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1 Homework 1

1.1 Exercise: Folland Exercise 5.29.

Let Y = L'Y(u) where p is the counting measure on Zs;, and let X =
{feY | X7 n|f(n)] < o}, equipped with the L' norm.

(a) X is a proper dense subspace of Y’; hence X is not complete.

(b) Define T: X — Y by T'f(n) :=nf(n). Then T is closed but not bounded.

(c) Let S:=T"'. Then S: Y — X is bounded and surjective but not open.

Solution. Let K denote R or C. As p is the counting measure on Z-,, we can make the
identifications

Y = {{an} ‘ a, € K and ZT\(LM < oo}
and
X = {{an} ‘ a, € K and Zjo nla,| < oo},

(a)  — X is properly contained in Y: First note X is contained in Y, since if >} n|a,| <
o then Y ” nla,| < oo. The containment is proper, since the sequence a,, = 1/n?
has {a,}; ;€Y N X. Hence X € Y.
— X is a linear subspace of Y: Let {a,},{b,} € X and A € K. Then for any
N e ZZla

N N N N
21 nla, + \b,| < 21 (n|a,| + n|b,|) + 21 n|a,| + 21 n|by|.

Sending n — oo, we obtain

a0 0 0
21 nla, + Ab,| < 21 nla,| + 21 n|b,| < oo,
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where the last inequality is because {a,}, {b,} € X. Hence {\a, + b,} € X, so
X is a linear subspace.

— X is dense in Y Since simple functions are dense in Y = L!(y), it suffices to
show X contains all simple functions in L'(u). So let g = {b,} € L'(u) be a
simple function, that is, g = Zjlv zjXg, for finitely many E; € P(Z>1). Note
that there exist at most finitely many n € Z~, such that b, # 0: indeed, if there
exists k € {1,..., N} such that both z; # 0 and E is an infinite set, then

o0
W0 = Z crp(Ey) 2421 c(E) = Jg du,

contradicting g € L'(u). Thus {g = >”_ n|b,| is a finite sum, and hence is
finite. It follows that g € Y, so Y is dense in X.
(b)  — T is not bounded: Fix an arbitrary m € Z>; and define f,,(n) = 1if m =n
and f,(n) = 0 otherwise. Then >, n|f,(n)] = n < «©, so f,, € X. But
Tl = 3 0lT f ()] = S 021 i) = 102 = ml fu 50 |7 o, < . Bt m
was an arbitrary nonnegative integer, so |T|,, = c. Hence T' is not bounded.
— T is closed: Suppose f(n) — fin X and Tf(n) — g in Y. We claim Tf = g.
First fix ¢ > 0. By our assumption, for all sufficiently large N we have
S nl )] < /4, X2y lgw) < /4, g — Thl < /4, and | = ful <

Then for all sufficiently large m and N, we have
S T ) =T fu(n) =3 nf(n)—nfu(n |+2 !nf Tfm(n)!
<SS ~ fa) /4 Y Tl |+2 n)| <,

soTf, - Tfin Ll. Since T'f(n) — g by assumptlon, we Conclude by uniqueness
of limits in a normed (hence Hausdorff) vector space (namely, L'(u)) that
Tf=g.

(c) Fix f €Y. Then Sf(n) = n~'f(n) for any n € Z-1, so

ISFI=>"" n e <> 1) =11

Thus | S]op < 1, s0 S is bounded. And S is surjective, since any {a,} € X is the image
under S of the sequence {22} (since if Y, n|a,| < oo then in particular Y 1|a,| < oo,
meaning {¢:} € V). Lastly, if S were open, then 7' = S~! is continuous, which
contradicts part (b). Thus S is not an open map, as claimed. O]
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1.2 Exercise: Folland Exercise 5.32.

Let | - |1 and | - |2 be norms on the vector space X such that |- |, < |- [2. If X is
complete with respect to both norms, then the norms are equivalent.

Solution. The linear operator T': (X, |—|,) — (X, |—|,) defined by T'z := x is bounded,
since by hypothesis |T'z|, = |z|, < ||z|, for all z € X. Since T is a bijection of sets,
Tt e L((X,|—],), (X,]—],)) by the bounded inverse mapping theorem. Hence there
exists Cy > 0 such that |z|, = [T z|, < C|z|,. Thus

Izl < lzl, < Cllaf,

for all x € X, so |—||; and |—||, are equivalent. O
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1.3 Exercise: Folland Exercise 5.37.

Let X and Y be Banach spaces. If T: X — Y is a linear map such that foT e X*
for every f € Y*, then T is bounded.

Solution. Suppose z, — x and Tz, — y. We claim y = T'x. On one hand, by continuity
of f we have

lim foT(x,) = f(lim Ta:n) = f(y).
n—00 n—0o0
On the other hand, f o T € X* by hypothesis, so in particular f o T is continuous; hence
lim foT(x,) = foT(lim xn> = foT(x).
n—0o0 n—000
Thus
fly) = foT(x) for all y € Y*. (1.1)
It follows that y = Tx, since otherwise there exists f € Y* such that f(y) # f(Tx)
(since by a corollary to the Hahn-Banach theorem X* separates points), contradicting
Equation (1.1). It then follows that the graph of T is closed, so by the closed graph
theorem 7' is bounded. O
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1.4 Exercise: Folland Exercise 5.39.

Let X,Y, Z be Banach spaces and let B: X xY — Z be a separately continuous
bilinear map; that is, B(xz,—) € L(Y, Z) for each x € X, and B(—,y) € L(X, Z) for
each y € Y. Then B is jointly continuous, that is, continuous from X xY to Z. !

Solution. To show B is bounded as a linear map X xY — Z, we need to show there
exists a constant C such that |B(z,y)|, = [|(z,y)] x. for all (z,y) e X xY.
If X =Y = {0} then all bilinear maps X xY — Z are continuous, so we may assume
one of X and Y is not {0}.
Observe that if = 0 or y = 0 for some (z,y) € X xY such that |(z,y)| ., = 1, then
IB(,0)], = [0, = 0 < |(,9)lly = 1. Thus
[zl lylly < 1z 9)lxa-
for all x € X and all y € Y, It then suffices to show there exists a constant C' such that
|B(z,y)|, < C|z|x|yly for all z € X and all y € Y. First note
|B(z,y) 7 < [B(= ) lop 2] x- (1.2)
Now consider the collection A = {B(—,y) | y € Y}. By hypothesis A ¢ L(X,Z) and
SUp,ey | B(7,y)|, < oo for each fixed z € X, so by the uniform boundedness principle
C = SuperHB(_7 y)”op < .
We then conclude by Equation (1.2) that
|B(z,9)]2 < Clzlxlyly- =
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1.5 Exercise.

Assume that 7T is a bounded linear map on L?([0,1]) with the property that Tf is
continuous on [0, 1] whenever f is continuous on [0, 1]. Prove that the restriction of T’
to C([0,1]) is a bounded operator on C([0,1]), where as usual C([0,1]) is equipped
with the uniform norm.

