right) R-module under 7 - (a4, ..., a,) = (ray,...,ra,) (resp. (ay,...,a,) 7 =
(ayr,...,a,r)). The R-module R" is called a free left (resp. right) R-module of rank
n. (Note this implies R - N = N because 1 € R.) //

Definition 2.10.

Let M be a left R-module. A submodule N of M is an additive subgroup of M such
that R- N < N (resp. such that N - R < N). Submodules of a right R-modules are
defined similarly.
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Definition 2.11.

Let M be a left R-module and let N be a submodule of M. We define the left (resp.
right) quotient R-module M /N as the quotient of abelian groups equipped with the
left R-action given by

r-(m+N)=(r-m)+ N forall re R,me M.

Exercise 2.12.

Show that Definition 2.11 indeed produces a left (resp. right) R-module.

2.2 Homomorphisms of (Left) R-Modules

Definition 2.13.
Let M, N be left R-modules. A map ¢: M — N left R-module homomorphism is a

group homomorphism of the underlying abelian groups such that for all r € R and m € M,
p(r-m) =r-p(m).
We write Hompg(M, N) for the set of (left) R-module homomorphisms M — N.

Note 2.14. Let R be any ring and let M, N be (left) R-modules.

e Hompg(M, N) is an abelian group under addition, that is, the operation (¢ + ¥)(m) =
p(m) + ¥ (m).

e If R is commutative, then in fact Homg(M, N) is an R-module with the operation given
for all r € R and all ¢ € Homg(M, N) by

(r-¢)(m)=r-(p(m)) for all m € M.

This gives a homomorphism that is internal to R-modules, that is, an internal hom in
the following categorical sense. An internal hom in a category is a hom set that is
itself an object in the category. (Note: r - ¢ is an abelian group homomorphism if R
is noncommutative. But in order to be an R-module homomorphism, we need for all

o € R that
(r-@)(sm) = 5+ (r - g)(m),
=r-p(sm), =s-r-p(m)
which equals r-s-¢p(m)
because geHompg (M,N)
and 7 -s-¢@(m) = s-r-p(m) in general only when R is commutative.) //

Definition 2.15.
Let ¢ € Homg(M, N).

e The kernel kerp = {m € M | p(m) = 0} and image im(y) = (M) of ¢ are
R-submodules of M and N, respectively.
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e Define the cokernel of R-modules by coker ¢ := N/im .

e ¢ is an isomorphism if there exists ¢ € Homg(N, M) such that ¢ o ¢ = idy
and ¥ o ¢ = idy;. It is necessary and sufficient for ¢ to be a bijective R-module
homomorphism.

Exercise 2.16.

Prove the assertions made in Definition 2.15. In addition, show that the usual isomorphism
theorems hold. (For example, show that for any ¢ € Homg(M, N), the map

M /ker p — im ¢
m + ker ¢ — ©(m)

is an isomorphism of R-modules.)

Example 2.17. Consider R = Z. The Z-modules are abelian groups, and a Z-module
homomorphism is the same as an abelian group homomorphism. //

Example 2.18. Let R be any ring and let A € M,,,,(R) be m xn matrices over R. Left
multiplication by A on column vectors is a map ¢4 = A: R* — R™ given by v — Awv, and
gives a homomorphism of abelian groups. //

Warning 2.19. Recall R (and hence R? for all positive integers d) is naturally both a left
and a right R-module. Is ¢4 a homomorphism of right or left R-modules? Well, for all r € R,
A-(v-r)=pa(v-r)=pa(r-v) =A-rvalvgy5!g0,4(r-v) =r-A-v
but it does work in the reverse direction,so ¢4 is always a right R-module but not a left

R-module in general. But if R is commutative, then the above equations always hold, so ¢4
is also a left R-module homomorphism.

Example 2.20. If we consider the case R is a field k, then k-modules M and N are k-vector
spaces and Homy (M, N) is the k-vector space of k-linear maps M — N. An important case

is when N = k, in which case Homy (M, k) is called the dual k-vector space of M, and is
often denoted M*. //

Example 2.21. If R = R, M = R, then ¢: R? - R? given by (j) — (53)(5) = (*%")-
is an isomorphism because det (3 %) =6 # 0. Its inverse ¢ !: R? — R? is given by i) —
1/(2 -1\ (x\ _ 1(2zx—y

s073)0) = 505" //
Example 2.22. Let R = Z, M = 7, +: Z* — Z* by (j) — (32)(;). Then ¢ is injective,
since it is the restriction of ¢ to Z?, and ¢ is injective (and injectivity is preserved under
restrictions). But 1 is not surjective. Intuitively, this is because the inverse of ¢ is not always

integer-valued. More precisely, this is because @:) € im if and only if (§:> = (3%?’) for
x',y’ € Z. This gives us the numerical constraints ' = 2y <= ¢ is even and 2’ = 3x + y.

This looks tricky to unravel, but we can multiply the second equation by 2 to get 22’ = 6x + 1/,

that is, 22’ — ¢’ = 6z, or written differently, 22’ = v’ (mod6) (or 2’ = %/ (mod 3)). This

shows something like () is not in the image, because 2(1) # 0 (mod 3). //
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Example 2.23. (Modules over Group Rings and Group Representations) Let G
be a group and k a field. We consider a module V' over the group ring k[G]. Here are some
properties of V:

e V is an abelian group and a module over k[G]. Since k[G] contains k, V' is also a
k-vector space.

e The unit e of k[G] satisfies e - v = v for all v € V. For all g,h € G < k[G], we have
(gh) -v = g - (hw). This implies that G acts on V, giving a group homomorphism
G — Sy = Autse (V).

e For g € G < k[G] and v,w € V, we have g(v + w) = g(v) + g(w). If X\ € k, then
(Ag) -v = g- (Mv). The induced automorphism from the group action is G — Autse (1),
sending g — (¢4: v — gv). This map descends to a map G — GL(V), called a group
representation of G over k.

The representation theory of groups is thus subsumed by the theory of k[G]-modules.  //

2.3 Direct Sums and Direct Products of R-Modules

Definition 2.24: Direct Sums and Direct Products of R-Modules.

Let R be any ring and let I be any set. For each i € I, let M; be a (left) R-module. Define

iel M; = {{mi}iel € l_L.eI M;

This is made into an R-module via

m; = 0 for all but finitely many ¢ € 1 }

{mitier + {miticr = {mi + m}}ier and T {mitier = {rmitier.
We call @, ; M; the direct sum of the M;s. Here we note that the Cartesian product of

the underlying sets of the M;s, | [,.; M;, is also an R-module by the same rules, called the
direct product of the M;s.

el

Warning 2.25. Note that although @,_; M; = [ [..; M; when [ is a finite set, this is not
true in general. ©

Note 2.26. Note that for all 7,5 € I, we have R-module homomorphisms
M; = > Drer M © » [ ier M —2 M

m ——— (my)ker, where my, = mdj, —— (My)per —— m;

//

Note 2.26 suggests the possibility of isomorphisms

Hom p, (@iel M, N) = T, Homp(M;, N)
and

Hom (N, 1. Mi> = T, Homp(N, M),

which in turn would yield a categorical view of the direct sum and direct product. We show
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in the following theorem that such isomorphisms do, in fact, exist:

Theorem 2.27: Universal Mapping Property of Direct Sum and Direct Product
of R-Modules.

Let {M;};e; be R-modules.

(1) For all R-modules N, we have an isomorphism of abelian groups
P HOH]R <@iel MZ‘, N) — Hie[ HOII]R(MZ', N),
 —> {0 Qiier,
[{mitier = 2ier filmi)] «— {fi}icr-
Moreover, if R is commutative, then this is an isomorphism of R-modules.

(2) For all R-modules M, we have an isomorphism
U: Hompg <M, 1. MZ-) =TT, Homp(M, M),

@ — {m; © }ier,
[m = {film) Yicr] < {fi}ier-

Proof. Regarding the first isomorphism, note that since m; = 0 for all but finitely many i € I,
fi(m;) = 0 for all but finitely many ¢ € I. Thus the inverse map ®((f;):c;) makes sense. the
maps are given in the statement, so it only remains to check these work as claimed. This is
left as an exercise. O

2.4 Characterization of Exact Sequences of Modules as Direct Sums

Definition 2.28.

e A sequence M L, N %5 P of R-module homomorphisms is called exact at IV if
ker g = im f.

e A sequence --- — M; 25 M,y 225 M9 —> --- of R-module homomorphisms
is called a long exact sequence, or is simply called an exact sequence, if
ker ¢, = im g4 for all k € Z.

e An exact sequence of the form -+ — 0 — M NP0

(with zeroes extending this sequence) is called a short exact sequence (SES) of
R-modules.

Note 2.29. Just as for groups, given a short exact sequence 0 — M SN p 0,
we must have

e f is injective,

e kerg =im f, and
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e ¢ is surjective. //

Definition 2.30.

e A short exact sequence 0 — M NP0 split if g has a section, that
is, if there exists an R-module homomorphism s: P — N such that g o s = idp.

e A short exact sequence 0 — M S N %5 P — 0 is trivial if there exists an
isomorphism ¢: N — M @ P such that the diagram

0 s M ! s N g . p > 0
idMH El@ idp
s MM M@ P Ty ;
O m»—>(m,0) @ (mvp)'_’p O

commutes.

The following lemma is a useful feature of modules over rings that stands in stark contrast to
the case of groups.

Theorem 2.31.

A short exact sequence 0 — M L N4 P — 0 of R-modules is split if and only if it
is trivial.

The proof of Theorem 2.31 can be found here.

Example 2.32. We can summarize Example 2.22 concisely with an exact sequence, namely

07272 ", Z?/im1 — 0. This captures that 1 is injective, 7 is surjective, and
im = ker . /

Example 2.33. Continuing from example Example 2.32, what is Z?/im¢? The given
short exact sequence hints that Z2/im is a discrete set, as since Z? is two-dimensional
and injectivity of 1 together imply Z?/im 1 is a “two-dimensional” object quotiented by a
“two-dimensional” object, which leaves us with a “zero-dimensional” object.

And we can say there even more: we expect Z?/im1 to be a finite abelian group of order
det (8 %) = 6. Since there is only one such group, this would imply Z?/imv =~ Z/67Z =
7)37.x1)27.

Let us make this more precise. Define 7': Z? — Z/37Z x Z/37Z by
(3) — (22 — y (mod 3),y (mod 2)).
Then 7' () = (0,0) <= (3) € im¢, ker7’ = im¢ and 7’ is surjective. Hence
0—> 7% Y 72 = 7/3Zx Z/27 —> 0.

is a short exact sequence. One can check that 7’ is a Z-module homomorphism (that is, a
homomorphism of abelian groups). //
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Example 2.34. Consider the ring R = Z, and set M; = 7Z/iZ for each element i of the
set I = {2,3,4,...}. Not only are [[..; M; = Z/2ZxZ/3Z < Z/AZ % --- and @,.; M; =

227 ®L)3L ® ZL/AZ ® - - - not equal, but they are not isomorphic. Indeed, the element
(1,1,...) € [ Lie; M; has infinite order, but no element of infinite order exists in @,_; M;. //

Example 2.35. Again consider the short exact sequence 0 — Z? — Z? — Z/3Z x 7./]27 — 0,
where the second arrow from the left is given by applying the linear map (8 %) to elements of
Z?. This short exact sequence is not split, because Z? % 7> ® Z/37Z x Z/27L. //

Example 2.36. The short exact sequence

aH(a7070»"' ) 0 0
0 > 7 > . % e 7Z — 0
@211 a1,a2,... )—>(a2,as,...;

i=1

does split, because the map .~ Z — @;-, Z defined by (as, as, a4, ...) — (0,as,a3,a4,...)
is a section. //

2.5 Homework 7

Exercise 2.37: 7.1.

Let I be an ideal of a commutative ring A. We define the radical of I, denoted v/I, to be
VI={zeAl|a"el for some n e Zz,}.

In the special case I = (0), we call the radical 1/0 the nilradical of A. We call A reduced
if nilradical of A is zero, that is, if 4/(0) = (0).

(a) Show that +/I is an ideal of A for any ideal I — A.
(b) Show that \/v/I = +/I.

(c) Show by an example that in a non-commutative ring R, the set
{r € R| 2" = 0 for some integer n € Z>1},

whose elements are called nilpotent, is not always an ideal.

A solution to Exercise 2.37 can be found here.

Exercise 2.38: 7.2.
Which of the following rings has no zero divisors? Which are reduced?

(a) Clz]/(2* +1)

A solution to Exercise 2.38 can be found here.
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Exercise 2.39: 7.3.
Let I and J be ideals of a commutative ring R. Define the ideal quotient
(I:J)={rxeR|xJcl}.
(a) Show that (I : J) is an ideal of R.
(b) For R = Z and m,n € Z, compute ((n) : (m)).

A solution to Exercise 2.39 can be found here.

Exercise 2.40: 7.4.

Let D be a division ring. Show that the ring M, (D) of n x n matrices over D has no
(two-sided) ideals other than (0) and M, (D). We call such rings simple.

A solution to Exercise 2.40 can be found here.

Exercise 2.41: 7.5.

Let R be a ring, not necessarily commutative. For any abelian group M, recall that
Endg, (M) == Homg,, (M, M) is a ring via (f + ¢g)(m) = f(m) + g(m) and (f - g)(m) =
fog(m) for all me M.

(a) Let M be a left R-module. Show that the map
At R — Endg,(M)

given by A(r)(m) = r - m is a ring homomorphism. Conversely, show that given any
ring homomorphism A: R — Endg,, (M), we obtain a left R-module structure on M,
such that these two procedures are inverses.

(b) Define the opposite ring R of R to be R as additive group but with the nultiplci-
ation

T op S = ST,

where the product on the left-hand side is in R°P, and the product on the right-hand
side is in R. Check that R is a ring.

(c¢) Show by analogy with part (a) that a right R-module N is “the same thing” as an
abelian group N equipped with a ring homomorphism

p: R°® — Endg,,(N).

A solution to Exercise 2.41 can be found here.

3 Fundamentals of Ideals in Commutative Rings

Warning 3.1. Henceforth all rings are assumed commutative, unless specified otherwise. K4
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3.1 Chinese Remainder Theorem

4 rings
element n ideal (n)
product m -n | ideal product (m) - (n) = (mn)
ged(m,n) ideal sum (m) + (n) = (m,n)
lem(m,n) ideal intersection (m) n (n)
divisibility m | n ideal inclusion (n) < (m)

Table 3: Features of arbitrary commutative rings, as seen in Z. (Note, however, that
containment of ideals is in general weaker than divisibility.)

Definition 3.2.

Ideals I, J of a ring R are coprime if [ + J = R. More generally, ideals Iy, ..., I, are
pairwise coprime if I; + I, = R for any two indices j, k such that j # k.

Proposition 3.3.

e [+ J=Rifandonlyiflel+ J.
e lf/+J=R,thenl-J=1nJ

The proof of Proposition 3.3 can be found here.

Notation 3.4. If [ is an ideal of a commutative ring R, then we write z = y (mod ) to
mean x —y € I, that is, that xt + [ =y + I in R/I. #

Theorem 3.5: Chinese Remainder Theorem (CRT).

If I1,..., I, are pairwise coprime ideals of a commutative ring R, then the following hold.
(1) Given any z1,...,x, € R, there exists x € R such that
r =x; (mod ;) for all j e {1,...,n}.

(2) (=1 I = [ [;=, I; and the projections m;: R — R/I; induce an isomorphism of rings
R/ N u=T1_ &/

The proof of Theorem 3.5 can be found here.

Example 3.6. R = C[z], [ = (2*> — 1). What is R/I? We can write (2% — 1) = (z — 1)(z —
w)(z —w), where @ is the complex conjugate of w. So we can write I as the following product
of ideals:

]:I(x—1)I‘I(x—w)l‘l(x—w)l.
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Let us show these ideals are pairwise coprime. To see In+1; = R, note Iy+1; = (z—1,2—w) =
L (r—w—(z—1)) =12 =1,s0 1€ I+ I}, meaning Iy + I; = R. Establishing the other
two coprimalities is similar. By the Chinese remainder theorem, we have

Clel _ Cl] | Cll | Cl _
(x3—-1)  (z—-1) (z—w) (x—w)

where the last isomorphism is justified as follows. Consider the homomorphism C[z] — C
via f — f(w). The kernel is all f such that f(w) = 0, which is (x — w). The other two

isomorphisms C[z]/(z — 1) and C[z]/(z — w) are similar. Hence C[z]/(z — 1) =~ C3. //
Example 3.7. R = R[z], and I = (2 — 1). Then
I=(x—-1)-(2*+x+1).

=:lo =l
What is Iy + I;? Thisis (x — 1,2% + x + 1). Write (z — 1)> — (2> + x + 1) = —3z. Also

3(x—1)=3x—3+(—3),s03€ I+ I;. But 3 is a unit in R, so it is a unit in R[z]. Then

~

1
1:—'3610-1-[1, SO[0+[1:R[SL’].

3
Then by the Chinese remainder theorem,
Rlz] _ Rlz] R[z]

@10 (-1 @rzrl)
The first factor is R, and this is exactly the same proof as in Example 3.6 that C[z]/(z—1) = C.

Note R[z] = C for any z with Imz # 0. (Check!) In this setting, it is reasonable to guess
R[z]/(2* + x + 1) = R|w], where w? + w + 1 = 0, and hence that R[z]/(z* + z + 1) =~ C.

We thus consider the map R[z] — C given by R[z] — C via f(z) — f(w). The rest is an
exercise. (Use that f(z) = 0 if and only if f(Z) = 0). //
Example 3.8. Consider R = Z[z] and [ = (23 —1). Then

I=(x—1)-(2*+x+1).

L ::IO 1 L ::Il ]

Does Iy + I} = Z[x]? The ideal I + I; certainly contains 3,z — 1, and 2% + = + 1, and
hence contains (3,27 — 1,22 + z + 1). We claim Iy + I; does not contain 1. Showing this does
not contain 1 directly may be difficult though. But by the contrapositive of the Chinese
remainder theorem, this condition implies that Iy and I; are not coprime. To that end, we
claim

Z]z] Z|x] Z|x]
(3 —1) * (x—1) . (242 +1)
Note Z[z]/(x — 1) = Z and Z[x]/(2* + x + 1) = Z|w] where w is as in the previous examples

and the reasoning for these are also as in the previous examples. Under these identifications,
then y = (1,0) is an element of the right-hand side. And y? =y, but y (0,0) # (1,1).

But if ¥ = ax® + bz + ¢ (mod 2 — 1) € Z[z]/(2* — 1), and if (/)*> =3/, then ¢/ = 0 or 1, so
the left-hand cannot possibly be isomorphic to the right-hand side. //
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Note 3.9. Let R be any commutative ring and a,b € R. By the second isomorphism theorem,

R R/(a) _ R/(a)

(@)~ (@bfa) 0 /

Indeed,
R R/faR R/aR _ R

(a,0)R ~ (a,b)R/aR ~ bR/aR ~ bR
where we used the second isomorphism theorem for the first and last isomorphisms.
Example 3.10. Let R = Z[z] and I = (2,2%—1). What is R/I? Let us again try to factorize
I as we have in the previous examples. Write

Iy=02,2—1)>Tand I, = (2,2° +2+1) > I.

It would be nice if I = Iy - I;. And indeed, we have

I+ =02r—-1,2°+x+1).

We already know from the previous example how to get a 3 from (z —1,2? + z + 1) (which is
in [y + I; above), and this time we can get 2. Thus we can get all of Z, and hence all of Z[x]
because then 1 + x — 1 = x is in the ideal as well. Thus Iy N I; = Iy - I;. Now

Iy Ii=Ignlic(2,2°—1)=(2,2—1)- (2, 2> +z + 1)
= (4,20 —2,22° + 22+ 2,2° — 1) = (2,2° — 1).
So Iy- Iy = I. Thus

2l 2] 2]
(2,23 1)~ (2,2—1) (2,22 4+z+1)
By Note 3.9,
Z|x] Z|z] Zlz]/(x* + 2z +1)  Zw]
———— =~ Z/27 and ~ ~ =F
Ga-1) = PP G ) @ -
S0
Z|x) Z
——— =~ —xF,.
221 22 *
where F, is as in Example 1.39. //
Example 3.11. If my,mo, ..., m, € Z are pairwise coprime, then there is an isomorphism of
rings
z = Z/mZx - xL/m,7Z
my - myZ 1

In particular, we obtain an isomorphism of unit groups

Z . » «
<m> — (Z/maZ) % - x (Z/mpZ)".
Define the Euler ¢ function by

e(m)=1{ieZ|1<i<mand ged(m,i) =1} = [(Z/mZ)"|.
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It then follows from the above isomorphism that

p(mimg - -my) = @(m)e(ms) - p(my). //

Exercise 3.12.

Show that if p,7 € Z, p is prime, and r € Z~;, then ¢(p") = (p — 1)p" L.

3.2 Prime Ideals and Spec

Definition 3.13.

Let R be a commutative ring. A prime ideal of R is a proper ideal I of R such that for
all z,y e R, xy e I impliesx e [ or y e I.

We often say “I is prime in R” to mean [ is a prime ideal of R, or even simply “I is prime”

when the ring R is understood.

Example 3.14. Let p be a prime integer. Then pZ is a prime ideal of Z, since p | ab implies
p | aor p|b. This is what motivates the terminology “prime ideal” in the first place. Note
that (0) is another prime ideal in Z. More generally, (0) is prime in a commutative ring R if
and only if R is an integral domain. //

Example 3.15. Consider R = C[z]. Then (0) is a prime in C[z]. All ideal of C[xz] are
principal by Exercise 8.1, so I = (f(z)) for some f(x). Then an ideal I is prime in C[z] if
and only if f(x) is irreducible, and therefore (by the fundamental theorem of algebra) this is
equivalent to f(z) = x — a for some a € C. //

Example 3.16. Consider R = Z[z]. Some prime ideals of Z[z] are

e (0),
(p) for prime integers p,

(x — a) for any integer a,

(p, z) for prime integers p,
(z2 4+ 1), (3,2° + 1).

Note that these are not all prime ideals of Z|z], as classifying such ideals is rather complicated.
For a non-example, note that the ideal (2,2 + 1) is not prime (see Exercise 7.2). //

Theorem 3.17: Criterion for Primality.

Let R be any commutative ring. Then an ideal I of R is prime if and only if R/I is an
integral domain.

The proof of Theorem 3.17 can be found here.
Notation 3.18. We write Spec(R) for the set of all prime ideals of a ring R. #
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Note 3.19. “Spec” stands for “spectrum”. For commutative rings A, we will investigate a
topology for Spec(A) that links commutative algebra with algebraic geometry. (See Exercises
8.4 and 8.5.) //

Example 3.20. (Functoriality of Spec) Let A and B be commutative rings and let
¢: A — B be a ring homomorphism. Define a map f: Spec B — Spec A by the preimage
map f(p) = ¢ (p) for all p € Spec B. Then for all p € Spec B,

fp) =97 (p) = {ze Al p(z) € p}.
Note f is well-defined, because q = ¢ ~1(p) is indeed a prime ideal: if z,y € q, so p(x), p(y) € p,
then p(z + 1) = p(z) + ¢(y) € p, s0 z +y € p~(p); and for all r € A,
p(re) = o(r) - p(z) €p,
| I—|
ep
so rz € ¢ (p). (This shows p~1(I) is an ideal for any ideal I). And q is prime: if z,y € A
such that zy € o1 (p), then p(x) - p(y) € p, so p(z) € p, so p(x) € p or p(y) € p. Hence x or
y is in ¢~ (p). //
Example 3.21. Consider the mapping ¢: Z — Z[i], where p = (2 + ¢) is prime in Z[i]. The
set 5Z, which is the principal ideal generated by 5 in Z, is equal to the intersection Z N p
and is also the preimage of p under the mapping . //

3.3 Maximal Ideals

Definition 3.22.

An ideal I of a ring R is called maximal if I # R and there are no ideals J of R such
that I < J < R.

We can interpret this as a statement about the quotient rings in the following way.

Theorem 3.23: Criterion for Maximality.

An ideal I of R is maximal if and only if R/I is a field.

The proof of Theorem 3.23 can be found here.

Corollary 3.24.

Maximal ideals are prime.

The proof of Corollary 3.24 can be found here.

Warning 3.25. The converse of Corollary 3.24 is not true. Indeed, if p is a prime integer,
then

SpecZ = {(0)} v {(p)}. 4
prime, but maximal,

not maximal, since p is prime
since (0)S(p)SZ
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Note 3.26. Given a ring homomorphism ¢: A — B and a maximal ideal m ¢ B, we know
©~'(m) is prime, but it is not maximal in general. For instance, the inclusion ¢: Z — Q
(0) = Q is maximal, ¢~1((0)) = (0) is not /)

Theorem 3.27.

Let I be a proper ideal of a possibly noncommutative nonzero ring R. Then there exists a
maximal ideal m of R containing I. (In particular, by considering I = (0), all rings have
a maximal ideal.)

The proof of Theorem 3.27 can be found here.

Note 3.28. For “small enough” rings Zorn’s Lemma is not needed to show the existence of
maximal ideals. In particular, it is immediate from the definition that Noetherian rings have
maximal ideals. (We will define Noetherian rings soon.) //

Note 3.29. Consider a homomorphism of the underlying groups of finitely generated C-
algebras,

P I(C[xlw - an]/‘ll—) Ec[yh T 7ym]/‘]l
=A =B

The maximal ideals m of B are of the form (y; — a1),. .., (Ym — @) for some a; € C, and
likewise for A. In particular, B/m = C. Then to see ¢~'(m) is maximal, we consider the
following commutative diagram:

Afp~H(m) < » B/m
C
Since the bottom left map is an isomorphism, the bottom right map is an isomorphism. Thus
¢~ '(m) is maximal. This line of reasoning is called the Hilbert Nullstellensatz. //

3.4 Spectrum of k[z]

Let R be a commutative ring and let I be an ideal of R. In particular, let us consider the case
k is a field and R = k[x]. What are the prime and maximal ideals of k[z]? We know from
Exercise 8.1 that k[x] is a PID, so all ideals of k[x] take the form (f(x)) for some polynomial
f(z) € k[z]. Certainly (x) is maximal because the ring map k[z] — k via f(z) — f(0) is
surjective with kernel (z), so k[z]/(x) =~ k is a field. But when is (f(x)) prime?

Proposition 3.30.

If f(z) # 0, then (f(z)) is prime if and only if f(z) is irreducible in k[z].

The proof of Proposition 3.30 can be found here.
Note 3.31. The upshot of Proposition 3.30 that if & is a field and f(x) € k[z], then

(f(x)) is prime <= (f(z)) is maximal <= f(z) is irreducible. /)
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Corollary 3.32.

If k is any field, then
Speck[z] = {(0)} v {(f(z)) | f(x) is irreducible in k[z]}.

Example 3.33. What is Spec Z[i]?

e (0) is prime.

e (2) is not prime, since (1 +)(1 — i) = 2. Thus Z[z]/(2,2* + 1) =~ Z[i]/(2) is not an
integral domain.

e (3) is a prime, since Z[z]/(3, 2% +1) =~ Z[i]/(3) has no zerodivisors. (See Exercise 7.2(c)).

e When is (p) prime in Z[i] for prime integers p? Certainly not when p = 1+ a? for a € Z,
since then p = 1 + a? = (1 + ai)(1 — ai), and then apply the same argument from the
previous point. Note

2] .zl _ @)l

() (p2?+1)  (a2+1)
Is 22 + 1 prime in (Z/pZ)[z]? Well, it is if and only if 2% + 1 is irreducible in Z/pZ[z] if
and only if 22 + 1 has no roots modulo p if and only if —1 is not a square mod p, which

turns out to be true if and only if p = 3 (mod4). (You can show that if p =1 (mod4)
then p is a sum of squares and therefore is not a prime.) /)

The upshot of Example 3.33, modulo the final “if and only if” in the argument, is the following
well-known fact:

Corollary 3.34.

If p is a prime integer, then

(p) is prime in Z]i] — p =3 (mod4).

We have now done some number theoretic examples; we now turn to more geometric examples.
Example 3.35. Let R = R[z,y|. Consider for (a,b) € R? the ideal
I={feR]| f(a.b) =0},

We will now check if I maximal or prime. Consider the evaluation map R[x,y] — R sending
f(z,y) — f(a,b). This is surjective, since t — ¢ for all ¢ € R. The kernel is the set of all
polynomials f(z) € R[z,y] such that f(a,b) = 0, so its kernel is I by definition. But this
shows R[z,y]/I = R is a field, so I is maximal.

What are the generators of I? Certainly (x — a,y — b) < I, and the reverse inclusion is true
for the following reason: f(x,y) = f(a,b) + polynomials g in z — a,y — b with g(a,b) = 0.
Then f(a,b) =0 = f(z,y)e(r—a,y—"0b). Sol < (x —a,y—0b),s0 [ = (x—a,y—Db).

We can interpret this geometrically as follows: the collection of polynomials / vanishing at
(a,b) € R? is given by (z — a,y — b). Thus, we can think of (x — a,y — b) as the point (a, b)
in R2. //
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Example 3.36. Similarly, consider I = {f € R[z,y]| | f(z,z*) = 0}. This corresponds to the
curve y = 2, since I is the ideal of all polynomials that vanish on every pont of this parabola.
We can argue this as follows.

Is I prime? Is [ maximal? Consider the map R/I defined by R[z,y] — R[z] via f(z,y) —
(z,2%). Tts kernel is the set {f(z,y) | f(x,2?) =0} = I, so

Rlz,y]/T = Rlz],
which is an integral domain but not a field. Thus [ is prime but not maximal.

Now what are the generators of I? Certainly y — 22 € I, since the function f(z,y) =y — 2*
vanishes on the parabola. Thus (22 —y) < I. Conversely, if f € R[z, y], we can Taylor expand
the polynomial f(z,y) in the single variable z as
al 2 2
Flan) = Joa®) + =)D o) + B S oy
so in particular if f(z,2?) = 0 then f(z,y) € (y — 2?). So I = (y — x?). This converse
direction requires more details to be made formal, but this is the key idea.

But what maximal ideals contain I? The point (0,0) corresponds to the point (x,y). And it
is easy to check that (y — z?) < (z,y). Similarly, the point (2,4) on the parabola corresponds
to the point (z — 2,y — 4), so geometrically we should believe that (y — 2?) < (z — 2,y — 4).
And this is true (indeed, one can check y — 2? = (y — 4) — (z — 2)® — 4(z — 2)), but seeing
and proving this algebraically is a pain. But as we have just shown, this is not so difficult to
see geometrically, so the geometric interpretation can sometimes be more useful or intuitive
than the algebraic interpretation. (Bonus question: Are there any other maximal ideals that
contain this point?) //

3.5 Prime Avoidance

Theorem 3.37.

Suppose [, ..., I, are ideals of a commutative ring R.

(1) (Prime Avoidance). If J < J;_, I; and all but at most two among I,..., I, are
prime, then J < [; for some j € {1,...,n}. (The contrapositive is that if .J is not
contained in any of the [;s, then .J is not contained in the union of the I;s).

(2) Let p be a prime ideal and let Iy, ..., I, be ideals of a commutative ring R such that
po ﬂle I;. Then p > I; for some j. In particular, if p = (j_, I;, then p = I; for
some j.

The proof of Theorem 3.37 can be found here.

Corollary 3.38.

The following hold in any commutative ring A.

(1) If p1,...,pn € Spec A, then [ J7_, = py for some ke {1,...,n}.
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(2) If I,..., I, are ideals of A and ();_,I; = p € SpecA, then I; = p for some
ke{l,...,n}.

3.6 Homework 8

Exercise 3.39: 8.1.

Let R be an integral domain. A Euclidean valuation of R is a set function d: R~ {0} —
Z~ such that for all a,b € R with b # 0, there exist ¢, € R such that a = bg + r and
either = 0 or d(r) < d(b). An integral domain that has a Euclidean valuation is called a
Euclidean domain.

(a) Let K be a field. Show that K[z] has Euclidean valuation d(f(x)) = deg(f(z)), the
degree of f(z).

(b) Show that any Euclidean domain R is a principal ideal domain.

A solution to Exercise 3.39 can be found here.

Exercise 3.40: 8.2.

Let R be a commutative ring. Prove that

\/@ - ﬂpeSpec(R) P

Hint: For the difficult direction, if f € R is not nilpotent, consider the set S of all ideals
I < R such that for all n > 0, f* ¢ I. Use Zorn’s Lemma to show S has a maximal
element M, and show that M is prime.

A solution to Exercise 3.40 can be found here.

Exercise 3.41: 8.3.

Let R be a commutative ring. We define the Jacobson radical J(R) of R by
J(R)={xeR|1—xzye R for all y e R}.

(a) Show that J(R) is an ideal of R.

(b) Show that

J(R) - r-)meMax(R) m,

where Max(R) is the set of maximal ideals of R.

A solution to Exercise 3.41 can be found here.
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Exercise 3.42: 8.4.
Let R be a ring. For any subset S of R, define
V(S) = {p € Spec(R) | S < p}.
(a) Let I = (S), the ideal generated by S. Show that V(S) = V(1) = V(\/I).

(b) Show that the sets V(S) for varying subsets S < R (or equivalently V(1) for varying
ideals I) satisfy the axioms needed to be the closed subsets of a topology on Spec(R).
This is called the Zariski topology on Spec(R).

(c¢) Give an example showing that the Zariski topology is not always Hausdorff. (Indeed,
it very rarely is.)

A solution to Exercise 3.42 can be found here.

Exercise 3.43: 8.5.

Show that if A and B are commutative rings, then any surjective ring homomorphism
¢: A — B induces a homeomorphism of Spec B onto the closed subset V (ker ¢) of Spec A.

A solution to Exercise 3.43 can be found here.

4 Local Rings and Localization

Again in this section all rings are assumed commutative unless specified otherwise.

By “inverting” elements we can “destroy” certain prime ideals of our ring. For example, in Z,
if you invert a prime ideal p, then there is no prime ideal generated by p since p is now a
unit, and hence generates the (non-prime) unit ideal. Informally, by inverting an element of
Z we obtain a ring that looks a lot like Z, but without an ideal generated by p.

4.1 Local Rings

Definition 4.1.

A commutative ring R is called a local ring if it has a unique maximal ideal.

Example 4.2. Any field is a local ring, with maximal ideal (0). //

Example 4.3. If k is a field, then R = k[z]/(2") is a local ring with maximal ideal (x).
Indeed, by the correspondence theorem, the ideals of R are in correspondence with ideals I
of k[z] containing (2™). Thus, if  is maximal and 2" € I, then x € I (since if I is maximal
then I is prime, hence radical), so it follows that (z) < I. And (z) is a mazimal ideal in k[z]

because k[z]/(z) > k is a field. //

Note 4.4. Local rings are called “local” because they capture the local geometry of an algebraic
variety. This is suggested by Example 4.3, since passing from a polynomial f(x) € k[z] to its
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image in k[z]/(z") is the same as truncating f(z) as to preserve only terms of degree less
than n. In turn, this image contains precisely the information of the kth derivative of f(x)
for all k€ {1,...,n — 1}. Thus elements here contain “tangent information,” and this is true
in a formal sense. //

Example 4.5. Where p is a prime integer, the p-adic integers Z,, is a local ring, with maximal

ideal (p). //
Theorem 4.6.

Let m be an ideal of a ring R. Then R is local with maximal ideal m if and only if
m= R~ R~

The proof of Theorem 4.6 can be found here.

4.2 Spectrum of k[[z]]

Definition 4.7: Ring of Formal Power Series.

Let R be a commutative ring. Define the ring of formal power series over R, denoted
R[[x]], as follows.

e As aset, R[[z]] = {{an}tnez-y | an € R},

e addition is given by {a,}nezoy + {bn}nez=0 = {@n + bn}nezoy,

e the additive identity is given by 0 = (0,0,...,),

e multiplication is given by {an}, - {bn}n = {25_0 akbu-1},ez_,, and
e the multiplicative identity is given by 1 = (1,0,0,...).

One can check that the above operations indeed make R|[[x]] into a ring.

Notation 4.8. In the context of Definition 4.7, we will usually write {a, }nez., as Zf:o apx™.

#
Example 4.9. In this ring, we note that
l—z)'=1l+a+2>+2°+-- =Z:=0:c",
so (1—xz)X," 2" = 1. Thus 1 —z € R[[z]]*, which is in stark contrast to the usual
polynomial ring R[z], whose units are simply the units of R. //
Note 4.10. Let f € R[[z]]. Then
I—af)A+af+ (@f)+ @f)’ + @f) +-) =1 (4.10.1)

For all n, the coefficient of 2™ is a finite sum, and hence is well-defined in R[[z]]. Then we
can check the coefficient of all terms 2" for p > 0 to conclude Equation (4.10.1) holds.  //
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Proposition 4.11.

Let R be a commutative ring. Then

200 Oanx" € R[[z]]* — ap is a unit in R.
n=

The proof of Proposition 4.11 can be found here.

Now let &k be a field. What are the prime ideals of k[[x]]? And more generally, what are the
ideals of k[[x]]? Well, we can name some ideals right away:

e (z) is an ideal. The degree function is not well-defined on k[[z]], which hints that it
is easiest to consider the quotient k[[x]]/(x). Consider the map k[[z]] — k given by
f(z) — f(0). This map makes sense since all terms of degree > 1 vanish. One can check
its kernel is (), so we conclude k[[z]]/(z) = k, a field, and hence (z) is maximal.

e (0) is an ideal. It is prime, since one can check that if two power series multiply to 0,
then, by induction, all coefficients of one of the polynomials are zero.

e Note that if f € k[[z]]\(z) = k, then f is a unit (since k is a field). Thus by Theorem 4.6,
(x) is the unique maximal ideal, which means k[[x]] is a local ring.

Definition 4.12.

Let R be a commutative ring. For all elements f(z) = >, a,2™ of R[[z]], define
v(f) = min{a, | a, # 0}.
Similarly, for all ideals I of R, we define v(I) :== min{v(f) | f € I}.

Note 4.13. Observe for an element f(x) € k[[z]] that
v(f) =0 <= fis a unit of k[[z]]. //

Proposition 4.14.

Let I be any ideal of R[[z]], where R is any commutative ring. Then I = (). Therefore,
if k is a field, then

Spec k[[2]] = {(0), (x)}.

The proof of Proposition 4.14 can be found here.

Note 4.15. So, although k[[z]] is a very large ring, its ideal structure is very simple. It
is a local ring, and we can write down all its ideals very easily. On the other hand, the
polynomial k[z] is much smaller, but its ideal structure is much more complicated (see

Corollary 3.32). //

Example 4.16. Let k be a field and let n € Z;. Then k[z]/(2") has a unique maximal
ideal, (). Indeed, by the correspondence theorem,

ideals of k[x ideals of
{conijiii(;lg ([337]’)} — {k[;]a/(sm%)}’
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I — image of I,
preimage of I «— 1.

This bijection preserves maximal ideals, since it is inclusion-preserving, and hence bijects
the corresponding sets of maximal ideals. Then by Theorem 4.6, the theorem that R is local
with maximal ideal m if and only if R ~ m = R* implies the element v := 1 + z is not in m,
hence is a unit—indeed, this is because (1 + z)(1 —x + 2* — - + (=1)"'2z""!) = 1. More
generally, the element a + f(x) is not in m for any a € k and f(z) € k[z], so u € R*. //

The following is another example of the above theorem.
Example 4.17. Let p be a prime number, and define Z¢,) < Q by
Ly = {% cQ ‘ a,be Z,ged(a, b) = 1,p+b}.
One can check Z,) is a subring of Q, and that
o a
L, = {E eQ ‘ a,be Z,ged(a,b) =1 andpj(a-b}.

And Zp) \ Z{,, = pZLy) is an ideal, so by the lemma Z,) is a local ring with maximal ideal
PLp)- //

4.3 Localization and Localization at Prime Ideals

We continue the convention that all rings used are commutative unless otherwise specified.
The ideas and notation in Example 4.17 hint at a more general construction, which we now
pursue.

Suppose we have an integral domain A. By “inverting” the nonzero elements of A, we form a
field called the fraction field of A, denoted Frac(A). For example, FracZ = Q.

Zy) is an example where we invert “most” elements of A \ {0}. Let us now formalize and
vastly generalize this procedure.

First we need to know what kind of subsets of elements in A we can invert in the ring, and
in doing so generalize this procedure to commutative rings that are not necessarily integral
domains.

Definition 4.18.

Let A be any commutative ring. A subset S of an A is called multiplicatively closed
if S is a submonoid of the monoid (A, -), or equivalently, if 1 € S and S is closed under
multiplication, that is, for all a,be S, abe S.

Definition 4.19: Localization.

Let A be any ring. Given a multiplicatively closed subset S of A, we define a ring called
the localization of S by A, denoted S~!'A, by

S71A = (AX S)/N,
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as a set where ~ is the equivalence relation generated by the relations
(a,s) ~ (b,t) <= there exists u € S such that u(at — bs) = 0.
over all a,be A, s, t e S. We define addition by
(a,s) + (b,t) = (at + bs, st),
and (a, s) - (b,t) = (ab, st).

Proposition 4.20.

The localization of A by S is well-defined, and forms a commutative ring with additive
identity (0, 1) and multiplicative identity (1,1). Moreover, there exists a canonical ring
homomorphism j: A — S~ A given by a — (a, 1).

The proof of Proposition 4.20 can be found here.
Example 4.21. If S = A%, then A — S~!'A by the canonical map is an isomorphism. //

Example 4.22. If 0 € S, then S~ A = {0}. Indeed, then any two elements (a, s), (b,t) € S™*A
are equal, because

0-(at —bs) = 0.
es
Hence S~ A only has one element, so A = {0}. //

The following remark is very useful in many situations.

Note 4.23. If A is an integral domain S is any multiplicatively closed subset not containing
0, then

a/b=c/din STtA — at —bs =0in STTA. //

Example 4.24. For any commutative ring A, the subset S = {non-zerodivisors in A} of A

is multiplicatively closed, and we define the total ring of fractions, denoted Frac A, as the
ring S~tA. /)

Example 4.25. 5 := A~ {0} is a multiplicatively closed subset of A if and only if A is an
integral domain, and in this case S™1A is a field. We call this field the field of fractions of
A, and again denote it by Frac A (but sometimes also by Quot A or Fr A). //

Example 4.26. A = C[z,y]/(xy) is not an integral domain, since it has zerodivisors x and
y. Its total ring of fractions turns out to be

()

where C(x) = Frac(C[z]) is the field of rational functions in x over C. By Exercise 9.5
its total ring of fractions is isomorphic to the product C(z) x C(y) of the rings C(z) and
C(z) of rational functions in x and y, respectively. This suggests that geometrically this
ring should be thought of as the union of the x and y axes, so the total ring of fractions is
simply the product of the fraction fields. This observation can be made formal as follows. To
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turn this suggestion into a formal observation one can use the two natural surjective ring
homomorphisms A - A/(y) = C[z] and A - A/(x) = C|y] together with Exercise 8.5. //

Example 4.27. For any ring A and any f € A, the set S = {f"}nez., is multiplicatively
closed. Intuitively, S~ A is “A[1/f]". //

Example 4.28. For any A, if p € Spec A, then S = A \p is multiplicatively closed. In this
case we use the notation

A, = S71A.
For example, (Z \ pZ)™'Z = Zy,). //

Lemma 4.29.

For any multiplicatively closed subset S of A,
ker(j) = {a € A | there exists s € S such that sa = 0}.

The proof of Lemma 4.29 can be found here.

Example 4.30. The key special case of the above argument is when A is an integral
domain. Then j: A — S~'A is injective as long as 0 ¢ S. More generally, j is injective if
S < {nonzerodivisors}. /)

Where R = Q and S = Q \ {0}, S7'Q — Q via (a,b) — a/b is an isomorphism. Thus this
process generalizes the construction of the rationals from the integers.

Example 4.31. Let R = k[z] and S = k[z] \ {0}. Then

STIR = {(p(2), q(2)) | q(x) # 0} = k().
(The field of fractions for an integral domain is the smallest field containing the ring. Thus if

we want to try to understand the ring by using field arithmetic, then we want to use the field
of fractions of the ring.) //

Example 4.32. Let R be any ring, f € R, S = {1, f, f% f3, f*,...}. Define
R; = S'R.
If R=7 and f is a prime integer p, then
Ry =7, = {(a,p") |ac Z.k > 0},

where
(@.0) ~ (b p) — apf —bpf =0 = L =20
a,p P ap P = E = ]?
Thus
Z, = Z[1/p] = {a € Q| in lowest terms the denominator is a power of p}. //

Example 4.33. If R = Z/p*Z, f is a prime integer p. Then
Z
Ri=(—=)=0
! <p3Z> ’
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by an argument similar to that of Example 4.22, since p is a zerodivisor in R. //

Intuitively, the claimed isomorphism in the following lemma makes sense since we are just
formally introducing an element 1/f to the ring that is the inverse of f.

Lemma 4.34.

If f is not a nilpotent element of a ring R, then

Ry =~ R[z]/(zf —1).
In other words, if f ¢ 4/(0) then Ay =~ A[1/f]. (Here we are abusing notation to write
All/f] = Ay)

The proof of Lemma 4.34 can be found here.

