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Abstract
These notes follow a course in real analysis from 2023-2024 at The Ohio State

University. We follow [Fol99] very closely, and at times even exactly.

Contents
0 Preliminaries 3
0.1 The Language of Set Theory . . . . . . . . .. ... .. ... ... .... 3
0.2 Orderings . . . . . . . . 7
0.3 Cardinality . . . . . . . ... 9
0.4 More About Well-Ordered Sets . . . . . . . . .. ... ... ... .... 12
0.5 The Extended Real Number System . . . . . . . ... ... ... ..... 13
0.6 Metric Spaces . . . . . . . .. 15
1 Measures 19
1.1 Imntroduction . . . . . . . . . .. 20
1.2 Sigma Algebras . . . . . . ... 21
1.3 Measures . . . . . . . .. e 28
1.4 Outer Measures . . . . . . . . . . . . 36
1.5 Borel Measures on the Real Line . . . . . .. ... ... ... ....... 41
2 Integration 50
2.1 Measurable Functions . . . . . . .. ..o 50
2.2 Constructing Measurable Functions from Simple Functions . . . . . . .. 53
2.3 Integration of Nonnegative Functions . . . . . . .. ... ... ... ... 56
2.4 Integration of Complex Functions . . . . . . .. ... ... .. ... ... 61
2.4.1 Comparing the Riemann and Lebesgue Integrals . . . . . . . . .. 69
2.5 Modes of Convergence . . . . . . . .. ... ... 72
2.6 Product Measures . . . . . . . . . ... 78



Greyson C. Wesley CONTENTS

2.7 The n-Dimensional Lebesgue Integral . . . . . . . .. ... ... ... ..
2.8 Integration in Polar Coordinates . . . . . . . . . . . . ... ... .. ...

3 Signed Measures and Differentiation
3.1 Signed Measures . . . . . . . . ...
3.2 The Lebesgue Decomposition and the Radon-Nikodym Derivative
3.3 Differentiation Theory on Euclidean Space . . . . . . ... .. ... ...
3.4  Functions of Bounded Variation . . . . . . ... ... ... .. ......

4 Point-Set Topology
4.1 Topological Spaces . . . . . . . . .
4.2 Continuous Maps . . . . . . . ..
4.3 Nets . . . . e
4.4 Compact Spaces . . . . . . . . ..
4.5 Locally Compact Hausdorff Spaces . . . . . . .. ... ... ... ....
4.6 Two Compactness Theorems . . . . . . . . .. .. ... .. ... .....
4.7 The Stone-Weierstrass Theorem . . . . . . . .. .. ... ... ... ...

5 Elements of Functional Analysis

5.1 Normed Vector Spaces . . . . . . . . . . .. ... ...
5.2 Linear Functionals . . . . . . . .. ... . ...
5.3 The Baire Category Theorem and its Consequences . . . . .. ... ...

5.3.1 First Applications of the Baire Category Theorem . . . . . . . ..

5.3.2 Applications of Baire Category Theorem to Linear Maps . . . . .
5.4 Topological Vector Spaces . . . . . . . . . . ... ...
5.5 Hilbert Spaces . . . . . . . . . .

6 LP Spaces
6.1 Basic Theory of LP” Spaces . . . . . . . . . . . . .. ... ... ...
6.2 The Dual of LP . . . . . . . . . .
6.3 Some Useful Inequalities . . . . . . . . .. ... ... .. ... ... ...
6.4 Distribution Functions and Weak LP . . . . . ... ... ... ......
6.5 Interpolation of LP Spaces . . . . . . . . . . ... ... ...

8 Elements of Fourier Analysis
8.1 Preliminaries . . . . . . . . . . .. .
8.1.1 Multi-index notation . . . . . . . ... ... ... ...
8.1.2 Existence of nonzero functions in C° . . . . .. ... ... ...
8.1.3 Schwartz space . . . . . . . . ...
8.2 Convolutions . . . . . . . . . . ...
8.2.1 Smoothness of convolutions . . . . . . ... ... ... ... ...

Version of April 30, 2024 at 11pm EST Page 2 of 368

102
102
108
117
124

137
137
146
155
159
164
171
175

182
182
191
197
199
202
210
216

228
229
242
248


https://www.greysonwesley.com/home

Greyson C. Wesley §0.1: The Language of Set Theory

8.2.2 Approximate identities . . . . .. ..o L 282

8.3 The Fourier Transform . . . . . . . . .. . ... ... ... .. ...... 287
8.3.1 Fourier transform on T™ . . . . . . . ... ... ... ... ... 288

8.3.2 Fourier transform on R™ . . . . . . . . ... ... 290

8.4 Summation of Fourier Integrals and Series . . . . . .. .. .. ... ... 306
8.5 Pointwise Convergence of Fourier Series . . . . . . . .. .. ... ..... 312
8.6 Fourier Analysis of Measures . . . . . . . . ... ... ... .. ... ... 319
8.7 Applications to Partial Differential Equations . . . . . .. ... ... .. 322