Solution. We will use the closed graph theorem. Suppose both f, — f and Tf, — ¢
uniformly. We claim T'f = g. We first state and prove a useful lemma:

1.6 Lemma.
For all f & C/([0,1]) and all real numbers p  [1,50), | fl,» < | ], where |, is the
sup-norm.

Proof. Since f e C([0,1]), | f|, is finite. Thus

1 1
A = | 167 dy < | 1A ay = 150
0 0
Taking the pth root of both sides, we obtain the desired inequality || f],, < | f]l,- O

Since T € L(L*([0,1]), L*([0,1])), there exists C' > 0 such that

|Tfo = Tfllpz < Clfn = flrz < Clfa = fls

where the final inequality is by Lemma 1.6. Since f,, — f uniformly, it follows that T'f,, —
Tf in L?(]0,1]). But also T'f,, — g uniformly by assumption, so in particular 7'f,, — g in
L*([0,1]). And L?([0,1]) is Hausdorff as a normed vector space, so by uniqueness of limits
Tf = g. Thus, by the closed graph theorem, we conclude T € L(C([0,1]),C([0,1])). O
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3 Homework 2

3.1 Exercise: Folland Exercise 6.7.

If feL? n L® for some p < o0, so that f e L9 for all ¢ > p, then | f|o, = limy o | |l

Solution. First suppose [ f[, = 0. Then 0 = |f|? = {|f|’, so [f| = 0 a.e. This means
If., =0 and |[f], =0 for all g, so
[fle = 0= lim 0= lim | £],,

which affirms the claim.
Now suppose Hpr > 0. By Folland Proposition 6.10 with » = oo, for all ¢ > 0 and all
p € (1,q) we have

L1, < LFIEF) P
Taking the limit at ¢ — oo, we obtain

. 1— 0 1-0
Iim |l f], < LFIE1£17 = A5 = oo,

where we used that the map g — [ | is continuous as a function of ¢ € (0,0) (since | f],
is nonnegative).

To show the reverse inequality, it suffices to show liminf, .o | f|, < [Ifll,. We can
prove this as follows: Fix n € Z~; and let

Ep=A{xe X |[f[ =[], —1/n}
Since p(E,) > 0 (by definition of |—|_ ), we have
Il = [161= [ 1= | (51 = 1y = B (AL, )"
Taking the gth root of both sides, we obtain

1f1, = w(E) 4 f ], = 1/m). (3.1)
And u(E,) < o0, since otherwise o0 = p(E,)Y4(| f],, — 1/n) < | f]3; contradicting f € L9.
Also p(E,) > 0 (by definition of |—|,), so by taking ¢ — o we have by Equation (3.1)
that

T £, = w(En) (1 /s, = 1/n) = |f e = 1/n-

Since n was arbitrary, we conclude limg | f[, = | f|,,, which completes the proof. [
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3.2 Exercise: Folland Exercise 6.8.

Suppose (X ) =1 and f e L? for some p > 0, so that f e L7 for 0 < g < p.
(a) log| fl, = §log|f|. (Use Folland Exercise 3.42(d) with F(t) = €".)

b) (§1f]*—=1)/q =log|flg, and (§]f]2 —1)/q — §log|f] as ¢ \, 0.
(c) limg\ o Hqu = exp(S log |f|)

Solution.

(a) Here we use the convention log(0) = —o0 and log oo = 0. We may assume {log|f| #
—o0, since otherwise the desired inequality is

log| f|" = ¢ f log|f| = —o0 < log| ],

which holds irregardless of the value of | f[,. The exponential is convex and u(X) = 1,
so by Jensen’s inequality (Folland Exermse 3.42(d)), we obtain

exp  [1oglf1") < [[exptiost 1 = [irr

Taking the logarithm of both sides, we deduce

o [toglf] = [ togl1" < tog [11" = log! 11 = alogl 1,

By dividing through by ¢ > 0, we conclude {log|f| < log| f|,
(b) Since logz < x — 1 for all z € [0, 0], we have

glog| f], = log f 17 < f FIE

Then divide through by ¢ > 0 to obtain the desired inequality. ,
It remains to show (§|f|* —1)/q — §log|f| as ¢ \, 0. We have xs1} mq*l <
Lf \

e L', so by the dominated convergence theorem

. flP=1 (. f@)* -1 _
iy | xqis121) = [ lmxqrz1 . = | xgp=nlog|fl,  (3.2)

where for the second equality we used the limit definition of the logarithm on [0, oo].
On the other hand, by the fundamental theorem of calculus, we have

S -1 g ~1 ' -1
X{|f<1} =J X{f<1yt? =J X{ <yt
q 1 |f]

which increases as ¢ decreases. As everything here is measurable, by the monotone
convergence theorem

X{If=1}

"1

I
ql\r}% X{Ifl<1}

= JX{|f<1} log| f|. (3.3)
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Now by Equations (3.2) and (3.3), we conclude

A f fli—1
o | = ) Oasien + xasen)
= JX{|f|<l} log|f] + Jxmzn log|f| = flog\f\,
as claimed.

(c) We have

exp< | log|f!) < exp(log]fl,) < exp( [is17- 1)/q,

where the first and second inequalities are by parts (a) and (b), respectively. By part
(b) and continuity of the exponential,

ex( [~ 1) g~ [ gl

as ¢ — 0. Now by the squeeze theorem for limits, we conclude

g 1, = exo( [ ouls1). 0
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3.3 Exercise: Folland Exercise 6.10.

Suppose 1 < p < oo. If f,, f € LP and f, — f a.e., then |f, — f||, — 0 if and only if
I fal, = [f],- (Use Folland Exercise 2.20.) In addition, prove or disprove the assertion
in the case p = 0.

Solution.

(=) Ife > 0and | f, — f|, — O, then by the triangle inequality || f»|,— [ f[, < [lfo — f],, <
¢ for all sufficiently large n € Z~, so the forward implication holds. Note that this
argument works for all p € [1, o0].

(<) Since [ ful, — £, we bave [ £,]2 — |12, Setting g, = 22 mas{|f,]". "}, g
221" = 0, hy, = 2P| f,, — f|", and h := 0, we observe that

— h, — h ae.,
— gn — g a.e.,
— gn € L' since f,,, f € LP? implies | f,,|”, | f|* € L' (hence also max{|f.|*, |f['} € LP),
— hy, € L' since by the triangle inequality h, < 2P max{|f[®,|f|"} = g, € L' and
gTL?
= |l = 1fu = 1" < (ISl + 1) < 2max{[fu[", [fI"} < 2Pmax{[fa]",[f"} =
gn € L' (since f,, f € LP, hence |f,|",|f|" € L"), and
~ Tgn = 2 max{|fu", |I?} — 2 §|f” = { g by hypothesis.
We can therefore apply the generalized dominated convergence theorem (Folland
Exercise 2.20) to obtain

27’J|fn—f|p:fhn—>fh:f0:0.

By dividing through by 2P > 0, we obtain

Ifn — fHZ — 0,
which implies | f,, — ], — 0.
The above argument fails in the case p = co: if p = o0, then when the measure
space is (R, £, m), we have
x=nm oo = Ixr]|] =0 —0asn— oo,
but

IX(=nm) = X&ll, =1 0asn— . O
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3.4 Exercise: Folland Exercise 6.12.

Show that for all p € [1, 00] \ {2}, the L? norm does not arise from an inner product on
LP, except in trivial cases when dim(L”) < 1. (Show that the parallelogram law fails.)

Solution. Let (X, M, 1) be a measure space. Recall that since dim LP > 2, there exist
disjoint sets A, B € M of positive finite measure. Then for all p € [1,0) \ {2},

XA XB
p(AVe| T u(B)Vr |,

1 1 2/P 1 1 2/P
- (— fmrp n —ﬁxBV”) n (— fmrp - —ﬁxBV”)
XA P 2/p XA P\ 2/p
1/p 1/p 1/p 1/p
2 p

XA XB p 2/p XA p
(ﬂ 1/p )1/p ) (ﬂ 1/p - u(B)l/P ) (smce An B = @)
XB ?