Example 4.35. Let R = Z/6Z and f = 2. Then Ry is the “integers mod 6, with 2 invertible.”
Perhaps by intuition, one may guess R; =~ Z/3Z. It turns out that indeed this is the case,
and we prove this formally: Note
Ry ={(a,1),(a,2),(a,4) | a € Z/6Z}.
If a =0 (mod6) or a =3 (mod6), then (a,2%) = (0,1) because
k
(a-1-0-2%)-2=0.

es
Ifa =1 (mod6)ora=4(mod6) then (a,1) = (1,1) because (a-1—1-1)-2 =0, (a,1) = (2,1),
(a,2) = (1,1), (a,6) = (2,1). Thus any given element of the ring equals some element in
{(0,1),(1,1),(2,1)} under ~, and one can check none of these three elements are isomorphic
to each other. Thus Ry = {(0,1),(1,1),(2,1)}. Since there is only one ring of order 3, we
conclude R =~ Z/37Z. We conclude (Z/6Z), =~ Z/3Z.

Thus

(Z/6Z)[x]
(2x —1)

is not injective, that is, the natural map R — S~ R is not injective, where S = {1,2,2% 23 ... }.

//

767 —> ~ Ry ~7/3Z

4.4 Universal Mapping Property of Localization

Proposition 4.36: Universal Mapping Property of the Localization.

If S is a multiplicatively closed subset of a commutative ring A and ¢: A — B is a ring
homomorphism such that ¢(S) < B*, then there exists a unique ring homomorphism
$: S71A — B such that the diagram

A L s B

S—1A
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commutes, where j: A — S7!'A is the natural map a — a/1.

The proof of Proposition 4.36 can be found here.

Example 4.37. Let A be a commutative ring, and suppose S and T are multiplicatively
closed subsets of A such that S c T. Then since jr(S) < (T~'A)*, by Proposition 4.36
there exists a unique j: S7'A — T~'A such that the diagram

A IT.A » T-1A

S—1A

commutes. In fact, 5 = j7.s-1a, Where T is the image of 7' in S~!'A. (The details are left as
an exercise. ) //

Example 4.38. As a specific case of Example 4.37, let A be an integral domain, T'= A~ {0},
and S is any multiplicatively closed subsets of A \ {0}, then we have canonical injections

A < » T71A = Frac(A)
ST1A
So, the localization is just some subring of the fraction field of A. (See the lemma about
ker(j) above.) //

Example 4.39. Let A = Z, so that Frac(A) = Q, and let S = Z ~\ (p), where p is a prime
integer. Then

ST'A =Zg) = {xr € Q| pis not a factor of the denominator of z in lowest terms}.
Now consider Sy = {2"}%_,. Then
Sy = Z[1/p] = {x € Q| p"x € Z for some n € Z=g},

which reflects the fact from Example 4.38 that there exist canonical injections

7 < > Q
N /
]

Z[1/p

4.5 Ideals in S~1A

We next show that this construction does not add any new ideals, so ideals are collapsed
together when we localize at some multiplicatively closed subset. First we introduce a useful
piece of notation. (See also Exercise 8.2.)

Notation 4.40. Let A be a ring and S is a multiplicatively closed subset of A, then for any
ideal I = A we write S™'T for the ideal of S™'A generated by j(I). #
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Lemma 4.41.

If A is a commutative ring and S is a multiplicatively closed subset of A, then the
assignment

(9} — {olt)
I—> ST

is surjective, and S~ = S~ A if and only if I n S # @. In other words, localization at
S deletes any ideals intersecting S.

The proof of Lemma 4.41 can be found here.

The following is an important example, although it is somewhat of a “partial” example because
we are restricting to prime ideals.

Proposition 4.42.

Let A be a commutative ring and let S be a multiplicatively closed subset of A. Then
there is a bijective correspondence

{peSpecA|pnS =2}« Spec(SA),
p—S7'p
JHa) <

is a bijection. In other words, localization at S deletes prime ideals intersecting .S, and
any prime ideal of S7'A are localizations of prime ideals.

The proof of Proposition 4.42 can be found here.

Proposition 4.42 is extremely important when thinking geometrically about the ring theory of
a problem, and it turns out that the bijection of Proposition 4.42 is in fact a homeomorphism
with respect to the Zariski topologies (when {p € Spec A | p n .S = @} is given the subspace
topology on Spec A). Indeed, this follows from Exercise 8.5.

Corollary 4.43.

If A is a commutative ring and p € Spec A, then
Spec(4,) — {q € Spec A | q < p}
S7'pe—p
q—j ' (q).

The proof of Corollary 4.43 can be found here.

Note 4.44. It follows that the ideal structure of A, is in bijection with the set of ideals
inside p (because anything outside p becomes a unit when localizing at p, so any ideal not
fully contained in p collapses to the unit ideal). This is why this is called “localization,” since
we are literally throwing out all ideals except those inside p.
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Note that, on the other hand, the prime ideals of A/p are in bijection with the prime ideals
of A containing *P. /)

Example 4.45. For prime integers p we have SpecZg = {(0),pZ,)}, and as the notation
suggests, this is just the example from a while ago, that is,

Z(p)z{%e@‘a,beZ,gcd(a,b)zl,p)(b}. //

Example 4.46. In the case A = C[xz], p = (z), the localization of A at p is the collection of
prime ideals inside (z), that is,

Clal = {Zﬂ e Cla) \ p(e), 4(x) € Cla], ged(p(a), q(x)) = 1,x+q<x>},

q(z)
and
Spec(Clz]w)) = {(0), 2Clz]()}- /
Example 4.47. If A = Clz,y], p = (z,y), then the localization of A at p is
C[xvy](z,y) = {géijz; € (C<£B7y) f(w,y),g(z,y) € C[l‘,y] and 9(07 0) 7 0} //

(Note g(x,y) € C[z,y] lies in (z,y) if and only if g(0,0) = 0.) Geometrically, then, C|z, y](,y)
is the collection of rational functions that are defined at 0. This also agrees with the general
rule of thumb that geometrically the point (a,b) in the affine plane Spec k[x, y] is identified
with the point (prime ideal) (x — a,y — b) in Speck[z,y]. (In fact, this is already made
rigorous over C.)

Example 4.48. Let R = C[z,y|/(xzy). What is R,? On the other hand, what is R(,)? Let
us use all tools at our disposal to “guess” isomorphisms, with enough confidence that it is in
fact an isomorphism, to the point that we would have no issue sitting down with a strong
cup of coffee to prove it in full confidence. We first recall what those tools are:

e Let S be a multiplicatively closed subset of R. Then Spec(S™'R) is in bijection with
{peSpecR|pnS =g}

e We can also use that R is a reduced ring (which can be seen by Exercise 9.5 since it is
contained in a product of fields, which is reduced).

e Since R is reduced, if p is a minimal prime then R, is a field by Exercise 9.4. bv (Check!).

e Moreover, if S < T for another multiplicatively closed subset T" of R, then by the
universal mapping property of localization we get a well-defined ring homomorphism
S™IR — S7IT.

e We can also use that if S = R~ ((z) U (y)) then S™'R =~ C(x) xC(y). (This is Exercise
9.5)

With these points in mind, we can proceed as follows:

e Computing Spec R: We first compute the spectrum of R. Recall that there is a bijection
of Spec R onto {p € SpecC[z,y] | p © (xy)} given by sending p € Spec R to its preimage
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7 1(p) under the quotient map 7: C[z,y| — C[z,y]/(zy), and with inverse sending
primes q € Spec(C|z, y]) to 7(q).
We can rewrite {p € Spec C[z,y] | p 2 (2)} u {p € SpecC[x,y] | p © (y)}. (This is not a
disjoint union, since for example, the ideal (xy) is contained in both of these.) This is
in bijection with
Spec(C[z, y]/(x)) v Spec(C[z,y]/(y)) = Spec Cly] L Spec C|z]
=({0)}u{ly—a)[aeC})u ({0} u{(z—a)|aecC}).

Now we have worked out all the ideals in the union, so we need to pull them back.
Pulling back to C[z,y] via the aforementioned bijection, we get

(@)} vilzy—alacChoyvilz-ay)|acC

So the maximal ideals of C[z,y]/(zy) are the points on the coordinate axes of the
xy-plane, and the coordinate axes themselves correspond to the (non-maximal) prime

ideals (z) and (y).

e Computing R,: Tt is straightforward to compute that S = R\ (z,y —a) for a # 0. Given
our knowledge of Spec R from the previous point and how the spectrum changes with
localization, we can see that Spec R, is the line with a point removed; indeed, in R, the
ideal () is no longer a prime, as x becomes a unit in R,. (This is in contrast with the
case of Spec R(,, which is just the coordinate axes but “zoomed in” at an infinitesimal
neighborhood of the y axis). Recall that when R is any commutative ring and = € R is
not nilpotent, we have R, =~ % =“R[1/z]” (that is, in R, we are defining ¢ to be the
multiplicative inverse of z, that is, tz = 1). Thus in our situation,

Clz,y, ]
(xy,tx — 1)
Motivated by our intuition for how Spec R, should look, we consider the localization
C[z],. Using the same logic as we did to obtain the above expression, we can also write

Clz,t] _ Clx,y,t]

(tr —1) ~ (y,tz —1)

This hints to us that we should try to show (zy,tx — 1) = (y,tx — 1). And indeed,
(xy,tx — 1) < (y,tz — 1) because zy = y - z, and (y,tx — 1) < (xy,tz — 1) because
y = —y(tz — 1) + tzy. Thus points of R, are points where you just delete the x axis

xr =

Clz], =

o Computing R(y: Where R = C[z,y]/(xy) again, what is R(;)? By our geometric
intuition we know this should be either C(z) or C(y), so we just need to determine
which. This is left as an exercise. (Prove that the map R = (C[z,y]/(zy)) ) — C(y)
defined by

is an isomorphism.) //

Example 4.49. When A is an integral domain and p = 0, Ay = Frac A, and Spec(Ag)) =
{p eSpecA|p = (0)} ={(0)} //
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In these examples, we have been thinking of A, for an integral domain A as a subring of
Frac(A). There is also a partial converse, which can be stated as follows.

Proposition 4.50.

If A is an integral domain, then inside Frac(A),
A= ﬂpESpecA Ap - ﬂmeMax(A) Am.

The proof of Proposition 4.50 can be found here.

Example 4.51. Inside Q, Z,) is bigger than Z, but if we start thinking about intersections
over all prime ideals then we will cut out just the integers. In other words,

7 = ﬂ prime  Z(p)  (inside Q). //

integers p

4.6 Modules of Fractions

Definition 4.52.

Let A be a commutative ring, S < A a multiplicatively closed subset, and M an A-module.
Define

S™TIM = (M xS)/~,
where (m, s) ~ (n,t) if and only if there exists u € S such that
u(tm — sn) = 0.
We denote the equivalence class of the element (m, s) € M x S with respect to ~ by m/s

and define addition and multiplication operations on S~'M by
m n tm + sn

S t st
and

st

m am
t

a
s
respectively, for all m,ne M, s,t € S, a € A.

Exercise 4.53.
The operations in Definition 4.52 make S™'M into an S~ A-module. (See Exercise 9.1).

Theorem 4.54: Functoriality of Localization of Modules.

Let A be a commutative ring and S a multiplicative subset of A. For any A-modules
M and N, and an A-module homomorphism f: M — N, there exists a well-defined
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S~1 A-module homomorphism S~'f: S~'M — S~!N defined by
mNAANE f(m)
(s7h(7) =

s
satisfying the following properties.

e For any A-module homomorphisms f: M — N and g: N — P,
STHgof)=8"tgo ST .
e If the sequence of A-module homomorpisms
ML N L p
is exact at N, then S~'M 57, 91N 279, 6-1p i exact at STUN.

e S7! preserves addition of homomorphisms in the sense that S~! induces a homomor-
phism on the hom-sets.

e In categorical terms, the above statements together are equivalent to saying S—! is a

covariant exact additive functor from the category of A-modules into the category of
S~ A-modules.

The proof of Theorem 4.54 can be found here.

Example 4.55. If N is an A-module and N is a submodule of N, then S™'M < S™!N is an
S~1A submodule, and quotient

S—IN 1
~ S (N/M).
= 5T V/M)
This follows from applying Theorem 4.54 to the short exact sequence 0 - M — N —
N/M — 0. //

Example 4.56. Ideals of A are precisely the A-submodules of A, so as a particular case of
Example 4.55 we conclude that all ideals of S™A are of the form S~'I for ideals I of A, and

S™HA/I) = STA/STL

Note that we have used the notation S~'I twice now. Both objects described are indeed the
same, as will be shown in Exercise 9.2. There is a converse to Theorem 4.54 that we will
soon prove, which allows us to go back and forth from local to global information. /)

4.7 Annihilators and Support of Modules

Definition 4.57.

If A is a commutative ring, M is an A-module, and X is a subset of M, then we define
the annihliator of X by

Anng(X) ={ae A|ax =0 for all x € X}.

Now fix a commutative ring A, a multiplicatively closed subset S of A, and a prime ideal
p € Spec(A).
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Example 4.58. Recall that if M — N — P is an exact sequence of modules, then so is
S™*M — S7IN — S=1P. Then in particular,
e ST MxP)=StMxS1P,
o STHN/M) =~ STIN/STIM,
e if M, P = N are submodules, then S™'(M + P) = S7'M + S~™'P, and S™'(M n P) =
STIM n STLP. //
The proof of Definition 4.57 can be found here.

Example 4.59. When A = Z and M = Z/nZ, we have
Anna(M) ={a€Z | am =0 (modn) for all m € Z/nZ} = nZ = (n).

//
Example 4.60. Now fix a prime p € Z. Then Zy, = {% € Q} What is (Z/nZ)? By
definition,
(Z/nZ)) = S~H(Z/nZ) = (Z~ (p)) " (Z/nZ).
The answer will certainly depend on the relationship between p and n: if p { n, then
(Z/nZ) = {(x,5) | © € Z/nZ, s € T (p)}.

And z/s = 2'/s" if and only if there exists u € Z ~\ (p) such that u(zxs’ — 2’s) = 0 (modn).
But such a u always exists, since we can just take v = n, which is in S = Z ~\ (p) since p t n.
Thus any two elements are there equal, so (Z/nZ), = {0} if p 1 n.

On the other hand, if p 1 n, say n = p®n’ where p 1 n/, then by the CRT we can write
207 =~ 77 x Ly Z.
Since localization commutes with direct products,
{0} by the previous case

(Z/nZ) ) = (Z/p" D)) < (L EY,)

So it suffices to find (Z/p*Z) . Everything already invertible in Z/p°Z is invertible, since if
something is not divisible by p then its inverse can be found as elements not divisible by p
are made into units by the localization process.

Let us now make this intuition rigorous. We claim the map Z/p*Z — (Z/p*Z), via
m — (m, 1) is an isomorphism.

Injective: If (m, 1) ~ (m/, 1) then there exists u € Z ~ (p) such that u(m —m') = 0 (mod p)®.
Since p 1 u, there exists ¢t € Z such that tu = 1 (modp)?® so m —m' = 0 (modp)’, so
m=m’' (modp).

Surjective: If (m,s) € (Z/p"Z) ), then s € Z~ (p), that is, s is coprime to p, so by elementary
number theory there exists ¢t € Z ~\ (p) such that st =1 (modp)?, so (m,s) ~ (mt, 1), which
is in the image because (mts —m) -1 =0 (mod p)®*. This gives the desired isomorphism. The
upshot is that

(Z/nZ) ) = “p-part” of Z/nZ.
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Thus our map is an isomorphism. In conclusion,

0 if ptn,
(Z/TLZ)(p) = a : — G /
Z/p"Z  if n = p®n’ for some a > 1, where n’ { p.

//

Proposition 4.61.

Let M be an A-module and let S be a multiplicatively closed subset of A, and let
j: M — S7'M be the natural map given by j(m) = (m,1). Then for all m € M,

jim) =0 = S nAnny(m) # @.

The proof of Proposition 4.61 can be found here.

Definition 4.62.
Let M be an A-module. Define the support of M by
supp(M) = {p € Spec A | M, # 0}.

Let M be an A-module, S a multiplicatively closed subset, and j: M — S~'M the natural
map. The Support of M is defined as

supp(M) = {p € Spec(A) | M, # 0}.

Theorem 4.63.

The localization S™'M equals 0 if and only if for every m € M, there exists r € S such
that 7 -m = 0 in M. Therefore, S™*M = 0 if and only if for every m € M, the set S
intersects Anny(m) nontrivially.

Proof. Given any m € M, if S~'M = 0 then by definition there exists some s € S such that
s-m =0 in M. Conversely, if for some m € M, every s € S satisfies s - m # 0, then m/1 # 0
in ST1M, contradicting our assumption that S™1M = 0. Hence, the statement holds. O

Corollary 4.64.

If p € Spec(A) and p D Anny (M), then M, = 0.

Proof. If M, # 0 for some p € Spec(A), then by definition, there is no s € A \ p such that
sM = 0. Conversely, if there exists s € A\ p with sM = 0, then every element of M is
annihilated by some element not in p, which implies that M, must be zero because s acts as
a unit in S~'M, annihilating M upon localization. O
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Proposition 4.65.

Suppose M is finitely generated over A and p € Spec(A). If M, = 0, then p contains
Anny(M).

Proof. Let M be generated by elements my, mo, ..., m,. If M, = 0, then for each ¢, there
exists s; € A\ p such that s;m; = 0. Since S = A \ p is multiplicatively closed, the product
s = 8189---8, is in S and annihilates each generator of M, hence annihilates M. Thus,
s€ Anny (M) and s ¢ p, which shows p contains Ann,(M). O

The above results then prove the following theorem:

Theorem 4.66.

if A is a commutative ring, S is a multiplicatively closed subset of A, and M is an
A-module, then the following statements hold:

(i) S7'M = 0 if and only if any m € M is annihilated by some s € S.
(ii) If p € Spec(A) and M, # 0, then p intersects Anny(M).

(iii) If M is finitely generated over A, then supp(M) equals the set of all prime ideals p
of A that contain Ann(M).

9

In other words, the finitely generated module over the ring A, referred to as a “function’
when viewed geometrically on the affine space over A, exhibits a support set. This support
set consists of the closed set of points where the module M equals zero.

For example, let’s consider the module k[x]/(f(z)) when the ring A is K. This module is
finitely generated over A because it can be generated by the set {1, z, 2% ..., 2"}, where n
represents the degree of the polynomial f. We interpret the module M (i.e., k[z]/(f(x))) as a
“function” defined on a one-dimensional affine space K[x]. This function is defined at points,
which in this context correspond to elements or prime ideals of the spectrum of A[x], denoted
as the spectrum of A[x] or equivalently k[z]. The “value” of the module M at a point p in
the spectrum of A[z] is denoted as M,. Consequently, the support of M, denoted as supp M,
aligns with the conventional notion of support in a topological space when M is finitely
generated As a result, we can establish the third point mentioned earlier, which states that
the support of M is equal to V(Anna(M)), where Anny (M) represents the annihilator of M.
It is worth noting that this set supp M is closed in the spectrum of A and thus coincides with
its own closure. Furthermore, V(Anna(M)) is the set of points in the spectrum of A such
that if a point p contains the annihilator Ann A, then the value M, of the “function” M at
the point p is equal to zero. This confirms that the support of M indeed corresponds to the
support in the traditional mathematical sense of a function defined on a topological space.

As an illustrative example, if the polynomial f(z) = = — «, resulting in the module M =
k[z]/(z — «) over the ring K, then the support of M is equal to V(Anny(z)) = V((a)) =
Spec(k[z]). This implies that M, is never equal to zero. Conversely, since M, = 0 if and only
if p = (0) d Anny(k) = 0, but it does.
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Exercise 4.67.

In the context of the function language described, what is the meaning of k[x]-modules
(algebras) M, N, P making a sequence 0 > M — N — P — 0 exact?

Example 4.68. supp(Z/nZ) = {(p) | p divides n}. //
Example 4.69. Consider A = C[z,y| and M =C. Fix a,be C. If f € A and x € C, define
f-x = f(a,b)z.

One can check this gives M a module structure on A. What is the support of M?

Let us start with a more simple question: if x is a nonzero complex number (if z = 0 then
obviously Ann x is everything),

Amny(z) = {f € Clz,y] | f

= {feClz,y]|

= (‘T — a4,y — b)

Now let p € SpecC[z,y] and let j: C = M — C, = M, be the natural map. Then for all
x e C,

(7 )1‘:0}
f(a,b) =0} (since z # 0)

Jj(z) #0 < SnAm(z) =9
— Clz,y]~\pn(zr—a,y—b) =2
«~ po(r—a,y—0b)
> p=(r—a,y—0>b).
Hence j is the zero map, unless, p = (z — a,y — b), in which case j is an isomorphism. We
conclude supp(M) = {(z — a,y — b)}. //

Example 4.70. Let A = C[x,y], f(z,y) =y — 2%, and M = C[z]. Then M is an A-module,

A — M because Clz,y]/(y — ) = C[x] via f — f(z,2?) is an isomorphism. For each
feAand ae M, define f-a:= f(z,z*)a. What is Ann(M)? Write

Ann(M) = {f € C[z,y] | f(z,2%)a =0 for all a € M}
= {feClz.yl | f(z,2%) =0} = (y —27).
So what is supp(M)? Well, if p < C[z, y] is prime, then j: C[z] — C[z], has
Jj(z) #0 <= SnAnn(z) =9

— SnAm(M)=0

== Clr,yl~pn(y—2°)=02

— po(y—a?).
So, at the very least, we have supp(M) < {p € Spec A | p > (y — z%)}. In fact, one can show
this is an equality, and geometrically this makes sense. In other words, supp(M) “equals”

the points on which the polynomial y — 2% vanishes. This is another example for which the
concept of the support of a module tells us a lot about the structure of the module. //
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Exercise 4.71.

Let A be a commutative ring and let M be an A-module.

(a) Let S be a multiplicatively closed subset of A. Show that if S n Anna(M) = &, then
S™IM = 0. In other words, if some element of Anns(M) lives inside S, then the
localization at S is zero.

(b) Moreover, if p € Spec A and p D Anny (M), then M, = 0.
(c) If M is finitely generated, then
M, =0 < p D Annyu(M),
that is, p € supp M if and only if p € V/(Anny(M)).

Proof. For (c), see Exercise F3. Points (i) and (ii) are left as exercises. O

Note 4.72. We used in disguise the result of Exercise 4.71(a) when saying that if p does not
divide n, then that is just saying n € S, and n is also in Ann(Z/nZ), so S~Y(Z/nZ) = 0. //

Example 4.73. e If M is a submodule of an A-module N, then S™'M is a submodule of
the S~'A-submodule S™!'N, and S™Y(N/M) ~ S™'N/S~'M.
e In particular, for any ideal I of A, S='(A/I) <~ S~'N/S~'M.

e If My, My are submodules of an A-module M, then S~ (M; + M) = S™1(M;) + S~ M,
is a submodule of the S™'A-module S~'M. (This can be checked directly, or one can
use M1 @® My — My + My — 0.) //

cM

4.8 Detecting Exactness with Localization at Prime Ideals

Lemma 4.74.
If ) is an A-module, then
Q=0 — Qm = 0 for all m € Max(A).

The proof of Lemma 4.74 can be found here.

Theorem 4.75.

¥M-LN 2 Pisa sequence of A-modules, then the following are equivalent:
(1) M L, N %, P is exact.

(2) M, LN N, -2 P, is exact for all prime ideals p of A.

(3) My ELN N, 2 P, is exact for all maximal ideals m of A.

The proof of Theorem 4.75 can be found here.
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4.9 Homework 9

Exercise 4.76: 9.1.

Let A be a commutative ring, and let S be a multiplicatively closed subset of A. Let M
be an A-module. Define the module of fractions S~'M by
S™'M = (M xS)/~

where (m, s) ~ (n,t) if and only if there exists some u € S such that u(tm — sn) = 0 (in
M). As usual, we abbreviate (m, s) = m/s.

(a) Show that ~ is an equivalence relation.

(b) Show that S~'M is an S~!A-module with operations

m n tm + sn
—t = and
S t st

forall m,ne M,ae A,s,te§S.

a m am
s t st

A solution to Exercise 4.76 can be found here.

Exercise 4.77: 9.2.

Continue with the setting of Exercise 9.1. When M = I is an ideal of A, we have already
defined the ideal S™'I of S™'A to be the ideal generated by j(I), for j: A — S7'A the
canonical homomorphism. Show that this ideal can be canonically identified with the
module of fractions S~1I defined in Exercise 9.1 (so our potentially ambiguous notation is
in fact consistent).

A solution to Exercise 4.77 can be found here.

Exercise 4.78: 9.3.

Let A be a commutative ring, and let p be a prime ideal of A. What is the relationship
between A/p and A,/pA,? Hint: You may need to compute a couple of examples to find
the answer. See Example 4.46 for a good example.

Theorem 4.79.

Let A be a commutative ring and let p € Spec A. Then there exists an isomorphism of
rings
@ Ay/pA, — Frac(Afp)
induced by the surjective ring homomorphism
p: A, — Frac(A/p),
fo F+p)

s (s +p)

ol ||
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Proof. e ¢ is well-defined: Suppose f/s = g/t in A,. Then there exists u € A \ p such
that u(tf — sg) = 0 (in A). Since u ¢ p, u is nonzero in A/p, and

W(iF — 5g) = ultf —sg) =0 in A/p.
Hence ¢(f/s) = f/5 =G/t = p(g/t), so p is well-defined.
e ¢ is a ring homomorphism: Let f/s, g/t € A,. Then
— (/1) =1/T=1/1,
()=o) =B =11 =0()w(9), and

(L) = () = b — L Ly

st st 5 St

S0 ¢ is a ring homomorphism.

il

Il
CIN|

_|_

SalliS]

= o(£) + (%),

e ¢ is surjective: Any given element of Frac(A/p) is of the form f/f € Frac(A/p) for some
f,t € Asuch that ¢ # 0 in A/p. It follows that ¢ ¢ p, so f/t is an element of A,. Then

©(f/t) = f/t. Thus ¢ is surjective.

e pA, < kerp: Any element of pA, is of the form_pf/s for some p, f,s € A such that p e p
and s € AN p, and o(pf/s) = pf/s=0f/5=0. Thus pA, < ker ¢.

e kerp = pA,: Suppose f/g € A,/pA, is in the kernel of . Then f/3 = 0/1 in Frac(A/p),
so there exists some u # 0 in A \ p such that

p=0=u(l-f-5-0)=u-f=uf=uf+pin A/p.

Thus uf € p. Since u ¢ p and p is prime, we must have f € p. Then because 1/s € A,,
we conclude f/s € pA,. Thus ker p < pA,. O

Exercise 4.80: 9.4.

Let A be a commutative ring, and let p be a minimal prime ideal of A, that is, there
are no prime ideals strictly contained in p.

(a) Show that all elements of the (maximal) ideal pA, of A, are nilpotent. If A is
moreover reduced, show that A, is a field.

(b) Deduce that if A is reduced, there is an injective ring homomorphism

A 1_[ minimal AP'

peSpec A
A solution to Exercise 4.80 can be found here.

Exercise 4.81: 9.5.

Show that there exists an isomorphism of rings

Frac(Clz, y]/(zy)) = C(x) x C(y).

A solution to Exercise 4.81 can be found here.

Version of February 5, 2024 at 11:53am EST Page 53 of 177


https://www.greysonwesley.com/home

Greyson C. Wesley 5.1: Noetherian Modules

5 Finiteness Conditions on Rings and Modules

5.1 Noetherian Modules

In this section we continue the convention that all rings are commutative unless stated
otherwise.

Definition 5.1.

Let A be a ring and let M be an A-module. We say M is Noetherian (as an A-module)
if every ascending chain of A-submodules

M()CMlCMQC'”

stabilizes, that is, if there exists » > 0 such that M, = M, for all s > 0. This condition
is known as the ascending chain condition (ACC) on submodules.

Example 5.2. A ring A is called Noetherian if A is a Noetherian module over itself with
respect to the natural module structure. Since A submodules of A are ideals of A, this means
every ascending chain of ideals

10C11C12C"'
stabilizes. Vi
Example 5.3. e Z is a Noetherian ring. Any field is a Noetherian ring.

o If A is Noetherian and 7: A — B is a surjective ring homomorphism, then B is
Noetherian. Indeed, for any chain [y ¢ I} < --- < B, 7' (l)) c m () = --- = A
stabilizes, and for all j we have 7(7~(I;)) = I; since 7 is surjective, so Ip < Iy ---
stabilizes.

e If A is Noetherian, then A[z] is Noetherian. This result, which we will soon prove, is
called Hilbert’s basis theorem (Theorem 5.24).

o If A is Noetherian, then S™'A is Noetherian for all multiplicatively closed subsets S of
A. Indeed, we have seen that every ideal J of S71A is of the form S~!(j71I) for some
ideal I of A, where j: S — S7!'A is the natural map. For any chain Jy < J;,--- < S71A,
the chain j='Jy < j7'J; < --- in A stabilizes, so the original chain must stabilize in

ST1A. //

Proposition 5.4.

Let A be a ring and let M be an A-module. Then the following are equivalent:
(1) M is a Noetherian A-module.

(2) Every nonempty subset ¥ of submodules of M has a maximal element (with respect
to inclusion).

(3) Every submodule of M is finitely generated as an A-module.

The proof of Proposition 5.4 can be found here.
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Corollary 5.5.

A ring A is Noetherian if and only if every ideal I of A is finitely generated.

Lemma 5.6.

Let A be a ring. Then in a short exact sequence 0 — M, 5 M =5 M, — 0 of
A-modules,

M is Noetherian <= M, and M, are Noetherian.

The proof of Lemma 5.6 can be found here.

Warning 5.7. A subring of Noetherian rings need not be a Noetherian ring. For example,
consider the subring A = C|x1, 22, 3, ... ] of the ring B = Frac(A). Then A is not Noetherian

because (1) & (71,%2) & (21, T9,23) & - -+ gives an ascending chain of ideals that does not
stabilize, whereas B is a field and hence Noetherian. In fact, the situation is even more
complicated, since Frac(Clzy, 9, z3,...]) = C(xy,...,x,) is a field, and hence is Noetherian,

so we have a tower of rings
C c Clzy, 29,23, ...] € C(x1, 29, 23, .. .)
where a non-Noetherian ring is an intermediate ring of two Noetherian rings. ®

Although all Noetherian modules are finitely generated by the previous proposition, it is
not true in general that finitely generated modules are Noetherian. However, the following
result shows that if A is a Noetherian 7ing, then finitely generated A-modules are precisely
Noetherian A-modules:

Proposition 5.8.

Let A be a Noetherian ring and let M be an A-module. Then the following are equivalent:

(1) M is a Noetherian A-module.
(2) M is a finitely generated A-module.

The proof of Proposition 5.8 can be found here.

5.2 Noetherian Rings

Recall that if V' is a finite-dimensional vector space and W is a subspace of V' then W is also
finite-dimensional. Unfortunately, this nice fact completely breaks down in the setting of
modules, and this failure is demonstrated by the following example.

Example 5.9. Let R = C[z1, 29, x3,...] and consider R as a module over itself. Then M is
finitely generated, namely by the element 1, but the submodule I ¢ M = (zy, 29, x3,...,) is
not finitely generated. //
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Definition 5.10.

Let R be a ring and let M be an R-module. Then M is Noetherian if every R-submodule
is finitely generated. We say R is a Noetherian ring if every ideal is finitely generated.

The above definition is not very useful though, since it does not give us much of a way to
show a ring is Noetherian. However, an equivalent definition that can be used to identify
rings with this property is the following:

Example 5.11. Z is a PID, so every ideal is generated by a single element, and in particular
by finitely many elements. Thus 7Z is Noetherian.

Alternatively, we could use the ACC to show Z is Noetherian: we can write any ascending
chain of ideals of Z as

(no) = (n1) < (n2) <, -+
which is the same thing as saying ny is divisible by n;, and n; is divided by ns, and ny is
divided by nj //

Warning 5.12. A theorem of Motzkin from the 1940s is that there exist PIDs that are not
Euclidean domains (for instance, Z[(1 + 1/—19)/2]). However, since Euclidean domains are
PIDs, they too are Noetherian by Example 5.11. ®

Example 5.13. Z[z] is Noetherian, and more generally by Hilbert’s basis theorem (Theo-
rem 5.24 below), which states that if R is Noetherian then so is R[z]. //

Example 5.14. Z[\/—5] = {a + b\/=5 | a,b € Z} is Noetherian: We can write Z[v/—5] =
Z|x]/(z* + 5), which is a quotient of the Noetherian ring Z[z], and hence is Noetherian.

Alternatively, we can say that if I is any ideal of Z[+/—5] and a € I, then (a) = I, and one
can show Z[v/—5]/(a) is finite. Then in particular it has only finitely many ideals (namely
because any ideal is in the power set and the power set of a finite set is finite). (Although
Z[v/—5]/(a) is finite, it is of course not true in general that if R is Noetherian and a € R
then R/(a) is finite.) /)

Example 5.15. Consider the ring C[0,1] = {f: [0,1] — R | f is continuous}. We claim
C0, 1] is not Noetherian. To show this, we can find an ascending chain that never stabilizes.

Note that f is a unit in C[0,1] if and only if f is nowhere vanishing. Since any proper ideal
cannot contain units, we know any element of a proper ideal I vanishes somewhere. To that
end, consider the infinite subset {1/2" | n € Z-1} of [0,1], and define

I, = {feC[0,1] | f(1/2™) = 0 for all m = n}.

Then Iy < I € I < ---, is an infinite chain. But each containment is proper, since it is
straightforward to construct a function in ; but not in ;1. //

Example 5.16. To show Q[z] is Noetherian, we can either use Exercise 8.1 that Q[z] is a
PID (and hence has finitely generated ideals) or use Hilbert’s basis theorem.
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Now consider the set

R ={feQlz]]f(0)€Z}
Then R is a ring, since 0,1 € R and if f(0),g(0) is an integer, then so is (f + ¢)(0) and
(f9)(0). Now consider the subset [ = {f € R| f(0) = 0}. Then [ is an ideal of R. It is not
ideal, since if x € I then (z) < I but (z) < (2/2) < (z/4) < (x/8) < -+ -, so I is not finitely

generated. Thus R is not Noetherian. //
Example 5.17. Let R = Z[3/2] for some n € Z-;. Then R is Noetherian, since it is a
quotient of the Noetherian ring Z[x], namely R =~ Z[z]/(z™ — 2). //

Example 5.18. Now consider the ring R = Z[v/2,¥/2,v/2,¥2,...]. Then (2) < (+/2) is a
proper containment, since if v/2 = 2a for some a € R then a = v/2/2, which is not an element
of R. Continuing this chain, we get an ascending chain of proper ideals of the form

@< ()s ({2 e (2 e

is an ascending chain of ideals of proper ideals in R that does not stabilize. Hence R is not a
Noetherian ring. //

5.3 Factorization in Noetherian Integral Domains

We now exhibit another nice property of Noetherian rings.

Definition 5.19.

Let R be any (possibly noncommutative) ring, let @ € R be nonzero and suppose a ¢ R*.
We say a is irreducible if whenever a = bc for some b, c € R, then either a € R* or b € R*.
We call a reducible if a is not irreducible.

Recall the proof of the fundamental theorem of arithmetic, that is, that any n € Z can be
factored into a product of prime integers (up to a unit, that is, up to a multiple of +1): If
n is prime then we are done, so suppose n is not prime. Then n = nja; for some integers
ai,n; # 1. Then do the same for ny, and repeat this process until we get a product of
primes, which we must do in finitely many steps since n; strictly decreases after every step.

We will now work to generalize this argument for Noetherian rings.

Definition 5.20.

An atomic domain (or factorization domain) is an integral domain A in which every
nonzero non-unit a € A can be written in at least one way as a finite product of irreducible
elements, up to a unit. Any such expression of a is called a factorization of a, and we
say a factors.
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Proposition 5.21: Factorization into Irreducible Elements in Noetherian Do-
mains.

Let R be a commutative Noetherian integral domain. Then if x € R is nonzero and x ¢ R*,
then z can be written as a product of irreducible elements of R.

The proof of Proposition 5.21 can be found here.
Another slightly different way to reformulate Proposition 5.21 this is the following.

Theorem 5.22.

If R is a Noetherian integral domain and z € R is nonzero, then there exist u € R* and
irreducible elements z1,...,x, € R such that x = ux, - - - x,.

Warning 5.23. The converse to Theorem 5.22 is false (consider Z/6Z). K4

5.4 Hilbert’s Basis Theorem

Theorem 5.24: Hilbert’s Basis Theorem.

Let A be a Noetherian ring. Then A[z] is a Noetherian ring.

The proof of Theorem 5.24 can be found here.

Recall that an A-algebra is a ring B equipped with a ring homomorphism ¢: A — B. We call
B a finitely generated A-algebra if there exist by,...,b, € B such that B = ¢(A)[b,...,b,].
In this situation, we get a surjective ring homomorphism (the top arrow) such that the
diagram

Alxy, ...,z —meh 4B

A

commutes. Any A-algebra is an A-module, since if we have a ring isomorphism from A to
B then B is an A-module with multiplication by the map ¢ : A — B (from the definition
of B being an A-algebra) and defining the ring action on B to make B an A-module by
a-b:=p(a)b.

Corollary 5.25.

If A is Noetherian, then any finitely generated A-algebra is Noetherian as an A-module.

The proof of Corollary 5.25 can be found here.

Note 5.26. Just as in Corollary 5.25, one could theoretically run the above proof on an
infinite collection of, say, polynomials in Z[z], to iteratively obtain a finite collection of
generators. //
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5.5 Homework 10

Exercise 5.27: 10.1.

Let I and J be ideals of a commutative ring A.

(a) Show that
VI+J=A\VI++J

(b) Deduce that if /I ++/J = A, then I +J = A.

(c) Show that for any prime ideal p of A, \/p™ = p for all n € Z>4, and thus by part
(b), for any distinct maximal ideal m; and my of A, m¥, and m$ are coprime for any
k0> 1.

A solution to Exercise 5.27 can be found here.

Exercise 5.28: 10.2.

(a) Show that in a commutative Noetherian ring A, every ideal contains some power of
its radical.

(b) We say an ideal I of a commutative ring A is nilpotent if /" = 0 for some n € Z;.
Prove that in a commutative Noetherian ring A, the nilradical +/0 is nilpotent.

(c) Give an example of a non-Noetherian commutative ring whose nilradical is not
nilpotent.

A solution to Exercise 5.28 can be found here.

Exercise 5.29: 10.3: Nakayama’s Lemma.

Let A be a commutative ring with Jacobson radical J(A), and let M be a finitely generated
A-module. Show that if J(A)M = M, then M = 0. Hint: if M # 0, choose a set of
generators myq,...,m, of M with minimal size; contemplate the fact that m,, lies in

J(A)M.

“For an ideal I of A, we write IM for the submodule of M generated by the subset {zm | x € I,m € M}.

A solution to Exercise 5.29 can be found here.

Exercise 5.30: 10.4.

Let A be a commutative Noetherian local ring with maximal ideal m. Use Nakayama’s
lemma (Exercise 10.3) to show that exactly one of the following two statements is true for
all n e Z>q:

(a) m™ # m"tL

(b) m™ = 0.
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Note that this shows that a local ring A is Artinian (defined in Definition 6.1) if and only
if the chain m >m? > m? > - - stabilizes.

A solution to Exercise 5.30 can be found here.

Exercise 5.31: 10.5.

Let A be a commutative ring, and let M be a Noetherian A-module. Let f: M — M be a
surjective A-module homomorphism. Show that f is an isomorphism. Hint: Consider the

chain of submodules {ker(f")},ez.,, where f°"is fo fo.--o f is he n-fold composition
of f with itself (for example, f°* = f o f).

A solution to Exercise 5.31 can be found here.

Note that there is a version of Exercise 10.5 for Artinian rings.

Lemma 5.32.

Let f: M — M be an injective module homomorphism where M is a module over an
Artinian ring. Then f is an isomorphism.

Proof. Since f is injective and M is Artinian, any descending chain of submodules of M
stabilizes. Therefore, for the chain

im(f) >im(fo f) >im(fofof)>---,
there exists k € Z-, such that im(f°%) = im(f°**Y) = .... For any z € M, since f°%(z) e
im(f°F) = im(f°*+Y), there exists 2’ € M such that f*(z) = f°*+U(2/). This implies
fOfR (") — fo%=D(z)) = 0, and since f is injective, f*(z') — f°*=V(z) = 0. Then, similarly,
fOED () — =2 (7) = 0, R (") — fo*=3)(2) = 0, and so on, until we reach f(z')—z = 0.
Thus f(z') = x, showing that f is surjective. Hence, f is an isomorphism. O

Corollary 5.33.

An Artinian integral domain A is a field.

Proof. Let z € A~ {0}. It suffices to show that multiplication by x is a ring isomorphism.
So let f: A — A be the ring homomorphism given by f(b) = xb. The function f is injective,
since

beker(f) = 2b=0 = b=0,

where we used the fact that A is an integral domain. By Lemma 5.32, an injective module
homomorphism from an Artinian ring is an isomorphism. Since A is Artinian and f is
injective, it follows that f is an isomorphism. Thus, x has a multiplicative inverse in A,
implying that A is a field. [l
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6 Artinian Rings and Primary Decompositions

All rings are still to be assumed commutative unless otherwise stated.

6.1 The Descending Chain Condition

What would things look like with a descending chain condition on modules?

Definition 6.1.

A ring A is Artinian if every descending chain of ideals Iy © I} © - - - stabilizes, that is,
there exists ¢y > 0 such that for all ¢ > ¢y, I, = I;,.

Similarly, define Artinian modules over a ring A as those such for which any descending
chain of submodules stabilizes.

Example 6.2. (1) Z is Noetherian but not Artinian: (2) > (2?) > (2%) > -+ is an infinite
strictly descending ideals, and hence does not stabilize.

(2) If k is a field, then k[z] is Noetherian but not Artinian for essentially the same reason,
as we may consider the chain

() 2 (2*) 2 (@°) 2.

(3) If k is a field, the quotient ring k[x]/(z") for any n € Z-; is Artinian. Note that for
n = 1 this ring is just k, so fields are Artinian.

(4) 7Z/2"7Z is Artinian, since it is a finite ring.

Just as it was for the Noetherian case, the fact a ring is Artinian depends not on the cardinality,
but the ideal structure. //

Note 6.3. We now make some formal remarks about Artinian modules analogous to those
made in the case of Noetherian modules. To that end, let A be a commutative ring.

(1) An A-module is Artinian if and only if any nonempty set of submodules of M has a
minimal element; the argument is similar to the analogous statement in the Noetherian
case (but instead with mazimal). (And that result was just a consequence of set-theoretic
properties of ordering.)

(2) For any short exact sequence of A-modules 0 — M; — M — My — 0, M is Artinian if
and only if My and M, are Artinian; again, the argument is the same as the argument
for the analogous statement in the case of modules.

(3) If A is Artinian, then A/I is Artinian for any ideal I and S™'A is Artinian for any
multiplicatively closed subset S of A.

//

We will see that it turns out that Artinian rings are a wvery special kind of Noetherian
rings. Before arguing why this is the case, we will take the first step in exploring the special
properties of Artinian rings with the following remarkable fact which shows that being
Artinian is a very strong condition:
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Proposition 6.4.

If A is an Artinian commutative ring, then every prime ideal of A is maximal.

Proposition 6.4 is in notable contrast to the situation of even k[z], where (0) is prime but
not maximal.

The proof of Proposition 6.4 can be found here.
The following definition should suggest how we should be interpreting Proposition 6.4.

Definition 6.5.

Suppose A is a commutative ring and

Po2P12P2=2 2P

is a strictly increasing chain of prime ideals of A. We say this chain has length n, and we
define the dimension of A, denoted dim A, to be the supremum of the lengths over all
such chains in A.

Note that the dimension of A is sometimes called the Krull dimension of A.

Example 6.6. (1) By Proposition 6.4, any Artinian ring A has dimension 0.

(2) In contrast, dimZ = 1, since any strictly increasing chain of prime ideals of Z is of the
form Z is (0) < (p) for a prime integer p.

(3) If k is a field, dim k[z] = 1. //

Note 6.7. The intuition behind Definition 6.5 is that we want that the polynomial ring
C|z1,...,x,] over C is the algebro-geometric analog of the n-dimensional complex manifold
C". This is because it turns out the maximal ideals Max(C[xzy,...,x,]), which are of the
form (z1 —aq,...,x, —a,) for some ay, ..., a, € C, turn out to be in bijection with the points
(ay,...,a,) € C™ (we will not show this in these notes, but it is true), so it is reasonable that
the dimension of the collection of maximal ideals should be n. The dimension as defined in
Definition 6.5 has this property, which is suggested by the fact that the strictly increasing
sequence of prime ideals of

0) € (21) & (1,72) S - S (T, -+ ., Tn),

has length n. All of this can be made rigorous, but we will not do so here. But it is important
and useful to keep this intuition in mind when working with any rings or modules, let alone
those that are Artinian or Noetherian. //

We will show that, in fact, the Artinian rings are precisely the 0-dimensional Noetherian
rings.

Proposition 6.8.

An Artinian ring A has only finitely many maximal (equivalently by Proposition 6.4,
prime) ideals.
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The proof of Proposition 6.8 can be found here.

Note 6.9. The geometric picture of Proposition 6.8 is that if A is Artinian then Spec A is a
finite discrete space.

Indeed, any finite topological space that is T} (that is, such that all singletons are closed
sets) has the discrete topology, since any subset of a finite space is closed (as a finite union of
the closed singletons), which implies the topology on the set is the discrete topology. This is
the situation with an Artinian ring A, since by Proposition 6.4 every point in Spec A is a
maximal ideal, which is closed because V' (m) is the set of prime ideals containing m, which
by maximality of m is the singleton {m}. And by Proposition 6.8 Spec A only has finitely
many points, so Spec A is finite with the discrete topology. //

Note 6.10. However, if A is required to be Noetherian, then it is true that A is Artinian if
and only if Spec R is finite with the discrete topology, as we shall see. //

Proposition 6.11.