9 Extra section: Rate of decay of Fourier coefficients 329
9.1 Absolute convergence of Fourier series . . . . . . . ... ... ... .... 331
9.1.1 Application of multidimensional Fourier series to random walks . 331

9 Elements of Distribution Theory 333
9.1 Distributions . . . . . . .. 333

9.2 Compactly Supported, Tempered, and Periodic Distributions . . . . . . . 344
9.3 Sobolev Spaces . . . . . ... 355
Alphabetical Index 366

0 Preliminaries

The purpose of this introductory chapter is to establish the notation and terminology
that will be used throughout the book and to present a few diverse results from set theory
and analysis that will be needed later. The style here is deliberately terse, since this
chapter is intended as a reference rather than a systematic exposition.

0.1 The Language of Set Theory

It is assumed that the reader is familiar with the basic concepts of set theory; the
following discussion is meant mainly to fix our terminology.
Number Systems. Our notation for the fundamental number systems is as follows:

Z=1 = the set of positive integers (not including zero)
Z, = the set of integers

Q = the set of rational numbers

R = the set of real numbers

C = the set of complex numbers
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Logic. We shall avoid the use of special symbols from mathematical logic, preferring
to remain reasonably close to standard English. We shall, however, sometimes use the
abbreviation iff for “if and only if.”

One point of elementary logic that is often insufficiently appreciated by students is
the following: If A and B are mathematical assertions and —A, —B are their negations,
the statement “ A implies B” is logically equivalent to the contrapositive statement “ —B
implies —A.” Thus one may prove that A implies B by assuming —B and deducing —A,
and we shall frequently do so. This is not the same as reductio ad absurdum, which
consists of assuming both A and —B and deriving a contradiction.

Sets. The words “family” and “collection” will be used synonymously with “set,” usually
to avoid phrases like “set of sets.” The empty set is denoted by @, and the family of all
subsets of a set X is denoted by P(X):

PX)={F| Ec X}
Here and elsewhere, the inclusion sign < is interpreted in the weak sense; that is, the
assertion “ E < X7 includes the possibility that £ = X.

Remark 1 (Human language conversion). What follows in this remark is an excerpt from
Professor Nicolaescu’s course notes from the past few years. Suppose that we are given a
family of subsets (S;),.; of a set Q. Let us observe that the statement

we iel SZ
translates into the formula Yi € I,w € S; or, in human language, w belongs to all the sets
in the family. The statement

we el SZ
translates into the formula 31 € I,w € S; or, in human language, w belongs to at least one
of the sets S;. For example a statement of the form

0 Uy N5
nEL>1 k=n

neZs, Vk=n, weS.

Equivalently, this means that w belongs to all but finitely many of the sets Sy. Conversely,
statements involving the quantifiers 3,V can be translated into set theoretic statements
using the conversion rules

translates into

1—-u, V-—on.
If € is a family of sets, we can form the union and intersection of its members:
E ={x:x € E for some E € £}

E={z:zxeEforal E€é&}

Eeé

Eeé
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Usually it is more convenient to consider indexed families of sets:
E={FE,|aec A} ={E,}

in which case the union and intersection are denoted by

acA EO” ﬂaeA Ea
If £, n Es = @ whenever a # 3, the sets E, are called disjoint. The terms “disjoint

collection of sets” and “collection of disjoint sets” are used interchangeably, as are “disjoint
union of sets” and “union of disjoint sets.”
When considering families of sets indexed by Z-1, our usual notation will be

{Bu}osy or {Ea})
and likewise for unions and intersections. In this situation, the notions of limit superior
and limit inferior are sometimes useful:

limsup F,, = ﬂ:):l U:):k E,, liminfFE, = U::1 ﬂ:):k E,

The reader may verify that
limsup E,, = {z | x € E,, for infinitely many n},
liminf F,, = {z | x € E,, for all but finitely many n}.
If £ and F' are sets, we denote their difference by E \ F"

ENF={z|zeFandz¢F}
and their symmetric difference by FAF:
EAF =(ENF)u(F\E).
When it is clearly understood that all sets in question are subsets of a fixed set X, we
define the complement E° of a set £ (in X):
E°=X\F.

In this situation we have deMorgan’s laws:

<U0“5A Ea) c - ﬂaeA E;, (ﬂaeA Ea) c - UaeA Eg

If X and Y are sets, their Cartesian product X xY is the set of all ordered pairs (z,y)
such that z € X and y € Y. A relation from X to Y is a subset of X xY. (If Y = X,
we speak of a relation on X.) If R is a relation from X to Y, we shall sometimes write
xRy to mean that (x,y) € R. The most important types of relations are the following: -
Equivalence relations. An equivalence relation on X is a relation R on X such that

zRx for all z €¢ X
xRy iff yRx

xRz whenever x Ry and yRz for some y.

acA’

The equivalence class of an element x is {y € X | xRy}.X is the disjoint union of these
equivalence classes. - Orderings. See Folland Section 0.2. - Mappings. A mapping
f: X —> Y is arelation R from X to Y with the property that for every x € X there is a
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unique y € Y such that Ry, in which case we write y = f(z). Mappings are sometimes
called maps or functions; we shall generally reserve the latter name for the case when Y
is C or some subset thereof.