_ XA XB XA
A By, A By,
Hence the parallelogram law fails. And if p = oo, then with A and B as above we have
2= |xa+x8ls +Ixa = x5ly # 4 =2xal + 2[x5]-
Thus for all p e [1, 0] \ {2}, |[—[, does not arise from an inner product. O

2 — 4 £ AP 4 — (14 1)+ (1+ 1)  (since p # 2)

+2
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3.5 Exercise.

Determine precisely the set of triples (p, q,r) € R® with 1 <r < p,q < oo such that the
following holds: if f € LP(R") and g € L4(R"), then fg € U(R”) and | fgl. <|fllglq-
(Here the underlying measure is Lebesgue measure.) Prove your answer.

Solution. We claim the set of triples for which this holds is given by
—3
Ri={(p,q,r) eR" [ 1/p+1/g=1/r}.

Proof. First suppose (p,q,7) € R, f € LP(R"), and g € LY(R").
e Case 1: 1 <r <p,q<oo. Then |f|" € LP"(R") and |g|" € L¥"(R"), so by Holder’s
inequality |fg|" = |f|"|g|" € L*(R™), hence fg € L", and

£l e < WAl llgl e
By raising both sides to the power of 1/r, we obtain

1/r rinl/r rnl/r
£l 1 < AT gl (3.4)

If9l, = Ulfg|> = gl < st lpre gl Ig/r

=(Jorrr)" ()= (o) (i) < s

e Case 2: 1<r<p<g=worl<r<gqg<p=ow. (Without loss of generality take
1<r p < q = ©.) Then 1/r = 1/p, and since g € L™, there exists a bounded
function ¢’ such that ¢’ = g a.e.; thus |f¢'|" = |fg|" a.e., so

Ifaly = 154} = J IR I AT S

Hence fg e L" (= LP), and by taking the pth root of both sides (and noting that the
right-hand side is just [g|” | f||§ since g = ¢’ a.e.), we recover the desired inequality.
e Case 3: p=¢q =r = . Then the claim holds, since if £ € L™ is an arbitrary set of
positive measure then our assumptions imply |f|g|, |g|g| < o0, hence |f|g| - |g|e| =
|fg|le| < o, so fg is bounded on E. But F was an arbitrary set of positive measure,
so | fg|.,, < oo. Thus fg e L*. And the inequality holds, since for a.e. z we have

[F(@)g(@)| < [ flolg(@)] < 1 Flsllgle0

50 [fgl < Iflellgleo-
Now suppose (p,q,7) € R" N\ R.

e Case 1: 1 <r<p,gq<oo. If 1/r > 1/p+ 1/q, but the desired conclusion fails, since
otherwise

- )
(0)
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so 1/r < 1/p + 1/q, a contradiction. It fails similarly if 1/r < 1/p + 1/q, since
otherwise
l _ ( X B1(0) )2 H X B1(0) X B1(0)
2r 21(B1(0)) 2p(B1(0)) I, 21(B1(0)) |,
so 2Pt/ 21/7“ and hence 1/r > 1/p+ 1/q, a contradlctlon
e Case2: 1<r<p<g=worl<r<gqg<p=ow. (Without loss of generality take

I<r<p<qg=w.) If 1/p < 1/r, then the desired conclusion fails, since otherwise

u(B1O)" = X0l < Ixsolslxe@l, =1 #(Bi(0)",

so 1/r < 1/p, a contradiction.
Similarly, if 1/p > 1/r, then the desired conclusion fails, since otherwise

R [T — u(B(0) ",

so 1/p < 1/r, a contradiction.
e Case 3: p=q =r = . Then the desired conclusion fails, since otherwise

u(B1(0) = |(xB: ), < IxBo) o lXBi0) |, = 1- 1 =1,
which fails for all n € Z-;.

11
- =5

X B1(0)
w(B1(0)) p

X B1(0)
#(Bl (0)) 0

r

We conclude R is precisely the set of triples such that the given statement is true. O]
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4  Homework 3

4.1 Exercise: Folland Exercise 6.21.

If1 <p<oo,f, — fweakly in (?(A) if and only if sup,[f.|, < o and f, — f
pointwise.

Solution. Now let 1 < p < o0, let f € P(A) (we may assume this as mentioned on canvas),
and let ¢’ = p.

e Suppose f, — f weakly in ¥ and ¢ = p’. Then in particular the ¢ function yy,; has
ZGEA Ful@)Xta) = fala) — fla) as n — oo,

A~

so f, — f pointwise. For each n, define f,(¢9) = {gf,. Since f, — f weakly, the
sequence {z,};°_; < C given by z, == {gf, converges, and hence is bounded in C.
Then for all g € ¢4,

supy, | f(g)| = sup,|2.| < o0,

SO

sup,, [fullp = sup,, [ f[ < e,
where the final inequality is by the uniform boundedness theorem.

e Conversely, suppose that f, — f pointwise and sup,|| anp <. Fix ge 01 = (7
and ¢ > 0. We claim [{g, f,) — (g, )| < e, where (—,+) == {|(—=) - (+)]. Let M =
| £], + sup, [ ful,- Then M < co by hypothesis, and we may assume M > 0 (since
otherwise f,, and hence f are 0). Since |g|l7 = >,c4l9(a)|* < o0, we must have
g(a) = 0 for all but countably many a € A. Thus we may assume A = Z;.

For all £ € {1,..., K — 1}, there exists Nk € Z>; such that for all n > Nj,
\fulk) — f(K)] < €/(2(K —1)|g(k)|]). (If |g(k)] = 0, then we may ignore the
term |g(k)||f.(k) — f(k)] = 0 in the sum, so this is valid.) Thus, for all n >
max{Ny, ..., Ni},

K—1 K—1 5W €
)| fu(k) — f(K)] < =_. 4.1
On the other hand, since |g|? < oo, there exists K > 2 such that for all sufficiently
large n,

q __ ®© ° !
haslt = 37 Jol < (55"

Then, respectively, by Holder’s inequality and the triangle inequality, for all sufficiently
large n,

e €
2M 2

S Jgfulk) = FB < 1fa = Fl gl < M (4.2)
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Thus
g fo = Pl =3 lg(R)I| fulk >— F(R))

—ijLq ACECIE Y

R fn(

(k) —

fR)] <e,

<e/2 by (4.1)
so f, — f weakly.
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4.2 Exercise: Folland Exercise 6.30.

Let K: (0,00) — [0,0) such that ¢(s) = §; K(z)2z* 'dz < o0 for all 0 < s < 1.
(a) Prove that for 1 < p < oo,

| K sty < ¢(}9) (] xp—2f<x>pdx) " (] storras) )

(0,00)*
where ¢ = p/, and f, g € L+((0 oo))
(b) The operator T'f(z) = §, K(zy)f(y)dy is bounded on L*((0,00)) with norm

< ¢(2) (Interestlng special case: If K(x) = e *, then T is the Laplace transform
and ¢(s) =T'(s).)

Solution.

(a) The integrand of the left-hand side is a nonnegative measurable function (since f, g,
and K are), so we can apply Tonelli’s theorem below:

f J K(xy)f )dxdyzfooj K(z z/y g(y)dzdy (z = zy, de = dz/y)

= f /( /y y)dy dz

J
[ o o f(z/y)) N
ol 220

o . o — Up / roo 1/g
[l ) (o)

) (substituozing w = z/y, dyl/: —zo(()iw/wQ) "

— J; K(z)z 1P <L fw)PuwP=2 dw) <Jo g(y)? dy) dz.