If A is an Artinian ring, then /(0) = J(A) = J, and this ideal is nilpotent, that is,
J" = 0 for some n.

The proof of Proposition 6.11 can be found here.

6.2 Artinian Modules and Composition Series

Let k be a field and let V' be a finite-dimensional vector space over k, say of dimension d.
Let {z1,...,z4} be a basis for V. Now define

V; = span{zy, ..., z;}.
Then
(e e e

Then each quotient V;,1/V; is 1-dimensional. Here the “length” of this chain is d, which agrees
with the notion of dimension. Given what we know about chains of modules (with respect to
inclusion), we will now work to generalize the notion “dimension” to modules:

Definition 6.12.

Let R be a commutative ring and let M be an R-module. We say a chain
OcMi G Mye My & Mg=M

is a composition series if M;,;/M; is a simple R-module. We call the integer d the
length of this composition series.

Given the similarity to the definition of composition for series, many proofs regarding
composition series that we have already proven for groups can be slightly altered to apply to
the situation of modules.

Note that, in the case R = 7Z above, the notion of composition series of Z-modules is the
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same as a composition series of abelian groups.

Proposition 6.13.

If M has a composition series of length d, then

(1) every composition series has length d, and

(2) every chain extends to a composition series.

Proposition 6.14.

Let M be a module over a commutative ring. Then

M has a composition series <= M is Noetherian and Artinian.

The proof of Proposition 6.14 can be found here.

Example 6.15. Consider R = M = k[z]/(z?). Then
0=(*)c (@) c(x)c M
For each i € {0,1,2}, one can show z'k[z]/(x®) — k via z'f — f(0) is an R-module

homomorphism with kernel 2 k[z]/(z®) = ('™'). Thus k[z]/(2*) has length 3. //

Warning 6.16. We will soon show that if R is an Artinian ring then R is Noetherian ring.
However, this is not true for modules in general! Indeed, consider Example 6.17 below. ®

Example 6.17. Consider R = Z and let M be the Z-module Z[1/p]/Z. We claim this is
an Artinian module that is not a Noetherian module. To prove this, let us first classify the
submodules of M. Let us start by considering all subgroups of M when viewed as an abelian
group: For each n € Z~, let

{ﬁ aez}
M, = .
7
We claim {M,}*_, is all the subgroups of the abelian group M. To show this, let N be a

proper subgroup of M. Then there exists n € Zx( such that for some a € Z, a/p™ € N but
a/p"tt ¢ N. Now

n =min{m € Z>o | p" N = 0}.

Then N < M, by definition of M,,, so we need to show M, < N. We may assume a and p
are coprime so that a/p" is written in lowest terms. Since a and p are coprime, there exists
b € Z such that

N3>1/p" = (1+p"- (some integer))/p" = ab=1 (mod p"),

so ab/p™ = b(a/p™) € N. Thus 1/p™ generates N. This gives us an infinite strictly increasing
ascending chain

so M is not Noetherian.
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But every descending chain is of this form since we just showed the M;s are all the submodules
of M, so any descending chain is of the form M; 2 M;,; 2 --- 2 0, which stabilizes at 0.
Thus M is Artinian. //

6.3 Artinian Rings

In this section, we lay much of the groundwork to prove the remarkable fact that Artinian
rings are precisely the zero-dimensional Noetherian rings. One inclusion follows quickly, and
can be seen as follows:

Corollary 6.18.

Artinian rings are O-dimensional Noetherian rings.

The proof of Corollary 6.18 can be found here.

We now aim to prove the converse of Corollary 6.18, but there is some theory we must develop
first. The full proof (Theorem 6.52 below) will not be until the next section.

Lemma 6.19.

Let R be a commutative ring and suppose some finite product n; - - - n,. of (not necessarily
distinct) maximal ideals in R is zero. Then

R is Artinian <= R is Noetherian.

The proof of Lemma 6.19 can be found here.

We now deduce another consequence of our work.

Corollary 6.20.

Any Artinian ring A is isomorphic to a finite direct product of local Artinian rings.

The proof of Corollary 6.20 can be found here.

Corollary 6.18 then proves the forward implication of the following theorem:

A ring A is Artinian if and only if A is Noetherian and dim A = 0.

To prove the converse of Theorem 6.51, we will use the following theorem:

Any Noetherian ring A has only finitely many minimal prime ideals.

Proposition 6.21.

Theorem 6.52 implies Theorem 6.51.

The proof of Proposition 6.21 can be found here.
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Example 6.22. Consider A = C[z,y]/(xy). Then A is Noetherian but not Artinian: its
minimal primes are () and (y), but A has infinitely many maximal ideals, for example,
(x —a,y) or (x,y —b) for a,b € C. (Note that (z — a,y — b) for general a,b € C is not
necessarily even an ideal of A, since by the correspondence theorem ideals of C|[z, y] must pull
back to ideals of A containing (zy), but for instance zy ¢ (r — 1,y — 1).) And its spectrum
Spec A is the union of coordinate axes, as elaborated upon by Note 6.23 below. //

Note 6.23. Why are minimal primes significant? If A is any commutative ring, then
(Corollary 11.9)

Spec A =V ((0)) =V 0)) = V( ) = V( minima > = minima 14 )

b (0) = VO = V() g a? Moy ) = Uiy V)

where the last inequality holds at least if the collection of minimal prime ideals of A is finite.

We say the V' (p) for minimal primes p of A are the irreducible components of (the variety)
Spec A, to reflect the fact that these are the maximal irreducible subsets of the topological
space Spec A. By an irreducible set of a topological space we mean a set irreducible if it
cannot be written as a union of two proper closed subsets. //

Let R be a commutative ring. In the previous section, we have shown the following facts
about R.

e R is Artinian <= R is Noetherian and dim R = 0 <= Spec R = Max R.
e R is Artinian = Max R < o0.
e R is Artinian == |Spec R| < . By the previous points, this is equivalent to

Spec R = Max R = {my,...,m,}.

Is Spec R then Hausdorff? Yes, because m; = V(m;). This forces the topology on Spec R to
be the discrete topology. (Also, it turns out that if R is Noetherian then Spec R is Hausdorff.
This is left as an exercise.)

Example 6.24. This example shows that although all Artinian rings have finitely many
maximal ideals, the converse is not true.

Let R = C|z]). Then R is not Artinian, since the chain of strictly descending ideals
() 2 (2?) 2 (z%) 2 - -+ does not stabilize in R.

What is Spec R? Since () is prime in C[z], so by Corollary 4.43 there is a bijection
Spec R «— {pe R|p < (2)} = {(0), ()}

What are the closed sets of Spec R? There are only four subsets to consider, and two of
them—Spec R and @—are always closed. Also {(x)} is closed, since {(x)} = V((x)) (since
the only elements of {(0), (x)} containing (x) is (x)). On the other hand, {(0)} is not closed,
since (0) is contained in (x), hence any ideal containing (0) must be contained in (z) (since
any ideal is contained in a maximal ideal, and (z) is the only maximal ideal!).

Thus, the finiteness of Spec R does not imply R is Artinian for general commutative rings

R. //

Let R be a non-Noetherian ring. We can choose an ideal I inside R such that I is the only
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ideal of R/I. (Indeed, So I should not be a prime ideal because then R/I is a field, which does
not give a counterexample.) Consider I = (2%, 22, 22,...). Then a prime ideal containing [ is
m = (z1, 29,3, ..., ), which is the kernel of the map R — C evaluating at the point {x;}?,
at {0}72,. Then if q is any other ideal containing I then q is a maximal ideal, meaning q = p
because p is maximal and [ is the only ideal so that p contains I.

This ring is then Noetherian but not Artinian because its spectrum is finite and discrete.

Proposition 6.25.

R is Artinian if and only if R is Noetherian and Spec R is finite with the discrete topology.

The proof of Proposition 6.25 can be found here.

Example 6.26. SpecQ =~ SpecC, Spec(C[x]/(z)) = Spec(C[x])/(z™). But Clx]/(z) is a
field whereas C[x]/(z") is not even an integral domain, so the notion of a ring’s spectrum is
not refined enough to recover the underlying ring.

Algebraic geometry adds more structure to the topological space Spec A for a commutative
ring A that does capture these differences, namely by making Spec A into a locally ringed

space. //

6.4 Irreducible and Primary Ideals, and Primary Decompositions

The following definitions were historically motivated by attempts to generalize prime fac-
torization in rings other than the integers. And there is a more modern motivation that is
more geometric in nature, namely that these ideas provide a way to take an algebraic variety,
which could have several intersecting components, and to recover what those components are.

Definition 6.27.

An ideal I of a ring A is irreducible if whenever there exists ideals J;, Jo < A such that
I =JnJy, either [ = J; or I = Js.

Example 6.28. In the case A = Z we have I = (n) = (my) n (mg) = lem(my, my) forces
(n) = (mq) or n = (mg), n must be some prime power (up to sign) or n = 0 (Check!).
If I = JinJy, then V(I) = V(J;) u V(Jy), and irreducibility forces V(I) = V(J;) or
V(I) = V(J2). (That is, irreducibility of I implies V(I) is irreducible as a topological
space.) //

Irreducibility is especially useful in the case of Noetherian rings, as the following result shows.

Lemma 6.29.

In a Noetherian ring A, any ideal is a finite intersection of irreducible ideals.

The proof of Lemma 6.29 can be found here.

We now introduce primary ideals, which, like irreducibility, is another generalization of prime
powers of the integers, but is a distinct generalization, as we will see. (And in fact, we will
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show that in general irreducible implies primary, but not conversely.)

Definition 6.30.

An ideal q of A is called primary if q is proper and for all a,b € A, if abe q and a ¢ q,
then b € ,/q.

Equivalently, q is primary if and only if any zerodivisor in A/q is nilpotent.

The above definitions are indeed equivalent, as the following proposition shows.

Proposition 6.31.

The following are equivalent:
(1) p is primary.
(2) If y € R/p is a zerodivisor, then y is nilpotent.

The proof of Proposition 6.31 can be found here.

Example 6.32. Again taking A = Z, the primary ideals are precisely those generated by the
prime powers or (0), that is, is the same as the irreducible ideals. //

Example 6.33. Likewise, if & is a field, then in k[z] one can show for all ideals I that
[ is primary <= [ is irreducible <= I = (0) or (p(z)*) for some irreducible p(z) € k[x].

//

The following lemma should not be so surprising after glancing at the definition of a primary
ideal, and indeed its proof is an argument by “following your nose:

Lemma 6.34.

If q is a proper primary ideal of A, then p = ,/q is prime. We say q is p-primary, that is
q is primary and p is the prime ideal that is its radical.

The proof of Lemma 6.34 can be found here.

Thus every primary ideal has canonically attached to it a prime ideal given by its radical.
And in Z this just reflects the process of passing from a prime power to a prime itself.

Example 6.35. In contrast to the examples with Z or k[z] for a field k, we have the following:

(1) A primary ideal is not necessarily a power of a prime ideal. For example, where £ is a field
we can take A = k[z, y] and consider q = (22, y). Then A/q = k[z,y]/(2?,y) = k[z]/(z?),
which has all zerodivisors as nilpotent elements. Thus q is primary. Since \/q = (x,¥),
we conclude q is (z,y)-primary. But one can check that p? < q < p, and that the only
prime powers that are options for q are p*. (For a similar example, see Exercise 11.1)

(2) A power of a prime is not even necessarily primary. Let A = k[z,vy, z]/(zy — 2%) and
p = (x,z). Then p is prime (since the quotient A/(x,z) =~ k[y|, which is an integral
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domain). But p? = (22, x2, 2?) (where 2% = xy) is not primary, since xy € p? but x ¢ p?
and y" ¢ p? (that is, y ¢ \/p?) for any n € Zs. //

Unfortunately, Example 6.35 shows that the primary-to-prime matchup we saw in the ring Z
does not hold in general.

Warning 6.36. Note that we are beginning to blur the distinction between ideals of A
and ideals in A/ for some ideal I, and any true mastery of the material should allow one
to understand from context which one we are referring to. We will try to be precise, but
sometimes with too much precision means not enough intuition.

Example 6.37. If g = A is an ideal such that ,/q is maximal, then q is primary. To see this,
note that the nilradical of A/q is (the image of) ,/q, which is maximal. But the nilradical of
the ring is the intersection of all prime ideals of A/q. But we just said this is maximal, so
Spec(A/q) = {q}. So, all elements of A/q lying in its unique maximal ideal ,/q are nilpotent
(because ,/q is the nilradical of A/q) and elements not in ,/q are units (because ,/q is the
unique maximal ideal of A/q, so any zerodivisor in A/q is nilpotent). //

Example 6.38. We will show that all irreducible proper ideals are primary in Noetherian rings,
but the converse is not true in general. To see this, let k be a field and consider the Noetherian
ring k[z,y]. The ideal (z,y)? is primary, but (22, zy,y?) = (z,y)* = (22, y) n (x,%?) is not
irreducible. To see (x,y)? is primary, we can check directly or use Example 6.37 above. //

Definition 6.39.

A primary decomposition of an ideal I in a commutative ring A is an expression of [
as a finite intersection of primary ideals of A, that is, an expression of the form

I:qlm...(\qn7

where q; is primary for each j € {1,...,n}.

We will soon show that they exist for Noetherian rings, and then talk about the extent to
which they are unique. We will also use this fact to finally prove that Artinian rings are
exactly the Noetherian rings of dimension 0.

6.4.1 Motivation for Primary Ideals

Let I be an ideal of a commutative ring R. It would be nice to build I out of other ideals.
If we are motivated by geometry, this would mean writing I as an intersection. If R is
Noetherian, we can always write I as a finite intersection of the form I = ();_, I; (Why?),

hence j:l
vin=v((_5)=U_ v -U_ vV,

and the last equality motivates the following intuition: p is prime if and only if zerodivisors
of R/p are contained in (0).

But using prime ideals to decompose our ideal I via intersections would not good enough to
think about intersections, since an intersection of a prime ideal with another prime ideal is
prime, so we do not recover non-prime ideals.
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But motivated by the last equality above, we can consider ideals p, which we will call primary
ideals, which are characterized as ideals q such that zerodivisors of R/q are contained in

(0).
Warning 6.40. Note that Definition 6.30 is not equivalent to the statement that for all
x,y € p, if xy € p then both

(1) if x ¢ p, then y™ € p for some n.
(2) if y ¢ p, then z" € p for some n.

In other words, definition of a primary ideal is not symmetric in x and . ®

Example 6.41. Let k be a field and consider R = k[x,y]|. Then the ideal I = (22, zy) is not
primary.

In order to understand the importance of computing the quotient, we consider the generator 2
of I, since it’s not immediately clear how quotienting by z? affects the structure. Furthermore,
we only need to find one example of elements a,b € R where abe I, a ¢ I, and b"™ ¢ [ for any
positive integer n.

To that end, consider a = z, b = y. In this case zy € I, x ¢ I, and y* € I for all n € Z>,.

Note that this proves an example showing why Warning 6.40 is true, since yx € I, y ¢ I, and
2? € I, which would mean I is primary in the weaker definition.

Note that k[z,y] is an example of when a radical of an ideal is a prime ideal: indeed, v/I > ()
(since zy € (x)). To see (x) < VI, if f € /I then f* e I = (22, 2y), so f* = za® + Py,
hence f™(0,7) = 0. Thus f(0,7) = 0, hence f € (z), so (z) = v/I, hence /I is prime. More
generally, we can consider Exercise 6.42. //

Exercise 6.42.

Is the weaker condition given in Warning 6.40 equivalent to the condition that the radical
of I is prime?

If p is primary, then B == /p is prime. We say that p is B-primary.

Example 6.43. We continue with the notation of Example 6.41. We have I = (2%, zy)
(x) n (22, y), and if f € (z) then f = ax = B2* + vy, so z | v = Ba® + +'xy, which gives
the reverse inclusion. Hence I = (2%, 2y) = (z) n (2%, y). And k[z,y]/(2?,y) = k[z]/(2?), so
f € k[z]/(2?) is a divisor of 2? <= fe () = f2=0.

Warning 6.44. We show in Exercise 11.3 that (z) n (z,y)* = (22, zy,y*)", so Example 6.43
is an example that the primary decomposition is not unique. (However, some terms of the
intersection are the same, and in fact we will soon see a uniqueness statement for primary
decompositions that makes this precise.)
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Lemma 6.45.

Let q be a p-primary ideal and let x € A.
(1) If x € q, then (q: z) = A.
(2) If = ¢ q, then (q : z) is also a p-primary ideal, hence 1/(q : x) = p.

The proof of Lemma 6.45 can be found here.

6.5 Primary Ideals of a Localization

Let A be a commutative ring. We saw a way of transferring from prime ideals of A to prime
ideals of S™!A in Proposition 4.42. There is a useful analog of this result for primary ideals:

Proposition 6.46.

Let S be a multiplicatively closed subset of a commutative ring A and let p be a prime
ideal of A.

(1) If S np = @, there is a bijection
{p = S A that are S~ 'p-primary} «— {p-primary ideals of A}.

In other words, the bijection is the same to that of Proposition 4.42: the primary
ideals of S™'A are in bijective correspondence (via the natural map j: A — S™1A)
with primary ideals of A disjoint from S.

(2) If Snp = @ and q is p-primary, then S~'q = S~1A.

The proof of Proposition 6.46 can be found here.

Proposition 6.47.

Let S be a multiplicatively closed subset of A and let I = (), g; be a minimal primary
decomposition of I. Let p; = /q; for each i € {1,...,m} and suppose the g; are indexed
such that S intersects p,,11, ..., P, but not py,...,p,,. Then

ST =", S qs and ;1) = (", @i,

are minimal primary decompositions, where j: A — S~!A is the natural map.

The proof of Proposition 6.47 can be found here.

6.6 Existence of Primary Decompositions in Noetherian Rings

We continue working with a fixed commutative ring A. Just like factorization into prime
powers in the case of A = 7Z, we can ask about the existence and uniqueness of primary
decompositions. We have already shown that in a Noetherian ring, any ideal is a finite
intersection of irreducible ideals, so if we can show that irreducible ideals are primary then
we get primary decompositions in Noetherian rings for free.
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Lemma 6.48.

If A is Noetherian, then any irreducible ideal is primary.

By our above comment, we get the following corollary for free.

The proof of Lemma 6.48 can be found here.

Corollary 6.49.

Any ideal in a Noetherian ring has a primary decomposition.

In this section we continue to work with a fixed commutative ring A, and we consider a given
ideal I that admits a primary decomposition

I'=qin-nay

for some n € Z>;. Recall that for all j € {1,...,n}, p; == /q; is a prime ideal of A (containing
q;, hence containing I).

This first feature is common to any choice of primary decomposition:

Lemma 6.50.

For any prime p o [ that is minimal (with respect to inclusion) among primes containing
I, we have p € {p1,...,pn}

The proof of Lemma 6.50 can be found here.

We can now finally prove Theorem 6.51 which we restate for convenience:

A ring A is Artinian if and only if A is Noetherian and dim A = 0.

As we mentioned when we first stated this theorem, the forward direction is just Corollary 6.18,
so it suffices to show the reverse implication. By Theorem 6.52, it suffices to show A has
finitely many minimal prime ideals, which amounts to proving the following theorem:

Any Noetherian ring A has only finitely many minimal prime ideals.

Proof of 6.51. By Corollary 6.49, (0) has a primary decomposition, say (0) = q; N ---q,. By
Lemma 6.50, any minimal prime p < A belongs to {y/q1,...,/q,} which is a finite set. [

This completes the proof that a commutative ring A is Artinian if and only if A is a
0-dimensional Noetherian ring.

6.7 Uniqueness of Primary Decompositions

To formulate general uniqueness statements, we use the following definition:
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Definition 6.53.

A primary decomposition I = q; N -+ N ¢, is reduced (or minimal) if
(1) For all @ # j, \/4; # 1/q;. (For example (12) = (2) n (3) n (4) = (3) n (4), but only
the last expression satisfies this condition, since 1/(2) = 4/(2) = (2).)

(2) For all 4, q; D ﬂj _;9;- (The example in the previous point works here too, since
(2) 2 (3) n (4) = (12) because 2 divides 12.)

Lemma 6.54.

If an ideal I has a primary decomposition, then I has a minimal primary decomposition.

The proof of Lemma 6.54 can be found here.

The above proof is constructive, meaning that if we are given some primary decomposition then
we can apply the algorithm described in the proof to obtain a reduced primary decomposition
from it.

Definition 6.55.

Suppose [ has a reduced primary decomposition I = q; n q. Define the associated
primes of [ by

Ass(I) == {\/q1, ... ,\/dn}-
We denote by Min(7) the set of minimal primes of R/I viewed in A, and call Min(7)
the isolated primes of A. (That is, by the correspondence theorem, Min(/) is the set
of primes in A containing I that are minimal with respect to inclusion.) We have seen
Min(/) < Ass(I) for any choice of primary decomposition. We call Ass(I) ~\ Min(/) the
embedded primes of A.

Note 6.56. There are very good geometric reasons for the above terminology.

e We say “isolated” since the minimal primes py are such that V(pg) is an irreducible
component of the algebraic set V(I), hence is “isolated” from the other irreducible
components V' (py) for py € Min(/). Indeed, by definition of an irreducible set in a
topological space, the intersection V (pg) n V(pj) must be one of @, V(po), or V(py);
after thinking about this for a moment, it should become evident that the only possibility
is @. Hence py is indeed “isolated” in the sense that V' (pg) is disjoint from every other
irreducible component V'(pg) of the algebraic set V (I).

e We say “embedded” because the embedded primes are “inside” the isolated primes, since
to say p € Ass(/) \ Min(/) means that there exists py € Ass(/) such that p contains
po, hence p € V(pg). Geometrically, this means p lives in the component V (pg) of the
variety Spec A. //

Warning 6.57. In commutative algebra, we say these are the associated primes of I. But in
algebraic geometry, we instead call these the associated primes of R/I. K4
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Definition 6.55 is justified by part (1) of the following theorem.

Theorem 6.58: Uniqueness of Primary Decompositions up to Associated
Primes.

Suppose an ideal I of a commutative ring A has a primary decomposition (or equivalently
by Lemma 6.54, a minimal primary decomposition), and let

I'=qin-nay
be the corresponding minimal primary decomposition. Then:
(1) Ass([I) is independent of the choice of minimal primary decomposition of I.

(2) For any reduced primary decomposition of I, the g;s for which ,/q; € Min(I) are
independent of the choice of primary decomposition. (But the other components are
not, and by Exercise 11.3 we get infinitely many reduced different ones, but each has
the same gs.)

The proof of Theorem 6.58 can be found here.

Note 6.59. Let A be a commutative ring and I an ideal of A. Suppose I has a primary
(hence, a reduced primary) decomposition, say I = q; 0 ---Nq,. We defined Ass = { Vi }?:1.
At first glance, this depends on the choice of primary decomposition, but by Theorem 6.58(1)
this set is independent of the choice of reduced primary decomposition of /. In addition,
Theorem 6.58(2) states that for those i such that ,/q; are minimal primes containing I,
then not only does ,/q; appear but also the full primary component q; itself appears in any
primary decomposition of /. (So it is canonically associated with I, since it is in all reduced
decompositions, hence is independent of choice.) This means there are two types of elements
in the Ass(7), namely

Ass [ = {minimal primesy 11 {embedded) y
Example 6.60. Let k be any algebraically closed field, A = k[x,y], and I = (32, 2y).
We picture Spec(A/I) as the “z-axis with fuzzy origin.” To see this, we ask the following
question: Given a polynomial f(z,y) € A, what can we recover about f(z,y) when passing
to f(z,y) (modI)? Recall f(z,y) (modI) is of the form f(x,y) (modI) =ay+ a1z + -+
a,x" + b1y (since all other terms are in I). Note that this expression for f(z,y) precisely
gives the full behavior of f along the x-axis, but also the behavior of f(z,y) along the y axis
only at the origin (0,0) (more precisely, it tells us the first derivative of f in the y direction at
the point (0,0)). So, the fuzzy point is pointing “vertically” in the plane. But we can get any
directional derivative at the origin by taking linear combinations of the partial derivatives,
which means we can recover the information of f on the z-axis, together with derivatives in
all directions at (0,0). This is why we put a fuzzy point at the origin, to indicate that the
local behavior is known. (If we know the behavior of the second derivative too, the fuzzy
point would be “bigger,” since we know more information.) //

Example 6.61. Consider the following two primary decompositions of I:
I={(y)n(z.y)=(y) n(2y)?"
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Then we have the following;:

e The associated primes are in both cases {(y), (zry)}; compare part (1) of the theorem.

e ¢, = (y) is a minimal prime containing I ((x,y) = ps is not), and the primary component
q1 = (y) corresponding to g; is the same in both decompositions (the gys are different);
compare part (2) of the theorem.

e The associated point (z,y) «— origin, which is “embedded” in the z-axis, whereas
(y) < the z-axis. /)

The following corollary is then an application of point (1) of the above theorem.

Corollary 6.62.

Let A be any ring where (0) has a primary decomposition (for example, any Noetherian
ring). Then

ZD = {0} u {zerodivisors of A} = U p.

In particular, if (0) = g1 n---Nq, is a reduced primary decomposition, then ZD = U;.Z:I v,

where p; = /4;.

peAss(0)

The proof of Corollary 6.62 can be found here.

The following corollary then follows, and is helpful to keep in mind.

Corollary 6.63.

If A is any reduced Noetherian ring,
ZD =

minimal p

p € Spec A

The proof of Corollary 6.63 can be found here.

6.8 Homework 11

Exercise 6.64: 11.1.

In the polynomial ring Z[z], show that m = (2,z) is a maximal ideal, and (4,x) is
m-primary but is not a power of m.

A solution to Exercise 6.64 can be found here.

Exercise 6.65: 11.2.

Let A be a commutative ring, and let qq, ..., q, be p-primary ideals for a prime ideal p.
Show that (7_, q; is also a p-primary ideal.

A solution to Exercise 6.65 can be found here.
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Exercise 6.66: 11.3.

Let A = k[z,y] for a field k. Consider the ideal I = (z?, zy) of A. Set p = () and for all
n € Zzs set g, = (2%, 2y, y").

(a) Show that p and q,, are primary, and I = pnyq, is for each n a primary decomposition
of I.

(b) Determine the associated primes of I, and check directly that the (infinitely many)
primary decompositions exhibited in part (a) all yield the same set of associated
primes.

A solution to Exercise 6.66 can be found here.

Exercise 6.67: 11.4.

Let A be a commutative ring and let M be an A-module. We say M is free if there exists
an A-module isomorphism of M onto the direct sum @; A for some set /. In this case,
we call the cardinality of I the rank of M (over A). Show that the rank is well-defined.
That is, prove that if M is a free module M =~ @, A for some other set J as well, then /
and J have the same cardinality. Hint: Reduce to the corresponding statement (which
you may assume) for bases of a vector space by reducing modulo a maximal ideal of A.

A solution to Exercise 6.67 can be found here.

Exercise 6.68: 11.5.

(a) Let A be aring, and let P =~ @, A be a free A-module on a set I. Show that for any
A-module surjection w: M — P, there is an (injective) A-module section s: P — M,

and that M = ker(m) @ s(P).

(b) Show that if A is a PID and M is a free module of finite rank d over A, then any
A-submodule N < M is a free module over A of some rank d’ < d. Hint: Induct on
d; for the induction step, consider a projection m: M — A®@=1D and apply part (a)
to the restriction 7|y: N — 7w(N).

A solution to Exercise 6.68 can be found here.

7 Factorization

7.1 Irreducible and Prime Elements

Definition 7.1.

Let R be a ring, let x € R ~ R* be nonzero.

(1) We say z is irreducible in R if for all y,z € R, if x = yz then y € R* or z € R*.
(2) We say z is prime in R if (z) is a prime ideal. Equivalently, if = | yz, then z | y or
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Example 7.2. (1) If R = Z, then
x is irreducible in Z <= 1z is prime in Z <= x € {£p | p is a prime integer}.

(2) If R =7Z/6Z = {0,1,2,3,4,5}, then the primes are 2,3,4. But 4 = 2x2, 3 = 3x 3, and
2 = 4 x 2, hence are not irreducible.

(3) If R = Z[/—5] and 2 = (a + by/—5)(c + dy/—5), then 4 = (a® + 5)(c + dv/—5), s
4 = (a®+5%)(c+5d?), forcing 2 = ac, so 2 is irreducible. And 2| 6 = (1++/—5)(1—+/— ),

so 2 is not prime. //

Lemma 7.3.

If R is an integral domain, then every prime is irreducible.

The proof of Lemma 7.3 can be found here.

7.2 Unique Factorization Domains (UFDs)

Let R be an integral domain. Suppose z is irreducible but not prime. Then there exist
y,z such that z | yz. So there exists w such that xw = yz. Now suppose we can factor y
and z as products of irreducible elements as y; - - -y, and z = 21 - - - 2,,, respectively. Then
TWy - Wy = Y1 Yn21 - Zn. S0, if x is irreducible but not prime, then x has some factor
that can be factored in more than one way up to multiplication by units.

Using Theorem 5.22 as inspiration, consider the following definition.

Definition 7.4.

Let R be an integral domain. We say R is a unique factorization domain (UFD) (or
less commonly, R is factorial) if

(1) If = # 0, then there exists u € R* and irreducible elements x1, ..., x, € R such that
T = ULy Ty
(For example, we can factor 6 as 3x 2. Or we can factor 6 as (—2) x (—3)).
(2) If v = uxy - 2, = xu/zy - - 2, then
— m =mn, and

— there exists o € S,, and units wy, ..., w, such that for all 7, z; = wizﬁ,(i).

Warning 7.5. There are rings, however, where you can have an irreducible element that has
no factorization, but such that for which all elements that do have factorizations have unique
factorizations. Although any factorization in these rings is unique, they are technically not
UFDs by definition. The ring Z[{z" | r € Qx0}] is an example of such a ring. 4

Example 7.6. e Zis a UFD.
e PIDs are UFDs (the proof is similar to that of Z).
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e If Ris a UFD, then so is R[z], and thus so is R[x1, ..., x,] for any n € Z-;.

e Since Z is a UFD and Z[x;,,...,x;,| embeds in Z[z1,2s,...], because any f €
Z|x1, 9, ...] is a finite sum we know f € Z[x;,,...,x;, | for some choice of indices,
so f can be factored uniquely.

o Z[i], Z[V2], Z[/ 2], Z[e*"/3], Z[¢] where ¢ = (1 + /5)/2. More generally, Z[(1 +
v/—n)/2] or Z[+/—n] is a UFD when n = 7,11,19,43,67,163. (Interesting historical
note: this was proven by a high school teacher in the 1950s, but his proof was not
universally accepted until after his death.) //

We can also give several non-examples.

Example 7.7. e Z[y/—5] is not a UFD, since 1 + 4/—5,2,3 are irreducible but 6 =
(1++/=5)(1—+/—5)=2-3.
e Clz,y,z,w]/(ry — zw) is not a UFD. Indeed, in this ring we have xy = zw but = # y, 2

and y # z,w (and none are units), so the element zy = zw has non-unique factorization
into irreducible up to a unit.

e R[z? 2?], the polynomial ring whose elements have no terms of degree 1, is not a UFD,

since 2% = z22?2? = 2323 //

Although the following statement is conjectured to be in the affirmative, it still remains an
open question:

Conjecture 7.8. There are infinitely many square-free integer n such that O,, is a UFD,
where

Z[\/n] if n# 1 (mod4),
On = Z[%ﬁ] if n=1 (mod4).

For n negative in the above conjecture, there are only finitely many integers such that Z[/—n]
is a UFD; such an integer n is called a Heegner number, and the set of Heegner numbers
is precisely {1,2,3,6,11,19,43,67,163}. (See also the example with the historical note.)

Theorem 7.9.
Let R be an integral domain. Then R is a UFD if and only if both

(1) any nonzero element of R has a factorization, and

(2) irreducible elements are prime elements (that is, generate prime ideals).

The proof of Theorem 7.9 can be found here.

Example 7.10. Suppose z,y, z € Z satisfy 2% +y? = 2% in Z. Then in Z[i], (z +iy)(z —iy) =
(w1 - mn)?, hence (z + iy) = % = (a + bi) = (a®> — V?) + i(2ab). This therefore gives us
a parameterization of the Pythagorean triples. (Historical note: a mathematician in 1847
posted an erroneous “proof” of Fermat’s last theorem, as it assumed all rings are UFDs.) //
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7.3 Factoring Polynomials
We now discuss how unique factorization passes from a ring A to a polynomial ring A|z].

Let A be a UFD. We claim that A[z] is also a UFD, and this will increase our stock of
established UFDs. Our current stock includes

e Any PID is a UFD (see Exercise 12.2). Thus Z, Z[i], Z|z], k[z] for any field k, are all
UFDs.

e A polynomial ring over a PID is typically not a PID, but is a UFD (see Exercise 12.2).
For example, Z[z] has non-principal ideal (2, z), but is a UFD. So, this source of UFDs
will not get us to an example like Z[z].

Note that any PID is a UFD, but not conversely. For example, Z[z] is a UFD, but not a
PID, for example by considering the ideal (2, z).

The following is the UFD analog of Hilbert’s basis theorem:

Theorem 7.11.

If Aisa UFD, then so is A[x], and hence sois A[z1,...,x,] for any n € Z-;. In particular,
klzi,...,z,] and Z[xq,...,z,] are UFDs for any field k.

To prove Theorem 7.11, we will argue that since A is an integral domain, and thus has a
fraction field Frac(A[z]) (by Exercise 12.2) is a UFD, and then pull unique factorizations
from the fraction field back to a unique factorization in A[z].

Before giving the proof, we first give some useful definitions.

Definition 7.12.
Let A be a UFD.

(1) For any prime (equivalently by Theorem 7.9, irreducible) element p of A and a €
Frac(A) \ {0}, we can write a = p" - g, where r € Z, b,c € A, and p { be. Then r is
uniquely determined by a, and we define the valuation of a with respect to p to be
r, and denote it

ord,(a) =r,
and by convention we set ord,(0) := co. In particular, ord, defines a group homo-
morphism ord,: Frac(A)* — Z.

(2) Set k = Frac A. For any f € k[z] \ {0}, set ord, f = min;(ord,(a;)), where f(z) =
apx™ + - - -4 ag. For example, in the case f(x) = x+1/p, we have ord,(z+1/p) = —1,
and if f(x) = pz? + p3, then ord,(pz? + p?) = 1.

(3) Fix a choice p of prime element generating each principal prime ideal of A. For any
f € k[z] ~ {0}, we define the content of f, denoted c(f), as

C(f) = H prime elements pordp(f).

peA, up to units
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For example if A = Z and f(x) € Z[x] is given by f(z) = 302 + 45z + 125, then
since ord,(f) = 0 for all p # 5 and ord;(f) = 1, so

c(f) = 5o = 51 — 5,
Observe that for any f we can write

f=r)- fi,
where ¢(f1) = 1. That is, fi(x) € A[z] (that is, there are no negative powers of primes
in the coefficients of f;), and the coefficients have no common prime factors. We say
that any polynomial satisfying the same conditions as f; are primitive. For example,
the polynomial f(z) = 3022 + 45z + 125 is not primitive, but fi(z) = 62% + 9z + 25
is primitive, and f(x) = 5fi(z) = c(f) f1(x).

Proposition 7.13: Gauss’s Lemma.

If f,g € k[x] {0}, then ¢(fg) = ¢(f)c(g).

The proof of Proposition 7.13 can be found here.

(The less formal way of stating the above argument is that if you start with the highest order
terms, first find terms in each that are not divisible by p, then the terms corresponding to
the sum of those degrees in the product will not be divisible by p, then you can repeat this
process for the next highest degree terms, and so on.)

To show A[z] is a UFD, we will combine Proposition 7.13 with the fact that k[z] is a UFD.

Corollary 7.14.

For f € Alx], if f factors over k, then f factors over A. That is, if f is reducible in k|z],
then f is reducible in A[z].

The proof of Corollary 7.14 can be found here.

Note 7.15. For primitive polynomials f; € A[z], then the converse is certainly true. (The
reason we are not saying for any polynomial f is because f may be a unit in k[z], that is, f
may be some element of A). //

We can now prove Theorem 7.11, which we restate for convenience:

Theorem 7.16: Gauss’s Lemma.

If Ais a UFD then A[z] is a UFD, and moreover the prime elements of A[x] are the
prime (equivalently, irreducible) elements of A together with the primitive polynomials in
Alx] that are irreducible in k[z].

The proof of Theorem 7.16 can be found here.
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7.4 Strategies for Proving Irreduciblity

The following is an easy-to-prove fact in Z[z] whose generalization is pretty much the same.

Theorem 7.17.

Let f e Z[x] and f = a,2" + a,_12" ' + -+ + ayx + ag, and let p be a prime. Assume
e pta,, and
e f (modp) is irreducible in (Z/pZ)|x].

Then f is irreducible in Q[x].

The proof easily generalizes to the following.

Theorem 7.18.

Let A be an integral domain and f € A[x]. Let I be any ideal of A and assume
e leading coefficient of f ¢ I, and
e f (modI) is irreducible in (A/I)[x].

Then f is irreducible in (Frac A)[z].

The proof of Theorem 7.18 can be found here.
We also have the following.

Theorem 7.19: Rational root test for Z.

Let f € Z|z], f = a,a™ + -+ + ap and let a/b be a root in Q. Then if f(a/b) = 0 and
(a,b) =1, then a | ag and b | a,,.

Theorem 7.20: Eisenstein’s Criterion for Z.

Let f € Z|z], f = apa™ + -+ - + ao and let p be a prime. Assume

(1) ptan,
(2) p|aog,ai,...,a,_1, and

(3) p*t ao.
Then f is irreducible in Q[x].

Example 7.21. e z" — p is irreducible.
e pr? —p=p(x—1)(z+1).
o 22 — p? is reducible

So (1) of Eisenstein’s Criterion is necessary. (Why?).
And f(z)=1+z+2*+ -+ 2Pl = aP—1

r—1 "
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e Now consider f(z + 1). We have

(z+1)" -1 Do — 1 p—1 D i 1, (P p—2,(P\ p-3
flz+1) = = . = Zi:O ' = a4+ ] P o P74,

(x+1)—1 xr+1

sop| () forallie {0,...,p—1}. Thus by Eisenstein’s Criterion, f(z + 1) is irreducible,

hence f(x) is too.

o Let fi(x) =2%+22+6 (sop=2). And fo(x) = 2% + 32 + 6 (so p = 3). What about
over R = Z[+/—5]. Then f; is irreducible since fi(z) = (x + (1 ++/=5))z + (1 — /=5).

So the current state of Eisenstein’s Criterion does not work for general rings. //

We can generalize Eisenstein’s Criterion via prime ideals to integral domains as follows:

Theorem 7.22: Eisenstein’s Criterion for Integral Domains.

Let A be an integral domain and f(x) = a,2" + - -+ + a1x + a9 € A[z]. Suppose there
exists a prime ideal p in A such that:

® an ¢ p,

® ag,...,0n-1€P,
2

® a0¢p .

Then f(x) cannot be written as a product of two positive degree polynomials in A[x]. If
in addition to (1-3) above, f(x) satisfies

(4) f(x) is primitive in A[z],
then f(x) is irreducible in Alx].

The proof of Theorem 7.22 can be found here.

Theorem 7.22 allows us to factorize polynomials over rings like Z[y/—5], which before this
point we were unable to do. For example, if 22 + 2z + 6 = (z + (1 + v/=5))(x + (1 — /=5)),
and p = (2,1 4+ +/=5), p? = (4,2 + 2¢/=5, —4 + 2¢/=5) = (2), so z* + 2z + 6 is irreducible
over Z[+v/—5].

For another example in Z[1 + v/—5], consider f = x? + 3z + 6. Then p = (3,1 + +/—5), and

we can compute p? = (=24 +/—5). (Alternatively, we can check 6 ¢ p?). Then by Eisenstein’s
Criterion, f is irreducible over Z[1 + /—5].

The utility of Eisenstein’s criterion in the case of UFDs is strengthened by Gauss’s lemma,
which allows us to drop the primitive hypothesis:

Theorem 7.23: Eisenstein’s Criterion for UFDs.

Let A be a UFD and letf(z) = a,2™ + - - + a1z + ag € A[x]. If there exists a prime ideal
p in A such that

(1) an ¢p,

(2) ag,...,an,_1 €Pp, and
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(3) ao ¢ p?,
then f(x) is irreducible in Frac(A)[x] (hence f(z) is also irreducible in A[z]).

These two theorems clearly delineate the criteria and conclusions for Eisenstein’s Criterion in
the contexts of integral domains and UFDs separately. This separation helps avoid confusion
and makes the conditions and implications in each case more apparent.

The following theorem then proves the rational root theorem for Z, and generalizes it to
arbitrary integral domains:

Theorem 7.24: Rational Root Test for UFDs.

Let R be a UFD, let k = Frac(R), and let f € R[z]. Then if f(a/b) = 0 for some coprime
a,b ek, then b | a,, and a | ao.

The proof of Theorem 7.24 can be found here.

7.5 Hensel’s Lemma Over the Integers

We now discuss Hensel’s lemma. Hensel’s lemma is a generalization of Newton’s Method
(also called the Newton-Raphson Method), which is a classical method for approximating
roots of polynomials. The algorithm is as follows:

e Start with an initial guess xy for the root of the equation.
f(xn)’
/' is obtained from f by applying the power rule for each term of f).

e For each ne Z-q, let x,,1 = 2, where f’ is the formal derivative of f (that is,

e Then z := lim,_,, x, is a root of f.

e Output the final value of x as the approximate root of the equation.

Example 7.25. Consider f(z) = 2* =7, o = 1, f(xo) = —2x3, then z; = 1 — % = 4,
4

and f(z1) = 9. One can check x5 = 23/8, f(xs) = 81/64 and f(xzs) = & = 2. 25 = T,

and f(x3) = % = ﬁ. So we seem to be getting higher and higher powers of 3 in the

numerator of f(x3), as n increases.

Let us now make this observation formal with Hensel’s Lemma. Note that we say a polynomial
f is monic if its leading coefficient (the coefficient on the monomial term of f of the highest
degree) is 1. //

Theorem 7.26: Hensel’s Lemma.

Let f € Z[z] be a monic polynomial and let a € Z. Then if p is a prime integer such that
(1) f(a) =0 (modp) and
(2) f'(a) # 0 (modp),

then for all n € Z~,, there exists a unique a, € Z/(p"*') such that f(a,) =0 (modp™*!)
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and a, = a,_1 (modp").

The proof of Theorem 7.26 can be found here.

In other words, Hensel’s lemma says that if you have a simple root, that is, a root of
multiplicity /order 1, then you can lift that root to a root of f modulo p, modulo p?, modulo
p?, and to a root modulo p" for any n € Z=;.

Example 7.27. Consider R[z,e]/(e*), where f(z) = Y a,z"

_ n __ n n—1 1 o _ n—1
f(x+5)—2an(x+5) —Zan($ + nex" ") 8(f(35+5) f(a:))—Zanrm )
so the derivative lim_q 1 (f(z +t) — f(t)) equals L(f(2z + &) — f(€)). Thus we can think of
as “infinitely small”. //

7.6 Homework 12

All rings are still commutative in this problem set. You often see the following definition of
associated prime.

Definition 7.28.

Let A be any commutative ring, and let M be an A-module. A prime ideal p of A is
associated with M if it is the annihilator of one of its elements, that is, if for some
x € M we have

p=Anny(z) ={aec A|ax =0}

Exercise 7.29: 12.1.
Let A be a nonzero commutative Noetherian ring, let

0)=aqn-nay
be a reduced primary decomposition of (0), and let p; = /g, for each i.

(a) Show that for any nonzero z; € (;_, q;, Anna(z;) < p;.

(b) We showed in Exercise 10.2(a) that there exists m € Z>; such that p* < ¢;. Deduce
that ([, q;)-p" = 0. Replacing m with the least integer such that (1, q;)-pi" = 0,
verify that for any z; € ([, q;) cpmt Anng(z;) O pi.

(c) Conclude that
Ass((0)) = {p € Spec(A) | p = Ann,(x) for some x € A}
=: {prime ideals of A associated with M}

In other words, for M = A, the associated primes of M are what we have previously
written as Ass((0)), that is, the associated primes of the zero ideal in A.

A solution to Exercise 7.29 can be found here.
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Exercise 7.30: 12.2.
Show that any PID is a UFD.

A solution to Exercise 7.30 can be found here.

Exercise 7.31: 12.3: Hensel’s Lemma Over the Integers.

Let f(x) € Z[x] be a nonzero monic polynomial and let p be a prime integer. Suppose f
has a simple root at some ag € Z/(p), which means

e f(ap) =01in Z/(p) and
e f'(ap) # 01in Z/(p).
Show that for any n € Z-, there is a unique a, € Z/(p"™!) satisfying
e f(ay,) =0inZ/(p"™) and
® a, =a,1inZ/(p").

We say a,, is a lift of ag to a solution over Z/(p"™'). Hint: Use “Newton’s method,”
inductively defining a,, = a,_1 — f(an_1) - (f'(an_1))" " in Z/p" "' Z.

A solution to Exercise 7.31 can be found here.

Exercise 7.32: 12.4.

Use Hensel’s lemma to calculate all solutions in Z/(125) to the equation z* + 3z + 1 = 0.

A solution to Exercise 7.32 can be found here.

Exercise 7.33: 12.5.

(a) Show that the polynomials z* + 1 and 2% 4+ 2% + 1 are irreducible in Q[z].
(b) Is the polynomial 22 + y? — 1 irreducible in Q[z,y]? In C[z,y]?

A solution to Exercise 7.33 can be found here.