If f: X > Y and ¢g: Y — Z are mappings, we denote by g o f their composition:

gof: X =2, gof(z)=yg(f(z))
If Dc X and E c Y, we define the image of D and the inverse image of E under a
mapping f: X — Y by

f(D)={f(x)|ze D}, fUE)={z]|f(z)e E}
It is easily verified that the map f~': P(Y) — P(X) defined by the second formula
commutes with union, intersections, and complements:

-1 -1 -1 -1
f <UaeA Ea) - UaeAf (Ea)’ f (ﬂaeA Ea) - ﬂaeAf (Ea)’
fHE) = (fFH(B)"
(The direct image mapping f: P(X) — P(Y) commutes with unions, but in general not
with intersections or complements.)

If f: X > Y is a mapping, X is called the domain of f and f(X) is called the range
of f.f is said to be injective if f(z1) = f(z2) only when 1 = x5, surjective if f(X) =Y,
and bijective if it is both injective and surjective. If f is bijective, it has an inverse
f71:Y — X such that f~'o f and f o f~! are the identity mappings on X and Y,
respectively. If A < X, we denote by f|A the restriction of f to A:

(flA): A=Y, (flA)(z) = f(x)forzeA

A sequence in a set X is a mapping from Z-; into X. (We also use the term finite sequence
to mean a map from {1,...,n} into X where ne€ Z-,.) If f: Z-; — X is a sequence and
g: L=y — Z=, satisfies g(n) < g(m) whenever n < m, the composition f o g is called a
subsequence of f. It is common, and often convenient, to be careless about distinguishing
between sequences and their ranges, which are subsets of X indexed by Z-;. Thus, if
f(n) = z,, we speak of the sequence {z,},; whether we mean a mapping from Z-; to X
or a subset of X will be clear from the context.

Earlier we defined the Cartesian product of two sets. Similarly one can define the
Cartesian product of n sets in terms of ordered n-tuples. However, this definition becomes
awkward for infinite families of sets, so the following approach is used instead. If {X,} 4
is an indexed family of sets, their Cartesian product [],., X, is the set of all maps
fr A — Usea Xo such that f(a) € X, for every o € A. (It should be noted, and
then promptly forgotten, that when A = {1,2}, the previous definition of X; x X5 is
set-theoretically different from the present definition of Hf X;. Indeed, the latter concept
depends on mappings, which are defined in terms of the former one.) If X =[], ., Xa
and « € A, we define the ath projection or coordinate map 7, : X — X, by m.(f) = f(«).
We also frequently write z and z,, instead of f and f(«) and call z, the ath coordinate
of z.
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If the sets X, are all equal to some fixed set Y, we denote [, Xo by Y4
Y4 = the set of all mappings from A to Y.

If A= {1,...,n},Y4 is denoted by Y™ and may be identified with the set of ordered
n-tuples of elements of Y.

0.2 Orderings

A partial ordering on a nonempty set X is a relation R on X with the following
properties:

e if Ry and yRz, then xRz;

e if xRy and yRx, then x = y;

e zRx for all z.
If R also satisfies

o if x,y € X, then either xRy or yRz,

then R is called a linear (or total) ordering. For example, if F is any set, then P(FE) is
partially ordered by inclusion, and R is linearly ordered by its usual ordering. Taking this
last example as a model, we shall usually denote partial orderings by <, and we write
xr <y to mean that x <y but = # y. We observe that a partial ordering on X naturally
induces a partial ordering on every nonempty subset of X. Two partially ordered sets X
and Y are said to be order isomorphic if there is a bijection f: X — Y such that x; < x5
iff f(z1) < f(a2).

If X is partially ordered by <, a maximal (resp. minimal) element of X is an element
x € X such that the only y € X satisfying x < y (resp. x = y) is z itself. Maximal and
minimal elements may or may not exist, and they need not be unique unless the ordering
is linear. If E' < X, an upper (resp. lower) bound for E is an element x € X such that
y < x (resp. z < y) for all y € E. An upper bound for F need not be an element of F,
and unless F is linearly ordered, a maximal element of F need not be an upper bound for
E. (The reader should think up some examples.)

If X is linearly ordered by < and every nonempty subset of X has a (necessarily
unique) minimal element, X is said to be well ordered by <, and (in defiance of the laws
of grammar) < is called a well ordering on X. For example, Z-, is well ordered by its
natural ordering.

We now state a fundamental principle of set theory and derive some consequences of
it.

Theorem 0.2: 0.1: The Hausdorff Maximal Principle.

Every partially ordered set has a maximal linearly ordered subset.