Since § K (z)zl/p_l = gf)(l/p) by definition, the desired inequality follows.
(b) Now con81der p = ¢ = 2 and define T: L*((0,0)) — L*((0,2)) by f(z) —
o K y)dy. Then T is linear, and T is bounded since for all f € L?((0,0)),

ITfI2 = f TP dy

- \ [ s ac 2
/(] K(iﬁy)\f(ﬂf)!dx>2dy < ¢(§) [#1swpa - ¢(§)Q|f\§-

where the last inequality is by part (a). Since f € L?((0,00)), this shows T'f €

dy
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L?((0,00)), so T is indeed a linear map L*((0,0)) — L?((0,0)), and moreover that
T is bounded and |T'f|s < ¢(3)|f[2, which implies | T < ¢(1/2), as claimed. O
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4.3 Exercise: Folland Exercise 6.36.

If feweak LP and p({|f] # 0}) < oo, then f € L? for all ¢ < p. On the other hand, if
f € (weak LP) n L, then f e L4 for all ¢ > p.

Solution. Suppose f € weak LP, 0 < g < p, and u({|f| # 0}) < oo. Define

B {0 <|f] <1} if n=0,
"ol < |fl <27 ifne Zs.

Then [f] = 2.~ oXEn|f| 50

q
Hf”q J|f|q J 0 2"xE,| < JZZO_O 2Mxp, (by the triangle inequality)
Q"q,u(E ) (by the monotone convergence theorem for series)
=H Eo) + Z 2"\ (2" (since E, < {|f| > 2"7!} and isolating u(Fy))

= u(Fy) + Z 2"\ (2"71)  (since [f]2 = 20"=DPX(2°71) by definition of [ f],)
= u(Ey) + Zn:1 gng—(np— p)[f]g

~ () + (L) 37 ey

which is finite since Ey < {|f| # 0}—which by hypothesis has finite measure—and the
infinite sum is a geometric series with ratio 2977 € (—1, 1) since ¢ < p, and thus converges.

Now instead suppose f € (weak L) n L* and p < ¢ < c0. Since f is already L*, we
can assume ¢ < o0. Define

E o= {If1>1} if n=0,
' {3z <Ifl < 5=} ifneZs.

Computing similarly to before, we have

Ji < (T )
= (B + X 2
ufuw WY >
< Ul LA+ 3 e Jz,

which again is finite for the same reasons as before. Thus fe Liforallp<g<o. 0O
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4.4 Exercise.

The “uncentered” maximal function Mf is defined by (Mf)(z) =
SUD,cp ﬁ $51f(y)|dy where the supremum is taken over all balls containing
x (not only those balls centered at x). Here m denotes Lebesgue measure on R™.

(a) Obviously (M f)(z) < (Mf)(z). Show that there exists a constant ¢ (depending
only on the dimension) such that (M f)(z) < c¢(M[f)(z).

(b) Determine explicitly the function M (X[0.1])-

(¢) Tt will be shown in class that M and M are bounded operators on LP(R") for
1 < p < . Does there exist a pair (p,q) with 1 < p,q < o0 and p # ¢ such that
M or M is a bounded operator from LP(R™) to L4(R™)?

Solution.

(a) Fix z € R, let S be the collection of open balls containing z, let T" be the collection
of open balls centered at x, and for all Lebesgue measurable subsets E of R™ define

1
Aplfl = = | 1l an
Since T' < S,

M [(x) = supper Aplf| < suppes Aelf| = M (x).
For the other inequality, let B, be any ball containing = of radius r. Then B < By,.(z),
SO
1 f m(Ba, (1)) 1
—— | fWldy < |f(y)ldy < 2"M f(x)
m(B,) B, m(B,) m(Ba (7)) Bay(z)

Since B was any ball containing x, by taking the supremum over all such balls of all
radii we obtain

Mf(x) < 2"Mf(x).
(b) If Be S, then B = (a,b) for some a,b € R such that a < x < b, so

. 1 if (a,b) < [0,1],
Apxpn(e) = j Yo (y) dy = § =L (a,0) 0 [0,1] # @ and (a,b) ¢ [0, 1],
~ 4y 0 if (a,b) N [0,1] = @.

We now break into cases:
— If z € (0,1) then we can choose a, b such that 0 < a <z <b <1, in which case
MX[O,I](:E) = 1
— If = 0 (resp. = 1) then by considering the sequence of open intervals
{E, = (=1/n,1)}>_, (resp.JEn = (0,14 1/n)}r,), we see Mxoq(x) =
lim, 0 Ag, X[0,17(2) = 1, s0 Mxp11(z) = 1if z € {0} U {1}.
— If z < 0, then for a fixed point ¢ € [0, 1] and the sequence {E,, = (x—1/n,q)}r_,,
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we have

Ap Xio1(*) = qg—x+1/n S g—z+ 1/
which tends to ¢/(q¢ — x) as n — o0. As a function of ¢ € [0,1], ¢/(q — ) is
increasing to 1. Thus by taking ¢ = 1 and the open sets {E,=(x—1/n,q+
1/n)}, we conclude that when x < 0, Mxjo11(x) = limg 1 Ag, X[0,11(%) =

limg g/ (g — ) = 1/(1 — ). N
— If > 1, then by arguing similarly we obtain Mx[oj(x) = 1/x if z > 1.

We conclude

1 if0<x <1,
Mxpo(x) =< 1/(1—2) ifz <0, O
1/x ife>1.

(c) No. By part (a) M is bounded if and only if M is, so it suffices to prove M is not
bounded as a map LP(R") — L9(R™). Consider an arbitrary ¢ € (0,00) and consider
the open cube (0,¢)" < R™. For any x € R", we have

HMX(O,t)”HZ = f | Mx @ (x)|"de = J
]Rn
m(B,(x) n (0,t)")|* f
= dz = n(z)de = m((0,t)"
L m(B,(x)) v = | Xoor(#) dz = m((0,1)"),
so [|Mx ., = m((0, t)")/4 = ¢"4. On the other hand, for an arbitrary constant
C,

q

1
dx

sup, —f X, (y)dy
0 (B @) S 00"

n

SUup,.~q

CHX(O,t)”Hp = C’m((O)t)”)l/p oy

If M were bounded as an operator LP(R") — LI(R"), then there exists a constant C
such that for all ¢ € (0,0), t"9 < Ct"P, or equivalently, such that

1 1
t"aw) < C.
But this cannot be true at all ¢ € (0, o0) since p, ¢, n are fixed; by choosing sufficiently

small ¢t when 1/p > 1/q or sufficiently large ¢ (when 1/p < 1/q), this fails. Thus M,
hence also M, is unbounded as an operator LP(R™) — L(R™).
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5 Homework 4

5.1 Exercise: Folland Exercise 6.41.

Suppose 1 < p <o and p~! + ¢t =1. If T is a bounded linear operator on L? such
that {(T'f)g = § f(Tg) for all f,g e LP n L9, then T extends uniquely to a bounded
operator on L" for all 7 in [p, ¢] (if p < ¢) or [q,p] (if ¢ < p). If p = oo, further assume
that p is semifinite.

Solution. Let p e (1,00], let ¢ = (p—1)/p, let X be the set of simple functions that vanish
outside a set of finite measure, and let r lie in the closed interval between p and q.