8 Modules Over PIDs

8.1 Structure Theorem for Finitely Generated Modules Over a PID

Let A be a fixed PID. Recall from Exercise 11.4 that the rank of a free module M, which
we will denote rk M, is well-defined. Moreover we showed that if F' is a free A-module and
m: M — F is a surjective A-module homomorphism, then 7 has a section (so M =~ F @ker ).
If AisaPID and F'is a free A-module of rank d, then any A-submodule F’ < F is also free
of some rank d’ < d.
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Definition 8.1.
Let M be an A-module. We define the torsion submodule of M, denoted Tor(M), by
Tor(M) = {me M ~ {0} | am = 0 for some a € A~ {0}}.

Note that we require elements of Tor(M) to be nonzero, since otherwise Tor(M) = M.
We say M is torsion-free if Tor(M) = 0.

Lemma 8.2.

Let A be an integral domain. Then for any A-module M, M /Tor(M) is torsion-free.

The proof of Lemma 8.2 can be found here.

Proposition 8.3.

If M is torsion-free, then M is free.

The proof of Proposition 8.3 can be found here.

Warning 8.4. The following fact is completely false if M is not finitely generated or if A is
not a PID; there are counterexamples in either case! ®

Corollary 8.5.

M is isomorphic to a direct sum F' @ T, where F'is a free module and 7" is the torsion
submodule of M. In particular, the quotient module M/ Tor(M) is free.

The proof of Corollary 8.5 can be found here.

Definition 8.6.

Let I be any ideal of A. Define the I-torsion submodule of M, denoted by M[I], as
the set of elements of M that are annihilated by some nonzero element of /. Formally,

MI[I] = {me M | am = 0 for some nonzero a € I}.

Warning 8.7. Although they may seem similar at first, M|[I] is very different from Ann;(M)!

Note that the I-torsion is a submodule of M: If m e M, a € A, and a’ € A~ {0} kills m, then
aa’ € I and is nonzero (since A is an integral domain), and a’(am) = a(a’m) = a-0 = 0, hence
am € M|[I]. Additionally, if m,m' € M[I] and a,a’ € I ~ {0} such that am = 0,a'm’ = 0,
then aa’ € I is nonzero and aa’(m + m') = a’(am) + a(a’'m’) = 0, so m +m’ € M|[I].

Definition 8.8.

Let p be a prime element of A (that is, (p) € Spec A), and define the p-infinity torsion
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submodule of M to be
My = UOO M[(p")] ={me M | p"m = 0 for some n € Zo}.

n=1

Note that M,» is also a submodule of M, by the same argument for M|[I].

Note 8.9. If A = 7Z, then M is an abelian group, and M= is the Sylow p-subgroup of M.
Note that showing the Sylow subgroup is actually a subgroup and in this case it is two lines
(that is, the proof that I-torsion is a submodule, or in this case a subgroup). This tells us
that the above definitions are reasonable notions for us to use when further developing theory,
since it allows us to recover other known results. //

Lemma 8.10.

M, = 0 for all but finitely many (p) € Spec A.

Proof of 8.10. See here.

We now present the main structure theorem for finitely generated modules over a PID, and
we will follow it up with several of its variants, consequences, and applications:

Theorem 8.11: Structure Theorem for Finitely Generated Modules over a
PID.

Let M be a finitely generated module over a PID A.

(1) There exist unique r, s € Zxq, q1,---,qs € A such that ¢; | g2 | - -+ | ¢s and
S
M=AY"®@._ A/lq).
The sequence ¢; | g2 | -+ - | g5 is called the invariant factor sequence of M, and

the ¢; are called the invariant factors of M.

(2) If N is a submodule of A®", then there exists a basis {ey,...,e,} for A% such that
there exist unique ¢, ..., q. € A satisfying ¢1 | ¢2 | - - - | ¢, and the nonzero elements
of {q1e1,...,q.e.} form a basis for N.

Proof of 8.11. See here.

Example 8.12. Let A = Z. We can apply the theorem to the following Z-modules as follows.
(Note that it helps to keep the CRT in mind here.)

o M =7/16Zx7Z/37. The decomposition of M according to the theorem is =~ Z/487Z.

o M =7/8Zx7Z/6Z. The decomposition of M according to the theorem is Z/27 x Z,/247.
But a more intuitive decomposition would be (Z/8Z x Z/27.) x 7./ 3Z.

o M = Z/6Z x7/AZ x Z/27. The decomposition of M according to the theorem is
7)27.x 7,/27 x Z/J127Z.. But a more intuitive decomposition would be (Z/47 x 7./27. x
7.)27) x 7,/ 37. //
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The following corollaries show that the “more intuitive” decompositions from Example 8.12
above can be obtained from the structure theorem in a precise way:

Corollary 8.13.

M is isomorphic to A®" @ @(p)eSpec 4 M=, and for each (p) € Spec A, there exist unique
t,r1,...,7¢ € Z>o such that ry = ry > --- > r; and

My = A/(p™) @ D A/(p"),

The proof of Corollary 8.13 can be found here.

Corollary 8.14.

There exist unique 7,k € Zso, prime ideals (p;),..., (px) € Spec A, and integers r;; >
rig =+ =1y, = 1foreach i e {1,..., k}, such that

M = A@T@(—BZ 1@ A/(pi).

Proof that 8.13 and 8.11 together imply 8.14. See here.

The following is just a more readable version of Corollary 8.14 resulting from a re-indexing:

Corollary 8.15.

If M is a finitely generated module over a PID A, then there exists unique k,t € Zo,
prime ideals (p1), ..., (px) € Spec A, dy,...,ds € Z=1, and iy, ...,15, € {1,..., k} such that

M >~ A@r P @ A/ pzj )

8.2 Applications of the Structure Theorem in Linear Algebra
Fix a field k. We first recall many concepts from linear algebra:

e On a k-vector space V', the data of the following constructions are equivalent:
(i) T € Homg(V, V)
(i) k[z]-module structure on V'

e For the data (V,T') and (V',T") as in (i), the diagram

VA v

commutes. Equivalently,

(o (V) } = Homyg (V, V)
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(And this is an equivalence of categories). This condition says that precisely multiplication
by x commutes with the action of ¢.
e To give an isomorphism ¢: V > V' is equivalent to giving a k[x]-module isomorphism
©:V 5 V' such that T = ¢~ ' o T" 0 ¢. Let (V,T) be as above. Then
(1) We obtain a k-algebra homomorphism
evy: k[z] — Endg(V),
f(@) — f(T),
whose image is the k-subalgebra k[T < End, (V') generated by T
(2) When dim; V' < oo, ker(evy) # 0: indeed, im(evy) = k[T]| has dimg k[T] <
Since dimy k[x] = o, ker(evy) # 0, hence there exists a unique monic nonzero
polynomial mr(z) such that ker(evy) = (mp(x)). We call mp(z) the minimal
polyomial of T'.

As a consequence, we obtain
{(V,T) such that} { finitely-generated }7

dimg (V)< torsion k[z]-modules

via the previous correspondence. (Indeed, we have just seen that when dim (V') < o,
there exists a nonzero my(z) annihilating the k[z]-module V', which is therefore torsion,
and it is finitely generated because it is already finitely generated as a k-module.)
The reverse direction of the correspondence (that is, finitely generated torsion implies
finite-dimensional and a choice of a linear endomorphism) is left as an exercise.

e Let dim, V < 0. For T € Endi(V), let A be a matrix of T in some basis eq,..., e,
(that is, T'(e;) = D1 azjes, or (T'(er) - T(en)) = (e1---ey) - A).
Now set pa(x) = det(z - I,, — A) € k[z], where I,, denotes the n x n identity matrix
over k. We call p,(x) the characteristic polynomial of A. Since the determinant is
invariant under conjugation, we are entitled to write pr(z) :== pa(z) and call pr(x) the
characteristic polynomial of T'.

8.3 Applications of the Structure Theorem for k[x]-Modules

Let (V, T) be as before, but now we impose the condition dimy (V) < co. Then as k[x]-modules,
we have an isomorphism

V=@ K/

for uniquely determined monic polynomials ¢, ..., ¢s such that ¢; | go | -+ | ¢s. For any
q(x) = 28 + ag_12t + - + a1z + ag € k[z] of degree d € Z~,, with respect to the ordered
basis (1,z, 2%, ..., 2% of k[z]/(q), the matrix of multiplication by z is

[ P —ag

1 | PP —ay
C@q: 0 1 0 ...... —a2 ’

0 0.....:'.1"_ad_1
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since z - 247! = 2% = —ag — ayx — -+ — ag_1z*!. We call B, the companion matrix of g.

8.3.1 Rational Canonical Form

Definition 8.16.

A rational canonical form of a linear transformation 7: V. — V (or of a matrix
A € M, (k) representing T) is a matrix representation of 7" in some basis of the form

@y 0-ven 0
) 6
; -0
Oeennn 0 G,

where the ¢; are as in the main structure theorem.

The word “rational” stems from the fact that this is valid in the field &, that is, you do not
have to pass to an algebraically closed field containing k.

Theorem 8.17.

Let V' be a finite-dimensional k-vector space, with dimg V' = n, and let T' € Endy (V).
Then Vi = @;_, k[x]/(g:(x)) is the unique decomposition by the structure theorem, where
¢ | g2 || ¢gs and each ¢g; is monic. Then:

(1) mp(x) = gs(z). (Recall mp(x) is defined as the monic generator of kerevy =
Annk[m](VT))

(2) There exists a basis of V' in which 7" has rational canonical form (RCF) and is unique.

(3) A,B € M,(k) are conjugate over a field L containing k if and only if they are
conjugate over k.

(4) pr(z) = [[j=; ¢j(x), hence mr(z) | pr(z) | mr(z)® and pr(z) and my(r) have

T
the same roots. Finally, pr(T) = 0. (This last result is sometimes known as the
Cayley-Hamilton theorem.)

The proof of Theorem 8.17 can be found here.

8.3.2 Prime Canonical Form

Instead of using invariant factors from the main structure theorem, Corollary 8.14 gives a
decomposition

V@, k) (pila)),
where the p; are irreducible (not necessarily distinct) in k[x]. This resulting canonical form
could be called prime canonical form (PCF). (Note that this terminology does not seem
to be standard; many opt for the term “Jordan canonical form” in this setting, but any use
of the latter term usually implies that we are working over a more special setting that we
explore next section, namely over an algebraically closed field.)
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8.3.3 Jordan Canonical Form

If a polynomial p; € k[x] splits completely, that is, if p; factors into a product of deg p;
linear polynomials in k[z], then the structure theorem gives us a very special result. For
example, if k is any algebraically closed field, then each p; splits completely over k.

Definition 8.18.

Let A € k. A Jordan block of size d and eigenvalue A is a matrix Jy 4 € My(k) of the
form

Theorem 8.19.

Let k be a field, T € End,(V) for dim; V' < . Assume pp(x) factors into linear
polynomials in k[z] (for example, when k is algebraically closed). Then there exists a
basis of V' in which 7" has a matrix

e

I, dn

for some dy,...,d, € Z=1,1,...,\. € k. We call this the Jordan canonical form of 7T'.

The proof of Theorem 8.19 can be found here.

Corollary 8.20.

Let k be any field. Let A € M, (k) where pa(z) has all its roots in &k (that is, splits
completely in k). Then A is GL,(k)-conjugate to a diagonal matrix if and only if its
minimal polynomial has distinct roots.

The proof of Corollary 8.20 can be found here.

Now fix a field & and consider a pair (V,T'), where V is a finite-dimensional k-vector space
and T € Endg (V).

Exercise 8.21.

Show that isomorphism classes (V,T'), where V' is a finite-dimensional k-vector space and
T:V — V is a linear transformation, are precisely conjugacy classes of M, (k).
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8.4 Classification Problems Using the Structure Theorem for k|z]-
Modules

Let n € Z=,. By Exercise 8.21, conjugacy classes of M, (k) are in bijective correspondence
with isomorphism classes of pairs (k™,T) for T € Endy(k?), and these pairs are themselves in
bijective correspondence with k[x]-modules M such that M is an n-dimensional vector space
over k. Thus it suffices to compute the last of these.

By the structure theorem for finitely generated modules over a PID, there exists a unique
r € Zso, s € Z=1, together with unique ideals (¢1(q)), - .., (¢gs(z)) of k[z], such that (gs(x)) <
-+ < (qi(x)) and

s /{Z[.T]
MA@ .
Dot Gl
Since (g;(x)) = (ug;(z)) for any unit u € k[z]* = k ~ {0}, by choosing u appropriately the
uniqueness condition on the chain (¢;(z)) < - - (¢s(z)) is equivalent to when we have that
both

(8.21.1)

(1) gi(z) is monic for each i, and

(2) (@) | @) [ -~ [ gs().

Note that M must be a torsion module: if not, then M has a direct summand k[z]®" for some
r € Zs1, which is infinite-dimensional as a k-vector space. Thus Equation (8.21.1) simplifies
as

M =@,_, klz]/(q:(x)).
And for each i € {1,...,s} the direct summand k[z]/(¢;) has basis (1,z,...,29%8% 1) as a
k-vector space, so

(3) dimy M = 37, deg(qi).

The restraints (1), (2), and (3) above therefore uniquely determine the k[z]-module structure
of the n-dimensional k-vector space M (or equivalently by previous remarks, the conjugacy
classes of M, (k)).

Moreover, since the conjugacy classes of M, (k) are in bijective correspondence with the
k-linear transformations and two matrices are conjugate if and only if they have the same

rational canonical form, it follows that given s € Z-; and monic ¢;(z),. .., ¢s(x) satisfying
the above conditions, a representative for the corresponding conjugacy class is
€,
| €.

Our above discussion thus proves the following corollary.
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Corollary 8.22.

For any n € Z-, and any field k, the conjugacy classes of M,, (k) are in bijective correspon-

dence with integers s € Z~; together with monic polynomials ¢;(x),. .., ¢s(z) satisfying
* 1(z) [ g2(2) | -+ | gs(2) and
o > deg(q) =n.

Moreover, for any such s € Zx; and ¢;(x), ..., gs(x), a representative for the corresponding

conjugacy class is the block matrix
C@Ch .

..%q

s

Example 8.23. (Classification of Conjugacy Classes of M;(k) with RCF) Let k be a
field. To classify the conjugacy classes of Ms(k), by Corollary 8.22 it suffices to determine all
possible integers s € Z>; together with monic polynomials ¢;(x), ..., gs(x) satisfying

e qi(z) | g2(x) [ -+ | ¢s() and
o Xy deg(a) =2
We then have the following two cases:

o If s = 1 then degq;(z) = 2, so ¢;(z) = 2% + ax + b for some a,b € k. The divisibility
condition is trivially satisfied, so this case corresponds to the conjugacy class of My (k)

with representative
0 —b
o1

o If s = 2 then degqi(z) = degqa(z) = 1, so ¢1(z) = v — a and ¢(x) = x — b for
some a,b € k. But ¢1(z) | ¢2(z), and (x —a) | (z — b) if and only if @ = b. Thus
¢1(x) = g2(x) = x + a, so this case corresponds to the conjugacy class of My(k) with

representative
B, (a0
(" e) - (o) "

Thus the conjugacy classes of My(k) for a field k come in two families; an arbitrary matrix
A e M, (k) is conjugate (that is, represents the same linear transformation) to a matrix of
exactly one of the following forms: either

. (O _b> for some a,b € k, or

1 —a
° (a O) for some a € k.
0 a

Warning 8.24. Although k[z]/(x) =~ k =~ k[z]/(x — 1) are isomorphic as rings, it is not true
that k[x]/(z) = k[z]/(x — 1) as k[x]-module! K4
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Instead of the RCF in the above example, we could have opted to use the PCF. In short, we
can obtain the PCF by first decomposing our module into prime components and applying
the RCF to the resulting direct summands. The PCF decomposition takes the form

t e
where the p;s are irreducible and need not be distinct (but the collection of p; and the powers
e; that do appear are unique).

Example 8.25. (Classification of Conjugacy Classes of M;(k) with PCF) By
Corollary 8.14, there exist unique k € Zxq, prime ideals (p;), ..., (pr) € Spec A, and integers
ri1=Tig = =1, =1foreachie{1,...,k}, such that

k ti i
M = @1:1 @jzl IF?[‘(B]/(pz ' )
e Case 1. k= 1.
— Case 1(a). k=1,t = 1. Then M =~ @3:1 @jl.:lFQ[x]/(pgi,j) = Fy[z]/(pii).

This means either deg(p;) = 1 and r1; = 2, or deg(p;) = 2 and r;; = 1. In the
former case we have p;(z) = (x — a) for some a € Fy, in which case

F

((z —a)?)

This gives us two conjugacy classes.
In the latter case, since the only irreducible polynomial of degree 2 in Fo[x] is
2?2+ 2+ 1, we know py(z) = 22 + v + 1 and
L Fofa]
(2242 +1)
— Case 1(b). k = L,t; = 2. Then M = @}, @7, Fo[z]/(pi7), so the only
possibility is pi(x) = x — a for some a € Fy and
Fola] | Foz]

M= %o

Then degp; = 2, and in fact this forces t; = 2, since the sum of the dimension of the
k[z]/(pi7) as k-vector spaces must coincide with that of M, which is 2.

e Case 2. k = 2. This case is left as an exercise; similar logic as in the previous case
should be used here. In the end, we will recover of course the same conjugacy classes as
we did in Example 8.23.

The takeaway from the above two examples is that the RCF is much easier to compute, but
PCF is much easier in every other way: we can read off information such as the eigenvalues,
the determinant, and the trace, whereas this is not the case for the RCF. //

Example 8.26. Let k£ be a field. We now classify all matrices up to conjugation with
characteristic polynomial f = z%(z — 1)3. By our previous discussions, it suffices to classify
finitely generated torsion k[z]-modules M such that

o dimy M =5,
klz
° M;(—Dpi%, and
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i I_Lpz:f

We know M =~ @, My», where My~ = {me M | p"m = 0 for some r € Z>,}. Now, if g is
irreducible and ¢ 1 f, then the ;s in the decomposition of M » as in the first corollary to the
structure theorem are all 0.

Mw:{OﬁgU,

g 0 otherwise.
Thus
M = Mo, @Mz,

dimg=2 dimg=3

The 78 corresponding to My~ thus satisfy Y} r; = 2, which gives two possibilities

Mo =~ @ P —— 00
(.CL’2> with basis (1,0) o

Mo = @@ k[z] with basis ((1,0),(0,1)) /0 0 |
On the other hand, the r;s corresponding to M(,_1)» satisfy > r; = 3, which gives two
possibilities

or

100
M w k] — |1 1 0
N 011

or
1 0]0
Mo = 2] el (1 1o
T @12 @) ol

or
100

- _klx] klz] klz]
Mo =09 0%6-n — {0 4 1) /

In each way to direct sum any of the two 2x2 matrices above with any of the three 3x3 matrices
above gives us a set of non-repeating representatives, thus completing the classification.

Example 8.27. In general, if R is a PID and M is a finitely generated torsion R-module,
then we can choose generators for the prime ideals (p) with

M ~ @p Mpoc
where
My = {m e M | p"m = 0 for some r € Z>1}.

When R = Z, the M~ are precisely the Sylow p-subgroups of M. When R = C[z], we can
take as the ps the monomials x — A for A € C, and

Mo = {me M| (x —\)"m = 0},
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which of course is just the generalized eigenspace for the eigenvalue . //

8.5 Review of Decomposing Vector Spaces into (Generalized)
Eigenspaces

Definition 8.28.

Let V be a C-vector space, A € C, and T € Endc (V). The A-eigenspace V) is the set
Vi={veV |Tv =)}

Note 8.29. If v € V), then Tv € V, because T(Tx) = A(Az) = A\(Tv), so Tv € V,.

For instance, if N = C? and T = G (1)), Vy =0 unless A = 1. But dim¢ V), =1, (0,1) € V),
and ((1) 8)2 = 0. //

Definition 8.30.

The A-generalized eigenspace is defined by
Ey={veV |(T—\)"v=0 for some n e Zs,}.
If v e E\, then Tv € E/, because
(T —AND)"Tv=T(T—-X)"v=T(0) =0.

Proposition 8.31.

Under the equivalence of pairs (V,T') with k[x]-modules M, the pairs (E\,T|g,) are in
bijection with Mg _y)=.

The proof of Proposition 8.31 can be found here.

Corollary 8.32.

Let V be a vector space over C and 7" € End¢(V'). Then

V = @ \eC E,
(and this corresponds to the Jordan form of T').

8.6 Homework 13

Exercise 8.33: 13.1.

(a) Give a complete and non-redundant list of isomorphism classes of Fy[z]-modules of
order 8. (IF, is alternative notation for the field Z/pZ, when p is prime.)

(b) Give a complete and non-redundant list of conjugacy classes in GL3(FFy).

A solution to Exercise 8.33 can be found here.
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Exercise 8.34: 13.2.
Let m,n € Z~1, and let f: Z" — Z™ be a homomorphism of abelian groups.
(a) Show that there are bases of Z" and Z™ in which the matrix of f has the form
{aij}léiém,lsjén where
— a;; = 0 for all ¢ # j.
— For all i > 1, a;; divides a;41,41. (Eventually some of the a;; may all be zero.)

(b) When m = n, suppose that in the standard basis f is left multiplication (on column
vectors) by a matrix A € M, (Z). Show that the image of f is finite index in Z" if
and only if A is nonsingular, and in that case

[Z" - im(f)] = det(A).
A solution to Exercise 8.34 can be found here.

Exercise 8.35: 13.3.

Continuing with the setup of Exercise 13.2, let m = n = 3, and suppose that in the
standard basis f is left multiplication by the matrix

1 2 3
A=14 56
78 9

Find explicit bases of the source and target in which the matrix of f has the form described
in Exercise 13.2. Equivalently, find elements P and @ of GL3(Z) such that Q' AP has
the form in Exercise 13.2. Hint: Use elementary row and column operations that are
invertible over Z in combination with the Euclidean algorithm.

A solution to Exercise 8.35 can be found here.

Exercise 8.36: 13.4.

Let V be a finite-dimensional vector space over a field K, and let {1;},_; € Homg(V,V)
be a set of linear maps such that

e Each T; is diagonalizable over K (i.e. V has a basis of eigenvectors for T;).

e The 7; all commute with one another: for all 4, j € I, T;T; = T;T;.

Show that there is a basis of V' that simultaneously diagonalizes all T;,i € I, that is,
such that there is a basis of simultaneous eigenvectors.

Hint: First treat by induction the case where [ is finite: to formulate an inductive
argument, you will use and should check that if W < V is a A-eigenspace for T;, some
A € K, then every T; preserves W. For the case where I is infinite, use that the span of
all the T; inside Homg (V, V) is a finite-dimensional K-vector space.

A solution to Exercise 8.36 can be found here.
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Exercise 8.37: 13.5.

(a) Let K be a field, and let V' and W be finite-dimensional K-vector spaces with given
bases {v;}iz1,.n and {w;};=1, m, and let T: V — W be a K-linear map. As usual,
the matrix of 7" in the given bases is defined to be the A = (a;;) € Mun(K) with
T(v;) = X", a;jw; for all j. Compute the matrix of the dual map 7%: W* — V*
with respect to the dual bases {w}} and {v}}.

(b) Let V be any K-vector space. Show the canonical K-linear map ev: V — (V*)* is
injective in general and is an isomorphism when dimg (V) < . (Recall ev(v)(\) =
A(v) for ve V and A e V*.)

A solution to Exercise 8.37 can be found here.

9 Some Multilinear Algebra

9.1 Dual Space and Tensor Products of Vector Spaces

Fix a field k. In a more general context of modules over a commutative ring A, we have seen:

(i) The direct sum @,

(ii) For any A-modules M and N, Homy (M, N) is an A-module (recall that the A-module
structure of Hom 4 (M, N) requires A to be commutative).

M; of any A-modules M;, for I some index set, is an A-module.

We have used these notions for A = k, a field. Taking N = A in (ii), we get the dual
A-module to M; this is subtle for general A, but we will look at its simple behavior for A = k.
For any commutative A-modules M and N, we can define a new A-module M ®4 N, the
tensor product of M and N, such that for any A-module P,
A-bilinear maps | _ | A-module homomorphisms
MxN — P - M®y N — P '

Again, this is simpler when A = k, and we’ll introduce this case first, then the general case
(including noncommutative A) later.

9.2 Dual Vector Spaces

Let V be a k-vector space. Define the dual of V' by V* := Homy(V, k). The k-vector space
structure of V* is the natural vector space structure of Homy(V, k), that is, for all A, e V*
and all v e V', we have (A + u)(v) = A(v) + p(v) and (c- A)(v) = ¢- A(v) for c € k.

Lemma 9.1.

Let V' be a k-vector space with basis (v;)er, so that the map v; — e; = (0;;)jer gives an
isomorphism V =~ @,_; k. Then
Vx| | k
el
as k-vector spaces, but not naturally.
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The proof of Lemma 9.1 can be found here.

Corollary 9.2.

When dimy (V) < o, there is a non-canonical isomorphism V = V* sending the basis
(vi)ier to the dual ba51s (v¥), which is characterized by the property that for all ¢, j € I,

1 ifi=j,
UE"(UJ')Z%':{ e

0 ifz#j.
When |I| = o0, V and V* are not isomorphic.

The proof of Corollary 9.2 can be found here.

Note 9.3. (Naturality of Dual Maps) For any k-linear map p: V' — W (where V, W are
k-vector spaces), the dual k-linear map p*: W* — V* is defined by p*(\)(v) = A(p(v)) for
all A e W*. (See also Exercise 13.5.) //

Exercise 9.4.

For finite-dimensional vector spaces V' with bases {v;}, W with bases {w;}, relate the
matrix of p in these bases to the matrix of p* in the dual bases {v}}, {w}}.

Note 9.5. Categorically, V* is contravariantly functorial in V: for all homomorphisms
T:V — W of k-vector spaces, there exists a dual map T%*: W* — V* given by T%(\)(v) =
AT (v)). /

Note 9.6. (Double Dual) In contrast to the basis-dependent isomorphism V' = V* in the
case dimy V' < oo, there is a canonical isomorophism ev: V' — (V*)*. //

In Exercise 13.5 we show that ev is always injective, and is an isomorphism when dimy (V) is
finite.

9.3 Bilinear Maps and Tensor Products

Let V4, Vs, and W be k-vector spaces. (Note that we will soon provide a generalization of the
following constructions to modules over possibly noncommutative rings, though in that case
we need to be a bit more careful.)

Definition 9.7.

A k-bilinear map is a set map f: V; x Vo — W such that for all vy, v] € Vi, vg, v} € V5,
and ¢ € k, vy € Vo, f(—,v2) € Homg(V4, W), and for each v; € V} and each f(vq,—) €
Homy,(Va, W), and
flor +v1,09) = f(or,v2) + f(v],v2),
for,v2 +05) = for,v2) + f(v1,v3),
flevi,v9) = f(vg, cvg) = cf (v, v2).
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Example 9.8. Let A € M, (k). The function k™ x k" — k given by (z,y) — z'Ay is a
k-bilinear map. In terms of matrices, this map is given by

[ kM x k" — k,
(v,w) —> vt Aw,

that is,

For instance, in the case m = n and A is the identity matrix I,,, then f is just the dot product
of two vectors. //

Notation 9.9. Write Biling (V3 x Vo, W) for the k-vector space of k-bilinear maps V; x V5 —
W. #

Theorem 9.10: Universal Mapping Property of the Tensor Product Space.

There exists a k-vector space V) ®y, V5, together with a k-bilinear map ®: VixVy — Vi@ V5
such that for any k-vector space W, the map

p—> gpo@

is an isomorphism of k-vector spaces.

Definition 9.11.

The pair (V} ® V3, ®) is called the tensor product of V; and V5 over k.

The proof of Definition 9.11 can be found here.

Note 9.12. We use the definite article “the” in the above definition, since it turns out that
the tensor product of V; and V5 over k is unique up to a unique isomorphism. The details
are left as an exercise. (More generally, uniqueness up to a unique isomorphism is an aspect
of the categorical result we will see called Yoneda’s lemma.) //

Notation 9.13. We typically write v; ® vy for ®(vy,vy) for any vectors vy € Vi, vy € Vo, #

Lemma 9.14.

We have dimg(V ®; W) = dim; V' - dimg W, and this is a cardinality statement in the
sense that it is true even when V' or W are infinite-dimensional.

The proof of Lemma 9.14 can be found here.

9.4 Functoriality of ® and the ®-Hom Adjunction

The following result follows immediately from Theorem 9.10.
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Theorem 9.15: Functoriality of Tensoring.

Let T7: Vi — Wi and T5: Vo, — W5 be k-linear maps. These induce a unique k-linear map
T'®Ty: Vi ®; Vo — W ®, Wy making the diagram

T1 ><T2

VixV,

Wl X WQ

commute. Moreover, for all simple tensors v; ® vy, the resulting map 77 ® T, satisfies

(T @ T3)(v1 ®v2) = Th(v1) ® To(vs).

Exercise 9.16.

When the spaces are finite-dimensional and we choose bases of Vi, Vo, Wi, Wy, compare
the matrix of T} x Ty (with respect to the induced basis on T} ® T5 on the corresponding
tensor spaces) to the matrices of 77 and Ts. The resulting operation on pairs of matrices
is called the Kronecker product.

Theorem 9.17: Tensor-Hom Adjunction.

For any k-vector spaces V, W, U, there exists a natural isomorphism of k-vector spaces
Homy(V ® W, U) —> Homy,(V, Homy (W, U)).

The proof of Theorem 9.17 can be found here.

9.5 More Tensor Algebra: Symmetric and Alternating Products

Let V be a k-vector space. Iteratively tensoring V' with itself, we define a k-vector space
Ve = IV®kV®k"‘®k V.’

n copies of V

where it is left as an exercise to show that the order in which we tensor is irrelevant (that is,
that tensoring vector spaces is associative). This satisfies the universal mapping property

Homy, (V" W) =~ Multiling, (V" W), (9.17.1)

where Multiling (V*™, W) denotes the collection of functions that are linear in each variable
when fixing the other n — 1 variables.

Definition 9.18.

Define the tensor algebra of V' by
T(V) =@ _ V.
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Note 9.19. The tensor algebra is indeed a k-algebra, but it is noncommutative. The product
in this algebra is characterized by its behavior on simple tensors: the map V for all m,n € Z~,,
the multiplication on V&™ x V& — V®(m+n) ig given by

(M@ Qup) (W1 Quy) =11Q QU W1+ ® W, //

Exercise 9.20.
Use the universal property to define the algebra structure:
Prom) oy ey
l ”’7 I
VO X VO, O g e

The product is the arrow m.

9.5.1 Special Kinds of Multilinear Maps

For all n € Z~q, define
Sym,, (V" W) = {f € Multiling(V", W) | f(voq1),--sVom)) = f(v1,...,v,) for all o € S,},
Al (V" W) == {f € Multiling (V" W) | f(v1,...,v,) = 0 whenever v; = v; for some ¢ # j}.

Also for all n € Z~, set

n o Xn k-vector subspace spanned by all
S (V) =V /{vg(1)®---®vg(n)7v1®-~-®vn for all ceSy, §°

An(v) — V®n/{ k-vector subspace spanned by all

v1®---@up such that v;=v; for some i#j S *

We write v1vg - - - vy, (resp. vy A Vg A -+ A vy,) for the element of S™(V') (resp. A"(V)) that is
the image of 11 ® - -®v,, € V@™ under the quotient map V" — S™(V) (resp. V& — A"(V)).

Theorem 9.21: Universal Properties of the Alternating and Symmetric Alge-
bras.

For all k-vector spaces W, the following diagram commutes:

~

Homy, (A"(V), W) - Alt, (V> W)

! I

Homy, (V& W) —=— Multiling (V**, W)

J |

Homy (S™(V), W) ---=-- Sym, (V** W)

where the middle isomorphism is from Equation (9.17.1).

For vy,...,v, € V and o € S,,, we have the action v1 A ... A v, = 5gN(T)VUs(1) A ... A Ug(n)-
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We can prove this by decomposing o as a product of 2-cycles (i j) with ¢ # 7, in which case

O=viA.c.on+v) A AW +v) A A,
I — | | —— |
ith position jth position
=VIACCAUACAUA AU, FULA LA UA LAY A AUy

SULACCAVGA AU A AU, = UL A LAUA AU A A Uy,

When char k # 2, this sign condition is equivalent to the given definition; however, in general
the given definition is stronger. If we defined a wedge using the sign condition, then for all
/U7 w7

vAvV+VAW=0AVF+w)=—(V+W)AV=—VAV—WAD,

s0 2(v A v) = 0, or equivalently when chark # 2 v A v = 0.

Proposition 9.22.

Let V' be a finite-dimensional k-vector space with basis eq, ..., e,. Then for all d € Z,
(1) dimy S4(V) = (”Jrj_l) with basis {e; e, - e, | 1 <13 < -+ <ig < n}.
(2) dimy AY(V) = (1) with basis {e;, A -+ Ae, | 1<d <+ <ig<n}

Proof. We only prove (2), leaving (1) as an exercise. Consider the map V®4 — A4(V) given
by €;, ® - ® e, — €, A ... A ey, We know that {e;, ®...®e;, | i1,...,ia€ {1,...,n}}
spans A% so their images span A%(V). But for all i1,. .. 44, if i; = i), for some j # k then
e A ... A ey, =0. Thus, to span A4(V'), we may restrict to the d-tuples with all ¢; distinct.
Since e, A... A€, = Sgn(0)ei, o) A .. At forall o e Sy, we find that {e;, A. .. Aei, i <<y

span A4(V).
It remains to show linear independence.

e Case 1. d = n: Then by the above, e; A ... A e, € A"(V), so it suffices to show
er A ... A e, # 0. We do this by writing down a A € Alt, (V" k) = Homy(A™(V), k)
such that A(eq,...,e,) # 0. This A will be familiar: let {e}? ; be the dual basis, and
for all vy,...,v, €V set

Awreon) = 3 sgn(0)ed (vo) -+ € (Votw)-
Multilinearity of A is then clear, and if v; = v; for some 7 # j, then observe for any
o € S, that, where 7 = o o (ij),
sgn(0)el (Vo(1))  ++ €n (Vo)) + sgn(T)er (vr)) -+ €5 (Vr(m))
= sgn(o)[€1(Vo(1)) - -~ €] (Vo)) - - €5 (Vo)) - - €5 (Va(m))]

*

+sgn(7)[ef (vr)) - - €7 (Vr)) -+ - €5 (V7)) - - € (Ve ()]
= sgn(0) [HL, e (voa))] (€7 (Vo)) €] (Va(i)) — € (Vo) )€] (vo(s)))

1#1,j
where the last equality is because v; = v;. Thus the n! terms in the sum cancel in pairs,
and A is alternating. Finally, A(eq,...,e,) = 1 since only o = id contributes a nonzero
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term.

e Case 2. d < n: Suppose we have a linear relation
ad
@iy g€y A oo A€y, = 01in A%V
Zl<i1<...<id<n hotd T v

For J = (j1,...,7j4) such that j; < ... < jg, we use the linear map e%: AY(V) — A"(V)
given by ej(x) =z A (e A A€ A A €j, A -+ A ey), where the hat notation is
to indicate all the e; , ..., e;, are to be omitted. Then

0=ey (Z Qiyig€iy N oo A eid> = +a;,..,€1 A A €ep.

By the case d = n above, this implies a;,...;, = 0 for all J, as desired. O

Exercise 9.23.
Prove point (1) of Proposition 9.22. (Or see Lang XVI.8.1.)

The above proof of (2) of Proposition 9.22 used the k-algebra structure of A*(V):

Exercise 9.24.

Show the k-algebra structure of the tensor algebra T'(V) = @, V®" induces a k-
algebra structure on A*(V) == @, ., A%V), the symmetric algebra, and on S*(V) =
Pyzo SU(V), called the exterior algebra.

Exercise 9.25.

Show that S*® and A® are functorial in the sense that any k-linear map f: V' — W induces
e k-linear maps Sef: S4V) — SYW) Adf: AYV) — AYW), and
e k-algebra homomorphisms A*f: A*(V) — A*(W), S*f: S*(V) — S*(W).

The wedge powers A™(V') lead to the theory of determinants (for dimension n) vector spaces:

Corollary 9.26.

Let V be a K-vector space of dimension n. Let T' € Endg (A™V) = K be multiplication
by a scalar. This is det(7T") (and can serve as the definition of determinant).

The proof of Corollary 9.26 can be found here.

This also gives conceptually clear proofs that det(AB) = det(A) det(B) (because det(AB)e; A
... ANe, =ABey A ... AN ABe, = det(A)Be; A ... A Be, = det(A)det(B)ey A ... A e, and
the determinant is basis-invariant).

Note 9.27. Analogously, the minors of a matrix A € M, (K) correspond to matrix entries of
A%A in its standard basis. //
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10 Math 6111 Final Qualifying Exam: Fall 2023

10.1 Review Exercises and Solutions

Exercise 10.1: RF1: #1, OSU Algebra Qualifying Exam, Autumn 2023.

Let H be a proper normal subgroup of a finite group G, and let p be a prime factor of
|G/H|. Show that the number of Sylow p-subgroups of G/H divides the number of Sylow
p-subgroups of G.

A solution to Exercise 10.1 can be found here.

Exercise 10.2: RF2: #2, OSU Algebra Qualifying Exam, Autumn 2023.

Let G be a finite group such that any two of its proper maximal subgroups are conjugate.
Prove that G is cyclic.

A solution to Exercise 10.2 can be found here.

Exercise 10.3: RF3: #3, OSU Algebra Qualifying Exam, Autumn 2023.

Let R be a commutative ring, and fi, fo, ..., f, € R such that they generate the unit ideal.
Show that an R-module M is finitely generated if and only if for all ¢ = 1,...,r, the
localization My, is a finitely generated Rj-module. (Here Ry, and My, are the localizations
SR and S™'M with respect to the multiplicative subset S = {f/"},ez.,-.)

A solution to Exercise 10.3 can be found here.

Exercise 10.4: RF4: #4, OSU Algebra Qualifying Exam, Autumn 2023.

Let D be a unique factorization domain. Define what it means for a polynomial f(x) € D|[z]
to be primitive. Prove that if f(x) and g(x) € D[x] are both primitive, then f(z)- g(z) is
primitive.

A solution to Exercise 10.4 can be found here.

Alternate Solution to 10.4. See here.

Exercise 10.5: RF5: #5, OSU Algebra Qualifying Exam, Autumn 2023.

(We did not cover determinants formally, so this material would not appear on the final
qualifying exam.) Let A be an n xn matrix of rank k over a field. What is the rank of
adj(A)? Recall that adj(A) is the n x n matrix whose (i, j)-entry is (—1)"*/ times the
determinant of the (n — 1) x (n — 1) matrix obtained from A by removing the jth row and
ith column.

A solution to Exercise 10.5 can be found here.

Version of February 5, 2024 at 11:53am EST Page 105 of 177


https://www.greysonwesley.com/home

Greyson C. Wesley 10.1: Review Exercises and Solutions

Exercise 10.6: RF6.

Classify up to isomorphism groups of order 245.

A solution to Exercise 10.6 can be found here.

Exercise 10.7: RF7.

Let G be a group, and let H be a finite index subgroup of G. Show there is a subgroup
N < H < G such that N is normal in G and [G : N] < .

A solution to Exercise 10.7 can be found here.

Exercise 10.8: RFS8.

Let H be the R-algebra of quaternions (see the construction from class). Exhibit an
injective R-algebra homomorphism H — M, (C) (2-by-2 complex matrices).

A solution to Exercise 10.8 can be found here.

Exercise 10.9: RF9.

Let A be a commutative ring. An element e € A is called idempotent if e? = e.

(a) Give an example of a ring A and an idempotent e € A \ {0, 1}.
(b) Show that if e € A is idempotent, so is 1 — e.
(c) Prove the following are equivalent:

(i) A contains an idempotent e # 0, 1.

(ii) A is isomorphic as a ring to a direct product A; x Ay of nonzero rings A; and
As.

A solution to Exercise 10.9 can be found here.

Exercise 10.10: RF10.
(a) Prove that o7 4+ 48z — 24 is irreducible in Q[z]. Is it irreducible in (Q(7))[z]?
(b) Prove that 2 + y 4 y° is irreducible in C[z, y].

A solution to Exercise 10.10 can be found here.

Exercise 10.11: RF11.

For each of the abelian groups

(a) Q,
(b) Q/Z, and

(c) Z[%] (as a subring of Q(4/—3), or if you prefer, of C),
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say whether they are
(i) finitely-generated,

(ii) torsion-free, or

(iii) free.

A solution to Exercise 10.11 can be found here.

Exercise 10.12: RF12.

Describe the primary ideals in a PID A.

A solution to Exercise 10.12 can be found here.

Exercise 10.13: RF13.

For a prime p, how many conjugacy classes are there in GL2(Z/(p))?

A solution to Exercise 10.13 can be found here.

Exercise 10.14: RF14.

Let v = (ay,...,a,) be an element of Z". Show that v extends to a basis of Z" if and
only if ged(ay, ..., a,) = 1.

A solution to Exercise 10.14 can be found here.

10.2 The Final and Solutions

Write your solutions neatly, including your name and the problem number on each page you

submit. State clearly any results from class you use. You have 1 hour and 50 minutes. Good
luck!

Exercise 10.15: F1.

Let p be a prime, and let P be a p-group (that is, |P| = p" for some n € Z>,). Let Q < P
be a normal subgroup.

(a) (2.5 points) If |@Q| = p, show that @ is contained in the center of P.

(b) (2.5 points) Show by an example that when |Q| = p?, @ need not be contained in
the center of P.

A solution to Exercise 10.15 can be found here.

Exercise 10.16: F2.

Let A be a commutative ring. Recall that on the homework (Exercise 10.3) we proved
Nakayama’s Lemma: If M is a finitely-generated A-module such that J(A)M = M, then

Version of February 5, 2024 at 11:53am EST Page 107 of 177


https://www.greysonwesley.com/home

Greyson C. Wesley 11: Proofs

M = 0. You may use this in what follows.
(a) (1 point) If M is a finitely-generated A-module, and N < M is an A-submodule such
that M = N + J(A)M, show that N = M.

(b) (4 points) Let A and B be Noetherian local rings with maximal ideals m4 and mp,
and let p: A — B be a ring homomorphism such that ¢! (mp) = m4.% Assume:

— ¢ makes B into a finitely-generated A-module.’
— ¢ induces an isomorphism A/m, = B/mg.
— The restriction of ¢ gives a surjection my — mp/m%.

Show that ¢ is surjective. Hint: Apply part (a) twice, first with “M” the B-module
mp, and then with “M” the A-module B.

*We call such a map ¢ a local homomorphism of local rings; this condition is ubiquitous in algebraic

geometry.
bAs a reminder, the A-module structure on B is a-b = p(a)b for a € A,be B.

A solution to Exercise 10.16 can be found here.

Exercise 10.17: F3.

Let A be a commutative ring, and let M be an A-module. When M is a finitely-generated
A-module, show that®

V(Anns(M)) = supp(M).

“As a reminder, M, denotes the localization of M with respect to the multiplicative subset A \ p and
V(Anny(M)) denotes the set of prime ideals of A containing the annihilator of M.

A solution to Exercise 10.17 can be found here.

Exercise 10.18: F4.

Let A be an integral domain.

(a) (2 points) If A is a principal ideal domain, show that A is Noetherian.
(b) (3 points) Prove that the domain A is Artinian if and only if it is a field

A solution to Exercise 10.18 can be found here.

Exercise 10.19: F5.

Let V be a vector space over a field K, and let T: V' — V be a K-linear map.

(a) (3 points) If dimg (V) = 3, show that T' is determined up to conjugacy by its
characteristic polynomial pr(z) and its minimal polynomial my(x).

(b) (2 points) Show by an example that when dimg (V) = 4, pr(z) and my(z) do not
in general suffice to determine 7" up to conjugacy. Include in your solution matrix
representatives of the non-conjugate transformations you exhibit.
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A solution to Exercise 10.19 can be found here.

11 Proofs

Proof of Proposition 1.6. Let x = a+ bi + ¢j + dk € H \ {0}, where a,b, ¢, d € H are not all
zero. Set T = a — bi — ¢j — dk. One can compute that z-T = a? + b? + ¢ + d?, so since x # 0
we see x - T is an element of R \ {0}, that is, is a nonzero real number. Thus

1
: Tl =1
v <a2+b2+c2+d2 x) ’

so = has a right inverse, and the same argument works for the left inverse. Thus H is a
division ring. O

Proof of Proposition 1.12. 1f n is composite so that n = ab for a,b # 1, then
(a (modn))(b (modn)) = ab (modn) =0 (modn).

Conversely, if n is prime, ab = 0 (mod p), then p | ab, so p | a or p | b, and hence a = 0 (mod p)
or b =0 (modp). O

Proof of Theorem 1.22. Define ¢, R[G] — Aby > . x4[g] = > ¢(z4)a(g). Showing this

is the desired map is left as an easy check. O

Proof of Theorem 1.30. We first show (i). It is immediate from the definition of an ideal that
InJisanideal of R. If ze [+ J then z = v+yforsomex e [,ye J,sorz =rz+rye l+J.