In more detail, this means that if X is partially ordered by <, there is a set £ < X
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that is linearly ordered by <, such that no subset of X that properly includes E is linearly
ordered by <. Another version of this principle is the following:

Theorem 0.3: 0.2: Zorn’s Lemma.

If X is a partially ordered set and every linearly ordered subset of X has an upper
bound, then X has a maximal element.

Clearly the Hausdorff maximal principle implies Zorn’s lemma: An upper bound for a
maximal linearly ordered subset of X is a maximal element of X. It is also not difficult
to see that Zorn’s lemma implies the Hausdorff maximal principle. (Apply Zorn’s lemma
to the collection of linearly ordered subsets of X, which is partially ordered by inclusion.)

Theorem 0.4: 0.3: The Well Ordering Principle.

Every nonempty set X can be well ordered.

Proof. Let W be the collection of well orderings of subsets of X, and define a partial
ordering on W as follows. If <; and <, are well orderings on the subsets F; and Es, then
<4 precedes < in the partial ordering if (i) <s extends <, i.e., F; < F3 and <; and <
agree on E, and (ii) if z € Ey \ Ej then y <, x for all y € Ey. The reader may verify that
the hypotheses of Zorn’s lemma are satisfied, so that W has a maximal element. This
must be a well ordering on X itself, for if < is a well ordering on a proper subset E of
X and zp € X \ E, then < can be extended to a well ordering on E U {x¢} by declaring
that < x¢ for all x € E. O

Theorem 0.5: 0.4: The Axiom of Choice.

If {Xo},c4 is @ nonempty collection of nonempty sets, then [ [, 4 X is nonempty.

Proof. Let X = |J,c4 Xo. Pick a well ordering on X and, for o € A, let f(a) be the
minimal element of X,. Then f e [], .4 Xa. O

Corollary 0.6: 0.5.

If {X,},c4 is a disjoint collection of nonempty sets, there is a set Y < | .4 X such
that Y n X, contains precisely one element for each o € A.

Proof. Take Y = f(A) where f €[] ,c14 Xa- O

We have deduced the axiom of choice from the Hausdorff maximal principle; in fact, it
can be shown that the two are logically equivalent.
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0.3 Cardinality

If X and Y are nonempty sets, we define the expressions
card(X) < card(Y), card(X) = card(Y), card(X) = card(Y)

to mean that there exists f: X — Y which is injective, bijective, or surjective, respectively.
We also define

card(X) < card(Y), card(X) > card(Y)

to mean that there is an injection but no bijection, or a surjection but no bijection, from
X to Y. Observe that we attach no meaning to the expression “ card(X)” when it stands
alone; there are various ways of doing so, but they are irrelevant for our purposes (except
when X is finite— see below). These relationships can be extended to the empty set by
declaring that

card(@) < card(X) and card(X) > card(@) for all X # &

For the remainder of this section we assume implicitly that all sets in question are
nonempty in order to avoid special arguments for @. Our first task is to prove that the
relationships defined above enjoy the properties that the notation suggests.

Proposition 0.7: 0.6.
card(X) < card(Y) iff card(Y) > card(X).

Proof. If f: X — Y is injective, pick zo € X and define g: Y — X by g(y) = f~(y) if
y € f(X),g(y) = ¢ otherwise. Then g is surjective. Conversely, if g: ¥ — X is surjective,
the sets ¢7'({})(x € X) are nonempty and disjoint, so any f € [[,.x g '({z}) is an
injection from X to Y. O

Proposition 0.8: 0.7.
For any sets X and Y, either card(X) < card(Y) or card(Y) < card(X).

Proof. Consider the set J of all injections from subsets of X to Y. The members of J can
be regarded as subsets of X xY', so J is partially ordered by inclusion. It is easily verified
that Zorn’s lemma applies, so J has a maximal element f, with (say) domain A and range
B. Ifxzge X N~ Aand yp € Y \ B, then f can be extended to an injection from A U {zy}
to Y U {yo} by setting f(z¢) = yo, contradicting maximality. Hence either A = X in
which case card(X) < card(Y), or B =Y, in which case f~! is an injection from Y to X
and card(Y') < card(X). O

Theorem 0.9: 0.8: The Schroder-Bernstein Theorem.
If card(X) < card(Y') and card(Y') < card(X) then card(X) = card(Y').
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Proof. Let f: X - Y and g: Y — X be injections. Consider a point x € X: If x € g(Y),
we form g~ (z) € YV if g7'(z) € f(X), we form f~'(g7*(z)); and so forth. Either this
process can be continued indefinitely, or it terminates with an element of X ~ ¢(Y)
(perhaps z itself), or it terminates with an element of Y~ f(X). In these three cases we
say that z is in X, Xx, or Xy; thus X is the disjoint union of X, Xx, and Xy. In the
same way, Y is the disjoint union of three sets Y, Yx, and Yy. Clearly f maps X, onto
Y, and Xy onto Yy, whereas g maps Yy onto Xy. Therefore, if we define h: X — Y by
h(z) = f(z) if X € Xo, U Xx and h(z) = g '(2) if z € Xy, then h is bijective. O

Proposition 0.10: 0.9: Proposition.
For any set X, card(X) < card(P(X)).