5.2 Claim. T maps L n L9 into L9 and is bounded as a map LP n L9 — L4.

Proof. Let f € LP n L. Then Tf € L? by hypothesis. Thus if p < oo then |T'f|’ € L!
(since T'f € LP), so {|T f|P # 0} = {T'f +# 0} is o-finite by Folland Proposition 2.23(a). On
the other hand, if p = oo then u is semifinite by hypothesis. In either case, it follows from
Folland Theorem 6.14 that

75, = sup{‘ [ors) ' g < and Jgl, - 1} (5.1)

so it suffices to show the right-hand side is finite. To that end, suppose g € ¥ and ||ng = 1.
We have g € L? since g € %, so in particular g € L n L9. Then

' [ors| - ‘ [5x0)

(by our hypothesis on T')

< |fl,1Tgl, (by Holder’s inequality)
< AT o= o llgll,
< T oo (since [g], = 1).

Our above estimate is independent of our choice of g, so by Equation (5.1)

ITflly < 1T oo |-
Thus T' maps L? n L into L? and is bounded as a map (L” n L9, || ) — (L9, |—[,). O
5.3 Claim. The map
T:LP+ LI — P+ LY,
f+g=h»—>fg:=Tf—|— lim Tg,,
n—aoo
where {g,}>_, < LP n L? and g, — ¢ in L9, is a well-defined bounded linear operator.

Proof.

o T is well-defined: Let g € LP + L9. Since LP ~ L9 is dense in LP + L4 (because LP n L9
contains ¥, which is a dense subset in both L? and L?), such an approximating
sequence {g,}_, as in the claim exists in L n L4.
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Next we show T is independent of the choice of sequence {gn}o, < LP n LA
Since {g,}_; is Cauchy in L? and T is bounded as a map L n L? — L9 by the first
claim,

HTgn - Tgqu - HT<gn - gm)Hq < HT||LP—>Lqun - gqu —0
as n,m — o0. By uniqueness of the limit (as L? is a Banach space), we conclude fg
is independent of the choiceN of approximating sequence sequence.
e T is linear: We are given T is linear on L9, so it suffices to show linearity on L”.
Suppose ¢,¢' € LP n L, a € C, {gn}r_1, {9}y < LP n L9, and g, — ¢,9,, = ¢ in
L4, Then

~

T(ag+g') = lim T(ag + ¢')
n—0o0

= lim (aT'g, + Tq.,) (by linearity of T')
n—00
=« lim Tg, + lim Tq), (by linearity of limits that exist)
n—aoo n—ao0
—alg+Tqg (by definition of T').

Hence T is linear.
e T is bounded as a map LY — L% Let g € L9 and let {g,}>_, < L? n L% such that
gn — ¢ in LY. Since g < o0 by hypothesis, we can write
Tall = [1Z9r" = [|1im g,
n—aoo

q

= f lim |T'g,|* (by continuity of R 3 z — |z|? € R)
n—0o0

< liminf,, o || Tg, ] (by Fatou’s lemma)

< T po i indr e g

(since T is bounded as an operator LP n L9 — L9)
= T30 o lim g,
(since lim,, o[ gn ] exists, hence equals the liminf; see below)
= IV - pallgly:

The penultimate equality here follows from the fact g, — ¢g in L?, since for all € > 0
and all sufficiently large n,

lgnl, < lgly + lgn — gl, < 1Tgll, + & < o0;
taking the gth power, we obtain ||g,[3 < (g], +€)* < o0, so lim, 0| ga[] = [g]}. O

5.4 Claim. T is the unique bounded operator on L for all 7 in the interval [p,q] (if
p <q)or [q,p] (if ¢ < p) that extends T.

Proof. Since T is strong type (p,p) and strong type (¢, q), by the Riesz—Thorin theorem
T is strong-type (r,r) for all r in the interval [p, q| (if p < q) or [q, p] (if ¢ < p). To see
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T is the unique such extension, suppose S is another such extension of 7. We can write
each he " as asum h = f + g for some f € LP and g € L", so

Sh=S(f+9)=Sf+Sg=Tf+Tg=Th
since because S is an extension we have Sf = T f for all f e LP and Sg = fg for all
ge L Thus S =T, so the extension is unique. O

Version of April 23, 2024 at 2:04pm EST Page 23 of 40


https://www.greysonwesley.com/home

Greyson C. Wesley Analysis II: Homework 4 March 6, 2024

5.5 Exercise: Folland Exercise 6.42.

Prove the Marcinkiewicz theorem in the case pg = p;. (Setting p = pg = p1, we have

Arp(@) < (Col fllp/a)®™ and App(a) < (Ch| flp/a)™. Use whichever estimate is better,
. . . o —1

depending on «, to majorize ¢ §; @' App(a)dar.)

Proof. Suppose that (X, M, ) and (Y,N,v) are measure spaces; p,qo,q1 € [1,0] and

P < qo,q1, and qo # ¢1; and

11—t t
+ —, where0<t<1.

q qo0 q1
Let T: LP(p) — L°(v) be? a sublinear map of weak types (p,qo) and (p,q1). We claim
T is strong type (p,q). More precisely, suppose [1'fl,, < Cj| f|, for j = 0,1. We claim
|Tfllq < Byl fl, where B, depends only on p, g;, and C; in addition to p.
Then for a@ > 0 we have the estimates

Arg(a) < (Col flp/e)™  and  Arg(a) < (Cilflp/a)™,

so we obtain the estimate

ITf|e = f T = q f " W{|Tf| > a} da

o]

151,
—q[ T lTs> ajda kg | arl7s] > a)da
0 171,

I£1, qo 0 q
<qJ aq—1<00|f|g) da-i—qf aq_1(01”f2) da
0 [

o o
fl
I£1 !

<aCIfp [ o dakqcpfp [ et ida
0 111,
. aqiqo Oé:”f”P a a‘]*(ﬂ =090
< qCP°lIf 1, +qC [ fl, | — :
q—4qo0 |,—0 q—q1 a=|1l,
_ <q08°||f|f,0|f||q q“) B <q01ql||f|§§1|f||§ ql)
q— 4o qa—q
- (L, Oy
- q9—q0 ¢ —4g 4
: - acp | qgop )
Thus T is strong type (p,q), as claimed, and moreover B, := (m + ﬁ) depends

only on ¢; and Cj for j =0, 1. O
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5.6 Exercise: Folland Exercise 6.45, Altered.

The following concerns Folland Exercise 6.45, which reads as follows:

If 0 < a < n, define an operator T, on functions on R" by
.5(e) = [ lo = ol ) dy

Then T, is weak type (1,(n —a)™') and strong type (p,r) with respect
to Lebesgue measure on R", where 1 < p <na~!and r~! = p~t —an™L.
(The case n = 3, @ = 1 is of particular interest in physics: If f represents
the density of a mass or charge distribution, —(47)~'T} f represents the
induced gravitational or electrostatic potential.)

The following aims to correct this exercise.

(a) Use a scaling argument to show that the exercise is incorrect as stated.

(b) Replace the exponent —« in the definition of with —n + « in the question. Prove
that (this version of) T, is weak type (1,1(n — )™ !) and strong type (p,r) under
the conditions on «, p, and r as stated in the exercise. Hint: First show that T,
is of weak type (p,r).

Solution.

(a) Suppose for a contradiction T, is strong type (p,r), so that |1, ], ;- < o0. Now fix
e > 0. Since | Tal o, pr = sup{|Tafl, | [fl, = 1} < oo, there exists f € L” such that
| ], =1 and

ITafl, > (1=l Tal o pr (5.2)
For each b € R.( define g,: R® — C by
go(x) = [f(bx).
Then g,(z) € LP and for a fixed b € R-( be fixed. We have

1 1
ol = [l e = 51 [17@Par = o

so [gsf, = 1/b". And for each z € R", we have
Togn(a) = [l — ol F(bw) dy

—pn ﬁx _ y/b|_o‘f(y) dy (substitute by — y)

o

br —y
b

\_ )y =0 [ =)
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SO
Tuanl; = v || 1o =170 a0 o
— prla—n) ﬂb—” f|x —y| “f(y)dy| dx (substitute bz — x)
- J [T f (2)[" dar = b2V T, .
Thus
0| Tafl, _ | Tagsl
b T, = o = Lol e
b l9ll, .