For the chain of inclusions in (ii), we only show the first. If >3 | z;y; € I-J with @; € I,y; € J,
since z; € I and I is an ideal, z;y; € I, so Y | ;y; € I; likewise, > | z;y; € J. O

Proof of Theorem 1.32. We need to check that this operation is well-defined, that is, given
a,a’ bt/ e Ryifa+I=a+Tand b+ 1 =10+ 1, then ab+ I = a'b' + I. To see this, note
that @’ = a + x and ¥’ = b + y for some x,y € I, so
el lﬂl el
ab = (a+x)(b+y) =ab+ ) +axb+T)eab+ 1,
I — |

el
so a't/ + I = ab+ I. Thus - is well-defined. As - is associative with identity 1, 1 + [ is the
identity. Therefore, we have made R/I into a ring under + and -. ]

Proof of Theorem 1.44. We already know that @ exists as a homomorphism of the underlying
additive abelian groups and induces a group isomorphism A/ker ¢ = im ¢, so it remains to
show © is a ring homomorphism, that is, that

(1) e +1) =1,
(2) P((a+1)(b+ 1)) =pla+1)-2(b+1).
For (1), we have (1 4+ I) = ¢(7(1)) = (1) = 1, and for (2), we have
Pla+1)-(b+1)=p(r(a) (b)) = B(r(ab)) = p(a) - p(b)
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= @(n(a)) - @(m (b)) = Pla+1)-5(b+1).
Thus ¥ is a ring homomorphism. Since P is a bijection of sets, we conclude by a previous
result that @ is a ring isomorphism. Showing A/ ker S im  is an isomorphism is left as an
easy exercise. N

Proof of Theorem 1.45. This is a modification of the analogous theorem from group theory,
and the details are left as an exercise. O]

Proof of Theorem 1.46. This is a modification of the analogous theorem from group theory,
and the details are left as an exercise. O

Proof of Theorem 1.59. This is left as an easy exercise. m

Proof of Theorem 1.61. Let I be any subset of A that generates A over Z, that is, A =
©(Z)[I], where p: Z — A is the canonical ring homomorphism. (I = A works, but this
is excessive.) Then by the universal mapping property of polynomial rings, there exists a
unique ring homomorphism ®: Z[{X,}_;] — A determined by X; — . Since A = p(Z)[I], ®
is surjective, and hence induces an isomorphism

Z[{X;}. ]/ ker & =5 A. O

Proof of Theorem 2.31. Suppose 0 — M SN2 P 0 s trivial via p:N—->M@P.
Define s: P — N by

s(p) = ¢ ((0,p)).
This is a section of g, since g o s(p) = go ¢ 1((0,p)) = vp((0,p)) = P.

Conversely, assume g has a section s: P — N, that is, the sequence is split. We want to
show there exists a commutative diagram of the form

0o—sM—L SN2 3P0
[
0 M > MO P ——» >0

for some isomorphism . Define ¢p: M @ P — N by ¢)(m,p) = f(m) + s(p). Remark: This is
the canonical ¢ induced by f and s from the universal mapping property of the direct sum.

The diagram commutes, since

g0 b(m,p) = g(f(m) + 5(p)) = gETL g(s(p)) = p = Tp(m. p)

(where we used that ker g = im f), so g o s = idp, meaning the right square commutes. And
the left square commutes, since ¥(a(m)) = ¥(m,0) = f(m).

To see 1) is an isomorphism, we note the following.

e 1 is injective: if for some (m,p) € M @ P is in the kernel, then
0 = (m, p) = f(m) + 5(p).
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Applying g, we conclude p = 0. Thus f(m) = 0. But f is injective, so m = 0. Thus ¢
is injective.
e 1 is surjective: Let n e N and set n’ =n — s(g(n)). Then ¢'(n’) = g(n) — g(s(g(n))) =
| —
—id
g(n) — g(n) =0, so n’ € ker g, which by exactness means n’ € im f. Thus there exists
minnM such that f(m) =n' =n — s(g(n)), that is,

n = f(m) +s(g(n)) = ¢(m,g(n)) € im(t)).
So ) is also surjective, and hence an isomorphism of R-modules. (We do not need to
prove that 1 is a homomorphism of R-modules, since by the remark in this proof just
above, 1 is a map from a certain universal mapping property, which we already know to
be an R-module homomorphism). O

Solution to Exercise 2.37. (a) Suppose z,2’ € v/I and a € A. Then there exists positive
integers n,n such that 2", 2" € I. Let N = max{n,m}. Since A is commutative, we

can write
nen 2N Gl oN2N—f ZN § (o N2N—j ZQN J/ o MN2N—j
(az + 2')*" = ijo(ax) (z") = jzl(a:p) (x") + N1 (azx)’ (z")
€l for all el for all
NF1<j<2N 0<j<N

which is a sum of elements of /. Since I is an ideal and thus closed under addition, we
conclude (az + 2')* € I. Thus (ax + 2') € VI, so /1 is an ideal of A.

(b) Since
revI — 2"eVI (wheren=1 — zeVI,

we have \/j <V \/T . Conversely, suppose x € \/T . Then 2" € \ﬁ for some integer
n € Zs1, which means (2")" e I for some integer n’ > 1. Thus 2 € I for some integer

N € Zs1, namely N = nn’. Hence VAT < \ﬁ, so we conclude \/A/T = /1.

(c) First note that for any (possibly noncommutative) ring R,
\V(0) = {x € R | 2" € (0) for some integer n € Z>1} = {x € R | z is nilpotent},

so the nilradical of R is the collection of nilpotent elements of R. Consider the ring
R = M5(R), and consider the elements r, x € R given by r = ((1) %) and x = (8 (1)) Then
T € \/@, but rz = (é (1)) (8 (1)) = (8 i) But for all n € Z=,, we have (rz)" = (8 %)n =
(8 %) # (8 8). Hence rx ¢ \/@, SO m is not an ideal of R. O

Solution to Ezxercise 2.38. We first prove some useful auxiliary lemmas.

Lemma 11.1.

If A is an integral domain, then A is reduced.

Lemma 11.2.

If A is an integral domain and I is an ideal of A, then collection of nilpotent elements of
A/ is w(\/I), where m: A — A/I is the natural quotient map.
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Lemma 11.3.

If A is an integral domain and I is an ideal of A, then A/I is an integral domain if and
only if I is a prime ideal.

Lemma 11.4.

If A is an integral domain, then the univariate polynomial ring A[x] is an integral domain.

Proof of Lemma 11.1. If A were not reduced, then there exists some nonzero nilpotent
element € A and an integer n € Z>; such that 2" = 0. Since 2! = 2 # 0, n € Z=,. But
then 0 = 2" = x - 2™}, so z is a zero divisor, contradicting A is an integral domain. O

Proof of Lemma 11.2. We need to show m(v/I) = 4/(0), where 0 denotes the additive identity
in A/I. If @ e w(\/I), then since 7 is surjective there exists a € v/I such that 7(a) = @ Thus
a™ = 0 for some integer n € Z=1, so @ = n(a)" = 7(a”) = 7(0) = 0. Thus 7(+/I) < 4/(0).

Conversely, suppose T € A/I is an element of 4/(0). Then 7" = 0 for some integer n € Z;.
But 7 = 7(z) for some 2 € A, 50 0 = 7" = 7(2)" = 7(2"), so 2" € kerm = I. Thus z € /I,

so T = n(z) € w(+/I). Tt follows that /(0) < 7(v/I), and hence V0 = 7(+/I). O

Proof of Lemma 11.4. Let f(x), g(x) € Alx] be nonzero and suppose f(x)g(x) = 0. We claim
either f(z) = 0 or g(z) = 0. We can write

flz) = Zi:(} a;x’ and g(x) = Zi:O bix',
where a;,b; € A for all i € {0,...,m} and all j € {0,...,n}, and where a,,, b, # 0. Then

F@g@) = (X ') - (D5 ba?) = 2o (X, aibs) ",
so f(x)g(x) = 0 if and only if
ZiJrj:k: ab; =0 for all ke {0,...,m + n}.

If we consider the case k = m + n, we obtain a,,b, = Ziﬂ.:mm a;b; = 0, so either a,, = 0 or
b, = 0, a contradiction. O

We can now begin Exercise 7.2. First note C and Z are integral domains, so by Lemma 11.4,
C|z] and Z[z] are integral domains.

We will use the following notation. Write T to mean the image m(x) of x under the natural
quotient map 7: A[z] — A[z]/I, where A, I are given in each part. Since 7 is surjective, we
can write any element of the quotient ring as f for some f(z) € A[z]. Note that since 7 is a
ring homomorphism, for all a,b € Z[z], we can write a + b = @ + b and ab = ab.

(a) We claim C[z]/(z* + 1) has zero divisors but is reduced. To see C[z]/(2? + 1) has zero
divisors, by Lemma 11.3 it suffices to show (2% + 1) is not prime in C[z]. And indeed,
z?+1 = (z +1)(x — 1), but neither x + i nor  — i are not elements of (x? + 1) (because,
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for example, if f(z) € (2? + 1) is nonzero then deg(f) = 2). Thus (z* + 1) is not prime
in C[x]/(z* + 1), so C[z]/(2* + 1) has zero divisors.

To see C[z]/(x* + 1) is reduced by Lemma 11.2 it suffices to show m(y/(22 + 1)) = (0),
or equivalently that 4/(z2 + (22 4+ 1). In other words, we claim (22 + 1) equals its

own radical in Z[i]. More generally, for any commutative ring A, a radical ideal of A
is any ideal I of A such that VI=1.

To see (x? + 1) is radical, note that if this were false, then there exists some nonzero
f(x) € C[z] not divisible by (2% + 1) and an integer n € Zs, such that f(z)" = 0. But
this contradicts the fact C[x] has no zero divisors. Hence 4/(z% + 1) = (2? + 1), so
m(x/ (22 + 1)) = w((z* + 1)) = (0), as desired.

(b) We claim Z[z]|/(z* + 1) has no zero divisors and is reduced. We will first assume
Z|z]/(z* + 1) is isomorphic to the Gaussian integers Z[i] as rings, and then return to
prove this after showing it implies the claim. By Lemma 11.1, it suffices to show Z][i]
is an integral domain. And indeed, if 21, z9 € Z[i] are nonzero and have complex polar
coordinates z; = re, 2y = o€ then 2129 = r1r2e"® %) is also nonzero, as desired.

It only remains to show C[z]/(x® + 1) =~ Z[i] as rings. Define ev,;: Z[x| — Z[i] by
f(z) — f(i). Then ev; is a well-defined map Z[z] into Z[i] and satisfies ev;(1) = 1,
evi(f(x))evi(g(x)) = f(i)g(i) = evi(f(x)g(x)), and evi(f(x) + g(x)) = f(i) + g(1) =
evi(f(z)) + evi(g(x)), so ev; is a ring homomorphism. It is surjective, since any a + bi €
Zli] is the image of a + bz € Z[x]. It remains to show kerev; = (z? + 1). Certainly
(22 + 1) < kerevy, since ev;(f(z)(z* + 1)) = evi(f(x))evi(a® + 1) = f())(i* + 1) = 0.
Conversely, if f(z) = 3/ a2/ € kerev,, then f(i) = 0. And since ev; is a ring
homomorphism, we can write ev;(f(—z)) = Y jajevi(—z) = =3 _jajevi(z) =
—f(i) =0. Now f(i) = f(—i) =0, s0 (z—1i) and (x +1) divide f(x) when f is identified
as a polynomial in C[z]. Thus f(x) € (2% + 1), so kerev; < (2 + 1), as desired.
(c) We claim Z[z]/(3, 2 + 1) has no zero divisors and is reduced. Recall from recitation that
if R is any commutative ring and a,b € R, then by the second isomorphism theorem,
R RfaR _ RlaR _ R
(a,b)R ~ (a,b)R/aR ~ bR/aR ~— bR’

e

It follows that

Zlz]  _ Zlz]/(2*+1) .
(3’ 1‘2 + 1) = (3) = Z[Z]/(?))?
where the second isomorphism is by part (b). We also showed in part (b) that Z[:] is an
integral domain, so by Lemmas 11.1 and 11.3 it is enough to know (3) is a prime ideal
of Z[i]. Suppose 3 = af for some «, 3 € Z[i]. Multiplying both sides by their complex
conjugate, we obtain 9 = a@38 = (a?+a2)(B2+52). Thus (a?+a3), (B%+/52) € {1,3,9}.
And o? + a3 # 3, since no integers z, y satisfy 2% + y* = 3. Similarly, 3?7 + 32 # 3. Then
without loss of generality 57 + 33 = 1, so 3 must be a unit, meaning (3) is prime. Thus
(3) is prime in Z[i].
(d) We claim Z[x]/(2, 2%+ 1) has zero divisors and is non-reduced. Since 2, 2%+1 € (2, 2%+1),
we have 22+ 1 =0and 2 =0. Then 1 = —1, so

0=22+1=2+1=2"-1=22—1=(z+1)(z—1)
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=z+1-@T-N)=a+1-@T+1)(z+1)=(z+ 1)~

Since z + 1 # 0, it follows that C[x]/(2, 2>+ 1) is non-reduced, and hence by Lemma 11.1
has zero divisors. O

Solution to Exercise 2.39.  (a) Suppose a € A and x € ({ : J). Then

(azx)J = {(ax)y | y € J} (by definition of (ax)J)
={(za)y |y e J} (since A is commutative)
= {z(ay) |y e J} (since multiplication is associative)
c{xy |y e J} (since y == ay € J whenever a € A,y € J)
=xJ. (by definition of z.J)

Thus ax € (I : J). Since a € A and z € (I : J) were arbitrary, we conclude (I : J) is an

ideal of A.
(b) Let m,n € Z be given.
— Case 1: n,m € Z and m = 0. Given an arbitrary x € Z, we have
z€((n):(0) <= x(0) = {z-0} = {0} = (n)
which is always true. Thus ((n) : (0)) = Z.
— Case 2: n,m € 7Z, and m # 0. Given an arbitrary x € Z, we have
€ ((0):(m)) < x(m) ={xmk | keZ} = (xm) < (0)
= forall ke Z, kxm =0
— tm=0 < =0,
where the last equivalence is because Z is an integral domain and m # 0 by
assumption. Thus ((0) : (m)) = (0).
— Case 3: n,m € Z and m,n # 0. Given an arbitrary x € Z, we have
re((n): (m)) < z(m)={kxm|keZ} = (xm)c (n)

<= n divides xm

— _n divides o
ged(n, m) ged(n, m)
— m divides x

where the penultimate equivalence is because n/ged(n, m) and m/ged(n, m) are
always coprime, meaning n/ged(n, m) dividing z(m/ged(n, m)) is equivalent to
n/ ged(n, m) dividing .

We conclude

o ifn.m+#0
cd(n,m ’ 7
((n): (m)) = (g E()) )> if n =0 and m # 0, -
7 if m=0.
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Solution to Fxercise 2.40. We first prove two auxiliary lemmas, and then argue that together
these imply the statement of Exercise 7.4.

Lemma 11.5.

Any division ring is a simple ring.

Lemma 11.6.

Let R be any (possibly noncommutative) ring and let n be a positive integer. Then every
two-sided ideal J of M, (R) takes the form

J=M,(I)={Ae M,(R)|a;elforalije{l,... ,n}},

where [ is a two-sided ideal of R.

Proof of Lemma 11.5. Let D be a division ring and suppose [ is a (two-sided) ideal of D. If
I = (0) then we are done, so assume I # (0). Then there exists some nonzero x € D such
that x € I. Then z is a unit in D, since D* = D \ {0}. Thus there exists some 2! € D such
that z7'x = 1. But z € I, so 1 = 7'z € I since I is an ideal. But then

D=D-1cl,
[N
el
forcing I = D. Since I was an arbitrary ideal of D, we conclude D is simple. O]

Proof of Lemma 11.6. Let J be an ideal of M,,(R) and let E;; be the n-by-n matrix whose
(k,?) entry is 0y;00 for all k,¢ € {1,...,n}. Then I = {re R|rE;; € J} is an ideal of R,
since if r € R and x € I, then ro € I (resp. ar € I) because (rEy1)(xEy 1) = reEy, € J (resp.
(xE11)(rEy,) = arEy € J).

o Jc M,(I): If A= (a;;) € J, then because J is an ideal of M, (R) and we have the
identity
aijEl,l = EleEjl € J,
we have a;; € I. Hence J < M, (I).
o M,(I)c J: If x €I, then (z])Ey; = xFEy; € J since J is an ideal of M, (R), which
implies
JZEZ = Eﬂ(ZL‘ELl)Elj € J,

so because v/, < J and J is a two-sided ideal, we conclude zE; ; € J for all z € I.

But here ¢ and j were arbitrary indices in {1,...,n}, so since any matrix A = (a;;) can
be written as A = ZZJ':1 a;; E;;, we conclude M, (1) < J.
Hence J = M, (I). Since J was an arbitrary ideal of M,,(R), any ideal of M,(R) takes the
form M, (1) for some ideal I of R. O

We can now prove the statement of Exercise 7.4. Let D be a division ring. By Lemma 11.5,
any (two-sided) ideal J of M, (D) takes the form M, (I), which denotes the collection of
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n-by-n matrices whose entries are elements of /. By Lemma 11.6 this implies the result, since
then the only two-sided ideals of M, (D) are M, (D) and M,((0)) = (0). O

Solution to Exercise 2.41.  (a) Let M be a left R-module and consider the map
A: R — Endg, (M),
r— (m— Xr)(m) =r-m).

Then for any my,my € M and any r € R,
Ar)(my +mg) =1 (Mg +me) =r-my +1-mg = Ar)(my) + A(r)(m2) € Endg, (M),
so A is a well-defined homomorphism of the underlying abelian groups R — Endg,(M).
For any m € M and any ry, 79,73 € R, we have A(1)(m) = 1-m = m = idy;(m), where
idps: M — M is the identity group homomorphism M — M, and

A(rirg +1r3)(m) = (rirg+713) -m =11 (rg-m) +7r3-m

= A(r1)(A(r2)(m)) + A(rs)(m) = (A(r1) © A(r2) + Alrs))(m).
A

Since m was arbitrary, we conclude A(1) = idy; and A(r1re + 73) = A(r1) 0 A(r2) + A(r3).

Thus A is a ring homomorphism.

Conversely, let M be an abelian group and suppose A\: R — Endg. (M) is a ring
homomorphism. Then consider the map

RxM — M,
(rym) — 1y m = A(r)(m).
Then 1y m = A(1)(m) = (m) = 0, and for all r1,ry,r3 € R and all my,my € M we can
write
(rirg +13) -x (Mg + mag) = A(rira + 13) (Mg + mo)
= A(r1)(A(r2)(ma) + A(r2)(ma)) + A(rs)(ma) + A(rs)(m2)
=71 a (ro ama) 471 (T2 A ma) + 73y My + 73y M,
so this defines a valid left module action.
The two above procedures are inverses of each other in the following sense.

— Given a ring homomorphism A: R — Endg,(M), we obtain a left action -, and
applying the other procedure to this gives the ring homomorphism R — Endg,,(M)
given by A(r)(m) = r -, m, which is what we started with.

— Conversely, given a left action - and an abelian group M, we obtain a ring homo-
morphism A: R — Endg,,(M) given by A(r)(m) = r - m, and applying the other
procedure to this gives the left action -y given by r -y m = A(r)(m) = r - m, which
is exactly what we started with.

We conclude that if R is a ring and M is any abelian group, then there is a bijective
correspondence
{left actions Rx M — M} «— Endg,,(M),
((r,m)—r-m)— (A\: m—r1-m),
((r,m) = A(r)(m)) < A.
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(b) We are given (R°P, +) = (R, +), which is an abelian group because R is a ring. It only
remains to show (R, -.,) is a monoid. The identity of (R°P, -,,) is the same identity 1
as (R,-), because for all r € R,

ropl=1-r=r-1=1-7.
Multiplication in (R, -,p) is associative, because for all 1,719,173 € R,
1 'op (7“2 'op7"3) = (7"2 'op7’3) ‘= (7“3 '7’2) A
=T3- (7”2 '7“1) = (7“2'7”1) op T3 = (7’1 'opTQ) ‘op I'3-
Hence (R, -op) is a monoid, so R is a ring.
(c) Let N be a right R-module. Define
p: R°® — Endg,,(N),
re—n-r.

First note that p indeed maps R° into Endg,,(N), because for any r € R°P,

p(r)(ny +ng) = (N1 +ng)-r=ny-r+ng-r=p(r)(n)+ p(r)(n),

so p(r) € Endg.p (V). To see p is a ring homomorphism, note that for any r € R°® and
any m € M, we have

p(1)(n) =n-1=n=1idy(n),

where idy: N — N is the identity homomorphism n +— n. And for all ry, 7,73 € R and
all m € M, we have

p(1r1 op T2 +13) (M) =m - (11 op T2 +173) = (M -T9) - 71 +m - 13
= p(r1)(p(r2)(m)) + p(rs)(m) = (p(r1) o p(r2) + p(rs))(m).
Since n was an arbitrary element of N, we conclude
p(1) =idy and p(ry -op 2 + 13) = p(r1) © p(r2) + p(13).
Hence p is a ring homomorphism.

Conversely, suppose N is an abelian group and p: R°® — Endg,,(/N) is a ring homomor-
phism. Define a right action on N by

NxR— N,
(n,r) —m -, = p(r)(m).
This is a right action because

— 0-xm = A(0)(m) = 0(m) = 0, where 0 denotes the zero homomorphism M — M
given by m — 0, and

— for all r{, 79,73 € R and all my, my e M,
(n1 +mn2) - (1 op T2 +73) = p(T1 0p 2 + 73) (N1 + N2)
= p(r1)(p(r2)(n1 + n2)) + p(rs)(n1 + ne)
= p(r1)(p(r2)(n1) + p(r2)(n2)) + p(rs)(n1) + p(rs)(n2)

= p(r1)(p(r2)(n1)) + p(r1)(p(r2)(n2)) + p(r3)(n1) + p(r3)(na2)
= (n1pra) pri+ (Mg pT2) p 71 410 T3+ 132 T3,
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These procedures are inverses of each other in the following sense.

— Given a ring homomorphism p: R — Endg,(/N), we obtain a right action -,,
and applying the other procedure to this gives the ring homomorphism R —
Endg,(N) given by n -, r, that is, p(r)(n), which is what we started with.

— Conversely, given a right action -, we obtain a ring homomorphism p: R°® —
Endg,(N) given by p(r)(n) = n-r, and applying the other procedure to this gives
the right action -, given by n -, = p(r)(n) = n - r, which is exactly what we
started with.

We conclude there is a bijective correspondence
{right actions N x R — N} «— Endg,,(N),
((n,7) —n-r)— (pp: n—>71-n),

((n,7) = p(r)(n)) — A. =

Proof of Proposition 3.3. Point (i) is left as an exercise. For point (ii), recall I - J < I nJ
always. Let x € [ n J. By assumption, there exists a € I such and b € J such that a + b = 1.
Thus z = (a + b)x = ax + br € I - J, as desired. O

Proof of Theorem 3.5. We prove the claim by induction on integers n € Z~;. Most of the
work will be in the base case.

(1) We with the case n = 2. Given z1,29 € R and I + I, = R, write 1 = aj + ap for ay € I
and ag € I. Then 1 = a; (mod l3) and 1 = ay (mod I5). Then x = asx; (mod [) =
x1 (mod I1) and = = a1z9 (mod I3) = x5 (mod I,), so this x works.

For the induction step of (1), suppose (1) holds for (n — 1)-tuples of pairwise coprime
ideals. Then given x4, ...,x, € R, apply the induction hypothesis to obtain y € R such
that

y=ux; (mod[); for all j e {2,...,n}.

Now for all j € {2,...,n}, write 1 = a; + b;, where a; € I; and b; € I;. (We can do this,
because for all such j, I; and I; are coprime by assumption.) Then

1= Hj:2<aj + bj) € Il + H]‘:Q [J
Then

Hj(aj +bj) =as---a, +az-ap_1bytas---by
+as - - bn_lan

+

+
+hobs -+~ by

and the sum of terms in the vertical column above is an element of ;. Thus I; and
Hj:Q I; are coprime, so by the n = 2 case there exists = € R such that z = z; (mod I);
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and z = y (mod]])}_,/;. But this implies * = y (mod ;) = x; (mod); for all
J=2,...,n.

(2) We get a ring homomorphism ¢: R — [[;_, R/I; given by op(x) = (z + I;);. This is
surjective by part (1), and

kerg0={xeR[xe]jforallj}:ﬂn

jor 1
so ¢ gives an isomorphism R / (V=1 L 5 [T;_, R/1;. The last claim that (;_, [; =
H?:l I; follows inductively from the remark that I + J = R implies I - J = I n J, since
Il—i-H?:Q[j = R. O

Proof of Theorem 3.17. Suppose I < R is prime. This is equivalent to saying that both
I # R and for all z,y € R such that xy € I, we have x € I or y € I. This is equivalent to
saying both for all z,y € R/I such that xy =0in R/I, x =0or y =01in R/I and R/I # 0,
which in turn is equivalent to R/I being an integral domain. ]

Proof of Theorem 3.23. Let I — R be maximal. This is equivalent to the only ideals of R/I
being (0) and R/I (and 0 # R/I), which in turn is equivalent to saying for all x € R/I \ {0},
() = R/I (and 0 # R/I). And this holds if and only if 1 € (z) for all x € R/I ~ {0} (and
0 # R/I), which happens if and only if R/ is a field. This last equivalence is because saying
R/I is a field is to say R/I (is nonzero) and every nonzero element has a multiplicative
inverse. [

Proof of Corollary 3.24. Since fields are integral domains,

I maximal = R/I is a field = R/I is an integral domain =— [ is prime. [

Proof of Theorem 3.27. We use Zorn’s Lemma. Let (S5, <) be the partially ordered set
S = {proper ideals in R containing I},

where J; < Jy if and only if J; < J,. Let T' = {J,} .4 be a totally ordered subset of .S, where
A is an index set. We want to show this is bounded above by some element of S. Consider

K=]_,Ja
Certainly J o J, for all « € A. We claim J is a proper ideal:

e J is an ideal: if z,y € J then = € Jasa and y € Js for some o, 3 € A. Because T is
totally ordered, J, < Jg or Jz < J,. We may assume without loss of generality that
Jo © Jg. Then z,y € Jg, and so x + y € Jg < J. Likewise, if r € R and x € J, then
x € J, for some € A, so x € J, < J. Thus J is indeed an ideal.

e J is a proper ideal: If 1 € J, then 1 € J, for some a € A, contradicting J, # R.
Thus J € S and J is an upper bound for T'. It follows that all totally ordered subsets T' = S
have upper bounds in S, so by Zorn’s Lemma S contains at least one maximal element. The

maximal elements of S are the maximal ideals of S, containing I, so there exists at least one
maximal ideal containing I. O
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Proof of Proposition 3.30. Suppose (f) is prime. Then if f = gh for some degg,degh > 1,
where g, h are not a unit multiple away from f. Then g,h ¢ (f), so g,h are nonzero in
k[z]/(f). But (f) is prime, so k[x]|/(f) is an integral domain, meaning fg # 0 in k[z]/(f).
But gh = f € (f) in k[z], so gh = 0 in k[x]/(f), a contradiction. Thus f is irreducible.

For the converse we can actually show something much stronger. We will show that if f is
irreducible, then (f) is maximal (and so in particular prime). Indeed, if (f) is not maximal,
there exists I such that (f) & I < R. Since R is a PID (by Exercise 8.1), I = (g) for
some g € k[z]. So F € (f) < (g), which means f = gh for some h. Then deg(g) > 1, since
otherwise (g) = R. And deg(h) > 1, since otherwise g = fh™!, so (g) < (f). So (g9) = (f).
So deg g,deg h > 1, so f is reducible since it factors into a product of g, h which are nonunion
because deg(g),deg(h) = 1. O

Proof of Theorem 3.37. (1) We argue by induction on n. The case n = 1 is clear, since
if J is contained in I, then J is contained in /. Now assume the result holds for
fewer than n many I;s for some n € Zz,. If we can show J U?:L#k I, then we
are done, since the induction hypothesis would imply J is contained in I; for some
ie{l,...,k—=1,k+1,...,n}. To that end, suppose for a contradiction that instead

Jd U?:1 I; forall ke {1,...,n}.
j#k
Then for any fixed k € {1,...,n}, there exists z; € J such that xj ¢ | J
= e U?=1 I;, this means zy, € I.

i1k 1j- Since

— Suppose n = 2. Let x = 21 + x5. Then z € J since xq,x5 € J, and J is closed
under addition as an ideal. But x ¢ I; U I, since otherwise x € I; or x € I, which
is cannot happen: if x = I; then 9 = © — 21 € I;, a contradiction, and if x = I,
then 21 = x — x5 € I, a contradiction.

— Now suppose n € Z=3. At least one element of {I;, I5, I3} is prime by hypothesis,
so perhaps after a relabeling we may assume [ is prime. Then consider

T =21+ Tox3-- -2, € J.

But z, € I, x3,...,2, ¢ I, and [; is prime, so xox3---x, ¢ I;, and thus = ¢ I;.
And for all k € {2,...,n}, xoxs -z, € Ix. But x1 ¢ I}, so x ¢ I. But then
zé szlfj = J

which contradicts our assumption z € J.

(2) Suppose for a contradiction ppI; for all k = 1,...,n. Then for all j, there exists x; € I;
such that z; ¢ p. Then x = 129 - - x,, € I}, for all k, since x;, € I},. But = ¢ p because
p is prime, contradicting p > (;_, /;. In the case p = ();_,, then since p > I; and

p=,L; < I, we conclude p = I. -

Solution to Exercise 3.39.

(a) Suppose a(x),b(x) € K[x] and b(z) # 0. First note that if deg(a(z)) < deg(b(x)) then we
can choose q(z) = 0, r(x) = a(z), since then a(x) = 0 = b(x)-0+a(z) = b(x)q(z) +r(z)
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and degr(x) = deg(a(z)) < deg(b(x)), affirming the claim. Thus we may assume
deg(a(z)) > deg(b(x)).

We argue by induction on the degree of a(z), which we denote by n. The case n = 0
forces deg(b(x)) = 0, so a(z) = ¢; and a(x) = ¢y for some ¢1,¢co € K. By choosing
q(x) = cic;! and r(x) = 0, we obtain a(z) = ¢; = ¢o - (c3'e1) + 0 = b(z)q(x) + r(z) and
r(z) = 0, affirming the claim.

Now suppose n € Z-; and assume the claim holds for any element of k[z] with degree
less than n. Where m = deg(b(z)), we can write

b(z) =bpz™+---+by and a(z) =a,z" + -+ ao,
where a,,,b,, # 0. Let A = anb,_nl. Then a,, — Ab,, = 0, so in particular
0
a(z) — A\x"""b(x) = (ay =)z + (Apo1 — Abp_1)2" -+ (ag — Abg)az™ ™

is an element of K|[z] of degree at most n — 1. By the induction hypothesis, there exist
q*(x),r*(z) € K[z] such that

a(z) = Ae"(z) = @) (@) + 17 (2).
and either r*(z) = 0 or deg(r*(z)) < m. We can write this as
a(x) = b(x)Az""™" + ¢*(x)) + (),

so by choosing ¢(x) = Az"~™ + ¢*(x) and r(z) = r*(x) gives us the desired polynomials.
Thus the degree function (restricted to K[z] \ {0}) is a Euclidean valuation for K{x].

(b) Let R be a Euclidean domain, let d: R~ {0} — Zxo be a Euclidean valuation, and let I
be an ideal of R. It suffices to show I is principal. If I = (0) then [ is principal with
generator 0, so we may assume [ # (0). Then the set D = {d(z) | x € I} is a nonempty
subset of Z~q, so it contains a minimal element dy with respect to the standard total
ordering on Z=q. Since dy € D, there exists w € I such that d(w) = dy.

We claim [ = (w). It suffices to show any element in [ is divisible by w, so we consider
an arbitrary element y € I. Since d is an Euclidean valuation, there exist ¢, € R such
that y = qw + r and either » = 0 or d(r) < d(w). But then

r=y—quwel,
[N ] L1
el el
so d(r) € D. This forces r = 0, since otherwise d(r) < d(w), contradicting minimality
of d(w) in D. Hence y = quw, so y € (w). Since y was an arbitrary element of I, we
conclude [ is principal with generator w. Thus R is a principal ideal domain. O]

Solution to Ezercise 3.40. e /(0) c ﬂpespeCRp: Let f € 4/(0). Spec R is nonempty

since R has a maximal ideal and maximal ideals are prime. Thus we can consider an
arbitrary p € Spec R. We argue f € p by induction on the smallest integer n € Z-; such
that f* e p. If f = 0 then f € p, affirming the claim, and if n = 1 then f = f! € p,
also affirming the claim. Now suppose n € Z- is the smallest integer such that f* = 0,
and suppose any g € \/@ is contained in p whenever g¥ e p for any 1 <k <n — 1. As
n € Zsy and f* =0, we have f - f*1 = f* = 0 e p. But p is prime, so either f € p or
frtep. If f € p then we are done, and if f*~! then f € p by the induction hypothesis,
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so we are also done. Thus 1/(0) = [\cspec g P-

° ﬂpespeCRp < 4/(0): Let f e ﬂpespeCRp. We claim f" = 0 for some n € Z~;. Suppose
for a contradiction f" ¢ (0) for all n € Z~;. Then the set

S = {proper ideals I of R | f* ¢ I for all n € Z>4}

is nonempty, since it contains (0). Equip S with the partial ordering with respect to
inclusion, and let {I,}.c4 be any totally ordered chain of § indexed by any set A. We

claim the set
J = UaeA Ia.

— Jis anideal of R: If z,2’ € J and r € R, then rx + 2’ € I, since [, is an ideal, and
in turn rz + 2’ € J since I, < J.

is an upper bound for {I,}sca in S.

— J is a proper ideal of R: Suppose instead J = R. Then 1€ J, so 1 € I, for some
a € A. But then I, = R, contradicting the I, are proper ideals of R.

— J € 8: Indeeed, if f* € J = (], Lo for some n € Zsq, then f* € I, for some
«a € A, which contradicts I, € S.

— J is an upper bound for {I,}.ca with respect to inclusion, since J is the union of
the 1.

Thus {I,}aea is bounded above in §; so by Zorn’s Lemma § contains a maximal element
M with respect to inclusion.

We claim that M is a prime ideal of R. As an element of §, M is a proper ideal of
R. Tt then only remains to show R ~ M is closed under multiplication. Suppose for a
contradiction there exist elements g, h € R such that gh e M but g,he R~ M. Then
the ideals M + (g) and M + (h) strictly contain M, so M + (g), M + (h) cannot belong
to 8 by maximality of M. This means there exist n,m > 1 such that f" € (g) and
f™ e (h). But then in particular f™ € M + (g) and f™ e M + (h), so

frme (M + (9))(M + (b)) = M+ (g)(h) = M + (gh) = M,

contradicting M € 8. Thus M is a prime ideal of R. But f is contained in all prime ideals
of R, so f € M. But as an element of §, M cannot contain f" for any n € Z-1, so in
particular M cannot contain f, a contradiction. Then 8§ must be empty, so (0) ¢ S, which

is to say f" € (0) for some n € Z;. Hence f € 4/(0). Thus (,cgpeer P < /(0). O

Solution to Fxercise 3.41.

(a) We prove in part (b) that J(R) is an intersection of ideals in R, and our proof does not
use J(R) is an ideal. Thus J(R) is an ideal of R, since the intersection of an arbitrary
set of ideals is an ideal. (Indeed, if {I,}.eca is any collection of ideals of R indexed by
aset A, and if J = (4 La, then J # & because 0 € I, for all a € A, and if z,2’ € J,
r € R then rx + 2’ € J since rx + 2’ € I, for each a € A, as 1, is an ideal for all a € A.)

(a) (Alternate Solution). Let z,y € J(R). Then for all z, 1 —zz € R, 1 —yz € R, so
1 — z is a unit. Then there exists u such that u(1 —zz) = 1. Then (1 — (z + y)2)u =
u(l —xz —yz) =1 —wuyz = 1 — y(uz), which by hypothesis is a unit, so we are done.
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(by - J(R)c ﬂmeMaX(R) m: Suppose z € J(R) but there exists a maximal ideal m not
containing . Then R = m + (), since otherwise m < m + (z) & R, contradicting
m is maximal. Thus 1 = m + rx for some m € m,r € R, so 1 —rx = m € m.
Observe that 1 — rz is not a unit, since otherwise

l=0—-rz) ' (1—r2)em,
em

which means m = R, contradicting maximal ideals are proper. But 1 — rz must be
a unit since x € J(R), a contradiction. It follows that J(R) < ﬂmeMaX(R) m.

- ﬂmeMaX(R) m < J(R). Suppose x ¢ J(R). Then there exists y € R such that 1 — zy
is not a unit. Then (1 — zy) is a proper ideal, so there exists a maximal ideal m of
R containing (1 — zy), and in particular 1 — 2y € m. Observe that if 2 € m, then

l=1—-a2y+zyem

1 L
Em Em

(since m is an ideal), so m = R, again contradicting maximal ideals are proper.
Thus z ¢ m, 50 T ¢ [ \peytaxr) M- We conclude () ypuximy M = J(R). O

Solution to Fxercise 3./2.

(a) Since /T contains I any prime ideal containing /I must also contain I. Hence V (v/I) <
V(I). Similarly, since I = (S) contains S, V(I) < V(S). It only remains to show
V(S) = V(v/I). Suppose p € V(S). We need to show p contains v/I. To that end, let
f € VI be arbitrary, so that f" € I for some positive integer n. Then we are done if we
can show f € p. It is enough to show that f* € p for some k € Z,, since by primality of
p that f € p (see the induction argument in the proof of Exercise 8.2 for the details).
Since f* € I and p is an ideal of R containing S, we have

fn €l = (S> = ﬂideals.J.ofRJ < p.
containing S
Thus f" € p, so we are done by our previous remarks.

(b) Let 7¢ := {V(I) | I is an ideal of R}. We claim 7 = {V°|V e 7¢} is a topology on
Spec R.

— V(R) = @, since prime ideals of R are proper ideals, so there can be no prime
ideal of R containing R. Thus @ € 7°.

— V((0)) = Spec R, since any ideal contains (0), so in particular any prime ideal
contains (0). Thus Spec R € 7°.

— Let {V(Ia)},c4 be an arbitrary collection of elements of 7¢ indexed by a set A. We
claim maeA V(Ia) = V(UaeA Ia)'
Suppose p € V(| J,ea la). Then p contains the union | J . 4 /o, and thus contains
I, for each o € I. Hence p € V(I,) for all a € A, so p € (\,cu V(Ls). Thus
V(Uuen L) © Nyes V(1a). Conversely, suppose p € (),ca V(Io). Then p contains
I, for each av € A, so p contains | J,, /o, which means p € V(| .4 o). Hence

ﬂaeA V(la) = V(UaeA Ia)’
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which is an element of 7¢ by part (a). (Indeed, although the union of ideals is not
in general an ideal, it is a subset of R, so by part (a) this is indeed an element of
7¢.)

— Let {V(I j)}?:l be any finite collection of elements of 7¢ indexed by j € {1,...,n}.
We claim (J;_, V(I;) = V(= 1))-
Suppose p € (J;_, V(I;). Then p € V(I;) for some k € {1,...,n}, which is to
say p contains [i. Since (;_, I; < I, p must also contain (j_, I;, which means
p € V(- 1;). Conversely, suppose p € V([);_, [;). Then p contains ﬂ;.lzl I1;,
so by the second clause of the Prime Avoidance Theorem p contains [, for some
ke{l,...,n}. Then p e V(I}), which implies p € | J;_, V'(I;). We conclude

U::l Vi) = V(ﬂjzl Ij)’

It follows that the collection 7¢ satisfies the axioms for the closed subsets of a topology
on Spec R, so the Zariski topology 7 is indeed a topology on Spec R.

Consider the case R = C[x]. We showed in recitation that if & is a field then Spec k[z] =
{(0)} U {(f(x)) | f(x) is an irreducible element of k[x]}. Thus, as a set, we have

SpecClz] = {0} u {(z — 2) | z € C}. (11.6.1)

Now equip Spec C[z] with the Zariski topology. Since C[z] is a PID by Exercise 8.1, the
closed sets of Spec C[x] take the form V' ((f(x))), where f(z) € C[z]. But if f(x) € C[z],

then we can write

which is an element of 7¢.

fa) = (= 2) (),
where {z;}_; is some multiset of elements of C of size n. Since
(f(2) =((z=2)-(r—z)) = (@ —2) (r—2) (- 2z),
the set of maximal ideals containing (f(x)) is {(z — z;)}}_,. (Indeed, if is instead
f(x) e (x —t) for some t € C N\ {z1,...,2,}, then (z —t) divides f(x), but then t = z;
for some j € {1,...,n}, a contradiction.) Thus, since Spec C[z] contains only maximal
ideals, by Equation (11.6.1) we must have

V((f(2) ={(z —z1),...,(z = za)}.
Since f(x) € C[z] was arbitrary, the closed sets of C[x] have finite cardinality. But
Spec C[x] is infinite, so the nonempty open sets of Spec C[x] must have infinite cardinality.
In particular, any two open subsets of Spec k[x] cannot be disjoint, since otherwise its
(closed) complement must be infinite, but we just showed closed sets are finite. It follows
that for any two distinct elements of Spec C[x], there do not exist disjoint open subsets
separating them, since pairs of open subsets of Spec C[z] cannot even be disjoint. Thus
the Zariski topology on Spec C[z] is not Hausdorff. O

Solution to Ezxercise 3.43. First note that if I is any ideal of a commutative ring R, then
since the quotient map m: R — R/I is surjective, the statement of Exercise 8.5 implies 7
induces a homeomorphism of Spec(R/I) onto the closed subset V (kerm) = V(I) of Spec(R).
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We now prove the statement of Exercise 8.5. Define ¢*: Spec B — Spec A by ¢f(p) = o1 (p).
We first show ¢f is a well-defined map into Spec A. To that end, we need to show for a
given p € Spec B that q == ¢ !(p) is indeed a prime ideal of A. To see this, note that if
., €q=¢ ' (p) and a € A, then p(x), p(z') € p, so since p is an ideal we have

p(re + ') = o(r) p(z) + (') € p,
| I—| | I
ep ep

so q is an ideal of A. And q is prime, since if zz’ € q = ¢~ !(p) for some z,z’ € A, then
p(xa') = p(x)p(x’) € p, which by primality of p implies p(x) € p or p(z’) € p. Hence z or 2’
is in p1(p).
To show ¢* is a homeomorphism of Spec B onto the closed subset V (ker ¢), it suffices to show

(i) ¢ is a closed map and im ¢* = V (ker ),

(i) ¢* is continuous, and

(iii) * is injective.
Proof of (i). Let I be an ideal of B. It suffices to show *(V(I)) = V(¢ 1(1)).

(c) Let p o I. We need to show ¢~ !(p) = p~1(I), that is, that {a € A | p(a) € p} =
{ae A | ¢(a) e I}. And this is true, because if a € A and ¢(a) € I < p, then ¢(a) € p.
Hence ©*(V(I)) < V(p~1(1)).

() Suppose ¢ 1(p) o p~1(I). We need to show p o I. If b e I, then ¢ 1(b) € p~1(p) by
hypothesis. Thus, whatever maps has image b also maps into p, which means p € b.
Since b € I was arbitrary, p > I.

Hence o (V(I)) = V(o= (1)) for all ideals I of B, so ¢* is a closed map.

The above argument in particular shows that if ©*(Spec B) = ¢#(V(0)) = V(¢71((0)))
V(ker ¢), so ¢ maps Spec B onto the closed subset V (ker ¢) of Spec A.

Ll

Proof of (ii). We claim ¢* is continuous, so it is enough to show the preimages of closed sets
under ¢! are closed. If .J is an ideal of A, then

(") " (V(J)) = {p € Spec B | ¢*(p) € V/(J)} = {p € Spec B | ¢~ (p) > J}
={peSpecB |p>o(J)} =V(e(])),

which is closed in Spec B. Thus ¢* is continuous. O]

Proof of (iii). Suppose ¢*(p) = ©*(p). Let b e B. Since ¢ is surjective, there exists a € A
such that ¢(a) = b. Then

bep = a_lego_l(p) :go_l(p') — beyp.

Hence p = p’, so ¢ is injective. Thus ¢ is a homeomorphism of Spec B onto the closed
subset V' (ker ) of Spec A. O

By our initial remarks, this completes the proof of Exercise 8.5. m
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Proof of Theorem 4.6. Suppose R is a local ring with maximal ideal m. Then for any
u € R~ m, (u) must equal R because (u)¢ m and m is the only maximal ideal. Hence
(u) = R, so u is a unit. Thus R . R* < m. For the reverse inclusion, note that any u of R is
not in m, since otherwise R = (u) € m < R, a contradiction. Thus m = R~ R*.

For the converse, assume R~ R* = m, or equivalently that R ~ m = R*. We claim R is local
with maximal ideal m. Let I & R be any proper ideal. Then I n R* = & (since otherwise
I = R as above), so I ¢ R~ R* = m. Thus m is the unique maximal ideal of R, so R is local
with maximal ideal m. O

Proof of Proposition 4.11. 1f (3,7 a,a™) (3, bya™) = 1 then agby = 1. Hence ay is a unit
in R.

On the other hand, if f = )} a,2" and q¢ is a unit in R, agby = 1 for some by € R. Then
bof = Do gboanz™ =14+ x> boa,x™ ' =1—xg for some g = >, (—boa,z" "), so by f
is a unit. Thus f is a unit. m

Proof of Proposition 4.14. To see I < (z)), suppose f € I such that v(f) = v(I). Then
f=2"D(ag+ax+---)=2"D. (unit). Then 2*Y) = f(unit)~' e I. Thus (z"D) < I.

(]

el

Conversely, to see (z')) < I, note that if f = >, apa™ is any arbitrary element of the ideal
I, then f = 2*Vg and v(f) = v(I) (by definition of v), so f = 2" g = 2?0 (zv(N)—vU)g) e
(D). Thus I < (x*D). O

Proof of Proposition 4.20. We need to show ~ is indeed an equivalence relation on A x S,
and that the ring operations are well-defined. ~ is an equivalence relation on A x S: It is
immediate that it is reflexive and symmetric, and it is transitive because if (a, s) ~ (b,t) and
(b,t) ~ (c,u) then there exist v,w € S such that

v(at —bs) =0 and w(bu — ct) =0,
that is,
vuw(at — bs) =0 and svw(bu — ct) = 0.
Adding these two equations, we obtain
+vw(au — cs) = 0.