Proof. On the one hand, the map f(z) = {z} is an injection from X to P(X). On the
other, if g: X — P(X), let Y = {ze X |z ¢ g(x)}. Then Y ¢ g(X), for if Y = g(xo)
for some zy € X, any attempt to answer the question “Is zg € Y 7”7 quickly leads to an
absurdity. Hence g cannot be surjective. O]

A set X is called countable (or denumerable) if card(X) < card(Zs1). In particular,
all finite sets are countable, and for these it is convenient to interpret “card (X)” as the
number of elements in X:

card(X) = n iff card(X) = card({1,...,n})
If X is countable but not finite, we say that X is countably infinite.

Proposition 0.11: 0.10.

(a) If X and Y are countable, so is X x Y.
(b) If A is countable and X, is countable for every o € A, then | J,_, X, is countable.
(c) If X is countably infinite, then card(X) = card(Zs1).

Proof. . To prove (a) it suffices to prove that ZZ%, is countable. But we can define a
bijection from Z-; to Z2>1 by listing, for n successively equal to 2, 3,4, ..., those elements
(j, k) € Z2, such that j + k = n in order of increasing j, thus:

(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2), (4, 1), ...
As for (b), for each « € A there is a surjective f,: Z>; — X,, and then the map
fiZz1 xA — s Xo defined by f(n,a) = fo(n) is surjective; the result therefore
follows from (a). Finally, for (c¢) it suffices to assume that X is an infinite subset of Z-;.
Let f(1) be the smallest element of X, and define f(n) inductively to be the smallest

element of £~ {f(1),..., f(n —1)}. Then f is easily seen to be a bijection from Z-; to
X. [
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Corollary 0.12: 0.11.

7 and Z? are countable.

Proof. 7 is the union of the countable sets Z,{—n : n € Z}, and {0}, and one can define a
surjection f: Z? — Z by f(m,n) = m/n if n # 0 and f(m,0) = 0. O

A set X is said to have the cardinality of the continuum if card(X) = card(R). We
shall use the letter ¢ as an abbreviation for card(R):

card(X) = ¢ iff card(X) = card(R)

Proposition 0.13: 0.12.
card(P(Z=1)) = ¢.

Proof. If A © Zz4, define f(A) € Zzy tobe Y, , 27" if Zz1 N Ais infiniteand 1+, _, 27"
if Z=1\ Ais finite. (In the two cases, f(A) is the number whose base-2 decimal expansion is
0.ajas - -+ or l.ajas - - -, where a,, = 1 if n € A and a,, = 0 otherwise.) Then f: P(Z>,) —
Zs1 is injective. On the other hand, define g: P(Zs1) — Zs;1 by g(A) = log(>,,.427") if
A is bounded below and g(A) = 0 otherwise. Then g is surjective since every positive real
number has a base-2 decimal expansion. Since card(P(Zs)) = card(P(Zs1)), the result
follows from the Schréder-Bernstein theorem. O

Corollary 0.14: 0.13.

If card(X) > ¢, then X is uncountable.

Proof. Apply Proposition 10. n

The converse of this corollary is the so-called continuum hypothesis, whose validity is
one of the famous undecidable problems of set theory; see Folland Section 0.7.

Proposition 0.15: 0.14.

(a) If card(X) < ¢ and card(Y') < ¢, then card(X xY') < c.
(b) If card(A) < ¢ and card(X,) < ¢ for all @ € A, then card(|J, .4 Xao) < ¢

Proof. For (a) it suffices to take X =Y = P(Z1). Define ¢,¢: Zs1 — Zz1 by ¢(n) = 2n
and ¥(n) = 2n — 1. It is then easy to check that the map f: P(Z=1)? — P(Z,)
defined by f(A, B) = ¢(A) u (B) is bijective. (b) follows from (a) as in the proof of
Proposition 11. O]
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0.4 More About Well-Ordered Sets

The material in this section is optional; it is used only in a few exercises and in some
notes at the ends of chapters.

Let X be a well ordered set. If A < X is nonempty, A has a minimal element, which
is its maximal lower bound or infimum; we shall denote it by inf A. If A is bounded above,
it also has a minimal upper bound or supremum, denoted by sup A. If z € X, we define
the initial segment of = to be

I, ={ye X |y<ua}
The elements of I, are called predecessors of x.

The principle of mathematical induction is equivalent to the fact that Z-; is well
ordered. It can be extended to arbitrary well ordered sets as follows:

Theorem 0.16: 0.15: The Principle of Transfinite Induction.

Let X be a well ordered set. If A is a subset of X such that x € A whenever I, c A,
then A = X.