Therefore, since 0 < o < n and in particular a # n, we can choose f € LP and b > 0
sufficiently large such that the left-hand side is strictly larger than the right-hand
side (since otherwise T, is the zero operator, contrary to the given definition of Tp),
which contradicts the assumed boundedness of T' on LP. It follows that Folland
Exercise 6.45 is incorrect as stated.
(b) Define K: R"xR" — C by

K(z,y) = |z —y|™"

Then K is m x m-measurable, and for each x € R" and § > 0 we have
Ak (B) =m{y e R" [ [z —y|™* > B})
=m({y e R" ||z —y| < 7°})
< m(By-1i (x))

Since the measure of a ball of radius r in R” is a scalar multiple of the radius to the
power of n, there exists C' > 0 such that for all z € R™ and all 5 > 0,

m(By-va(2)) = C 700
and thus
B Aoy (B) < BV m(By-va()) = B/B"°C = C.

Thus, by taking the 1/(n/a)th power of both sides and taking the supremum over all
b € R.p, we obtain for all z € R™ that

[K(ZL‘, _)]q = Supq>0(ﬁq)‘K($v—)(6))l/q < Ol/q'
Arguing identically (but replacing K (z, —) with K(—,y) and x with y), there exists
C’ > 0 such that [K(—,y)], < C'V4 for all y € R*. Now replacing C' with the
maximum of C4, C"/4, the result then follows immediately from Folland Theorem
6.36. O
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5.7 Exercise: Folland Exercise 8.4.

If fe L* and |1,f — f|,, — 0asy — 0, then f agrees a.e. with a uniformly continuous
function. (Let A, f be as in Folland Theorem 3.18. Then A, f is uniformly continuous
for r > 0 and uniformly Cauchy as r — 0.)

Solution. The statement of Exercise 5.7 follows immediately from the following points:
(i) Ainf(z) — f(x) ae. asn — oo.
(ii) For all n € Zz1, A1jnf(2) is uniformly continuous as a function of z € R™.
(iii) The sequence {A;/,f}i_; is uniformly Cauchy.
(iv) If {f,: R® — C}*_, is a uniformly Cauchy sequence of uniformly continuous functions,
then lim,,_,, f, is uniformly continuous.

Proof of (i). This is just Folland Theorem 3.18 since L functions are L; O

loc*

Proof of (i). Let n € Zs,. Fix € > 0. It suffices to show |r,A,f — A, f||, = 0asy — 0.
For any z, we have

e @)~ Ao @) = sl [ (f@la= | 15e1as
v )| LG L IO ICR IS
Y ' (sgilbstitute )
1 (‘
S ——=7— T,f(2) — f(2)| dz
< m(BT(O)) JBT(x—y)| yf( ) f( )|
(since |7fy (Z) — f()| < |y f — fl, for ae. z e R™)
= |7y f = fll-

Taking the supremum of both sides over all x € R", we obtain
|7y Aumf = Avnflly < Imuf = flo-

Since |7, f — f|., — 0 as y — 0 by hypothesis, we conclude Ay, f is uniformly continuous.

[]

Proof of (iii). We claim ||Ay), f — Aim f], — 0 as m,n — . Fix ¢ > 0. Since Ay, By
Folland Lemma 3.16, A, f is a continuous function of r € R.g; thus Ay, f — Ay f is
continuous for all n,m € Z>1, so its supremum norm equals its infinity norm. Hence

[Avmf = Ayl = [Aynf = Aymfle < [Aynf = floo + 1Aymf =l (5:3)
Where n € Z~1, we have

1
| Avmf = Flls =

0
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1 (
< |z ————— fy) — flz)|dy
m(Bl/N<x)> JBl/n(x)| ) (@)l 0
(by the triangle inequality)
1 (
<z ———— T,.f(x) — f(z)|dy
mBn@)) oo ™ TN
ol
< ——-— x— |t flx) — f(z dy
m(Bl/n(x)) Bl/n(O)H | Y ( ) ( )|Hoo

1
< B o T el Oas o
where we used Minkowski’s inequality for integrals (Folland Theorem 6.19) since 7, f — f €
L* for a.e. y e R" and [y — |7, f — f[ ] € L.
Thus both terms on the right-hand side of Equation (5.3) tend to 0 as m,n — o0, so
{A1/f}_q is uniformly Cauchy. O

Proof of (iv). Fix ¢ > 0 and g = lim, o f,. Then for all sufficiently large n,
|fu(z) — g(z)] < /3. Since each f, is uniformly continuous, there exists 6 > 0 such
that | f.(x) — fn(y)| < &/3 whenever |x — y| < §. Thus, for any z,y such that |z —y| < ¢
and all sufficiently large n, we have
9(x) = g()| < lg(x) = ful@)| + | fu@) = fu)] + [ fu(y) = 9(y)]
<e/3+¢/3+¢/3 =c¢,

so ¢ is uniformly continuous. O
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6 Homework 5

Folland Exercise 8.13.

Let f(x) = 3 — x on the interval [0,1), and extend f to be periodic on R.

(a) f(0) =0, and f( ) = (2mir) 1 if Kk # 0.
(b) > k™% =n?/6. (Use Parseval’s identity.)

Solution.
(a) First note f e L*(T), since
2?2 pqe=1 1
Hsz f|f §+§L:0— 1
We have

2 rx=1
f f —27r20a: diL’ J f ] _ 07
=0
and if k € Z ~ {0},

~ 1 ) 1 1 ) 1 4
f(k) — f (_ o .Z') e*Zﬂ"Lkm dr = f _67271’1]4:1 dr — J x6727rzkx dz
T 2 _0 2 0

—1 X S —2mikz
dmik [—2%ike‘2“ikzLO - 2m'k:L ‘ da
-1 -1 1 1
~ T dmik 2mik * Arik  2mik’
(b) By part (a) |f(k)]> = 1/(47r2k2) so by Plancherel’s theorem

2

S = S WP = 2w Y, IFR)E = 2wl T

Version of April 23, 2024 at 2:04pm EST Page 29 of 40

(6.1)


https://www.greysonwesley.com/home

Greyson C. Wesley Analysis 2: Homework 5 April 3, 2024

Folland Exercise 8.15.

Fix a > 0. Define sinc0 = 1 and sincx = (sinwz)/mzx for z € R \ {0}.
(a) X[-aa(®) = X[~a.a] (x) = 2asinc 2azx.
(b) Let
¥, = {felL®| f({) = 0 a.e. whenever [£| > a}.
Then %, is a Hilbert space and {v/2asinc(2az — k) | k € Z} is an orthonormal
basis for #,,.
(¢) (The sampling theorem). If f € %,, then f € Cy (after modification on a null set),

and f(z) = >.° f(k/2a)sinc(2azx — k), where the series converges both uniformly
and in L2?

Solution.
(a) We have
@ . —1 ) ) in(2
Raal©) = [ 2o = (e — gy - S ysinc(zag)

and, by changing variables z — —z in the integrand of x;_, ,(£), we find
Gaa© = [ o= [ emean [ e = a0,

—a a —a

(b) #, is a linear subspace: If f,g € ¥, and A € C, then for all [{|] > a we have

~

f(&) =39(¢) =0, 0 )
(f +2g9)" (&) = f(&) + Ag(§) =0+ A0 =0.