Now tvw € S, since t,v,w € S and S is multiplicatively closed, so we can conclude (a, s) ~
(c,u). The rest of the proof is left as an exercise. O

Proof of Lemma 4.29. Recall j is the canonical ring homomorphism j: S7'A4 — A given
by a — (a,1). Then j(a) = (a,1) = (0,1) if and only if there exists s € S such that
s-(a-1-0-1)=0. O
Proof of Lemma 4.34. Define

R[z] — Ry,

Rarv+— (r1),
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x— (1, f).
This map is certainly a ring homomorphism. Since this map is surjective (any element
a/f? € Ay is the image of ax? € R[z]), it is enough to show its kernel is (zf — 1). To see this,
note that (zf — 1)h(x) has image ((1/f)f — 1)h(x) = 0- h(z) = 0. On the other hand, if the
image of g(z) = Y99 bz’ is 0, then 0 = 3. b;(1/f) = 3. bi/f?, so by multiplying through
by f4°89 we obtain 0 = Y989 b, f4e69-1 — () (for the first equality here we used here that fdcs9
is a unit in A; to be able to multiply through by f4°¢%). Hence (z — 1/f) = (1/f)(zf — 1)
divides g, so g € (xf — 1) in A (again since f is a unit in Ay). H

Proof of Proposition 4.36. For a/se€ S7'A, define

3(3) = el pla)
¢ is well-defined: If a/s = b/t in ST'A (so a,b € A, meaning by define there exists u € S such
that u(at — bs) = 0 in A).

Applying i, we gt 0 = p(u)(p(a)(t) — o(b)p(s)). Because o(s), o(t), o(u)p(S) © B in B,
we deduce ¢o(s) to(a) — () tp(b) = 0. Thus @ is well-defined.

@ is a ring homomorphism: We have $(1,1) = p(1)"1p(1) = 1 and

@(g.g>¢@w—uxaw::¢@)4wﬁwwﬁy4waﬁ::@<§>&(§)

and

P(243) = 3("ER) - plo et 49

t st
= p(st) "p(at + bs) = p(s) "' p(a) + o(t) p(b) = Bla/s) + B(b/t),
so @ is a ring homomorphism. And @ makes the diagram commute, because @ o j(a) =

@(a/1) = p(a). Finally, $ is unique because for any ring homomorphism ¢: S™'A — B such
that 1o j = ¢, and for all z = a/s € ST'A, we have

v(3) =o(5) = veile) = ela).

And ¥(j(s)) - (x) = ¢(s) - (z). Again since ¢(s) € B*, this forces ¥(2) = p(s)™" - ¢(a).
Thus @ is unique. ]

Proof of Lemma 4.41. Let J be an ideal of S™'A. Let I = j~'(J), which is an ideal of A as
the preimage of a ring homomorphism.

e ST < J: It suffices to show that if S7'I is generated as an ideal of S™'A by
{j(z) | © € I} then this set is in J. But {j(z) | x € I} < J, so we are done.

e Jc ST'I: Let x = a/se Jforae Aand seS. Then £ = %€ J. But ¢ = j(a), so

a € I by definition. Thus z = 2 € S ~1]. That proves the surjectivity.

We now show the failure of injectivity. If I n S # @, then S™'T n (S7'A)* # @. Hence
ST = S7'A. Conversely, if ST'A = S7!I, then we can write (1 =)1/1 € S7'A, since in
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S—1 A we have

n xi
122- l—forsomexie],sies
i=1 g,

t: T
= Zn #, where t; = s1-++S;_1Si41 Sn,
=1 Sl o e Sn
that is, there exists u € S such that u- (s;---s, — Z?:l t;z;) = 0 in A, hence

n
UZ 1tixi=usl~~sn in A
1= | I |

el, since
each z;el

Thus I n S # @. O

€S, since
U1 ,81 5.4, ES

Proof of Proposition 4.42. We first show this map is surjective. Give a prime q €
Spec(S7'A), by Lemma 4.41 we can write q = S~'I for some ideal I of A such that
I nS = @. So, to show surjectivity here, we just need to check I is prime. But when proving
Lemma 4.41, we showed that we can take I = j7!(q), and this is prime since the preimage of
a prime ideal is a prime ideal. On the other hand, suppose we are given p € Spec A such that
pn S =g, weclaim that

(a) S~!p is prime, and

(b) 771(S7p) = p. (Note that this is not true without the assumption p is prime, and it is
an exercise to find such examples.)

And (b) holds, since certainly p < j71(S7!p). If z € j71(S™!p), then j(z) € S~'p, and hence
can be written z/1 = a/s for some s € S and a € p. Thus there exists u € S such that
u(sz —a) =01in A. Hence usx = ua € p. But u, s € S, so since p is an ideal not intersecting
S we must have u, s ¢ p. Since p is prime, we conclude z € p, which proves (b). The proof of

(a) is similar. O
Proof of Corollary 4.43. By last time, the bijection Spec A, =
{qgeSpecA|qn (ANp) =0} ={qeSpecA|qcp}. O

Proof of Proposition 4.50. As A < A, < FracA for all p € SpecA, A < )

eSpec A Ap <
(MmeMax(a) Ams so it suffices to show (), cppax(a) = A. To that end, suppose z € (ﬁmeMaX(A) Ay
Consider

I={yeA|zye A}l

If I = A, then 1 € [ and we win. So we may assume [ is a proper ideal of A. Then [ is
contained in some maximal ideal m. Since x € A,,, we know there exists s € A ~. m such that
st € A. Hence s € I < m, a contradiction, since z = a/s for some a € A and some s € A ~\ m.
But then there are zerodivisors in A, but A has no zerodivisors. n

Proof of Theorem 4.54. We only prove that S™! is exact (that is, preserves exact sequences).
We are given ker g = im f,

STlgo ST f =S go f),
| I— |

the zero map
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so im(S™!f) < ker(S™'g). Now suppose n/s € ker S~1g for some n € N, s € S. Then

g(n)

s
that is, there exists ¢ € S such that tg(n) = 0in P. Hence g(tn) = 0in P, sotn € ker g = im f,
and we find m € M such that f(m) = ¢n. Thus (S7'f)(2) = 2 in S7'N, son/s € im(S7'f).
This completes the proof. O

=0in S7'P,

Proof of Definition 4.57. MAnPc Mc P,so ST'(MnP)c S7'Mc S 'P,soS™(Mn
P)c (S7'M) n (S7IP).

Conversely, if a € (S7HM)) n (S7(P)) = S7IN, then any element « of the left-hand side
(the intersection) can be written as z/s and as y/t simultaneously, for x € M, y € P, s,t € S.
Then by definition of the equivalence relation, there exists u € S such that u(zt — ys) = 0 in
N, so in particular in N we have

uxrt=uys
U (]

eM cP
so utx = usy € M n P. Then
B _utre M nP
o =zfs= utse S 7
a contradiction. O

Proof of Proposition 4.61. We have
jm) =0 — (m,1) ~ (0,1)
<= there exists u € S such that u(m-1—-0-1) =0
<= there exists u € S such that um =0
<= there exists u € S n Annu(m)
«— SnAnny(m) # @. O

Proof of Lemma 4.74. Recall that the annihilator Ann(z) = {a € A | a -z = 0} of a nonzero
element x € @ is a proper ideal of A (indeed, it is immediate that it is an ideal, and 1 ¢ Ann(x)
since 1 -2 = x # 0.) Thus Ann(z) < m for some maximal ideal m < A. Since @, = 0,
s-x = 0 for some s € A~ m. But then s € Ann(z) < m, a contradiction. We conclude

Q=0 m

Proof of Theorem 4.75. We know (1) = (2) since localization is exact, and (2) = (3)
because maximal ideals are prime. It therefore suffices to assume (3) and prove (1). Since

(1) < kerg=imf
<= im f c kerg and kerg/im f =0 (11.6.2)
<= imf + kerg =kerg (11.6.3)
<= (im f + ker g)/ker g = 0,

it suffices to show (im f + kerg)/kerg = 0. We will work with the short exact sequence
0 —imf —im f 4+ kerg — (im f + kerg)/im f — 0.
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Note that for all m € Max(A), the sequences
0 — ker(gn) — N, 2% P,
0 — ker(g)m — Ny 2 P,

are exact; the first is immediate, and the second is a localization of the exact sequence
0 — kerg — N -4 P, hence is exact. Thus (for instance, by the 5-lemma), we have

ker(gm) = ker(g)m.

On the other hand, since M £, im f — 0 is exact, so is its localization M, =, Nm — 0, so
by the same argument we obtain im(fy) = im(f)m.

Thus
=0

(un(f) + ker(g)) N im(f)m + ker(g)m _ im(fn) + ker(gm)
ker(g) . ker(g)m ker(gim)

for all m, since the last equality above is equivalent to our assumption, (3). (Indeed, (3)
holds <= (im(fu) + ker(gm))/ ker(gm) follows from the same chain of equivalences as does
Equation (11.6.2)). Then again applying Lemma 4.74, we obtain (im f + ker g)/ker g = 0,
that is, im f < ker g. We can then consider the quotient module ker g/im f, which must be 0
again by the claim; indeed, again by (3) we have

(ker(g)/im(f))m = ker(g)m/im(f)m = ker(gm)/im(fum) =0
for all m. Thus ker(g) = im(f). O

Solution to Fxercise 4.76.  (a) Let m/s,n/t,w/q € S~ M be arbitrary.
~ is reflexive: m/s ~ m/s, since

1-(sm—sm)=1-0=0in M.
[N]
€s

~ is symmetric: If m/s ~ n/t, then there exists u € S such that 0 = u(tm — sn) =
—u(sn — tm). Multiplying both sides by the element —1 of A, we obtain

0 glq(sn tm),

so n/t ~m/s.

~ is transitive: Suppose m/s ~ n/t and n/t ~ w/q. Then there exist u,v € S such that
0 = u(tm — sn) (11.6.4)
0 = v(gn — tw). (11.6.5)

We want some ¢ € S such that 0 = ¢(¢gm — sw). Multiplying Equation (11.6.4) by qv
and multiplying Equation (11.6.5) by su, we obtain the equations

quutm = quusn (11.6.6)
and
suvgn = suet, (11.6.7)

respectively, in A. And suvgn = quutm since A is commutative, so Equations (11.6.6)
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and (11.6.7) imply quutm = suvtw, that is,
vut(gm — sw) = 0.
Thus we can choose ¢ = vut, and this is a valid choice bc v, u,t € S and S is multiplica-
tively closed.
(b) We first show S™!M is an abelian group with addition S™*M xS~ M — S~'M given by
my Mg tamy + timy
ottty
To show addition is well-defined, we will argue similar to showing transitivity of ~ in
part (a). Suppose m}/t] = my/t; and mb/th, = ma/ts. We claim
tomy +timy  tymy + tym
tits )

We seek an ¢ € S such that
U(tyto(tym] + thmb) — ity (tamy + tymy)) = 0 in M,
which by expanding out is equivalent to
((tytatomy + titatimly — ththtamy — titht;my) = 0 in M. (11.6.8)
Since m) /t| = my/t; and m)/t), = my/ts, there exist uy, us € S such that
0 = uy(tymy — tym}) = ua(thmy — tams) in M.

Then in particular we have

urtimy = ugtym} (11.6.9)
and

Uty = Ustamy (11.6.10)
in M. Then if we set ¢ = ujuy, then ¢ € S since S is multiplicatively closed, and the
left-hand side of Equation (11.6.8) can be written as
U(tytatomy + tytatiml — ththtamy — tithtime) = uyugtytathm) + uyugtitatims

— uyugtithtomy — uyuot|thtyms

= IultlmlllllbgtlthI + Iu2t2m’2l I(ult/ltl)l —(Iultllmll) IUQt/QtQI - I(ultlltl )I(Iﬁlgtémg)

=A =D =B =C =A =D =C =B
—AD+BC—AD—CB=0in A

as desired. Thus addition is well-defined. This addition operation has identity 0/1,
inverses —(m/t) = (—m)/t, and is associative because

<ﬁ N @) LM tamy +tima  mg t3(tama + timy) + (tita)mg

t to ts tito ts (t1t2)ts
_ tz(tgml) + tg(tlmQ) + (tltg)mg _ (tgtg)ml + tl (tgmg + tgmg)
tl (tgtg) tl (t2t3)

m time + tam m m m
_mu (lme Flms ) ma(me s
ty tots ty to l3

Hence S™!'M is an abelian group under the above definition of addition.
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Define S7!Ax S™'M — S~1M by

Sle

To see this map is well-defined, suppose a'/s’ = a/s in S™'A and m//t’ = m/t in ST'M.
Then there exist u,v € S such that usa’ = us’'a and vtm’ = vt'm. Then ¢ :== uv is an
element of S since u,v € S and S is multiplicatively closed, and

((sta'm' — s't'am) = ((vtm/)(usa’) — (vt'm)(us’a)) = 0.

SO
! ! Iors!
a m am am a m

st s§t st om t
Hence this is a well-defined map. To see this map is a ring action, first let
m/t,my/t1, ma/ty € STEM and r/s,r1/s1,72/52 € STLA be arbitrary. Then

1 m_1m _m
1 t 1t t?
- nn (2 m) _ ™ Trn __ mrm _ (1 Tr2) m
S1 S92 t S1 sot s182t S1 S92 t?
_ T + r2 . m r182+7281 . mo_ (T182+T281)'m — r182m-+rsim _ risam resim
S1 S92 t S182 t s182-t s182t s182t S182t

2.z =0 2.8 where in the last step we used the fact

s2  S1 S1 82 t Ss1 t S2

3_2.7"_1>_|_

/N

s1/s1 = $2/82 = 1/1, which is true because

L(1-spi—s-1) = L(1 53 —s1-1) =0.. (11.6.11)
€S es
— Finally,
C <@ v @) _ C (tle + t1m2> _ T(tgml + t1m2)
s\t to s 1o stits

rtomy + rtyme rtomy  Ttme T Mmi; T My

Stth Stltg Stltg B S tl S E’

where the reasoning in the last step above is similar to that of Equation (11.6.11).
O]

Solution to Exercise 4.77. Let J be the ideal of the ring S~ A generated by j(I). As an
ideal of S7!A, J is a submodule of S~'A when we identify S™'A as a module over itself.

On the other hand, let S~ be the S~'A-module constructed as in Exercise 9.1 from the
A-module [ (that is, from the submodule I of A when viewing A as a module over itself).
We claim S7!I and J can be canonically identified as S~ A-modules.

e S < (j(I)): Let m/t € S'I, so that m € I. Then

m 1 m 1
—=—-—=—-j(m)e(STA) - j(I) = (j(I))
t t 1 t L4

[ Ry

eSflAej(I)

o (j(I)) = S7'I: Let m/t € (§(I)). Then for some n € Z=1, a; € A, b; € I, s; € S, we have
m n aj; \ .
N sz_l(s—j)](bj)-
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Then

_ Z ) b_ _ ZL(HL k#j 5k>ajbj'
=1 S] (H;'L:1 s5)
This is an element of S _11 , because the numerator is a linear combination elements in
I, and the denominator is in S. n

Solution to Ezxercise 4.80. We can now prove the statement of Exercise 9.4

(a) Let S = A~ p. Computing in A,, we have
Exercise minimality Exercise

K _ fpin Spec A H_1 9.2
0 = N o =) N A I |
( ) tweSpec A qe%%epc A q p P2,

where the second inequality is because the map S™': A — S71A via ¢ — ¢/1 induces an
inclusion-preserving bijection of {q € Spec A | p © q} onto Spec(A4,). Hence pA, is the
nilradical of the local ring A,, and in particular all elements of pA, are nilpotent in A,.

Before showing that if A is reduced then A,/pA, is a field, we prove an important result.

Lemma 11.7.

If A is a commutative ring and p € Spec A, then A, is a local ring with maximal
ideal pA,.

Proof of Lemma 11.7. Tt suffices to show A, N\ pA, = A;.

(c): Suppose f/s € A, \ pA,. Then f ¢ p, since otherwise f/s € pA, since 1/s € A,.
But this means f € A~ p, so j(f) = f/1 is a unit of Ay, since its inverse 1/f is an
element of A, by construction. Hence A, \ pA, = A;.

(2): Suppose f/s € A;. Then there exists g/t € A, such that fg/st = 1/1 in A,.
Equivalently, there exists u € A \ p such that u(1- fg —st-1) = 0. Since 0 € p and
u ¢ p, we must have fg — st € p because p is prime. But primality of p also implies
that st ¢ p, since s,t ¢ p. Thus fg = st is not in p. If f € p, then since p is an ideal we
must have fg = st € p, a contradiction, so we conclude f ¢ p. Hence f/s e A, N\ pA,, so
AS < Ay N pA,. This completes the proof. O

Now suppose A is reduced. Then A, is reduced for the following reason: If A is reduced
and (a,s) € ST'A, a € A, s € S such that (a,s)” = 0, then (a”,s") = (0,1). In A we
have a"0 = 0 for some u € S, so a"u = 0 for some u € S. Then a"u" = (au)" = 0, so

au = 0. But then (a,s) = (0,1), so A, is reduced. It follows that pA, < 4/(0) = (0), so
Ap = Ap/(0) = Ay/+/(0) = Ap/pAy,

which is a field because pA, is a (the) maximal 1deal of A, by Lemma 11.7.
(b) For each p € Spec A, let j, : A — A, be the natural localization map a — a/1. We claim

II: A 1_[ minimal jpa
peSpec A

a 1_[ minimal ]P(a’)
p e Spec A

is injective. We know this map is a ring homomorphism by the universal mapping
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property of the Cartesian product of modules, and its kernel is
ker IT = ﬂ minimal K€T Jp = ﬂ minimal 10 € A | sa = 0in A for some s € A\ p}.
p e Spec A pe Spec A
It follows that if x € ker I, then for all minimal prime ideals p, there exists s, € A, such
that s,z = 0 € p. But s, ¢ p, so x € p since p is prime. Before continuing, we need the
following result:

Lemma 11.8.

If p is a prime ideal of a nonzero commutative ring A, then p contains some minimal
prime ideal py.

Proof of Lemma 11.8. Since A is nonzero, it contains a maximal (hence prime) ideal
p. Thus the set Spec A of all prime ideals of R is nonempty, and it is ordered by
reverse-inclusion. Let A be a totally ordered subset of Spec A. Then A is bounded
above (with respect to reverse-inclusion) by the ideal J = (), I, which is an element
of Spec A because it is prime: to see A is prime, let zy € J. Then xy € I for all [ € A.
Now let B={I e A|yel}. Let K =();.5.. Since A is totally ordered, either K = .J
(and we’re done, since then y € J) or K o J and for all I € A such that [ is properly
contained in K, we have y ¢ I. But that means that for all those I,z € I, since they
are prime. Hence z € J. In either case, J is prime as desired. Hence by Zorn’s lemma
we get a maximal element which in this case is a minimal prime ideal. Thus if p is any
prime ideal of A, then by the argument above A, has a minimal prime ideal pj. Then
by Corollary 4.43, p(, pulls back to a minimal ideal py of A contained in p. n

Thus by Lemma 11.8 all prime ideals q of A contain some minimal prime ideal py, so it
follows that x is contained in all prime ideals of A, and in particular x € ﬂpeSpec AP,
and this intersection equals \/@ by Exercise 8.2. But \/@ = 0 since A is reduced, so
x = 0. Since x was an arbitrary element of ker I, we conclude II is injective. Hence II
is an isomorphism. This completes the proof of Exercise 9.4. O]

Note that the argument above shows the following useful fact:

Corollary 11.9.

If A is a commutative ring, then

A= ﬂpeSpecAp = ﬂ minimal P-

pe Spec A

Solution to Exercise 4.81. Let A = C[xz,y]. The collection of zerodivisors of A/(xy) is
precisely (x) U (y), so we can write Frac(A/(zy)) = S~ (A/(zy)) for S = A~ ((z) U (y)).
Since

Frac(A/(zy)) = S~ (A/(zy)) = STTA/S7 ((zy)),

it suffices to exhibit a surjective ring homomorphism S™'A — C(z) x C(y) with kernel
S ((zy)). Define ¢,: A — C(z) by ¥.(f) = f(x,0)/1. (Well-definedness is clear since
A =Clz,y])
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e Y, is a well-defined surjective ring homomorphism: If f.g € A then 9,.(1) = 1/1,

O(f) + Palg) = f(x,0)/1 + g(2,0)/1 = (f + 9)(2,0)/1 = ¥ (f + g), and . (f)u(g) =

f(gi’o) : g(’i’o) k g)(x 9 — 4, (fg). Thus t, is a ring homomorphism.

e v descends to a well-defined ring homomorphism sz: S71A — C(x): If f € S then
»(f) = f(x,0) # 0 in C(x), since otherwise f € (y), contradicting f € S = C[z,y] ~
((x) U (y)). Thus ¥, (f) € C(x)*, so ©¥,(S) < C(x)* since f was an arbitrary element of
S. Then by the universal mapping property of localization, there exists a unique ring
homomorphism wm S71A — C(x) such that z/J;B o j = 1,. By the proof of this result,
the formula for ¥, at any f/se ST'A s

De(f/5) = tuls) " u(f) = f(x,0)/s(z,0).

o U, is surjective: Suppose f(x)/g(x) € C(z), so that g(z) is a nonzero element of g(x).
Then < e )Iy is an element of S™'A, which can be seen as follows. If g(z) +y ¢ S then
either g(x) +y € (x) or g(z) +y € (y). The former case fails, since otherwise y can be

written as a polynomial in z, so we may assume g(x) + y € (y). But then g(z) = 0, a

contradiction. Thus gé ;Ig e S71A, and its image under 1), is

~ (flx)+y\ —1 _ -1 _

B (D) — gta) + 0 0nl0) 4 = (9(0) + 077 (1(0) 40 = 1) o(0),
as desired.

o ker), = S7((y)): Note f/s € ker 1, if and only if 1, (s) " . (s) = 0. Because ¥,(s(z))
is a unit in C(z) and hence not a zerodivisor in C(x), this happens if and only if

Vo (f(z,y)) = 0. Since ¥, (f(z,y)) = f(x,0), we conclude f(z,y)/s(z,y) € ker1, if and
only if f(x,y) € (y). Thus

by = f(m,y)e -t z,y) € (y) in Clx = 1A) =571
ker%—{sm) s A‘f( W) e C[,y]} (1)(54) = 51(w).

In summary, we obtained a ring homomorphism ¥, : Clx,y] — C(x) with kernel S™((y)).

Running through the exact same arguments as above, mutatis mutandis, we obtain a surjective
ring homomorphism ¢y Cla, y] — C(y) with kernel S7'((x)). Then the product ring

homomorphism II == ), x wy “}(Clx,y]) is surjective ring homomorphism with kernel

ker ¢, nkerdp, = S7'((x)) N STH(y)) = ST (2) n (y) = S ((xy)),
where we used that (z) n (y) = (zy). (Indeed, if z € () n (y) then we can write f(z,y)
as both zh(x,y) and yk(z,y) for some h(x,y), k(z,y) € C[z,y], so both x and y divide
f(z,y), and hence f(x,y) € (zy). Conversely, if f € (zy) then f € (z) n (y) because
(zy) = (z)(y) < () N (y).) Thus kerII = S~!((xy)), so by the first isomorphism theorem II
descends to an isomorphism Frac(C[z,y]/(xy)) = C(z) x C(y). O

Proof of Proposition 5.4. (1) <= (2) is a formality of partially ordered sets: given (2), a
chain Ny € N; < --- in M has a maximal element, and hence stabilizes; given (1), if 7' € X
has no maximal element, then we can inductively construct a non-terminating chain—mnamely,
choose Ny € T'; since Ny is not maximal, there exists N; € T such that Ny < Ny, and so on.
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(2) = (3): Let N be a submodule of M, and let ¥ be the set of finitely generated
A-submodules of N. Then ¥ # & because (0) € ¥, so ¥ has a maximal element Ny < N with
respect to inclusion. If Ny # N, then for any n € N ~ Ny, we have Ng € Ng+ A-n c N,
and Ny + Anis still finitely generated. Thus Ny = N (is finitely generated).

(3) = (1): Let No € Ny < --- be a chain of submodules of M. Then N = [J7_ is a
submodule of M (because it is a chain! We saw a similar argument for ideals), and hence is
finitely generated, that is, N = >}/ | A,, with a; € N;, for some j;.

Let k = max{ji,...,Jr}. Then for all i, z; € Ny, and thus N = Ny, so the chain stabilizes. [

Proof of Lemma 5.6. Assume M is Noetherian. Any chain of submodules Ny ¢ Ny < - --
of Mj (resp. M,) gives a chain of submodules M via i(Ny) < i(Ny) < - (resp. 7 1(Ny) <
771(Ny) < ---); this chain stabilizes in M, and hence so too does the original chain by taking
i~! (resp. ).

Conversely, assume M; and Ms are Noetherian and let Ny € N; < --- be a chain of
submodules of M. Then {i~1(N;)}s=o and {7(Ny)}s=0 are chains of submodules of M; and
M, and hence becomes stable for all ¢ > ¢, for some ¢,. The same holds for N,: for ¢ = £,
we have a commutative diagram of the form

0 —— i7H(Vy) > Ny > T(Ny) —— 0
H H

/

0 —— i Y(Niy1) —— Neyp —— 7(Npwt) — 0

with exact rows, from which we see N, = Ny, by a straightforward diagram chase. O

Proof of Proposition 5.8. (1) == (2): This is immediate from the last proposition.

(2) = (1): M is finitely generated over A means there exist my,..., m, € M such that
M =3, Am;. Thus the map A" — M given by (ai,...,a,) — aymy + -+ + a,m,, is
surjective. Since A is Noetherian (as a ring), A is a Noetherian A-module. By Lemma 5.6,
A" is thus also a Noetherian A-module, which can be seen by induction using the short exact
sequence
(z1yeeeyn)—>(T1,...,Tn—1,0)
0—— At > A" > A > 0

(Z‘l,...,l’n717xn)>—>xn

and because quotients of Noetherian A-modules are Noetherian. Hence, by another application
of Lemma 5.6, we conclude M is Noetherian. O]

Proof of Proposition 5.21. Suppose x is not a product of irreducible elements. Then x = x1a
for some x1,a ¢ R, x1 = 12d/, 19 = x3a”, and so on. Then
(2) < (21) & (22) & (23) & -+

is a strictly increasing chain of ideals, so R is not Noetherian. O
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Proof of Theorem 5.24. Let I < A[z] be an ideal. We want to show [ is finitely generated.
Consider the set LT'(I) of leading coefficients of elements of 1. More precisely, for f e A[z],
define

Lﬂﬂ:{

and define

0 if f=0,
a, if f(z) = apx™ + a,_12" ' + -+ + ag such that a, # 0 and a; € A.

LT(I)={LT(f)| f eI}

e LT(I) is an ideal of A: We have LT'(0) = 0, and for f € I we have LT (— ) =—LT(f),s
LT(I) has inverses. More generally, for all ce A, LT (c- f) = ¢- LT(f), so LT (I) is stable
under A-multiplication. LT'() is closed under addition, since 0 € LT(I), and it is enough
to check that for f, g e I such that LT(f) + LT (g) # 0, then LT(f) + LT (g) € LT(I).
We may assume deg f > deg g. Then

LT(f 4+ 2% =500) . g) — [T(f) + LT(g).

el

as desired. (So we have avoided the cancellation that could have happened in f +
pdee(f)=desl9) . g by restricting to the case LT(f) + LT(g) # 0.)

Since A is Noetherian, LT (I) is finitely generated, by some ay, ..., a, € LT(I). By definition,
there exist f; € I such that LT(f;) = a; for each i € {1,...,r}. Then the ideal

[/ = (fla"'af?“)

is an ideal of A[z] contained in I. Let
di— max_deg(f,).

€{l,...,r}

and let M < A[z] be the A-submodule spanned by {1,z,...,24-1}. (So M is the collection
of polynomials of degree < d).

o For all f € I, there exist g € M and h € I' such that f = g+ h, that is, such that
I =MnI+I": Ifdeg(f) < d, then this is clear because g = f and h = 0. If deg(f) = d,
thegn:s{r;gee[/]T(f) e LT(I) = (a1,...,a,) < A, then LT(f) = >;_, ¢;a; for some ¢; € A.
Next consider F = f — Y pdes(f)=dea(fi) . ¢;. £, Then deg(F) < deg(f), since the leading
term cancelled out. Then the claim follows by iterating this argument inductively.

Now M is a finitely generated A-module, and hence is a Noetherian A-module by a previous
proposition, so the A-submodule M n I < M is also finitely generated as an A-module, say
by g1,...,9s € I. Then

I=(g1,---,9s, f1,.-., fr) is finitely generated. O
Proof of Corollary 5.25. We argue by induction on n € Z~;. The base case n = 1 is just
Hilbert’s basis theorem. In the general case, recall that by Theorem 1.61 a finitely generated

A-algebra is isomorphic to a quotient A[xy, ..., z,]/I for some n € Z-; and some ideal I, and
hence is Noetherian by the induction hypothesis. O
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Solution to Ezercise 5.27.  (a) We first show /I + J = A/+/T + +/J. Note that if K, L are

ideals of a commutative ring and K < L, then vK < /L. (To see this, consider an
arbitrary a € VK. Then there exists n € Z~1 such that " € K. But K < L, soa" € L.
Therefore, a € v/L.) Given that I = /I and J < +/J, it follows that I + J < /T ++/J.

It remains to show /I +VJ < VT + J. Suppose " € VI + +/J for some n € L.

This means that f* = a + b for some a € VI and b € v/J, so there exist my,my € /S
such that ™ € I and b™ € J. We claim f"™*+m2) ¢ \/T + J. We have

n(mi+m mi+m mi+me (M1 + Mo
promem) = (g pyns = YT (T 6
where G; = a/b™ ™77, (Note that we used commutativity of A to obtain the second
equality above.) It is enough to show that for all j € {0,...,my + my}, either G, € I or
GjeJ.
— If my < ma, then for j < mq, G, € J since b™™277 € J (since my +mg —j = ma).
FOI"]>TTL2,CL]€I(S1HC€]>TTL1) so Gjel.

— If my < my, then, arguing similarly as the previous point, if j < m; then G; € J
and if j = m; then G; € I.

We conclude f” mit+me) ¢ [ + J, so f eI+ J. Since VAT ++ T VI + J, which
gives us VI + J = /I

Suppose \f—%\F:A. Then
A=VA=AINT+VJT =T+,

where the last equality is by part (a), so in particular 1 € /I + J. But this means there
exists n € Z>1 such that 1 =1"e [ + J, so [ + J is the unit ideal, hence [ + J = A.

Let n € Zx; and suppose p € Spec A. p < /p" because any = € p has 2" € p”,
hence z € /p". To see /p™ < p, note that if a € A\ p then a™ € A~ p for all
m € Z=, (because A \ p is multiplicatively closed), and in particular " € A \ p" (since
ptcp — A~pc ANp"). Thus a ¢ /p, so p D /p", which implies p = \/p™.

Now suppose k,¢ > 1 and let my, my be distinct maximal ideals of A. We want to show
ymi + /m§ = A, in which case we are done by part (b). Since maximal ideals are
prime, our argument in the previous paragraph shows that ,/m¥ = m; and ,/m§ = my,
so it suffices to show m; + my = A. But this is clear: the fact m; # my implies
my, My & My + My, which by maximality of my, my forces my + my = A, as desired. [

Solution to Exercise 5.28. (a) Let I be an ideal of A. Since A is Noetherian, we can

write VI = (21,...,2,) for some x1,...,2, € /1. For each j € {1,...,7}, there exists
m; € Z1 such that 2 € I (since x; € V).
We claim (vI)* < I when n = rmax{my,...,m,}. To see this, consider an arbitrary
qe (VI)". We can write
N
q= Zk:l Ykl Yk

for some N € Zs, and some yy ; for each ke {1,..., N}, for all j € {1,...,n}. Since
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VI = (zy,...,,), we can write

N, j
Ykj = ZH R

for some a;;, € A and some Ny ; € Zzq, for all £ € {1,..., N;,} and all j € {1,...,n}.

Hence
N n Nk,
7= Zkzl (Hj:I (Zz:klj ak’“w)) '

After expanding out (or by observing that the product of n terms, each of which have
some z; as a factor), we see that each term has at least n factors that are elements
of the set {x1,...,z,}, which has r elements. Since n = r - max{m,,...,m,}, by the
pigeonhole principle each term has at least one factor in I. (Note that this requires A
be commutative to collect the x; into 277; whatever that j may be depends on the term
in question, but this shows that at least one exists, which is all we need.) Hence ¢ € I.

(b) By part (a), the ideal (0) contains some power of 4/(0), that is, (1/(0))" = 0 for some
n € Zs1. Thus 4/(0) is nilpotent.

(c) Consider commutative ring A = C|[z1, Tq, T3, ... ] and the ideal [ = (x],23 z3,...) of A.
We claim the nilradical of A/I is the ideal (x1, 29, 23,...) + 1.

(o) If a e (x1,29,x3,...) + I then a is a linear combination of elements z; + I, each of
which are in the nilradical (because x € I for each j, so (z; +I)7 = 2} + 1 = I,
which is the zero element of A/I), so because the nilradical is an ideal we conclude
ae /0.

(c) Now suppose an element a + I of A/I satisfies (a + )" = 0 + [ for some n € Zx;.
Then a” + I =0+ I, so in A we have a" € [ = (z},23,23,...) < (21, 22,...), s0O
a". Hence a + I < (xq1,x9,23,...)+ I in A/I.

We conclude the nilradical of A/l is the ideal 1/(0) = (71,22,23,...) + [. But

(1,2, 23,...) is not nilpotent, since for any n € Zs4, the element 2., € (1/(0))"

but ', ; # 0. Then by (b), A/I must be non-Noetherian. Thus A/ is an example of a

non-Noetherian commutative ring with non-nilpotent nilradical. O

Solution to Fxercise 5.29. Suppose for a contradiction M # 0. Then there exists a minimal
generating set {ms,...,m,} of M for some n € Z>;. By hypothesis M = J(A)M, so
My = aymq + -+ + Gp_1Mp_1 + a,m, for some ay, ..., a, € J(A). We can rewrite this as
(1 —ap)my, =aymy + -+ + ap_1My_1.
The element 1—a,, is a unit in A by definition of J(A), so multiplying through by b = (1—a,,)™!
we obtain
m, = baymqi + -+ + ba,_1m,_1.

But then {m;,...,m,_1} is a generating set for M, contradicting the minimality of the
original generating set. Hence M = 0. [

Solution to Exercise 5.30. First note that (a) and (b) are mutually exclusive: if we assume
m" # m""! for all n € Z>,, then because m"*! = m” we know if m” = 0 for some n, then
m"*! = 0 = m”, contrary to our assumption.
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Now we can assume for any n € Zs; that m® = m"*!. Given n € Z-,, we need to show

m"” = 0. Since A is Noetherian, m” is finitely generated as an A-module (since m” is a
submodule of A when equipping A with the natural A-module structure.) Since A is local
with maximal ideal m, we have

83) _
J(4) = ﬂmeMax(A)m -
S0

JAM" =m-m" =m""! =m",
where the last equality is by assumption. Applying Nakayama’s Lemma (Exercise 10.3), we

conclude m™ = 0. O

Solution to Ezxercise 5.31. Ifker f = 0then f is an isomorphism, so we may assume ker f # 0.

Since M is Noetherian and 0 < ker f < ker(f o f) < --- is an ascending chain of submodules
of M, there exists k € Z>; such that
ker foF = ker o+t — ... (11.9.1)

Suppose z € ker f. Note that f°F is surjective since f is, so there exists m € M such that
f°*(m) = z. But then

FED(m) = f(fH(m)) = f(x) =0,

so m € ker fok+1) 2D yer f°*. But then z = f°*(m) = 0, so since x was an arbitrary
element of ker f, we conclude ker f = {0}. O

Proof of Proposition 6.4. Suppose p € Spec A, so that A/p is an integral domain. It is
enough to show A/p is a field. Let z € (A/p) \ {0} and consider the descending chain
(r) > (z*) o (2*) > ---. Since A and hence A/p is Artinian, this chain stabilizes, so there
exists n € Zx; such that (z) = (z"*1), that is, 2" is a multiple of z". But z"! is always a
multiple of 2™, so there exists a unit u € A such that " = 2" - u. Since A/p is an integral
domain and z # 0, 1 = x-u in A/p. This shows z is a unit in A/p, so since x was an arbitrary
element of (A/p) ~\ {0}, we conclude (A/p) \ {0} = (A/p)*. Thus A/p is a field. O

Proof of Proposition 6.8. Consider the set
Y={myn--nm|keZs,my,...,m e Max(A)}.

Y. is nonempty since A has maximal ideals (and because we may assume A # 0), so since A
is Artinian 3 has a minimal element, say m; n --- nm,,. (Here we are using the equivalent
condition to being Artinian that any nonempty subset of ideals of A has a maximal element.)

Now let m be any maximal ideal of A. Then m nm; N --- " m,, is an element of ¥ and
is contained in m; N -+ Nnm,, so by minimality mnm; n---m, = my n--- nm,. Thus
m S my M- -my,, so by prime avoidance m S m; for some i € {1,...,n}. Since m; is maximal,
m = m;. Thus Max(A) = {my,...,m,}. O

Proof of Proposition 6.11. We have

(8.2) (Artinian) .
(O> o r-IJESpecAp o ﬂmEMaX(A) m= J(A>
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Counsider the chain

(0) > (V(0)* = (v (0))* = -+
Since A is Artinian, this chain stabilizes, say at I == (1/(0))* = (1/(0))*"! = --.. We want
to show I = 0. Indeed, consider the set
Y. = {ideals J of A| J -1 # 0}.
If I #0, then ¥ # @ (since A € ¥). Then ¥ has a maximal element .Jy. In particular, there
exists x € Jy such that x - I # 0 (since Jy - I = 0). Then (z)  Jy and (x) € X, so (z) = Jp.
Computing, we have
ol - I =x]*=xl
-]
=(v/ () =(y/(0)*
But then I € ¥, and =] < (x) = Jy, so again by minimality we must have I = (x). Thus
x-y =z for some y € I, and hence x - y"* = x for all n € Z>1. But y e I = (1/(0))* = 1/(0),

that is, y is in the nilradical, so 1/(0)" = 0 for some n € Z=,. Thus = = 0. Since z was an
arbitrary element of I, we conclude I = 0. O]

Proof of Proposition 6.14. By the proposition, every chain is finite, so any increasing or
decreasing chain stabilizes.

Conversely, if M is Noetherian and Artinian, then there exists a maximal submodule M; of
M (with respect to inclusion): indeed, if not, then there exists an infinite strictly increasing
chain of submodules, contradicting M is Noetherian.

Similarly, M;—which is Artinian and Noetherian as a submodule of the Artinian and
Noetherian module M—has a maximal submodule, say M,. Continuing this process, we

obtain a strictly decreasing chain of submodules
M2M 2M, 2 M3 2---

Y

and M is Artinian, hence this sequence stabilizes. It therefore must stabilize at 0 (since
otherwise we could obtain another maximal proper submodule to get yet another proper
submodule, contradicting stabilization.) This completes the proof. O]

Proof of Corollary 6.18. We know dim A = 0 by Proposition 6.4, and Spec A = Max A =
{my, - ,m,}. Since there exists k € Z~,; such that J(A)* =0,

[T = (T m) e (N, m) =0

The proof of the corollary is then completed by the following key lemma, Lemma 6.19. [J

Proof of Lemma 6.19. Consider the chain of ideals
RDnl DNy D - DNy N1 DNy --- N, = (.

Let gro = R/ny and gr; ==mny---n;/ny---nyyq forie {1,...,r — 1}. Each gr; is an R-module
where n;,; acts trivially, that is, it is an R/n;,;-module, or equivalently a vector space over

Version of February 5, 2024 at 11:53am EST Page 141 of 177


https://www.greysonwesley.com/home

Greyson C. Wesley 11: Proofs

the field R/n;, 1. Now

R is Artinian (resp. Noetherian) <= R is an Artinian (resp. Noetherian) R-module

<« forall i € {0,...,r — 1}, gr; is an Artinian (resp. Noetherian) R-module
(by applying Proposition 6.14 to 0 — ny - n;11 — ng ---n; — gr; — 0)

<= forall i € {0,...,r — 1}, gr; is an Artinian (resp. Noetherian) (R/n;;)-module.

Next note that

(1) gr; is Noetherian as an (R/n;;1)-module if and only if dimpg/m,,, gr; < oo (that is, the
vector spaces gr; is finite-dimensional) because a module over a Noetherian ring is
Noetherian if and only if it is finitely generated.

(2) gr; is Artinian if and only if dimpgm,,, gr; < . (Indeed, if dimp,,, < oo, then any
descending chain gr; > Ny © Ny o -+ of (R/n;;1)-modules is a descending chain of
vector subspaces, hence stabilizes.)

If dimp/m,,, g7 = 00, with linear independent set {vy,vs, ...} < gr;, then span{vy,vq,...,} 2
span{vy, vs, ...} 2 span{vs, vy, ...} 2 --- is an infinite strictly descending chain of (R/n;.1)-
submodules of gr;. Since (1) and (2) are the same condition, we conclude that R is Artinian
if and only if R is Noetherian. O]

Proof of Corollary 6.20. We know Max(A) = {my, my,..., m,} for some r € Z>,, and
n r r k
- mF (103) omh = (ﬂ ml-) = 0 for some k > 1.
=1 =1 i=1

Now consider the natural ring homomorphism A — [];_, A/m¥. Its kernel is the intersection
'

i1 mf = 0, and since for all ¢ # j, mF + mf 2 A, by the Chinese remainder theorem the
homomorphism is surjective. Thus A — [/_; A/m¥ is an isomorphism, and each A/m} are
Artinian (as a quotient of an Artinian ring) and local (because the unique maximal ideal

is now the ideal induced by m;, or more precisely, because of the bijection Max(A/mF) <
{me Max(A) | m > ml} = {m;}.) O

Proof of Proposition 6.21. Let A be Noetherian of dimension 0. By Theorem 6.52, A has
finitely many minimal primes {pi,...,p,}. But since dim A = 0, Spec A = Max A is the
collection of minimal primes of A, that is, {p1,...,p,}. By Exercise 10.2, 4/(0) is nilpotent
since A is Noetherian, so [ [¥_, p¥ = (i_, p¥ = 0 for some k € Z=, (as in an earlier argument).
But by Lemma 6.19, since A is Noetherian and a finite product of maximal ideals is (0), we
conclude A is Artinian. O

Proof of Proposition 6.25. We already know the forward implication. On the other hand, if
R is Noetherian, then finiteness and discreteness of Spec R implies dim R = 0, hence R is
Artinian. O

Proof of Lemma 6.29. We give an inductive argument. Let > be the set of ideals of A for

which the statement of the lemma is false for I, that is, the collection of all ideals that is not
a finite intersection of irreducible ideals.
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If ¥ = @ then we are done, so suppose for a contradiction ¥ # &. Since A is Noetherian, 3
has a maximal element I, (with respect to inclusion) by Proposition 5.4. In particular, Iy is
not irreducible. Then there exist ideals Ji, Jy # Iy such that Iy = J; nJ,. Since Jp, Js strictly
contain I and [ is maximal in Y, it follows that J;, J; ¢ 3, hence J;, Jo are intersections
of finitely many irreducible ideals. But then Iy = J; n J5 is an intersection of finitely many
irreducible ideals, a contradiction. O

Proof of Proposition 6.31. By consulting the definitions, this is a straightforwrad chain of
equivalences, which goes as follows:

p is primary <= for all z,y € R, if xy € p and x ¢ p then y" € p for some n € Z-,
< forallz,ye R, if (x +p)(y+p)=0in R/p
and R+p # 0+ pin R/p, then (y + p)" = 0 for some n
<= for all 7,y € R/p, if  is a zerodivisor, then 7 is nilpotent

<= the zerodivisors of A/p are nilpotent. O]

Proof of Lemma 6.34. Suppose a,b e A satisfy ab € \/q. Then there exist n € Z=; such that
a"b" € q. Since q is primary, a™ € q or (b")™ € g for some m € Z-;. But this tells us that
either a € /q or b € \/q. Hence q is prime. [l

Proof of Lemma 6.45. To see (1), note everything in A multiplies = into ¢, so there is
nothing to show in this case.

It remains to prove (2): If yx € g and = ¢ g, then by definition of primary we have y € \/q = p.
Thus q < (q : ) < p. Taking radicals, we obtain

NCXSRVACEEIRSRVE R 2
hence 4/(q : x) = p. To see that (q : =) is primary, suppose yz € (q : ) for some y, z € A and
y ¢ +/(q:x) =p. We want to show z € (q : x). Since zyz € q (by definition) and y ¢ /4,
we must have zz € q (just by definition of primary), that is, z € (q : ). This proves the
lemma. O

Proof of Proposition 6.46. (i) Suppose S np = &. Let q be a p-primary ideal in A. We
need to show that S~'q in S'A is S~'p-primary. Consider any element ¢ in S~ A such
a b - b — PR . . . .
that ¢-2 € 5 g for some 7€S LA, This implies ab € q and s,t ¢ p. Since q is p-primary
and ab € q, at least one of a or b is in p or b" € q for some n. This implies ¢ € S~p or
b

(4)" € S71q, thus S~!q is primary. Since radicals commute with localization (Check!),

it follows that S™'q is S™'p-primary (since /S~1q = S7'(,/q) = S™'p). Conversely,
pulling any S~ !'p-primary ideal of S7'A back to A results in a primary ideal (Check!),
so this correspondence is bijective.