Proof. If X # A, let © = inf(X ~ A). Then I, < A but z ¢ A. O

Proposition 0.17: 0.16.

If X is well ordered and A < X, then (J,_, I, is either an initial segment or X itself.

Proof. Let J =] cqls. If J # X, let b = inf(X ~\ J). If there existed y € J with y > b,
we would have y € I, for some z € A and hence b € I, contrary to construction. Hence
J < I, and it is obvious that I, < J. ]

Proposition 0.18: 0.17.

If X and Y are well ordered, then either X is order isomorphic to Y, or X is order
isomorphic to an initial segment in Y, or Y is order isomorphic to an initial segment

in X.

Proof. Consider the set JF of order isomorphisms whose domains are initial segments in X
or X itself and whose ranges are initial segments in Y or Y itself. J is nonempty since
the unique f: {inf X} — {inf Y’} belongs to &F, and ¥ is partially ordered by inclusion (its
members being regarded as subsets of X xY).

An application of Zorn’s lemma shows that F has a maximal element f, with (say)
domain A and range B. If A = I, and B = I, then A U {z} and B U {y} are again
initial segments of X and Y, and f could be extended by setting f(x) = y, contradicting
maximality. Hence either A = X or B =Y (or both), and the result follows. O
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Proposition 0.19: 0.18.

There is an uncountable well ordered set ) such that I, is countable for each x € Q. If
(2 is another set with the same properties, then Q and ' are order isomorphic.

Proof. Uncountable well ordered sets exist by the well ordering principle; let X be one.
BEither X has the desired property or there is a minimal element z, such that I, is
uncountable, in which case we can take Q = [,,. If €’ is another such set, €' cannot
be order isomorphic to an initial segment of € or vice versa, because 2 and €)' are
uncountable while their initial segments are countable, so €2 and €)' are order isomorphic
by Proposition 18. O

The set €2 in Proposition 19, which is essentially unique qua well ordered set, is called
the set of countable ordinals. It has the following remarkable property:

Proposition 0.20: 0.19.

Every countable subset of {2 has an upper bound.

Proof. If A < Q is countable, | J,.4 I, is countable and hence is not all of 2. By
Proposition 17, there exists y € Q such that | J,., I, = I, and y is thus an upper bound
for A.

The set Z-, of positive integers may be identified with a subset of €2 as follows. Set
f(1) = inf Q, and proceeding inductively, set f(n) = inf(Q ~ {f(1),..., f(n —1)}). The
reader may verify that f is an order isomorphism from Z-; to I, where w is the minimal
element of 2 such that I, is infinite. O

It is sometimes convenient to add an extra element w; to € to form a set Q* = QU {w; }
and to extend the ordering on €2 to Q* by declaring that x < wy for all x € Q. w; is called
the first uncountable ordinal. (The usual notation for w; is €2, since w; is generally taken
to be the set of countable ordinals itself.)

0.5 The Extended Real Number System

It is frequently useful to adjoin two extra points oo(= +o0) and —oo to R to form the
extended real number system R = R U {—00, 00}, and to extend the usual ordering on R
by declaring that —oo < x < oo for all € R. The completeness of R can then be stated
as follows: Every subset A of R has a least upper bound, or supremum, and a greatest
lower bound, or infimum, which are denoted by sup A and inf A. If A = {ay,...a,}, we
also write

max(ay,...,a,) =sup A, min(a,...,a,) =inf A

Version of April 30, 2024 at 11pm EST Page 13 of 368


https://www.greysonwesley.com/home

Greyson C. Wesley §0.5: The Extended Real Number System

From completeness it follows that every sequence {z,} in R has a limit superior and a
limit inferior:

limsup z,, = ,ifgfl(suPWk T,), liminfz, = sup,., <££ xn)
The sequence {x,} converges (in R) iff these two numbers are equal (and finite), in which

case its limit is their common value. One can also define limsup and lim inf for functions
f: R — R, for instance:

limsup,_,, f(z) = }gg(sup0<|x—a‘<5 f(z))

The arithmetical operations on R can be partially extended to R:
r+tow=+2w(zeR), w+4+0w=00 —0—0=-—x0
x-(+w) = +oo(z >0), x-(+w) = Foo(r <0)
We make no attempt to define oo — oo, but we abide by the convention that, unless
otherwise stated,
0-(£w) =0
(The expression 0 - oo turns up now and then in measure theory, and for various reasons

its proper interpretation is almost always 0.)
We employ the following notation for intervals in R: if —o0 < a < b < o0,

(a,b) = {x | a <z <b} [a,0] ={x|a<z<b}
(a,b] ={z|a <z < b}, [a,0) ={z |a <z <b}

We shall occasionally encounter uncountable sums of nonnegative numbers. If X is an
arbitrary set and f: X — [0, 0], we define )| _, f(x) to be the supremum of its finite
partial sums:

erxf(x) - Sup{ZmF f(z) ‘ F < X, F finite }

(Later we shall recognize this as the integral of f with respect to counting measure on X.)