Thus f + A\g € ¥,, so ¥, is a linear subspace of L2.

¥, is closed: Suppose {f.},_; = %, and ||f,, — f|, — 0. Since the Fourier
transform is unitary on L* (hence an isometry), | f, — f[, — 0, that is, f, — f in
L?. Thus there exists a subsequence f,, — f pointwise a.e., so for a.e. v € R, we
have for [£| > a

F(€) = lim f,,(z) = lim 0 = 0.
k—o0 k—o0

Thus f € %,, so %, is a closed linear subspace of the Hilbert space L?, and thus %,
is a Hilbert space.

Now for k € Z and x € R, define (;(7) = v/2asinc(2az — k). We claim {(;}rez is
an orthonormal basis of #,,. We first show {(x}rez = #,. For any k € Z,

@ 1

. 1 . v
Ce(2) = V2asinc(2ax — k) = \/—27@(2a sinc(2a(x — k/2a))) = \/—QZX[_G@](Z' —k/2a).
(6.2)
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Taking the Fourier transform, we obtain

A 1 v A @_2”i£(k/2a) Y N e—27ri(k/2a)§
G (&) = ﬁ(Tk/QaX[_a,a]) (&) = T(X[_a,a]) (&) = VG X[-aa](§),

(6.3)
where for the last equality we used X[_q,q € L* and that the Fourier transform is a
unitary isomorphism on L*. In particular, Equation (6.3) shows both that ¢ € L?
(since its Fourier transform is) and that (x(£) = 0 whenever |¢| > a, so ( € %,.
{Ck}rez 1s an orthonormal set in #,: Since the Fourier transform is a unitary
operator L? — L% we have for all k € Z that

1
Gl = @16y =50 |
and if £ € Z ~ {k},

GGy = (G ley & ——J'”’“”//?‘”g aa) (§)e 22y — 1 (€) d€

_ i 27r2§( )d§ ( 2a (em(k—e) B em‘(f—k))) _ sin(m(k —())
2a 2a \ 2mi(k — 0) 2mi(k — 0)
Thus {Cx}rez is an orthonormal set in %,.
{Ck}kez is a basis of #,: Suppose f € ¥, satisfies {f|(x) = 0 (and hence also
{fr|¢Ey =0) for all k € Z. Then for each k € Z,

0= ff d£ ((:3 % f (£)€2m'(k/2a)§d£

\/% _1/2f (n/2a)e 2ﬂzk”dn—\/%f fr(—n/2a) Ek( )dn = \/%<fOS‘Ek>,

where s: n — —n/2a, and Ex(n) = > In particular <fx[,a’a]]Ek> = 0 for all
k € Z. But by Folland Theorem 8.20 {Ej}ez is an orthonormal basis for L*(T),
S0 fX[-aa = 0 a.e. Therefore, since f € L*(T), by the Fourier inversion theorem
(namely since the Fourier transform is an isomorphism L? > L?), fos=0ae. on
[-1/2,1/2]. Thus fX[ a4 = 0 a.e., and hence f = 0 for a.e. { € R (since already
f(&) =0 for all £ > a). It follows that {(x}rez is a basis of #,,.

(c) Fix f € #,. By part (b) {(x}xez is an orthonormal basis of %,, so

F= 20 160G = X (GG

where the series converge in L2 Thus it is is enough to show {f|(x) = ff(k/Qa)
for k € Z and that ZkeZ f(k/2a)() converges to f uniformly. We have

SN = f FA ()R b0y ) da

1 2mi(k/2a)x _L a
- wf (z)e2mith dx—f (- k/20) = = f(k/20).

so it only remains to show the series converges uniformly, and for this it is enough to

a a

, 1
e27rz(k—k)£ dé- _ _J 1 df _ 17
2a

—a
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show the sequence {3 f(k/2a)C} nez is uniformly Cauchy
Fix ¢ > 0. By Parseval’s identity 3}, ,|(f|G)| = | f]5 < o0, so for all sufficiently
large N € Z

Y KAGR <. (6.4
Now fix z € R and M, N € Z with M < N. For all sufficiently large M, N € Z, we
have

>, fk2a)sine(2az — k)| =[S <FIGoG(@)] = X, KAIGOIG @)

< (2 ser) (2 a@r) L ar (2N a@r)

where we used the Cauchy—-Schwarz inequality. Since X[_q,q) is a factor of (j, we may
assume z € [—a, a], and hence that 0 < |z| < a. But we only know this (the previous
sentence) for (i, not (! This requires a correction before the rest of the argument
to work. It thus only remains to show the remaining sum term on the right-hand
side is uniformly bounded for all z € [—a, a] as M, N — oo. For all sufficiently large
M, N € Z, sufficiently large and k€ {M +1,..., N}, we have

2
202 — K = k= 2a]* > |6 — 2afaf) > BL - &
and hence
1 <3
12ax — k|* k2’
so that ,
N 2a N |sin(7(2ax — k 2a 1 4a N 1
S o = T3 R < 5 S o < D <

where the final step is by Folland Exermse 8.13(b). The argument that
|z — S, f(k/2a) sinc(2az — k)|, < e for all sufficiently large M, N € Z with
M < N is similar. Thus the series .~ __ f(k/2a)sinc(2az — k) is uniformly Cauchy,
and hence converges uniformly.

Lastly, we show f(z) = Y}, f(k/2a)sinc(2ax — k) a.e. and that f € C;. We
already know the partial sums converge to f in L?, so some subsequence of the
partial sums converge to f pointwise a.e., so, after modification of f on a null set
f equals the given series. Thus f is the uniform limit of the partial sums—which
are themselves continuous since sinc is—so f is continuous. To see f vanishes at
infinity, note that if we take the Fourier transformation of Equation (6.3) once more,
we obtain

. 1 .
Ck \ﬁf TATIROS L (§)eT T AE = NGT JX[—a,a] (€)ePmitmemh/2at qe

:T wat(—7 = k/20) 2 Gu(~).
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But {(x}kez is an orthonormal basis for %,, so we have a convergent series in L?
given by

Fo) = 3 1GG(-) = 3 G = (= Y (Flwa) @) = f),

where the penultimate equality is by the DCT, so in particular f € L' by the Fourier
inversion theorem. Thus f(—z) = f(x) is the Fourier transform of an L' function,
so f € Cy by the Riemann-Lebesgue lemma. O]
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Folland Exercise 8.16.

Let fr = X[-1,1] * X[~k.k]-
(a) Compute fi(x) explicitly and show that | fi|. = 2.
(b) fy(z) = (wx) ?sin2rkzsin2rx, and |fY], — o as k — oo. (Use Folland
Exercise 8.15(a), and substitute y = 27kx in the integral defining | f|;.)
(c) F(L') is a proper subset of Cy. (Consider g, = f{ and use the open mapping
theorem.)