(ii) Assume S np = @ and q is p-primary. We need to show that S7'q = S™'A. For
any element ¢ € q and s € S, consider  in S~'A. Since q is p-primary, elements
of q are nilpotent modulo p. As S has no intersection with p, the elements of S
are not zero-divisors modulo p. Therefore, ¢ becomes a unit in S ~1A, implying that

S-lq = S~1A. O
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Proof of Proposition 6.47. S~ =\, S 'q; (442) o S71q; by Section 11, and S~'q; is

S~p;-primary for each i € {1,...,m}. Since the p; are distinct, so are the S~!p; for all
1 <7 < m, hence we have a minimal primary decomposition. Taking the preimage by j of
both sides, we obtain

= = s ) =) e

again by Section 11. O]

Proof of Lemma 6.48. Let A be a Noetherian ring and let q be an irreducible ideal of A.
By passing to A/q, we may assume q = (0). We can do this because

correspondence

(0) is irreducible in A/q «<—=22" . 4 is irreducible in A

and

primary iff
zerodivisors
are nilpotent

(0) is primary in A/q q is primary in A,

so it is enough to treat the case where (0) is an irreducible ideal of our (new) ring A.

So suppose xy = 0 and y # 0. We want to show z™ € (0) for some n € Z,, that is, that x is
nilpotent. Consider the increasing chain of ideals
Ann(z) < Anng(z?) < Anny(2?) < -

(Here we recall that for all b in a ring B, we recall Anng(b) = {ce B | c¢b = 0}, and the
definition for modules is similar.) Since A is Noetherian, there exists n € Z-; such that

Anny(2") = Anny(2™)

We claim (2") n (y) = @. Indeed, if z € (z™) n (y), then zx = 0 (since z € (y) and yz = 0).
But z € (z") too, so z = x™w for some w € A. Multiplying by x, we obtain 0 = rz = 2" 1w,
so w € Anny (") = Anny(2"). Hence z = 2™w = 0, so (z") n (y) = 0. We have assumed
(0) is irreducible, and we have (0) = (2") n (y) with (y) # 0, so (z™) = (0), that is, 2™ = 0.
This completes the proof. O

Proof of Lemma 6.50. Consider a minimal prime p containing [ = q; n --- n q,. Taking

radicals,
p=veo e = _ va={_»

where the middle equality is by Exercise 10.2(b) that V' (I; n Iy) = V(1) u V(I3). Thus p

contains p; for some j € {1,...,n}. By minimality, p = p;. O

Proof of Lemma 6.5. Let I = q; n -+ N q, be some (not necessarily reduced) primary
decomposition. Then let {p1,...,p,} = {\/d1,...,/dn} such that where the p;s are distinct.
For each j e {1,...,r}, set

q; = ﬂz such that i+

V4i=DPj
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We show in Exercise 11.2 that q; itself is p;-primary. Since I = ﬂ] 1 4;, condition (1) of
Definition 6.53 holds; to see condition (2), note that if any q; contains (), oy Qk, omit q;. O

Proof of Theorem 6.58. (1) Let I =gy n---n g, be a reduced primary decomposition and
set p; = 4/q;. We will show that

{p1,...,pn} = {primes of the form /(I : ) for some x € A} (11.9.2)

for some x € A. Recall from Exercise 7.3 that (I : z) denotes the ideal quotient of z,
which is the collection of elements that multiply x into 7, that is,

(I:2)={yeA|yrel}=Amy(x+1).
eA/I

Observe that for any x € A,

NN (ﬂ:‘:l a - x) V@) =) Vi), (11.9.3)

Now by Lemma 6.45 and Equation (11.9.3) we conclude

; above
m = ﬂ ﬂj such that I$q

Now suppose z has the additional property that 4/(I : z) is prime. Since

\/(I:x)zﬂ Vi 2) =) jouen b (11.9.4)

- that ¢ q;
prime
we have /(I : x) = p; for some i such that x ¢ q;.
Conversely, since the primary decomposition is reduced, for all ¢ € {1,...,n}, there

exists x; ¢ q;, but z; € [,; q;. Then

V ([ : xl) = pi,
so we obtain the other inclusion of Equation (11.9.2).

(2) A set X of prime ideals contained in an ideal [ is said to be isolated if it satisfies the
following condition: if p’ is a prime ideal contained in I and p’ < p for some p € 3, then
peX.

Let ¥ be an isolated set of prime ideals contained in I, and let S = A UpeE p. Then
S is multiplicatively closed and, for any prime ideal p’ belonging to I we have

el = p'nS=0;

and
/ / /

p el = p ¢Upezp — p'nS#0.
Hence, from Proposition 6.47 we can prove the statement of (2) as follows:
We have g, n -+~ nq;, = j '(I), where j: A — S7'A is the natural map and S =
AN (piy U+ UDP,,), hence depends only on ga (since the p; depend only on 7). Thus
the isolated primary components (that is, the primary components ¢; corresponding to
minimal prime ideals p;) are uniquely determined by I, and thus independent of the
primary decomposition of [. ]
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Proof of Corollary 6.62. Note ZD = |J, oy € Alyr =0} = [J,.,((0) : z), and (noting
that for any subset S of A, by v/'S we mean the collection of elements have some power in S)
VZD = ZD. Hence

ZD =~NZD = 4 /U#O((O) cx) = U#O«/((O) - T).

But by the proof of the theorem (in particular, by Equation (11.9.4)), we saw that 4/((0) : ) =

N J such ;. Then for any = # 0, there exists ¢ such that z; ¢ q;, so 4/((0) : x) is an
that ¢ q; . .
intersection in which p; appears, hence 4/((0) : ) < p;. Thus

ZD = U#O A/ ((0) :x) < L_Ji:1 ;.
To see the other inclusion, note that by part (1) of the theorem, each p; could be written as

A/ ((0) : 2;) for some x;, so p; < | J,.o+/((0) : ¥). This completes the proof. O

Proof of Corollary 6.63. We have (0) = 4/(0) = [ minimal_p is a primary decomposition. [

peSpec A

Solution to Ezxercise 6.64. We first prove a useful lemma.

Lemma 11.10.

Let I be an ideal of a commutative ring A. Then

VI = ﬂpevmp’

where we recall V(1) = {p € Spec A | p contains [}.

Proof. Let m: A — A/I be the natural quotient map. By Lemma 11.2the nilradical of A/I is

7(\/1), so
(82)
VD= Nspeetarn P = [ bespur a®) = [,y 7(0)

where the middle equality is by the correspondence theorem. Applying 7! to both sides, we
obtain

VI=naN (V1)) = 7T_1<ﬂpev(1) 7T(p)> - ﬂpev(l) () = ﬂnoeV(I) P

where the first and last equalities are because 7 is surjective, and the penultimate equality is
because preimages preserve intersections. ]

We now return to the statement of Exercise 11.1. Let A = Z[z], let m = (2,z), and let
q = (4,z). Since Z[z]/(2,z) = (Z[x]/(z))/(2) = Z/27Z is a field, m is maximal in Z[z]. To
see ( is m-primary, we can use Exercise 10.1 to write

Vi=vE2) = V@) + (@) VB + V@) = V@) + (@) = V2 2) = ym=m.

To see q is not a power of m, note that for all n € Z3,

n 2 2 _ _
mocm _(474x7$)%q_(47$)%m_(27t)7
e.g. X e.g. 2
so q # m" for all n € Z;. O
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Solution to Ezercise 6.65. We first need the following lemma.

Lemma 11.11: Radical Commutes with Finite Intersections.

If {I;}7_, is any finite collection of ideals of a commutative ring A, then
V ﬂj:l J= ﬂj:l \/TJ

Proof of Lemma 11.11. Suppose a € (;_;+/I;. Then a € I for all k € {1,...,n}, so

there exist mq,...,m; € Zz; such that for all j, a™ € I;. Hence b™ € ﬂ;‘:l I; for all
m = max{my,...,my}, so (1;_; I; = ();_; v/I;. (Note this inclusion requires the intersection
be finite.)

n m n n
Conversely, suppose a € 4/[ |;_; I;. Then a™ € ﬂj:1 for some n € Zz, so a” € I; for each

j e {l,...,n}. Hencea e (_, VI, so we conclude ﬂ;‘:l\/Tj < /(jZ, I;- (Note this

inclusion holds for arbitrary intersections.) This completes the proof. O

We can now prove the statement of Exercise 11.2. Suppose we have a,b € A such that
ab e (V;_;q and a ¢ ();_;q;. Then a ¢ q; for some k € {1,...,n} and ab € q; for all

j€{l,...,n}; in particular ab € qy, so since a ¢ q; and q; is p-primary, we must have b € p.
Since we can write
. n . n : (11;11) n .
p=(_p={1_va =" [_ %
we conclude b € /[ );_, q;. Hence [;_, q; is p-primary. O

Solution to Exercise 6.66. (a) p is prime, hence primary. Now let n € Z-5. To see g, is
primary, we opt to work in the quotient ring A/q,; this is a finitely generated k-algebra

with generating set {1,x,y,y% ...,y,_1} and relations

2 =zy =y" = 0. (11.11.1)
Now suppose f € A/q,, is not nilpotent. We claim f is not a zerodivisor. First write
[ =ay+dx+ay+aw?+ -+ a,_1y" ', where ag,d},ay,as,...,a, € k. Since f

is not nilpotent, the constant term ag of f must be nonzero. To see this, suppose
instead ay = 0. Then the degree of any nonzero term! of f is positive, hence the
degree of any term of f™ is at least n, but A/q, has no nonzero monomials of degree
n by the relations in Equation (11.11.1). Thus ag # 0. Now suppose fg = 0 for some
g=by+Vx+by+by’+- - +b,1y" '€ A/q,. Then
0=fg=(ao+dx+ay+- - +a,1y" )by +bx+by+ - +b,1y" ")
= aobo + (a,()bll + Clllbo)l’ + (a061 + Cblbo)y + ((lobg + albl + agbo)yQ + e

Since ag # 0, the condition aghy = 0 forces by = 0, which by looking at the z- (resp. y-)

coefficient implies 0] = 0 (resp. by = 0). In the general case, if for some k > 2 we have
bp = by = ... =bp_1 = 0, then consider the coefficient of y* in fg¢, which is the sum

!Note that the degree of nonzero monomials m of A/q,, is well-defined, since any of its preimages in A
differ by a sum of elements of q,,, so we can define the degree of m in A/q,, as the degree in A of the unique
element of its preimage in A that is also a monomial.
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of products a;b; such that i + j = k. By the inductive hypothesis, all terms a;b; with
i+j =k and i > 0 must have b; = 0 (since j < k), so the coefficient of y* in fg is
aob,. But fg =0, so apbr, = 0, implying b, = 0 (since k is an integral domain as a field).
Then g = 0, so f is not a zerodivisor. We have now shown that non-nilpotent elements
are non-zerodivisors, or equivalently that g, is primary in A.

Lastly, note that p n q,, is a primary decomposition of I for all n € Z-,, since
p g, = (Az) N (A2® + Azy + Ay")
= (Az n Az?) + (Az 0 Axy) + (Az n Ay™)
= (Az?) + (Azy) + (0) = (2%, 2y) = 1.

(b) We have

Vi = .7 = V@D + @) + 57 =" AW + V) )
= /(@) + (zy) + () = V (=, 29, 9) = V(. 9) = (2,9).

which is independent of n. Hence ,/q,, yields the same associated prime of I regardless

of n € Z-1, so that Ass(I) = {p,q2} = {(z), (x,y)}. O

Solution to Fxercise 6.67. Suppose for sets I,J there exist A-module isomorphisms
or: M > @, Aand p;: M = @, A, and let m be a maximal ideal of A, so that k = A/m
is a field.

Lemma 11.12.

If M is an A-module and [ is an ideal of A, then A/I is an (M /I M )-module in the natural
way. Furthermore, any A-module isomorphism ¢: M S N induces an (A/I)-module
isomorphism @: M/IM S N/IN. ¢

“Note that once we have tensor products at our disposal, this will follow quickly.

Proof. Define a map A/I x M/IM — M/IM by (a+1I)-(m+ IM) = (am)+ M. This
map is well-defined, since if m —m’ € IM and a — a’ € A, then
elM elM
(d+ ) (m'+IM)=dam +IM =adm' + (a —d)m’ +a(m—m') +IM
| I gy S Sy I
el €M €A eIM

= gl + it — gt + am — @t + IM = am + IM = (a + I)(m + IM).

Next note that M /I M is an abelian group under addition since as groups it is precisely the
abelian group M /IM (as an A-module) under addition. Lastly note that the proposed map
satisfies the (A/I)-module axioms for arbitrary m + IM,m’ + IM € IM,a + I,a' + 1 € I,
since

o (0+IM)(m+IM)=(0m+IM)=0+IM,

o (a+ I)((d+1(m+1)) = (a+I)(dm+IM) = (ad'm+ IM) = (ad")m + IM =
((a+ 1)@ +1))(m+ IM),
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o (a+I)(m+IM)+ (m'+1IM)) = (a+I)((m+m)+IM)= (am+am')+ IM =
(am + IM) + (am’ + IM), and

((a+ D)+ (@ +1)m+IM)=((a+d)+I)im+IM)=(a+d)m+IM = (am +
am)+IM = (am + IM) + (a'm + IM).

Thus M /MTI is an (A/I)-module. The second statement follows from considering the com-
mutative diagram

0 > IM > M > M/IM —— 0

o |

0 > IN > » NJIN —— 0
and the fact that p(IM) =1-p(M) =IN.

U

Now by the lemma, ¢; and ¢, induce k-vector space isomorphisms @;: M/mM =
(D A)/m(D; A) and §;: M/mM = (D, A)/m(D; A)-

Before continuing, we need to show (@;A)/m(@;4) = P,k Define
p: (P;A)/m(@;A) — @,k by po({a; + m(D; A)}) = {a; + m}ie;. If two elements of
(@;A)/m(EP; A) are equal, then their components differ by elements of m in A, which means
by definition of ¢ that their images under ¢ coincide. And ¢ is k-linear, as this follows
directly from the component-wise operations in (P; A)/m(@; A) and P, k. To see ¢ is
injective, suppose ¢((a; + m(@; A))) = 0; then each a; must be in m, so {a; + m(P; A) }icr
the zero element in (@; A)/m(@; A). For surjectivity, observe that any (a; + m),e; € @, k
is the image under ¢ of {a; + m(@; A)}ier. Thus ¢ is an k-vector space isomorphism.

Thus we can identify ¢, ¢; with isomorphisms M/mM S @, k and M /m > @, k, respec-
tively. And k is a field, so we obtain an isomorphism of k-vector spaces

P = QZJOCZDJ[I @Ik = @Jk
Let 1 denote the identity of k, and let d;; denote 1 if i = j and 0 otherwise. It is immediate from
the componentwise operations that the collections {{0ag}tacr | 8 € I} and {{0ng}acs | 5 € J},
are bases for @; k and @, k, respectively. Since the cardinality of any basis is invariant
under isomorphism we conclude I and J have the same cardinality. O

Solution to Exercise 6.68.  (a) Since 7 is surjective, there exists m; € M such that m(m;) =
{0;}jer. Repeating this for each i € I, we obtain a collection {m;};,c; = M. Then for
each i € A, define s({0;;}) = m;, and extend linearly, that is, for any a = >;_, a;, € P,
define s(3,_, a;,) = Dop_, s(ai,) = Dop_, m;,. Since this is the canonical homomorphism
by the universal mapping property of the direct sum of modules, so we already know s
is a well-defined homomorphism P — M.

The injectivity of s follows from the fact that 7 o s is the identity on P: if s(p) = s(p’)
for some p,p’ € P, then by applying m we obtain p = n(s(p)) = n(s(p’)) = p'.
To see M = ker(m)@®s(P), note that any m € M can be uniquely written as m = k+ s(p)

for some k € ker(w), where p = 7(m). Indeed, if m = k + s(p) = k' + s(p'), then by
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applying 7 and noting 7 o s = idp, we obtain p = w(k) + 7w(s(p)) = w(k’') + w(s(p)) =
w(m') =p 7w gives p = p’, hence k = k. Thus M = ker 7 @ s(P).

(b) Let A be a PID, let M =~ A% and let N be a submodule of M. We claim N =~ A®? for
some d' < d. If N = {0} then N =~ @, A = {0} (by convention), so assume N # {0}.

If d=1then M = A, so N =~ I for some ideal I of A. As A is a PID, I = Aa for some
a € A. Then the A-linear map N = Aa — A determined by a — 1 (more precisely, the
map &' — d’a) is an isomorphism of A-modules: there is no issue with A-linearity; it is
injective since a’a € Aa maps to 0 if and only if @ = 0 (since A is a PID and hence has
no zerodivisors); and it is surjective because any a’ € A is the image of a’a € Aa. Thus
N = Aa =~ A, so N is a free A-module. This affirms the claim in the base case.

Now suppose d > 2 and the claim holds for all integers up to d—1. Let 7: A®? — A®d-1)
be the projection (aq,...,a4_1,aq) — (a1,...,a4-1). Then 7w(N) is a submodule of
A®@=1 5o by the induction hypothesis 7(N) = A®@ -1 for some d’ < d. Then since
the restriction 7|y: N — A®@=1 is surjective as a map N — 7(N), by part (a) there
exists an (injective) section s: A®@ =1 — N such that

N = ker(r|y) @ s(A®@ D), (11.12.1)

By definition of s from part (a),
S(A(S(d/*l)) ={(s(a1),...,s(ag_1)) | ar,...,ap_1 € A}
= {(Gl, e, Qg O) ‘ ai,...,aqg -1 € A} = A@(dl_l) X {O} = A®(dl_1),

so if ker(w|y) = {0} or ker(w|y) = A then we are done by Equation (11.12.1). We
thus assume ker(7|y) # {0} and prove ker(n|x) = A. But this follows quickly, since by
definition of 7 above we have 7(aq,...,aq) = (0,...,0) ifand only ifa; = - -+ = a4 = 0,
SO

ker(mw|y) = {(a1,...,a9) e N |ay =+ =a,_ 1 =0} = ({0}@(‘1'_1) @L),

where L is the set of elements ¢ € A such that (0,...,0,¢) € ker(r|y). And L is nonzero
(since otherwise ker(m|xy) = 0 and we are done), we know L = (a) = Aa for some

a € A since A is a PID. But then just as in the base case L =~ A as modules, hence
ker(m|y) = {0}®@ "D x A ~ A as desired. O

Proof of Lemma 7.3. 1f z is reducible, then = = yz. But if x | yz, x | y or x| z, so without
loss of generality zao = y. Then xaz = yz = x, so az = 1, which completes the proof. m

Proof of Theorem 7.9. (=) Let R be a UFD and let # € R be nonzero. Suppose yz € ().
Without loss of generality y, z ¢ R*. We can write xw = yz for some w € R. We can then
write zwy - - Wy, = Y1 - Ya21 - - - % for irreducible elements y; and z;.

Since R is a UFD, there exists ¢ and w € R* such that z = wy; or x = wz;, so y; € (x) or
z; € (x), hence y € (z) or z € (x), as desired.

( <) Supposes some = € R is nonzero but factors into irreducibles (up to units u,u’) in
two ways:

/

x:uxl.."xn:u,xi“'xn
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We will argue by induction on n. The case n = 0 holds since then z is a unit, hence factors
uniquely up to units.

Now suppose n € Z=1, z, | . Since x,, is irreducible by hypothesis, it is prime. Thus

/ /
Tn ’ :Cl e xm’
so z) = ax, for some «. Since ), is irreducible, o € R*. Now

r=(ury - Ty 1), = (vax 2l )T,

Since R is an integral domain,

/

U=T1 Tp1 =v0QL) T 4,

which completes the proof. O]

Proof of Proposition 7.13. We will extract the contents of f, g, and fg as follows. Write
f=c(f) fi, 9 = clg) - g1, where fi, g1 are primitive. Then c(fg) = c(c(f)ficlg)g1) =
c(f)e(g)e(fi)e(gr), where in the last step we were able to pull out the scalar because for all
a € k~ {0}, h € k[z] ~ {0}, c(ah) = c(a) - ¢(h). To prove the proposition, it is enough to
check ¢(f1g91) = 1.

We want to show for all p, ord,(fi1g1) = 0, or equivalently that f;g; has nonzero image in
(A/(p))[z]. But f; and g; have nonzero image in (A/(p))[x] because their contents are 1, so
since A/(p) is an integral domain (since (p) is prime) f;g; has nonzero image in (A/(p))[z]. O

Proof of Corollary 7.14. Let f € Alz] and g, h € k[z]* = k[x] \ k such that f = gh. Taking
the content of both sides, we obtain ¢(f) = ¢(gh), which by Proposition 7.13 is ¢(g)c(h).
Since
eAlz]
f=gh= C(Q)C(h)'ahl,
L 1 L
€A eA[x]

with g1, hy primitive in A[x], we now have a factorization of f in A[z], which shows f is
reducible in A[x] as well. O

Proof of Theorem 7.16. (=) For any f € A, we know the existence of factorizations of f
(since f is a UFD), so we may assume f ¢ A.

e Existence of a factorization of f: k[x] is a UFD, so there exists a factorization f =
p1- -+ pr such that each p;(x) € k[x] is an irreducible element in k[x]. Taking contents,
by Proposition 7.13, we have ¢(f) = ¢(p1)---c(p), and f = c(p1)---c(p-)py - D,
where p; = c(p;)p} for all i, so py is a primitive element in A[x], which is therefore
irreducible in A[z] (by the contrapositive of Note 7.15). Since [ [, ¢(p;) = ¢(f) € A, we
get f=c(f) p}---p., and factoring c(f) in A we get a factorization of f in A[z], as
desired.

e Uniqueness of factorizations of f: Suppose f = p1---p, = q1---¢qs, Where p;,q; are
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irreducible in A[z], where d = ¢(A) factors (in A)? and we may assume the g; are
primitive polynomials in A[z] that are irreducible in k[z]. Since k[z] is a UFD, we
have r = s, so there exists ¢ € S, and a4,...,a, € kK* such that p; = a;q,(;) for all
ie{l,...,r}. Since ¢(p;) = 1 and c(gr)) = 1, we see ¢(a;) = 1 for all ¢, that is, a; € A*
for all 4. Thus this factorization is just the other factorization, up to a unit.

[]

Proof of Theorem 7.18. We prove the contrapositive. If f were reducible in (Frac(A)[z]),
say f = gh for some irreducible g, h € (Frac A)[z]. Then f (mod ) = (g (mod I))(h (modI)),
so because f (modI) is irreducible (by hypothesis) we know either g (mod I) or h (modI)
is a unit in (A/I)[z]. But the units of any polynomial ring are precisely the units of the
ground ring, so either g (modI) e (A/I)* or h (mod ) e (A/I)*. Without loss of generality
we may assume g (mod ) € (A/I)*, so in particular the degree of g (modI) is zero. Since
the leading coefficient of f is not in I, the degree of f in A[x] is the same as the degree of
f (mod 1) in (A/I)[x], so this condition forces the degree of h (modI) in (A/I)[x] to equal
the degree of f in A[z], which in turn equals the degree of f in Frac(A). But this forces g
to have degree 0 in Frac(A) as well. But this means ¢ is a unit (as a nonzero constant in
the field Frac(A)), and hence g is a unit in Frac(A/I), which contradicts our assumption ¢ is
irreducible in (Frac(A))[z]. O

Proof of Theorem 7.22. Relabel R == A. Suppose f = gh, where g = by + byx + - - - + bpa*,
h=0b)+bx+- -+ 2", where k + k' = n. We have a,, = by}, ¢ p, so by, b}, ¢ p.
Now consider everything modulo p. Then

@ua" = (Do + by + - + byat) (EE) + b+ + by ’“)

SO 505:) = 0. But p is prime, so by = 0 or 56 = 0. By induction, we deduce (since A/p is an
integral domain D, and if you're working over an integral domain, then the only factors of 2"

in D[z] are monomlals) that by, ...,bp_1 = 0, bo, by in R/p Since R/p is an integral
domain, then ag = byb, € p*. This completes the proof of the contrapositive of the theorem,
hence the theorem follows. O

Proof of Theorem 7.24. We have

n n—1
= f(a/b) =an<%> +an_1<%> + - +ap
= apa™ 4 ap_1ba" 4 -+ bay, (multiplying through by ")
so V'ag = —(a,a™)(a,a™ + -+ + ab" tag). Thus a | "™, so since (a,b) = 1 we conclude
a | ag. O

2We will omit the factorization of d in the notation, since it adds nothing to the argument, but for clarity

we have , . i,
d- H¢:1 g =[=c(fpy . =c(f) (Hi:1 ai) (Hizl qg(i))a

€AX
so f=d][;_; ¢; where d = ¢(f) - (unit in A).
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Proof of Theorem 7.26. See Exercise 12.3. ]

Solution to Ezercise 7.29.  (a) Fix i e {1,...,n} and let z; € ();; q; be nonzero. To see
Anny(z;) < p;, first let y € Anna(x;) be given. Then
yr; =0 =q1 0 qn < qi,
so yx; € q;. Note that z; ¢ q;, since otherwise z; € q; N ﬂj# g =q N ---q, = (0),
contradicting x; # 0. But q; is primary, so we obtain the desired result y € /q; = p;.

(b) A is Noetherian, so by Exercise 10.2(a) any ideal of A contains some power of its radical.
Then in particular there exists m € Zz, such that p]* = (,/q;)"™ < q;. Then by taking

the intersection with ﬂ#j q; and recalling I - J < I n J for any ideals I, J of a ring, we
obtain

(ﬂ#]’ qi) R (ﬂz‘# qi) ARt e a0 de = (0).
Thus

(ﬂi;ﬁj q@') i = (0). (11.12.2)

Now replace m with the least integer satisfying Equation (11.12.2), which we again
denote by m. Then (ﬂj# q;) - p7~! is nonzero, so it contains some nonzero x;. Then

for all y € p;,
Ty € (ﬂj# qi) T pic (ﬂj# '%‘)p;n = (0),

so z;y = 0. Thus y € Anny(z;) = p;, so we conclude p < Anngy(x;).
() — Ass((0)) < {peSpecA|p=Anny(z) for some z € A}: Fixie {1,...,n}. Since
the primary decomposition (0) = q; N -+ N @, is reduced, the intersection ) i U
is nonzero. Where m is (as in part (b)) the least integer satisfying ([,..; ;) i # 0,
we can choose some nonzero z; € ([, q;) - pi- Then by part (b), p; = Anna(w;).
To see the reverse inclusion, note that z; is also a nonzero element of (),_, q; since

ve (ﬂm qj) e ﬂj#i 15

so Anny(x;) < p; by part (a). Thus Anny(z;) = p;, so any element of Ass((0)) =
{p1,...,Pp,} is the the annihilator of some element of A, that is, each p; is associated
with A.

— {peSpecA|p=Anny(z) for some x € A} = Ass((0)): Suppose Ann4(x) is prime
for some x € A. Thus

Anna(z) = /Ay () = V{y € Ay =0} = /((0) : (2)),
where the first equality is because Anny(z) is radical (as a prime) and
the last equality is by definition of ((0) : (z)). Thus Anna(xz) €

{p € Spec A ‘ p =+/((0) : (x)) for some x € A}. But in the proof of the uniqueness
statement for primary decomposition, we showed that

{p1,....pn} = {pESpecA‘p = +/((0) : (z)) for somexeA},

so Anny(z) must be among the {p1,...,p,}. O
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Solution to Ezercise 7.30. Let A be a PID. Then A is a Noetherian integral domain, hence
any nonzero a € A factors as a product of units and irreducible elements. It then suffices to
show irreducible elements of A are prime.

Let a be an irreducible element of A. It is enough to show (a) is maximal. If (a) is not
maximal, there exists some ideal I of A such that (a) & I < A. Since A is a PID, I = (b) for
some b € A. Since (a) < I = (b), there exists r € A such that a = br. Since b is not a unit
(otherwise I = (b) = A) and a is irreducible, r is a unit. Then we can write b = ar~' and
(a) =aA =ar'A = (ar™'), so

(a) = (ar™") = (b) = 1

contradicting (a) < I. Thus (a) is maximal. We conclude that irreducible elements of A are
prime.

Note that our argument also shows that any PID has (Krull) dimension at most 1. ]

Solution to Exercise 7.31. Suppose f(ag) = 0in Z/(p) and f'(ag) # 0 in Z/(p). For each
n € Z=1, define a, € Z/(p"™') by

Qp = Gp—1 — f(an—l>QHa
where f'(an_1)q, =1 in Z/(p").

e a, is well-defined: To see each a, is well-defined, we need to show such a ¢, exists and
is unique. Uniqueness follows from the fact any unit has a unique inverse, so it suffices
to show f’(a,_1) is a unit in Z/(p"*'). Since

(Z/(p™ ) ={ueZ/") [ptuin Z} = {ue Z/(p™") | u # 0 in Z/(p)},

it is enough to show f’(a,—1) # 0 in Z/(p). This follows from the following induction
argument on n € Zs;.

If n = 1 then since f'(ag) # 0 (modp) by hypothesis, p 1 f'(ap), hence the base case
follows. Now suppose n € Z5 and that for each k€ {0,1,...,n — 2} we have f(a;) =0
in Z/(p*1) and pt f/(as,) in Z. Under this assumption, the existence and uniqueness of
qr are guaranteed, and we can write

=0 (modp)
n-1 = n-2 — fla7=2)Gn-1 (mod p) = ay_2 (mod p)
=0 (modp)
= an-3 — _flam3)Gn—2 (modp) = --- = ap (modp).

Applying f’ to both sides, we obtain

f'(an-1) = f'(ao) (modp) # 0 (modp),
where the last incongruence is by hypothesis. It follows that p 1 f’(a,_1), which completes

the induction argument. By our previous comments, this shows ¢, as defined exists and
is unique for all n € Z~,.

e a, satisfies the desired properties: We now show that for all n € Zsq, f(a,) = 0 in
Z/(p™*™') and that a, = a,_; in Z/(p"). We argue by induction on n € Z;. The base
case is just our hypothesis (that f(ap) = 0 in Z/(p) and f'(ag) # 0 in Z/(p)), so let
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n € Z=1 and assume the claim is true for all integers 1,...,n — 1. Since f(a,_1) =0 in
Z)(p"), flan—1) = t,p™ in Z for some t,, € Z.

We can then see a,, = a,_1 in Z/(p"), since in Z/(p™) we have

0
aAp = Qp—1 — f(anfl)Qn = Up—1 _L@{ﬁwanfl = Ap—1

To see f(a,) =0 in Z/(p™*!), first write f(z) as

flz) = Zjio b,

where N = deg f and by, ...,by € Z. Then we can compute f(a,) in the ring Z/(p"**)
as follows:

N . N ‘
f(an) = ijo bjagz = Zj=0 bj(anfl - tnpn(Jn)j
= ZN 0 b; <Z; . (‘;) ai_l(—l)jkpjktikqﬁ;k> (by the binomial theorem)
j= =

N , .
= Z . bi(al_, —altt,p"q,)  (since p’ for £ = n + 1 vanishes in Z/(p"*1))
I

n—1

= Zjio b,y — tap" G Zjiojbjaff_ﬁ = flan—1) = tap" gufHaz) :
= flan-1) = flan-1) = 0.
Hence f(a,) =0in Z/(p"*).
e Uniqueness of a,: Suppose some a/, € Z/(p"!) satisfies
fl@)=0inZ/(p"™) and d,=a,1in Z/(p").
Then a, and a, are both equal to a,_; in Z/(p"), so there is some ¢ € Z such that
a, = a, + tp" in Z. Then
flay) = flan+tp") = flan) + f'(an)tp” in Z/(p"),
where the second equality by the. same calculation as in the proof of existence above.
Since f(a,) = f(a,) = 0in Z/(p"*'), it follows that
f'(ap)tp™ = 01in Z/(p"*1). (11.12.3)
But
ap = a1 (modp") = a, 5 (modp" ™) =--- =qg (modp),
so f(a,) # 0 in Z/(p). Then in particular f(a,) # 0 in Z/(p"*!), so it follows from

Equation (11.12.3) that tp" = 0 (mod p"*!'). Thus ¢ is divisible by p, so al, = a,+tp" = a,
in Z/(p™*1), proving uniqueness. [

Solution to Exercise 7.32. Let f(x) = 23 + 3z + 1. Tt follows from a simple computation
that the only simple root ag € Z/(5) for f in Z/(5) is ap := 1. By Hensel’s lemma there exists
a unique a; € Z/(25) given by a; = 1 — f(ap)q1 = 1 — 5q1, where ¢, € Z/(25) satisfies the
system

f(1=5¢1) =0 in Z/(25),
1—=5¢ =ag (=1) inZ/(5).
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By inspection ¢; == 1 € Z/(25) satisfies these conditions, so
ay = 1 —5(1) = 21 in Z/(25).

Again by Hensel’s lemma, there is a unique element ay € Z/(125) given by as = a1 — f(a1)ge =
1 — 75¢, where g, € Z/(125) satisfies the system

f(a1 — 75QQ) =0 in Z/(125),
a; — 75qs = ay (=21) in Z/(25).

By checking the elements of Z/(125) that equal a; = 21 in Z/(25), we obtain a; = 71 in
Z/(125). In particular, the equation f(x) = 0 has a solution = 71 in Z/(125).

We claim there are no other solutions in Z/(125). To see this, suppose f(b) = 0 in Z/(125) for
some b € Z/(125). Then f(b) = 0in Z/(5) (resp. Z/(25)), since any integer k divisible of 125
must be divisible by 5 (resp. 25). There are two roots of f in Z/(5), namely 1 and 2, but the
only simple root is 1. If we can show b = 1 in Z/(5), then by the uniqueness clause of Hensel’s
lemma we can conclude b = 71 in Z/(25). Suppose for a contradiction b = 2 in Z/(5). Then
in Z/(25) we must have b e {2,7,12,17,22}. But f(2) = £(7) = f(12) = f(17) = £(22) = 15
in Z/(25), contradicting f(b) = 0 in Z/(25). Thus b # 2, leaving b = 1 as the only possibility.
Thus there are no other solutions in Z/(125). O

Solution to Fxercise 7.33. (a) Note that f(z) = x* + 1 satisfies f(z + 1) = 2* + 42% +
62% + 4z + 2, so f(z + 1) is irreducible in Q[x] by Eisenstein’s criterion for p = 2 since
p = 2 divides all nonzero coefficients except the leading coefficient and p? = 4 does not
divide the constant term 2. Thus f(z + 1) is irreducible in Q[z], so f(z) must be too
(since otherwise the irreducible polynomial f(z + 1) would factor by replacing x with
x + 1 in the factorization of f(z)).

To see f(z) = x% + x® + 1 is irreducible in Q[z], note that we can apply Eisenstein’s
criterion to f(z + 1) = x5 + 62° + 152% + 2123 + 1822 + 9z + 3 for p = 3. Indeed,
the leading coefficient is not divisible by 3 and the constant term 3 is not divisible by
p? =9, while the rest of the coefficients of f(x + 1) are divisible by 3. Thus f(z + 1)
is irreducible in Q[z]. It follows that f(x) is irreducible in Q[z] (since otherwise the
irreducible polynomial f(z+ 1) would factor by replacing = with z+1 in the factorization

of f(x)).

(b) We claim 22 + y* — 1 is irreducible over Q[x,y]. We will use Eisenstein’s criterion,
viewing f(z) == 22 + y? — 1 as a polynomial in z over the integral domain Q[y]. Then
we can write

f(z) = agx® + a1 + ay,
where as = 1, a; = 0, and ag = y* — 1. We want a prime ideal p of Q[y] such that
—l=ax¢p,
—0=a;€ep,
— 9> —1=aqay€p, and

—y’—l=ap¢p’
Consider the ideal p = (y—1) € Q[«]. Since the map g(y) — ¢(1) induces an isomorphism
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Q[y]/(y—1) > Q and Q is a field, p == (y — 1) is maximal in Q[y], hence prime. As p is
a proper ideal, 1 = ag ¢ p. Also, both ag =y? — 1= (y — 1)(y + 1) and a; = 0 are in p.
To see the last point ag = y*> — 1 ¢ p?, suppose the contrary. Then (y — 1)(y + 1) =
y*> — 1€ p? and thus y + 1 € p, forcing y + 1 = (y — 1)g(y) for some g(y) € Q[y]. But
y — 1 is irreducible in Q[y], so g(y) = ¢ for some ¢ € Q, which contradicts the fact
(y —1)q # y + 1 for any ¢ € Q. Thus by Eisenstein’s criterion, f(z,y) = 2% + y? — 1 is
irreducible over (Q(y))[z]. But Q[y] is itself a UFD (as a polynomial ring over a field),
so the prime elements of (Q[y])[x] are the irreducible elements of Q[y] together with
the primitive polynomials of (Q[y])(z) that are irreducible in (Q(y))[z]. Since f(z,y)
is of the latter type, we conclude f(x,y) is irreducible in (Q[y])(zo) = Q[z, y].

Notice that the above proof verbatim shows that f(z) == 2? + y*> — 1 is an irreducible
element of C[z,y], after replacing any occurrence of “Q” with “C.” O

Proof of Lemma 8.2. Assume for contradiction that there exists a nonzero element m +
Tor(M) in M/ Tor(M) that is a torsion element. This means there exists a nonzero a € A
such that am € Tor(M). If m were not in Tor(M), there would exist a nonzero a’ € A
with a/(am) = 0, implying (a’a)m = 0. However, a’a # 0 since A is an integral domain,
which contradicts the assumption that m ¢ Tor(M). Therefore, m + Tor(M) must be zero in
M/ Tor(M), contradicting our assumption. Hence, M/ Tor(M) is torsion-free. O

Proof of Proposition 8.3. Let {vy,...,v,} be a maximal linearly independent subset of M.
(Such a subset exists because if M is torsion-free, then even the singleton set {m;} is linearly
independent, and adding more m;’s to this set can only change it from linearly dependent to
linearly independent once. Since there are finitely many generators, there exists a maximal
linearly independent subset of them.) Then, for each i, the set {m;,vy,...,v,} is linearly
dependent. Therefore, there exist a; € A and b; € A\ {0} such that

r .
bym; + Zj:1 ajv; = 0.

Now set b := byby - - - b,. Then bM is a submodule of the free submodule (vy, ..., v,), since if
m=aymq + -+ a,m,, then

b = ay (]_L#1 bi)blml Y tay (H#n bl-)bnmn
- o <1_L'¢1 bi) (_ 2221 aﬂlvj) to Tt an (H#n bi) <_ Z;ﬂ a;.‘vj)

€ V1, ..., Uy
Since {vq, ..., v,y is free of rank r, and by Exercise 11.4, bM is free as well. Because M is

torsion-free, the A-module map M — bM given by m — bm has kernel zero (and is certainly
surjective), so bM =~ M as A-modules. But bM was free, so we conclude that M is free. [

Proof of Corollary 8.5. M/ Tor(M) is torsion-free by Lemma 8.2, hence free by Proposi-
tion 8.3. Therefore, there exists a nonempty set I such that M/ Tor(M) = @,_; A. Then by
Exercise 11.5, the short exact sequence

0 —> Tor(M) —> M —> M/ Tor(M) ——> 0
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admits a section s: M /Tor(M) — M, hence splits. It follows that
M = M/ Tor(M) @ Tor(M).

=F =T

Since M is finitely generated, any generating set of F' must be finite, so in particular F' has
finite rank r € Z-;. Since the rank is well-defined, there exists a unique r € Zso (where
r = 0 corresponds to the case F' = 0, or equivalently when M = Tor(M)). The module T is
a torsion module, since any m € T' = Tor(M) is a torsion element by definition of Tor(M).
Hence, any finitely generated module M over a PID A can be written as M =~ A" @T. O

Proof of 8.10 (Lemma 8.10). Fix (p) € Spec A. If a € A, then M|[(a)] = M[(a?)] (since if
ra = 0 then certainly ra* = 0). Thus the sequence

M((p)] = M[(p*)] = M[(p*)] = - --

is an ascending chain in M, which is a Noetherian module as a finitely generated module
over the Noetherian ring A. Thus there exists n, € Z>; such that for all ¢ € Z>,, we have
M[(p"*+*)] = M[(p"*)]. Hence M= = M[(p™)].

Now, let @ = {(p)eSpecA| My #0}. If P were infinite, then choose distinct
(p1), (p2), (p3), - - € P and observe that

M[(py)] = M[(p1*p3*)] = M[(p}"P3*P5*)] = - -

is an increasing chain of submodules of M, which must stabilize. That is, there exists k € Z~¢

such that for all £ € Z~,,
k ) k+t .
M| pie| = m|[ T v

Set m = [\, p. Then for all z € My, ., we have x € M[(pprit)] © M[mppeier] = M[m].
Hence ppt4'z = 0 implies py12 = 0 and ma = 0. But A is a PID, so (m, piti') = A, and
thus ax = 0 for all a € A. We conclude that x = 0. Thus Mpe = 0, and similarly, Mye . =0

PEy1

for all 4 > 1. O

Proof of 8.11 (Theorem 8.11). We will show existence in (2), then existence in (1), then
uniqueness in (1), then uniqueness in (2).

e FExistence in (2): Consider the set ¥ defined as ¥ = {A(N) | A € Homy (M, A)}, the
collection of ideals of A given by A-linear functionals on M. Since ¥ # & (as A = 0 € %),
and since A is Noetherian (being a PID), there exists a maximal element in ¥, say
(¢1) = M (N) for some A\; € Homyu (M, A).

Note ¢; # 0: if N # (0), for any basis vy, ...,v, of M and any nonzero n € N, we can
write n = > | a;v; for some nonzero a; € A. Thus, the map A = pr; € Homyu (M, A)
that projects onto the i-th coordinate sends n to a nonzero element. Hence, (¢1) = A\(N)
is nonzero, implying ¢; # 0.

Choose f; € N such that \i(f;) = ¢;. Then, for all A € Homa(M, A), A(f1) € (q1)-
Otherwise, a suitable linear combination

(aX +bA1)(f1) = ged(qu, A(f1))
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would contradict the maximality of (q;). Thus, fi = qie; for some e; € M, writing
f1 in any basis of M as f; = > | a;u;; the projections to the ith coordinate p; give
pifi = a; € (q1)-

We observe:

— M = Ae; @ ker(A\): For all m € M, m = \(m)e; + (m — Aj(m)ey), where the
latter is in ker(A;) since Aj(e;) = 1. Thus, M = Ae; + ker(A1). If A\j(ae;) = 0,
then a -1 =0, so Ae; nker(A;) = (0).

— ker(\;) is free (of rank n — 1): Indeed, as A is a PID, and N = Af; @ ker(\|y),
we find that ker(\;|y) is free.

For the inductive step, assume that there exists a basis e, ..., e, of ker(\;) and ideals

(g2) © (g3) @ -+ D (g.) of Asuch that gqes, ..., g€, is a basis of ker(\|y) = Nnker(A;).
We may further assume that our induction hypothesis says (¢z) is maximal in the set

{A(ker(A1|n)) | A € Homy(ker Ay, A)}.

We must check ¢ | go. For all A € Homy (M, A), A\(N1) < (q1). If not, extend X to M
by setting A(e;) = 0, and then for some n; € N; with A(n1) ¢ (¢1), a linear combination

(@A 4+ DN)(f1 +ny) = aqr + bA(n1)

equals ged(qr, A(nq)), contradicting the maximality of (¢;). Thus, (¢2) < (¢1), that is,
¢1 | g2. This proves existence in (2).

e FExistence in (1): Let my,...,m, be generators of M. Consider an exact sequence
0—G— A" 5 M — 0, where G = ker(r) and 7(as,...,a,) = >, a;jm;. Applying
the existence of (2) to the inclusion G = A™, we get a basis eq,...,e, of A" and
¢1 | g2 | -+ | go such that for some r, s with r + s = n, qie1, ..., gses is a basis of G and
Qr+1 = = Qrys = 0. Thus

M ~ A@T@@j‘:l A/(q])

e Uniqueness in (1): let M be a finitely generated A-module. From existence, we know
M = A% @j‘:l A/(q;) for some r,s € Zo. We want to show r,s,qi,...,qs (with all
¢; # 0 and non-units) are uniquely determined by M. Uniqueness of r is just because
r =rk(M/Tor(M)). It remains to show uniqueness of the torsion submodule of M. We
may assume 7 = 0 (since otherwise we can consider M /A®"). Let p be any prime of A
such that p | ¢;. Set M[p] = {x € M | px = 0}. In the decomposition M = D;_, 4/(g;),
an m € M lies in M[p] if and only if when we write m = m; + - - - +mg, m; € A/q;, each

m; € A/(q;)[p] = {E?/Z;A %fpj(q,,
In this latter case where p | ¢, % ~ A/p via %x «— x. Consequently,
{7 | p divides ¢;}| = dim/,(M[p]) (dimension as a vector space). In particular, for
any p such that p | ¢, we deduce that s = dimy/,, M[p]. For any other decomposi-
tion M = @flzl A/(q}) (with ¢; nonzero non-units) such that (¢}) | (¢5) | -~ | (¢)),

dima/, M[p] = [{j | p divides ¢}}| < s’. The argument here is symmetric with respect to
s and §', so we also obtain the other inequality ' < s. Hence s = s, so s is independent
of the choice of decomposition with the divisibility property.
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And moreover, for any p dividing g, p also divides each ¢}. So, for any two decompositions
like this, they have the same number of terms, and any prime appearing in the first
layer of one must appear in the first layer of the other, hence in all other terms.