Proposition 0.21: 0.20.

Given f: X — [0,00],let A = {z | f(x) > 0}. If Aisuncountable, then ). _, f(z) = oo.
If A is countably infinite, then Y . f(z) = >\ f(g9(n)) where g: Z>; — A is any
bijection and the sum on the right is an ordinary infinite series.

Proof. We have A = " A, where A, = {z | f(z) > 1/n}. If A is uncountable, then
some A,, must be uncountable, and Y. _. f(z) > card(F')/n for F' a finite subset of A,; it
follows that ), _. f(z) = co. If A is countably infinite, g: Z>; — A is a bijection, and
By = g({1,...,N}), then every finite subset F' of A is contained in some By. Hence

e F@ < X flm) <3 (@)
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Taking the supremum over N, we find

S t@ <Y fm) <Y, f@)

and then taking the supremum over F', we obtain the desired result. O

Some terminology concerning (extended) real-valued functions: A relation between
numbers that is applied to functions is understood to hold pointwise. Thus f < ¢
means that f(z) < g(z) for every z, and max(f, g) is the function whose value at z is
max(f(z),g(z)). If X c R and f: X — R, f is called increasing if f(z) < f(y) whenever
x < y and strictly increasing if f(z) < f(y) whenever x < y; similarly for decreasing. A
function that is either increasing or decreasing is called monotone.

If f: R — R is an increasing function, then f has right- and left-hand limits at each
point:

flat) = lim f(z) = inf f(a),  fla=) = lim f(2) = sup,., f(2).

rN\a r>a

Moreover, the limiting values f(o0) = sup,cp f(2) and f(—00) = inf,cr f(x) exist (possibly
equal to +00). f is called right continuous if f(a) = f(a+) for all a € R and left continuous
if f(a) = f(a—) for all a € R.

For points = in R or R, |z| denotes the ordinary absolute value or modulus of z,
la + ib| = v/a? + b2. For points x in R™ or R", |z| denotes the Euclidean norm:

n o112
2l = [ Y]

We recall that a set U < R is open if, for every x € U, U includes an interval centered at x.

Proposition 0.22: 0.21.

Every open set in R is a countable disjoint union of open intervals.

Proof. If U is open, for each x € U consider the collection J, of all open intervals [
such that x € I < U. It is easy to check that the union of any family of open intervals
containing a point in common is again an open interval, and hence J, = | J reg, I 1s an open
interval; it is the largest element of J,. If 2,y € U then either J, = J, or J, n J, = &, for
otherwise J, u J, would be a larger open interval than J, in J,. Thus if §J = {J, | z € U},
the (distinct) members of g are disjoint, and U = |, J. For each J € g, pick a rational
number f(J) € J. The map f:J — Q thus defined is injective, for if J # J' then
J nJ' = &; therefore J is countable. O

0.6 Metric Spaces

A metric on a set X is a function p: X x X — [0, 00) such that
e p(z,y) =0iff z = y;
e p(z,y) = py,z) for all x,y € X
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o p(z,2) < p(x,y) + p(y, 2) for all z,y,z € X.
(Intuitively, p(x,y) is to be interpreted as the distance from z to y.) A set equipped with
a metric is called a metric space.
Example 23. The following are some example of metric spaces.
(1) The Euclidean distance p(x,y) = |x — y| is a metric on R".

(i) pr(F.9) = §217(@) — 9(x)|dr and po(f, ) = suppescs |F(2) — g(x)] ave metrics on
the space of continuous functions on [0,1].

(111) If p is a metric on X and A < X, then p|(Ax A) is a metric on A.
() If (X1, p1) and (Xa, p2) are metric spaces, the product metric p on Xy x Xy is given

by
p((x1,2), (y1,y2)) = max(p1(z1, Y1), p2(T2,Y2))

Other metrics are sometimes used on X1 x Xs, for instance,

pr(1, 1) + pa(w2,y2)  or [pa(a1,11)” + palwa, v2)”]
These, however, are equivalent to the product metric in the sense that we shall define
at the end of this section.

1/2

Let (X, p) be a metric space. If x € X and r > 0, the (open) ball of radius r about z is

B(r,z) = {ye X | p(z,y) <r}

A set E' < X is open if for every x € E there exists r > 0 such that B(r,z) < E, and closed
if its complement is open. For example, every ball B(r,z) is open, for if y € B(r, x) and
p(x,y) = s then B(r — s,y) < B(r,x). Also, X and @ are both open and closed. Clearly
the union of any family of open sets is open, and hence the intersection of any family
of closed sets is closed. Also, the intersection (resp. union) of any finite family of open
(resp. closed) sets is open (resp. closed). Indeed, if Uy, ... U, are open and = € (] Uj,
for each j there exists r; > 0 such that B(r;,z) < U;, and then B(r,z) < ()] U; where
r=min(ry,...,7,), so [ )] U; is open.