Solution.
(a) Let [a,b],[c,d] = R. Then
X]e,d] (Z‘ - y) = 6c<z—y<d = 5z—d<y<x—c = X[z—d,z—c] (y)7

SO

X[ab] * X[e,d] () = JX[a,b] (W) X[ea(@ — ¥) dY = X[ap](Y) X [2—do—e) (y) dy

= JX[a,b]m[x—d,x—c] <y> dy = m([av b] N [23 - da T — C])
Thus
[l = supserlm([=1, 1] n [z — k2 + K))| < m([-1,1]) = 2.
(b) By Folland Exercise 8.15(a),
fe (@) = (xmray = Xpra) " (2) = X010 (@)X kg (7)
= 2sinc(2x)2k sinc(2kz) = (mx) % sin(2nz) sin(27kz)

and, making the substitution y — 2kmx, we obtain

|15 @lae =2 ]|

— sin(2mz) sin(2mwkx)
el gk tm [ [ERy[sin/)
= 4]k| | E sin(y) sin(y/k)| dy = 4|k| ]\I,EI})O Ty y/k dy.
‘ M‘X[N,N] < x(v,n] € LY, so by the DCT we have

LN S

dx

For all N € Z-,, ‘%

N
lim f
k—o0 -N

Hence

siny
Y

siny
Y

siny
Y

dy.

N .
HE J gy (6.5)
for all N € Z~(. But the right-hand side fvj\érges to oo as N — oo, which we now show
(or, alternatively, by Folland Exercise 2.59). Note that [sinz| = 1/2 for all x € R such
that |x| € [7/6,57/6], [7n/6,117/6], [137/6, 177/6],. ... On these respective intervals,
we have [1/z| > 6/57,6/117,6/17x, ..., and thus [#2£| > 3/57,3/117,3/17x, .. ..
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Therefore, for all k € Z,, by taking the limit of Equation (6.5) as N — o0, we obtain

* 1 1 1 3 ¢« 1
LD dy>3(5w+11w+177r+"'>_WZN—lﬁN—1_OO
(c) Any fe F(L') is continuous since F maps L' into Cy. Now suppose for a contra-
diction F(L') = Co. By the Hausdorff-Young inequality, F is bounded as a map
L' — Cp (since f € Cy < Cy, hence | f||, = ], < |If], for all f e L'). Thus F is
a bounded surjection, so by the open mapping theorem J is invertible on L' and
F~1: Cy — L' is bounded. Then there exists C' > 0 such that for all k € Z=,

£ (a)
[fxly < Cllfill, = 2C,

contradicting part (b) since kaHl — w as k — . O

siny
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Folland Exercise 8.19.

If f € L*(R™) and the set S = {x | f(x) # 0} has finite measure, then for any measurable
E cR”,

|Fxel3 < | fl3m(S)m(E).

Solution. Given that the measure of the set S is finite (m(S) < ), it follows that
LP(S) < L4(S) for 1 < ¢ < p. Thus, since f € L*(S), we have f € L*(S). And for any
fixed £ € R™, we have

J |27 % dg = J ldz = m(S) < oo,
s s

so the map z +— e*@¢ is also in L2(.S). Now by Hélder’s inequality

F©) = U flaye e do) =| [ xs(a)f()e 7€ da| < | lalxsll = |flam(S)*2, (6:6)
where the second equality is because f|gn.s = 0 (by definition of S). Thus

22 22 ge GO0 2
sl = [ 17 111ms) [ 106 = 17Em(m(e) .
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Q5.
Suppose that f € L'(R) and both f and f have compact support. Prove that f = 0.

Solution. Since we can translate and compose with scalar multiplication, we may assume
without loss of generality supp f < [0,1/2]. Since f € L', By the Hausdorff-Young
theorem f e L* and ||f||, < | f],.- Hence f is a.e. bounded, and in particular

171, = f fl < f £l Xeupn(h) < 0.

Thus fe L so by the Fourier inversion theorem f is a.e. continuous and ]?A =(fY)"r=rf.

Since supp f is bounded, there exists N € Z¢ such that f(x) = 0 whenever |s| > N.
In particular, the Fourier series of f is Zﬁ:_ v f(m)e*™*. By a corollary to the Fourier
inversion theorem (namely Folland Corollary 8.27), to see f = 3% f(m)e*™™ a.c. it
suffices to show for k € Z that

%(m . f(m)e%m) (k) = f(r).
And indeed,

%(m . ZZ:_N J’c‘(m)€2mmz> (k) = Ll (Z::_N J?(m)e2mmm)€—2mm dr

1

ST [ 2 o= o

0
soNf = ZTNn:_N'f(m)e%"m’” a.e. But f vanishes on the interval (1/2,1), so the sum
Do n J(m)e?™™* = 0 must also; but any trigonometric polynomial that vanishes on
an interval must be identically zero (e.g., by the identity principle, since trigonometric
polynomials are holomorphic), so f = 0. O
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Q6.

Show that the conditions é + é =1 and 1 < p < 2 in the Hausdorff-Young inequality
(Folland Theorem 8.30) are both necessary for such an inequality to hold. *

Solution. Suppose p, q € [1, 0] satisfy

| flly < [f]lp for all f e LP(R™). (6.7)
Necessity that the exponents are conjugate: Suppose p,q € [1,0], and consider an
arbitrary f e LP(R"). For t > 0, define f;(z) =t~ f(t"'z).

1/p 1/p
ft|p=(f t‘””\f(t‘lx)\pdx) =t—"(j t”lf(w)!pdx) _ - g, (6.8)

and this equation still holds if p = co with the convention 1/p = 0. Now in particular
we know f; € LP. Now write

_ t_nff<t_1x)6—2wi£-x dt = ff(y)e—%rié(y/t) dy = f(tﬁ)

~ ~ 1/q N 1/q R
7l = ([1feorac) =t”/q( foras) = ofl, o)

(6.9)

Then

SO

~ n 67) . n _ n(lsl_
7], 0 i 7y, g ) gy G g

where we use the condition that 1/¢ = 0 for ¢ = 0. But ¢ > 0 was arbitrary,
so this must hold for all such ¢; thus 1/p+ 1/¢ — 1 = 0, so p and ¢ are conjugate
exponents. Thus the conjugate exponent condition in the Hausdorff—Young inequality
is necessary for p,q € [1, o0].

Necessity that p € [1,2]: Suppose for a contradiction p € (2, 00] and again consider
an arbitrary f e L'(R"). First note p # o0, since otherwise by Folland Exercise 8.15
the L'(R) function x| 1 1 satisfies

(o 7)

(X)
o J \dg:um,;]ul Ixiesatl, = 1

a contradiction (and the case of general n € Z, is similar by considering x[—1/2,1 /Q]n),
S0 we may assume p € (2, 0).

Let fy(z) = s2e~™*"/s and let h(z) = e ™1, so that f, = h by Folland
Proposition 8.24. By our assumption (6.7) and the previous point, 1/p + 1/q = 1.
Then ¢ € (1,2), and in particular ¢ < p. We have

/p ) 1/p P Follaéugi)3
Ih], = < f ool |pdx) - (Je—wlf dx) PR (6.10)

sm
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and

~ 1/q 1/q
A A e R e |

Prlg(z)}la; % —n/2 ™ "2 2 4 2 2\n/2
22| (m) = (L4 ¢3)™Ag 2a(1 + %)V
1

g "1 + t2)%(%—1> — (1 412 (a—;) (6.11)
where for the last equality we used the requirement from the previous point that
1/p+1/q = 1. In particular h € LP(R™), so by our assumption (6.7)

—n/2p (6.10) (6.11) " 1
2 OV n], = [, Pa(1+ )56,
Raising both sides to the power of —2/n, we obtam
PP < ql/q(l + ﬂ)"(a‘;), (6.12)
Since p < ¢ by assumption, —1/2(1/q — 1/p) < 0, so by choosing ¢ > 0 appropriately
we can make (1 +¢)~ 5(%‘5) arbitrarily small. But p'/? is strictly positive, so this
contradicts Equation (6.12). Thus p ¢ (2, 0], so p € [1,2]. O
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