We can now finish the proof of uniqueness by inducting on the number of prime factors
of szl ¢;. Namely, look at t submodule pM of M. Still with p | ¢1, we have

s pA s

Then by induction, since % | qf |- %S, we see that the g;/p are uniquely determined
(by the IH), so by multiplying by p we obtain uniqueness of the ¢;. This proves uniqueness
of (1).

e Uniqueness of (2): This follows directly from the uniqueness of (1) as follows. Choose a
basis {e1,...,e,} of M with {qie1,...,¢.e,} (discarding those ¢ such that ¢e; = 0) as a

basis of N € M and ¢, | ¢2 | - -+ | go- Then, for some t, s, r,
Qus -5 Gt Qet1s - - -5 Qtts Qs +15 In=t+sr -
eAX #0 and ¢AX =0
Then
M/N ~ A @@’ A/ (gsy).
and by uniqueness in (1), N and the sequence (¢;11),- - -, (qi+s) are uniquely determined.
But then so is t = n —r — s and necessarily (¢;) = --- = (¢:) = A. O

Proof of Corollary 8.13. By Lemma 8.10 M,» = 0 for all but finitely many (p) € Spec A.
Let @ = {(p) € Spec A | My» # 0}. Since P is finite, we can write M as a direct sum of its
p*-torsion submodules for each (p) € P, and a direct summand that is torsion-free. Formally,

M= <@<p>e9> Mp‘”) oT,

where T is a torsion-free A-module.

By part (1) of Theorem 8.11, T is isomorphic to a direct sum of a free A-module and a
direct sum of cyclic modules of the form A/(g;) for some ¢; € A, which gives us the desired
decomposition. O

Proof that 8.13 and 8.11 together imply 8.14 (Corollary 8.1/). By Corollary 8.5 we can
write M =~ A®" @ Tor(M) for some r € Zxq. Since M,» < Tor(M) by definition of My», we
define a map

©: @(p)ESpeCAMpoo —> Tor(M),

{m(p)}(p)ESPeCA - Z(p)ESpQCA m(p)
This map is a module homomorphism by the universal mapping property of direct sums, so
it remains to show that it is injective and surjective.

e ¢ is surjective: Let x € Tor(M). By definition, Anns(z) # 0. Since A is a PID, we
have Anny(z) = (a) for some nonzero a € A. As A is a PID, a can be factored, so
a = up}* - - - pp* for some unit v e A* and distinct prime elements p; € A, n; € Zs. For
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each i e {1,...,k}, define

Then (ay,...,a;) = A. Hence, we can write

k
1= Z r;Q;.
i=1

In particular, x = Zf;l ria;x. Observe that rya;x € Mp», since p}'(r;a;x) = rax = 0.
Thus, ¢ is surjective.

e ¢ is injective: Suppose {m;}¥_, € ker(yp), where m; € M,» = M[(p?*)]. Then Zle m; =
0, with £ minimal. Consequently, —m; = mgy + --- + my. Since pj*m; = 0, we have
Pt (me + -+ -+ my) = 0. Also,

Py ps® - pit(ma + -+ i) = 0,
which implies
Anny(my) = Anng(mg + -+ myg) 2 (P17, py> - -ppF) = A,

so Anny(m;) = A. This means m; = 0, which contradicts the minimality of k. Thus ¢
is injective, which completes the proof. O

Proof of Theorem 8.17. (1) As my = Anng,(Vr) and Vp = @ klz]/(¢:(x)), we have

mr(x) = gs(x), where each ¢; divides g,. Since my and ¢, are monic, my = g,.

(2) The decomposition of Vz guides our choice of basis: in the i-th summand, choose the
basis (1,x,...,x%%~1) Then, with respect to this basis, 7' has the form of a block
diagonal matrix with each block being a companion matrix 6,,. Thus RCF is unique.

(3) A and B are conjugate in GL, (k) if they represent the same linear transformation.
Hence, if RCF(A) = RCF(B), they are conjugate. For the second part, consider L
extending k. If A and B are conjugate in GL,, (L), then their RCFs are the same in L[x].
Since the ¢;s are in k[x], it follows that A and B are conjugate in GL,, (k).

(4) pr(z) = det(zxl, —T), where A = RCF(T'). Then pr(z) = [[det(xliegq, — By) =
q1(z)q2(x) - qs(z). Since q1 | g2 | -+ | gs = mr(x), mr(x) | pr(r), and they share the
same roots, considering multiplicity. O]

Proof of Theorem 8.19. As a k[z]-module, there exists an isomorphism V =~ @._, k[z]/(x —
A;)% for some d; and \;s. The matrix of multiplication by z on k[z]/(x — \)¢, in the basis
(L,z — A, ..., (x — A\)%1), is the Jordan block J, 4. O

Proof of Corollary 8.20. 1f A is diagonalizable, say PAP~! = diag(\1,...,\,), then the
minimal polynomial m4 (%) = [ [4iginet », (T — Ai). Conversely, if m 4 has distinct roots, then
each Jordan block J), 4, of A satisfies m, , (z) = (z — \;)%, and since m 4 has distinct roots,
we have d; = 1 for all 7. Hence, A is diagonalizable. We now make this precise:

A1

(=) Suppose P7tAP = for some P € GL, (k). Then A satisfies m(A) = 0 for
An

m(x) = [ [ieg(x — A;) where S < {1,...,n} is a subset such that \; # A, for ¢,j € S and
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{Nilie{l,....,n}} ={\ | ie S} By definition, ma(x) | m(z), so ma(z) has distinct roots.
(As easily checked, ma(x) = m(x)).

(<) We know there exists some P € GL, (k) such that
Ji
plap=| ..
"

where we are writing J; to mean Jy, 4, for each ¢ € {1,...,r} The minimal polynomial of
each J; is (z — \;)%: this follows quickly from a direct calculation, or from the fact that
the invariant factor decomposition of k% as a k[x]-module, with x acting via J;, is given by
k% = k[z]/(x — X\;)%. Thus ma(z) = lem;—;,_,((x — A\;)%), and the assumption that m4 has
distinct roots forces all d; = 1, that is, P~'AP is diagonal. n

Proof of Proposition 8.31. 'V = M as a C-vector space, Tv = zv. Sov € E), < (T —
)\I)”UZO — UEM(I,)\)OO. ]

Solution to Exercise 8.33.  (a) Any Fs[x]-module M of order 8 is finite, and hence finite-
dimensional as an Fo-vector space. Thus M =~ FJ for some n € Zo. Thus 8 = | M| =
IF3| = 2", so n = 3; it follows that M is 3-dimensional as an Fs-vector space.

It follows from the corollary to the structure theorem that we can write isomorphism
classes of Fy[z]-modules of order 8 take the form M = @Y | Fy[x]/(pi(z)") for k € Zs,
such that p; € Fy[x],r; € Zs, are not necessarily distinct and the p; are irreducible, and
Zle ridegp; = 3.

First note that the following are all irreducible polynomials of degree at most 3 in Fy[z]:
242?41, x4+ 1,22+ 24+ 1,2+ 1, 2. Indeed, if any of these were reducible they
would have a root in F5 but none of these do. And there are no more irreducibles,
because the rest of the polynomials of degree at most 3 are 2® + 1 = (v + 1)(2? + = + 1),
Pl tr=a@+z+1), 22+ 224+l = (2+1)3, 22 +1 = (2 +1)%, 22 +2 = 2(z + 1),
which are all reducible.

We break into cases depending on the integer k. By the structure theorem any two
isomorphism classes from different k are distinct, so when listing all possible isomorphism
classes for a given k we only need to check that multiplication by x is a distinct linear
transformation.

— k = 1: The possibilities and the corresponding action of multiplication by z in the
basis (1, ,2?) are as follows:

0 01
IFa[x] .
D) o (P01
010
0 01
Flx
(2) G, |10 0);
011
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)

1
011
— k = 2: The possibilities and the corresponding action of multiplication by z in the

basis (1,x) @ (1), respectively, are as follows:

0 0
0 0
10
0 0
10

(5) iy ok,

x2+z+1)

SCeS oo

x2+x+1)

==

—~
—_

(@)
SN—
=
&M
o
GE
ey
O = O
o O O

— k = 3: The possibilities and the corresponding action of multiplication by z in the
basis (1) @ (1) @ (1) are as follows:

1
<11) (:r:2+1) @ oc-i—l @ (x+1 (O
0

0

0

0

Fo[z] Falz]
(12) T @ @

0
(13) (Qx) ® (x2+1) D (x2+1)’ (8

1

(z+1)
(b) By Corollary 8.22, we have the following possibilities:
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(1) Fylz]/(q(z)) for q(x) = 2® + ax + bx + 1 for some a,b € Fy (where the nonzero
constant term is equivalent to the condition 4, is invertible). Breaking into
irreducibles and consulting our list of irreducibles in part (a), we have the following
cases, where the RCF is in the basis (1, z, z

?)

0 01

(1a) Folz]/(23 + 2+ 1), whose RCFis [1 0 1|,
010

0 01
(1b) Fylz]/(z* +2*+1), [1 0 0],
011

1 00
(lc) Fylz]/((x —1)(2* + 2+ 1)) = (w 1)@ 2+w+1), 8 (1) i , and

(1d) Falx]/((x - 1)%),

O =
[ )
i)

(2) Fylz]/(x — 1) @ Fo[z]/((x — 1)?), where the RCF is

(1,z).

oS O
=)

0
0 ], in the basis (1) ®
1

1 00
(3) Folz]/(z — 1)@ Fs[z]/(x — 1) ®Fy[x]|/(x — 1), where the RCF is | 0 1 0 | in the
0 01
basis (1) @ (1) @ (1).

Solution to Exercise 8.34. (a) Note that im(f) is a submodule of the free Z-module Z™,
so by the second clause of the structure theorem for finitely generated modules over a
PID there exists a basis (¢}, ...,¢e,,) for Z™ for which there are unique ¢i,...,qs € Z
satisfying ¢ | qg | -+ | gs and the nonzero elements of the ordered set (gi€,. .., gse.), say
(¢in€s - - qie; ) for iy < --- <., is a basis for im(f). (Of course, since ¢1 | g2 | -+ | ¢n,

ouronlychomeforzl,.. . 1821—1 bo=2,...,0, =T.)

For each j € {1 ., 1}, since g;; e} € im(f), there exists some nonzero e; € Z™ such

that f(e;) = gi,e;, Observe that {e1,...,e,} is linearly independent in Z". To see this,
suppose the contrary Then (without loss of generality) e; can be expressed as a linear

combination e; = Z;Zl n;e; for some ny,...,n, € Z. But then
T T T
g€, = fler) = f(Ejzl ”j%‘) = ijl n;fle;) = ijl n;i(gi€s;),
which contradicts the linear independence of {qi€], ..., q.€.} in Z™. Thus {ey, ..., e,} is

linearly independent in Z™.

The short exact sequence 0 — ker f — Z"™ — im f — 0 splits by Exercise 11.5(a) , so
7™ ~ ker f @im f. Since ker f is a free submodule of the free Z-module, we can pick a
basis {€,11,...,e,} for ker f. Then (ey,...,e,) is a basis of Z". Because (¢;,,...,q; ) is a
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basis for the image, for each j € {r+1,...,n} we can write f(e;) as a linear combination
flej) = Dy akjgipel, for some a;, € Z.

We now write the Z-linear combination f as a matrix with respect to the ordered bases

(e1,...,en) for the source Z" and (¢j,, ..., €] ) for the target Z™, where the ¢ ,..., €
are as before and €] _,...,e; is any indexing of {e},..., e} N {ej,,... €} }. Then
e ifje{l,...,r},
f(ej) = QZJT K ’ . j { }
D ko1 GkjGine;, forsome aj, € Z if je{r+1,...,m}.
Thus the matrix A of f in these bases is
C]n, qna_l,r-H T qnc_ll,n
A= i, | i O i, A

0 0

The column operation that takes a column and subtracts an integer multiple of some
other column is invertible, so by subtracting appropriate multiples of the first r columns

from the last n — r columns and transforming our ordered basis vectors e, 1,...,e,
accordingly, we obtain bases in which f is written as
Qi
r_ 4qi,
A = 0
0
Since i, | @iy | -+ | @i,, this matrix takes the desired form. This completes the proof.

(b) Let A be the matrix representing f: Z" — Z™ with respect to the standard ordered
basis. Before we begin, first note that by part (a) A is similar (in M, (Z)) to some
A" = diag(q1, - . ., qn) with each of ¢1, g, . .., g, nonzero, so det A = det A’ = q1¢2 - - - G-

If A is singular then det A = ¢1¢2--- g, = 0, so because Z is an integral domain one
of the g;s is zero. Thus, by the divisibility condition, ¢; = 0. Since Z" = ker f @ im f,
at least the direct summand corresponding to Z/(g¢s) in the decomposition of im f is
Z/(qs) = Z/(0) = Z, which is infinite, so the cokernel Z"/im(f) =~ ker f has an infinite
direct summand. Since the index of im(f) in Z" is the cardinality of this cokernel by
definition, we have [Z": im(f)] = oo.
On the other hand, suppose A is nonsingular. Then det A = det A" = ¢1¢q2-- - ¢,, # 0, so
each ¢; is nonzero. Then
L L 0L L gL (11.12.4)
im(f)  @Z® @@L @l

qnZ

is a finite set since each direct summand is finite. (Here we used that if {M;},c; are
R-modules and N; < M; is a submodule for each i € I, then the natural map @,_; M; —
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@P,c; B is a surjective module homomorphism with kernel @, ; N;, and thus induces

Ni el
a natural isomorphism %‘Z—’I?\{ S @ % .) Taking cardinalities in Equation (11.12.4),
we conclude
7 Y/
T ..o == . :
[Z" - im(f)] q12® @an 01G2" " Gn < 0O
as desired. Since ¢1qo---qs = det A = det A, we conclude in this situation that
[Z" - im(f)] = det A. O
Solution to Ezercise 8.35. Write
1 2 3 1 2 3 1 2 3
A={4 5 6| =20 (0 -3 —6 | 2= [0 -3 —6
7 8 9 7T 8 9 0 -6 —12
1 3 1 2 7
Hom=2Re, 10 —3 —6 | &=2%, [0 =3 0
0 0 0 0 0 0
1 0 7 1 0 0
L= 1y -3 o) &= o =3 0
0 0 O 0 0 O
1 00
=l fo 3 0
0 00

which is in the desired form. This is equivalent to obtaining bases of the source and target
in which the matrix f has the desired form (since one can trace backward the sequence of
invertible transformations and then apply them to the standard basis to obtain the desired
basis), and after doing so we obtain A = Q7' AP, where

1 0 0 1 2 3
Q=14 -1 0 and P=101 2] O
1 -2 1 0 01

Solution to Fxercise 8.36. We first assume the finite case holds and prove the infinite case.
Since span{T;};cs is a vector subspace of the k-vector space Endy (V) and dim(Endg(V)) =
dim(V)? is finite, span{T;};c; has some finite basis (T}, ..., T;,) for some r < n?. By the finite
case, there exists a basis of V' simultaneously diagonalizing each T;,. Any k-linear combination
of finitely many simultaneously diagonalized maps is itself simultaneously diagonalized by
linearity, so we are done because each T' € span{T;}, is a k-linear combination of the T;.

We now prove the finite case by induction on |I| = k € Z>;. The base case is immediate by
point (i) of the hypothesis, so suppose the claim is true for all integers in {1,...,k — 1} and
let {T;}¥ | be a collection of pairwise commuting diagonalizable matrices. For each eigenvalue
A of T}, let

Eyx={veV |Tw = \v}.
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Then for each v € E\, we have T;v € E\: indeed,
Ty(Tw) = Ty(Tkw) = Ti(A) = A(T),

so Tyv is an eigenvector of T}, with eigenvalue A. Thus the linear maps 77, ...,T,_1 can be
be viewed as linear maps 71|, : Ex — E\. Then by the induction hypothesis (which we
can apply because the subspace F) is itself finite-dimensional), there exists a basis, call it
B, of F\ simultaneously diagonalizing the 77,...,Tr_1. And all elements of the basis %
are eigenvectors for Ty|g, as well, as all (nonzero) elements of E) are eigenvectors of T}, (by
definition of F). Since T} is diagonalizable, V' is the direct sum of all such FE), so obtaining
a basis for each direct summand F) as above we obtain a basis for V' that simultaneously
diagonalizes all T, ..., T}, as desired. This completes the proof. O]

Solution to Ezercise 8.37.  (a) By definition, T*w} = wj o T, so for all 4,7 € {1,...,n},

(T*w})v; = vj o T'(v;) = wj o (Zk akiwk> = Zk akiw = aj;,
=6k
so T*w} is the column vector corresponding to the linear functional V' — K sending v;
to a;;. Thus the matrix A* of the linear transformation 7* in the bases {v;}; and {w;};
is

A* = (aji)?,j:l = A,
the transpose of A.
(b) Suppose V is a K-vector space, {v;}ic; is a basis for V, and v € V,f € V* and

ev(v)(f) = 0. Then 0 = ev(v)(f) = f(v), so v € ker f. But f was arbitrary, so in
particular v} (v) = 0 for all i € I. But i was arbitrary, so

v = {Ui}iel = {U:(U)}iel = {O}iel = 0.
Thus ev is injective.

Now suppose dim V' < oo, let {vy,...,v,} be a basis for V, and let ¢ € (V*)*. Since
dimV < o and {v],...,v*} is a basis for V*, dim V* < co. Similarly, {v,...,0,} is
a finite basis for (V*)*, where v; = (v*)*. To see ev is surjective, it thus suffices to
show each basis vector ¥; is in the image of ev. It is thus enough to show ev(v;) = v;,

which we justify as follows. Since ev(v;)(v) = vj(v;) = ;5 for all 4,5 and this property

characterizes the basis {Z1,...,7,} dual to {v},...,v*}, we conclude ev(v;) = v;. Thus
ev is surjective, hence an isomorphism. ]
Proof of Lemma 9.1. Define p: V* — ], k by

o(N) = {zitiere [ [, %
where x; = A\(v;). It is straightforward that ¢ is a homomorphism of k-vector spaces.

We claim the map ¢: [[,.; kK — V* defined by

¢({$i}z‘e1) = (2i€[ aivz‘) = Zie[ QAiT;

(the sums ). ; a;v; are finite since a; = 0 for almost every 7) is an inverse for ¢. One can
check that {z;}icr € [[,c; k, ¥({zi}ier) € V*, and ¢ is a homomorphism of k-vector spaces.
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(These are simple checks best left as an exercise.)

To see ¢ and 1 are inverses, we need to show ¢ o9 = id;, and 9 o p = idy*. We have
(M) O] aw;) = D) a;z; where x; = A(v;) = >, a; A (v;) = A a;v;), that is; 1 o ¢ = id, and
(po¥)({zitier) = w(W({wi}ier)) = (y;) where y; = Y({z;}ier)(vi) = 4, so ¢ 09 = id. Thus,
@: V* — ] ]..; k is an isomorphism. O

Proof of Corollary 9.2. For [ finite, [ [..; k = @,.; k. Then where ¢, are as in the proof
of Lemma 9.1, we obtain an isomorphism

Vi)@ielk—l_[ielk%)v*
v > e; > €t > (e;)

and ¢(e;)(vj) = d;5, that is, ¢(e;) = v}, as desired.

We omit the general proof of the second point, but we do give some remarks in the case
dim; V' = c0. For V = @, ; k, we have dimy, V* = |{set maps I — k}|, which is a strictly
larger cardinal than |I| by an argument similar to Cantor’s diagonalization argument. We
omit the general proof of this, but we do note that in some cases we can easily see that
@k # []k. For example, where p is a prime, |V| = ’@iGZ>1 Z/(p)| is countable, but for
k = Z/pZ and I = Zz, we have [V*| = [],.;_, Z/(p) is uncountable (since it contains
countably infinite strings of Os and 1s, which covers all real numbers when written in binary,
and the real numbers are uncountable). O

Proof of Definition 9.11. Define ¢: VxW — V ®; W by
(0, w) = (v,) (mod X).
Then ¢ is K-bilinear by the construction of X. Given any K-bilinear f: V xW — U, define
the K-linear $: @B, ,)evsw K (v, w) — U first for generators by $((v,w)) = f(v,w), then
extending uniquely to ¢: C—D(v,w) K (v,w) — U by the universal property of the direct sum.
Note that @(X) = 0: it suffices to show @ vanishes on a spanning set of X. And indeed,
@((G’U + bvlv 'LU) o a</U> w) - b(vlv w)) = @(WU + bvla UJ) - G&(U, 'lU) - b@(vl7 'LU)

= flav + b0, w) — af((v,w)) = bf ((v', w))

= f((av + b, w)) — af((v,w)) = bf((v,w))

= 0.
and likewise for the other generators. Since ¢(X) = 0 (that is, X < ker @), @ factors uniquely
through the desired K-linear ¢ by the universal property of the quotient.

Conversely, given a K-linear map ¢: V ®; W — U, it is immediate that the map ¢ o ® is
bilinear (since linobilin=bilin). The maps ¢ — ¢ o ®, and the map sending f to its induced
map, are easily seen to define inverse isomorphisms of K-vector spaces. (The details are left
as an exercise.) O

Proof of Lemma 9.14. Let {e;}ie; and {f;},es be bases of V and W, respectively. We claim
{e; ® f;} (i )erxs forms a basis for V ®;, W.
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o {€;® fj}jerxs is a spanning set: For any v € V, w € W, we can write v = ., a;e;
(where finitely many a; are nonzero), and likewise w = >, ; b; f; (where finitely many
a; are nonzero). Then

vRW = <Zie] aiei> ® (ZjeJ bjfj) = Zie[ a;(e; ® w)
- Zz‘el i <2jeJ bi(e: ® fj)) - Z(m‘)ew aibj(e: ® f;).

Any element of V®, W is a finite k-linear combination of simple tensors of the form v®w,

hence can be written as a linear combination of the above form. Thus {e; ® f;} j)erxs-

o {€;® fi}(ijerxs is a linearly independent set: Suppose there is a k-linear relation
Z(m)dx] c;j(e; ® f;) = 0 where finitely many ¢;; are nonzero.

Suppose some ¢;;, # 0. Then

—1
€ip ® fjo = _Z (3,5)€IxJ Cij(ei ® f]) (11.12.5)

Ciojo “ (,§)#(i0.jo)

Now define a k-bilinear map A: V xW — k by the unique k-bilinear extension of the function
Uit (i) = (i
H(eiafj) _ { 1 (Za]) (20730)7

0 otherwise,
(Such an extension exists and is unique because {e; };c; and {f;},e; are bases.) This assignment
induces a map Homy(V ®; W, k) — Biling(V x W, k), so by the universal mapping property
in Theorem 9.10 there exists a unique ¢ € Homy(V ®; W, k) such that H = ¢ o ®. Applying
¢ to Equation (11.12.5), we obtain ¢(e;, ® f;,) = 1. But for all (¢,7) # (i, jo) we have
ple:® f;) = H(es, fj) = 0, s0
1 = ¢(LHS of Equation (11.12.5)) = ¢(RHS of Equation (11.12.5)) = 0,

a contradiction. ]

Proof of Theorem 9.17. We have the commutative diagram

Homy (V@ W,U) —=— Homy,(V, Homy (W, U))

P

mmMVMMUM///g//

with @(f)(v)(w) = f(v,w) for any f € Biling(VxW,U),v e V,and w € W and ¥(¢)((v,w)) =
o(v)(w), where (v,w) e V xW. O

Proof of Corollary 9.26. A™T': A"V — A"V is an endomorphism of a K-vector of rank 1,
hence is multiplication by a scalar. (This is intrinsic in the sense that no choice of basis of V'
is needed.)

The determinant of a linear transformation is axiomatically characterized by being the unique
multilinear alternating function on the columns of an nxn matrix (that is, det € Alt"(V*, K)
where V' = K™ is the space of column vectors & we picture V" as M,,(K) such that det(/) = 1).
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Fix a basis of V, so V. = K" and Endg(V) = M,(K). For any A € M,(K), define
D(A) = A"A, that is, Ae; A ... A Ae, = D(A)ey A ... Ae,. Then D(I) =1, and D is clearly
a multilinear function on the columns Aey, ..., Ae, of A. O]

Solution to Ezercise 10.1. Let P € Syl (G). Then PH/H € Syl (G/H): indeed, [G/H :
PH/H] = |G : PH] | [G : P] is coprime to P, and PH/H =~ P/(P n H) is a p-
group—combining these observations yields PH/H € Syl (G/H).

The orbit of PH /H under the action of conjugation by G/H is (by the orbit-stabilizer theorem)
the index [G/H : Stabg/u(PH/H)], which has cardinality |G/H| = [G/H : Stabg/u(PH/H)]
and Stabgu(PH/H) > Stabg(P)H/H (because if nPn~! = P, then for all h € H,
hnPHn 'h™' = hnPn'Hh™ = hPH = hHP = HP = PH, since H <1 G). Thus

SylL,(G/H) = [G/H : No/u(PH/H)] | [G/H : Na(P)H/H]
=[G Ne(P) - H] | [G : No(P)] = [SylL,(G)],
as desired. ]

Solution to Exercise 10.2. Let S = {maximal proper subgroups of G}. Recall G is not a
union of the conjugates of proper subgroups, so in particular G # | Jy.q H. Hence there
exists some g € G\ (Upes H)-

Every element of a finite non-cyclic group is contained in a maximal proper subgroup, but all
maximal proper subgroups have the same size by our hypothesis (since they are all conjugate,
hence isomorphic to each other).

But this means g cannot be contained in some maximal proper subgroup (otherwise, it would
be in the chain | J,.4 H), so G cannot be non-cyclic. O

Solution to Exercise 10.3. (=) Suppose M is finitely generated. Then there exists an R-
module surjection R" — M — 0 for some n € Z. Since localization is exact, for all 7,
the induced map R} — My, is also a surjection, that is, My, is finitely generated as an
Ry,-module.

(<) Suppose My, is finitely generated as an Ry,-module for each i. Thus, for each i, there
exists a finite set of generators {m;1,...,m;,,} of My, where each m;; € M and n; € Z,.
.

These generators can be expressed as {}”T;-} " for M f,» where r;; € Z. We claim that
K] ]71

generates M as an R-module. Let m € M. Expressing m in terms of the generators of My,
(as an Ry-module), we obtain a relation

ng A4 y .
m—z, —Lmy; | f=0in M,
j=1 f[u

for some t; € Z and a,;; € R. Choosing N large enough, for all ¢, we have

N i .. ) —
1 'mezjle-mU (i=1,...,7).
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Since (fi,..., fr) = R, it implies that (f{¥,..., fY) = R. The relation >;_, a;f; = 1 with
a; € R, raised to the Nth power, gives 1€ (f{Y,..., ). Thus,

1= 2;1 bifZN for some b; € R.

Therefore,

T be T g R
i=1 "7t i=1 &dj=1 K

and we conclude that {m,;} iE{{l ..... r} generates M as an R-module. O]
7e{l ;

..... n;}
Solution to Exercise 10.4. In a UFD, f e D|z] is primitive means C(f) = 1, where
C(f) = rincipal pordp(f)
H(plfesp;;w)
where ord,(f) = min{ord(a;) | a; is a coefficient of f}, and ord,(a) = r such that a = p"®
for b,c € D such that p | be.

Now, suppose f and g are primitive. We claim that C(fg) = 1, which follows from
Gauss’ lemma. We have C(fg) = [] prime pdU9  and ord,(fg) = min{ord,(cs) |
¢k is a coefficient of fg}. Coefficients ofp)ff]peé%De) Ck = Diyjoi @ibj, so ordy(cy) = r such
that
.0
Zi+j=k abj =cp=p - where p 1 be.

As ord,(a;b;) = 0 (since ord,(a;) = 0 and ord,(b;) = 0), and indeed, ord,(a;b;) = r such that

a;b; = pogpoi’—: = poﬁ—g and p{ c;d. Thus, ord,(cx) = 0, so ord,(fg) = 1 by arithmetic, hence
fg is primitive if f and g are primitive. O]

Alternate Solution to 10.4 (Exercise 10.4). f(x) is primitive if for all prime elements p € R,
p does not divide every coefficient of f(x). Suppose

flz)=apx"+ ...+ aeR[z] and g(z)="ba™ + ...+ b€ R[z]

are primitive. Let p € R be a prime element. Let r» and s be the largest indices such that
p1ta. and p1b,. Let

Then
Crys = ZiJrj:rJrs Q; - bj = Qp - bs + Ta

where T is a sum of terms a; - b; such that ¢ > r or j > s, hence p | T. As p is prime, p { a, - s,
80 p{ ¢r1s. We conclude that f(z) - g(z) is primitive. O

Solution to Exercise 10.5. We have A-adj(A) = det(A)-I,. If Aisinvertible, then det(A) #
0, adj(A) is invertible, and rk(adj(A)) = n.

Otherwise, if rk(A) < n — 1, then all (n — 1) x (n — 1) minors of A are 0, so adj(A) = 0 and
has rank 0.

Version of February 5, 2024 at 11:53am EST Page 171 of 177


https://www.greysonwesley.com/home

Greyson C. Wesley 11: Proofs

If rk(A) = n — 1, then adj(A) # 0, so rk(adj(A)) = 1. However, im(adj(A)) < ker(A), which
is 1-dimensional, so rk(adj(A4)) = 1. O

Solution to Exercise 10.6. We have 245 = 5 - 7% - ny(G) = 1 (mod 7) and n7(G) | 5 (by
Sylow’s ), so n7(G) = 1. Likewise, n5(G) =1 (mod 5) and ns(G) | 7%, so ns(G) = 1. By the
conjugacy of Sylow p-subgroups, the unique Sylow 5-subgroup P and Sylow 7-subgroup () are
both normal in G. Since PN @ = {1} (by Lagrange’s theorem), we have |P-Q| = |P|-|Q| = |G]|.
Then since both P, Q) < G, it follows that G =~ P x Q).

Now, up to isomorphism, P is unique, P ~ (%, and for () there are two possibilities:
Q ~ Cy9 or Q ~ C7x 4. So by Exercise 4.1 GG is isomorphic to exactly one of the following:
C5XC49(= 0245) or C5XC7XC7. O

Solution to Exercise 10.7. Let X be the finite set G/H of left cosets of H in G, and let
Gx act by g - (aH) = gaH. This induces a group map a: G — Aut(X) with kernel
ker v = ()ox Stabg(aH) = (), gec @Ha ' < H. Thus here o < H, so we only need to show
|G/al < . And indeed, G/a = ima < Sig.p), and Sje.x is a finite group since [G : H] is
finite, so |G/ ker o < 0. O

Solution to Ezxercise 10.8. H = R@® Ri ® Ry ® Rk with the unique associative R-algebra
structure such that R is central, i> = j2 = k> = —1,ij = k, ji = —k. Define H % M;(C)

: : ) 1 0\ . ¢ 0 . 0 1
by the unique R-linear extension of 1 — <0 1), T — (0 —z')’ J — (_1 0), and

k — (S 8) The images (i), p(7), p(k), o(R) satisfy the relations, so such a ¢ exists.

More formally, H is presented as the quotient of the non-commutative polynomial ring R{, j)
in two variables modulo the two-sided ideal generated by i? + 1, j2 + 1, ij + ji, and ¢ comes
from the universal mapping property of this quotient. O

Solution to Exercise 10.9. (a) Let A = (Z/6Z) and set e = 3 in A. . Then e? = 3* =9 =
3 (mod 6) = e but e # 0, 1.
(b) Suppose €? =e. Then (1—€)> =1—-2e+e?>=1—2e+e=1—¢, so1—eis idempotent.
(c) For the reverse implication, take e = (1,0) € A; x Ay. For the forward implication,
suppose an element e € A satisfies. Then e(1 —e¢) = e —e? = 0, so because ¢ and (1 — e)
are coprime (as 1 = (1 —e) + e, hence A = (e) + (1 — e)) we have by the Chinese
remainder theorem that

A~ A A B A A y A
S (0) (e(l=e)) (e)X=e)  (e) (1—¢)
which is a direct product of two nonzero rings. O

Solution to Exercise 10.10.  (a) The polynomial z” + 48z — 24 is a primitive polynomial
in Z[xz], so it is irreducible in Q[z] if it is irreducible in Z[z]| (by Gauss’s lemma). By
Eisenstein’s criterion for p = 3, it is irreducible in Z[z]. The same argument works to
prove irreducibility in Q(¢)[z], where Q(¢) is the fraction field of Z[i], and C[i] is a UFD
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and 3 is a prime element in Z[i] (to prove 3 irreducible; if 3 = a3, then 9 = N(«) - N(p)
where N(a+bi) = a®>+b?, a,b € Z. Then either one of «, 8 is a unit or 3 = N(a) = N(f);
but 3 = a? + b* has no integer solutions.)

(b) Let f(x,y) = 2® +y +%° in C[z,y]. Then as a polynomial in (C[y])[z], we have f(x) =
23 + ag, where ag = y + y°>. Then f(z) is irreducible in (Frac(C[y]))[z] = (C(y))[z];
ao = y(y + 1)(y — 1)(y + i)(y — ©) satisfies for p == (y) that ap € p and ay ¢ p?, and then
applying Eisenstein.

In addition, C[y] is a UFD (since C is), so by Gauss’s lemma the irreducibles of Cly]
are the irreducibles of C together with the irreducibles of (Frac(Cly]))[z] = C(y)[z]
that are prime as elements of C[y][z]; so, since g(x) = z* + ag is certainly primitive as
an element of (C[y])[z], we conclude it is irreducible in Clx,y]. O

Solution to Exercise 10.11.  (a) Q is not finitely generated, since for all zy,...,z, € Q,
> Zx; only contains elements o with ord,(«) = 0 for all primes p such that ord,(x;) >
0 for all 4, which is all but finitely many p. Q is torsion-free (as Q is a domain containing
Z as a subring), and Q is not free because if Q = @, ; Zx; for some set I and rational
numbers x; (that is, for z; € Q), then we see |I| = 1 since any two w;,x; satisfy
ar; + br; = 0 for some a,b € Z\{0} (namely, if z; = a;/b; and x; = a;/b;, then
bja;x; — bjajz; = 0 works if z;x; # 0). But clearly Q # Zaz for some z (since Q is not
finitely generated).

(b) Q/Z is not finitely generated (similar to (a)), is not torsion-free (2- 1 = 0), and is not
free (since it is not torsion-free).

(¢) Let w = (=14++/=3)/2. Note w?’+w+1 =0 (v = L,w # 1). Zw] =
(N Janw™ | a, € Z}. Since w? = —w — 1, any 3 a,w" equals a + bw for some
a,b € Z, so Z|w] is finitely generated and free with basis {1,w}. (The freeness follows
since a + bw = 0 = a = 0 and b = 0 by consideration of real and imaginary parts,
or since Z[z]|/(x? + 1) is free with basis {1,z}.) So, Z[w] is torsion-free because it is
free. [l

Solution to Ezercise 10.12. Let A be a PID. We will show that the primary ideals of A are
precisely (0) and m” for any m € Max(A) and n € Zx;.

Let q be a primary ideal. Then /g is prime, so (since A is a PID) it is either (0) or a maximal
ideal m. If \/q = (0), then q = (0). If /g = m is maximal, then ,/q = (p) for a nonzero
prime element p € A (again, since A is a PID). In this situation, p” € q, and we may assume
p" e qbut p» ! ¢ q. Then q = (p"). Since q = (y) for some y € A, we have p” = yxx for

some z € A. By unique factorization, y = p* for some k < n. Since p"~! ¢ q, in fact k = n.

On the other hand, (0) is prime, hence primary, and we have seen that m” is primary for any
maximal ideal m. O

Solution to Exercise 10.13. Conjugacy classes on M, (k) correspond to €, @- - -@G,, where
¢; is as in the structure theorem and 6, is the companion matrix of ¢; for all i € {1,..., s}
and >7_, degg; = 2. We may assume the ¢;’s are monic since the ¢;s are unique up to units
(that is, since the chain (¢1) 2 (g2) © -+ 2 (¢s) is what is unique in the structure theorem).
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And we need conjugacy classes in GLy(Z/(p)) (not My(Z/(p))), so the @, must each be
invertible, or equivalently the ¢;s must have nonzero constant term. This gives two cases:

e s=1: qi(x) = 2% + ax + b where a € Z/(p),b e Z/(p) ~ {0}. There are exactly p(p — 1)
ways to have this.

e s=2 q1(z) =2 —a,q2(x) =2 —b,q1 | g2 = a =b, and here a € Z/(p) ~ {0}. There
are exactly p — 1 ways to have this.

Thus, there are exactly p(p — 1) + (p — 1) = p*> — 1 conjugacy classes in GLo(Z/(p)). O

Solution to Exercise 10.14. (<) Suppose ged(ay,...,a,) = 1. Then Z/Zv is torsion-free:
suppose instead there exists w € Z™ \ {0} and some k € Z . {0} such that k(w + Zv) = 0+ Zr.
Without loss of generality, we may assume k is a prime p. Then pw = ¢Z for some c € Z,
so either p divides a; for all j or p divides c. If p divides ¢, then w = /v for some d € Z,
contradicting w ¢ Z so p divides a; for all j. But then p{ ged(ay, ..., a,) = 1, contradicting
our hypothesis. Thus Z/Zuv is torsion-free.

Now Z"/Zv is torsion-free, hence free. Then, by Exercise 11.5 (since 7 is a surjection in
the short exact sequence 0 — Zv — Z"™ — Z"/Zv — 0 and Z"/Zv is free), the short exact
sequence splits, so Z" = Zv @ Z"/Zv.

As 7" /Zwv is a free submodule of the free module Z", we can choose a basis B for Z"/Zv.
Then {v} U B is a basis for Zv @ (Z"/Zv) = 7", as desired.

(=) Conversely, suppose for a contradiction we can extend v to a basis (vq, ws, ..., w,) of
Z" but that ged(aq, ag,...,a,) = d > 1. Then Z" =~ Zv ® Zw; @ - - - @ Zw,, so Z"|/Lv =
Zw, @ - - - @ ZLw, is free, hence torsion-free. But ged(ay,...,a,) =d > 1, so }i v # 0in Z/Zv.
Thus év is a nonzero torsion element of Z/Zv, a contradiction. ]

Solution to Exercise 10.15.  (a) Since @ < P, P acts on () by conjugation, yielding a group
homomorphism a: P — Aut(C,) = (Z/pZ)*. By Lagrange’s theorem, a(P) = {1}.

(b) Let P = C)2 %, C,, where the homomorphism a: C, — Autc,,(Cp2) = (Z/p*Z)* giving
the conjugation sends a generator of C, to an element of order p. (Such a p exists by
Sylow I). O

Solution to Exercise 10.16.  (a) M = N+ J(A)-M. Then M/N = J(A)-M/N (and M /N
is again a finitely generated R-module with generators the equivalence classes of the
original finite generating set of M), so by Nakayama M /N = 0, that is, M = N.

(b) Consider my - B < mp. Since B is Noetherian, we have mp = my - B + mp - mp. By
part (a), ma - B =mpg - B. Since B is a finitely generated A-module, we can conclude
N = M, where ¢(A) = B. Hence ¢ is surjective. O

Solution to Ezercise 10.17. As M is finitely generated, we can write M = Amq +---+ Am,,
for some n € Z~, and some my,...,m, € M.

(<) First suppose p € V(Annu(M)), that is, p © Anny(M). Now suppose for a contradiction
M, = 0. Then for each 7 there exists s; € A \ p such that s,;m; = 0. Then for
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§ = $1S9--- Sy, we have sm; = 0 for all 7, so sM = 0. But s is also in A \ p since
A N p is multiplicatively closed, so s € Anns(M) < p, a contradiction. Thus M, # 0, so
p € supp M.

(o) Conversely, suppose p € supp M, that is, M, # 0. Then there exists m € M such that
sm # 0 for all s€ A~ p, that is, AN p N Anns(M) = &, hence Anny(M) < p. O

Solution to Exercise 10.18. (a) Let A be a PID and let I; < I, < ... be an ascending
chain of ideals. Then [ = Unez21 I,, is an ideal (as a union of an increasing chain of
ideals), and I = (x) for some z € I, since A is a PID. By definition of I, this means
I, = (z) for some n € Z>y. Then I, = I,;1 = ---, so every ascending chain of ideals
stabilizes. Thus A is Noetherian.

(b) If A is a field, then every ideal is (0) or A, so A is Artinian (since the descendng
chain condition is clear—the only possible descending chains are (0) > (0) > --- and
A > (0) o (0) o ---, which trivially stabilize). Conversely, assume A is an Artinian
integral domain. Then for any nonzero a € A,

(a) > (a*) > (a®) > -

stabilizes, so (a™) = (a"™!) for some n € Z~;. But this means there exists b € A such
that a™ = ba™*!, so a"(1 — ba) = 0. But then ™ = 0 or 1 — ba = 0. Since a" # 0 (as A
is an integral domain), 1 = ba, that is, a is a unit. Thus A is a field.

Alternatively, one could apply Lemma 5.32 (If M is a Noetherian A-module and an
A-module homomorphism f: M — M is injective, then f is an isomorphism), which is
the Artinian analog of Exercise 10.5. O]

Solution to Exercise 10.19.  (a) By the structure theorem for finitely generated modules
over a PID (in this case K[z]), conjugacy classes of Mj3(K) correspond to s € Zs;
together with monic ¢;(z) | ga(x) | -+ | gs(z) such that >3}, deg(gi(x)). Using that
mr(z) = ¢s(x) and pr(x) = ¢1(x)ge(x) - - - gs(x), restraints force three cases:

— If mr is a cubic then s = 1 and ¢; = my, thus determining the conjugacy class.

— If myp is quadratic then s = 2, ¢ = pr/q2, and ¢o = mp, thus determining the
conjugacy class.

— If s = 3 then mr = ¢1 = ¢2 = g3, thus determining the conjugacy class.

(b) Consider the following matrices corresponding to conjugacy classes in the case

dimg (V) = 4
000 0 010 0
000 0 1 000 0
000 1 an 000 1
000 0 000 0

These matrices have the same my and pr (22 and 2*, respectively), but are not conjugate
since (in the notation of part (a)) the left matrix has s = 3 elementary factors (z, x, x?),
while the right matrix has s = 2 elementary factors (2%, 2?). O

Version of February 5, 2024 at 11:53am EST Page 175 of 177


https://www.greysonwesley.com/home

Alphabetical Index

G-modules, 16

I-torsion submodule, 86
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p-primary, 68

k-bilinear map, 99

p-infinity torsion
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annihliator, 46

Artinian, 61

ascending chain condition
(ACC), 54

associated primes, 73

associated with, 84

atomic domain, 57

Cayley-Hamilton theorem,
90
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characteristic, 13

characteristic polynomial,
89

characteristic polynomial
of T', 89

cokernel, 19

commutative ring, 4

companion matrix, 90

composition series, 63

constant term, 14

content, 79

coprime, 25

degree, 14

dimension, 62

direct product, 20

direct sum, 20

division ring, 4

dual, 98

dual k-vector space of M,
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dual basis, 99

dual map, 99

embedded primes, 73

endomorphism ring, 5
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exact at N, 21

exact sequence, 21
exterior algebra, 104

factorial, 77

factorization, 57

factorization domain, 57

factors, 57

field, 4

field of fractions, 38
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R-algebra), 13

fraction field of A, 37

free, 76

free left (resp. right)
R-module of rank
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Gaussian integers, 10

generalized eigenspace, 96

group representation of GG
over k, 20

group ring, 6

Heegner number, 78

Hilbert Nullstellensatz, 30

Hilbert’s basis theorem,
54
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ideal generated by X, 8

ideal quotient, 24

idempotent, 106

image, 18

integral domain, 5

internal hom, 18

invariant factor sequence,
87

invariant factors, 87

irreducible, 57, 67, 76
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irreducible components,
66

irreducible set, 66

isolated, 145

isolated primes, 73

isomorphism, 19

Jacobson radical, 33
Jordan block, 91
Jordan canonical form, 91

kernel, 18
Kronecker product, 101
Krull dimension, 62

leading terms, 14

left R-module, 16

left R-module
homomorphism,
18

left (resp. right) ideal
generated by X, 8

left (resp. right) quotient
R-module, 18

left ideal, 8

left-inverse, 4

length, 62, 63

lift, 85

linear terms, 14

local homomorphism, 108

local ring, 34

localization of S by A, 37

long exact sequence, 21

max order terms, 14
maximal, 29

minimal, 73

minimal polyomial, 89
minimal prime ideal, 53
module of fractions, 52
monic, 83

monoid ring, 6
multiplicatively closed, 37
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nilpotent, 23, 59, 63
nilradical, 23
Noetherian, 54
Noetherian ring, 56

opposite ring, 24

pairwise coprime, 25

polynomial ring, 14

primary, 68

primary decomposition,
69

prime, 76

prime canonical form
(PCF), 90

prime ideal, 28

primitive, 80

principal ideal, 8

quadratic terms, 14

quaternions, 4
quotient ring, 10

radical, 23
radical ideal, 113
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rational canonical form,
90

reduced, 23, 73

reducible, 57

right R-module, 16

right ideal, 8

right-inverse, 4

ring, 3

ring action, 16

ring homomorphism, 10

ring isomorphism, 10

ring of formal power series

over R, 35

scalar multiplication, 16

short exact sequence
(SES) of
R-modules, 21

simple, 24

simple ring, 9

simple root, 85

simultaneously
diagonalizes, 97
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split, 22

splits completely, 91
stabilizes, 54
submodule, 17
subring, 8

Support, 48

support, 48

symmetric algebra, 104

tensor algebra, 101
tensor product, 100
torsion submodule, 86
torsion-free, 86

total ring of fractions, 38
trivial, 22

unique factorization
domain (UFD), 77
unit, 4

valuation, 79

Zariski topology, 34
zerodivisor, 5
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