If F < X, the union of all open sets U c FE is the largest open set contained in F; it
is called the interior of E and is denoted by E°. Likewise, the intersection of all closed
sets F' © F is the smallest closed set containing F; it is called the closure of E and is
denoted by E. E is said to be dense in X if E = X, and nowhere dense if F has empty
interior. X is called separable if it has a countable dense subset. (For example, Q™ is a
countable dense subset of Q™.) A sequence {x,} in X converges to x € X (symbolically:
x, — zor limz, = ) if im, o p(z,,z) = 0.

Proposition 0.24: 0.22.

If X is a metric space, F < X, and x € X, the following are equivalent:
(a) ze E.
(b) B(r,z) n E # & for all r > 0.
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(c) There is a sequence {x,} in E that converges to x.

Proof. If B(r,x) n E = &, then B(r,z)° is a closed set containing £ but not x, so z ¢ E.
Conversely, if z ¢ E, since (E)° is open there exists 7 > 0 such that B(r,z) < (E)° < E°.
Thus (a) is equivalent to (b). If (b) holds, for each n € Z, there exists z,, € B(n™!,2) " E,
so that x,, — x. On the other hand, if B(r,z) n £ = &, then p(y,z) > r for all y € F, so
no sequence of £ can converge to z. Thus (b) is equivalent to (c). O

If (X1,p1) and (X3, p2) are metric spaces, a map f: X; — Xs is called continuous
at x € X if for every € > 0 there exists 6 > 0 such that po(f(y), f(x)) < € whenver
p1(z,y) < —in other words, such that f~*(B(e, f(x))) > B(d,x). The map f is called
continuous if it is continuous at each x € X; and uniformly continuous if, in addition, the
0 in the definition of continuity can be chosen independent of x.

Proposition 0.25: 0.23.

f: X1 — Xy is continuous iff f~}(U) is open in X; for every open U = Xo.

Proof. 1If the latter condition holds, then for every x € X; and ¢ > 0, the set
f7Y(B(e, f(x))) is open and contains x, so it contains some ball about x; this means that f
is continuous at x. Conversely, suppose that f is continuous and U is open in X5. For each
y € U there exists ¢, > 0 such that B(e,,y) = U, and for each z € f~1({y}) there exists
6z > 0 such that B(d,,x) < f~1(B(ey,,y)) < f~1(U). Thus f~1(U) = Uses—10) B0, @)
is open. O

A sequence {z,} in a metric space (X, p) is called Cauchy if p(x,,, z,,) — 0 asn,m — .
A subset F of X is called complete if every Cauchy sequence in E converges and its limit
is in . For example, R” (with the Euclidean metric) is complete, whereas R™ is not.

Proposition 0.26: 0.24.

A closed subset of a complete metric space is complete, and a complete subset of an
arbitrary metric space is closed.

Proof. If X is complete, £ < X is closed, and {z,} is a Cauchy sequence in E, {z,} has
a limit in X. By Proposition 0.22,2 € E = E. If E ¢ X is complete and = € E, by
Proposition (0.22) there is a sequence {z,} in E converging to x.{x,} is Cauchy, so its
limit lies in E; thus E = E. O

In a metric space (X, p) we can define the distance from a point to a set and the
distance between two sets. Namely, if r € X and F, F < X,

pz, E) = inf{p(z,y) | y € E}
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p(E,F) =inf{p(z,y) |x € E,ye F} =inf{p(x, F) | x € E}

Observe that, by Proposition 24, p(z, E) = 0 iff z € E. We also define the diameter of
E < X to be

diam E = sup{p(z,y) | =,y € E}
FE is called bounded if diam £ < oo.

If £ c X and {V,} ., is a family of sets such that £ < (.4 Va, {Va}ea is called a
cover of F, and F is said to be covered by the V,s. FE is called totally bounded if, for
every € > 0, E can be covered by finitely many balls of radius €. Every totally bounded
set is bounded, for if =,y € | J] B(e, z;), say x € B(e, z1) and y € B(e, z2), then

p(xvy) < p(ZL‘,Zl) + p(zl7z2) + p(ZQ,y) < 2+ max{p(zj, Zk) | 1< ja k < n}
(The converse is false in gene@l.) If F is totally bounded, so is E, for it is easily seen
that if £ < |J] B(e, z;), then E < | J} B(2¢, z;).

Theorem 0.27: 0.25.

If £ is a subset of the metric space (X, p), the following are equivalent:

(a) E is complete and totally bounded.

(b) (The Bolzano-Weierstrass Property) Every sequence in E has a subsequence that
converges to a point of FE.

(c) (The Heine-Borel Property) If {V,} .4 is a cover of E by open sets, there is a
finite set /' < A such that {V,} ., covers E.

Proof. We shall show that (a) and (b) are equivalent, that (a) and (b) together imply (c),
and finally that (c) implies (b).

(a) implies (b): Suppose that (a) holds and {z,} is a sequence in E. FE can be
covered by finitely many balls of radius 27!, and at least one of them must contain z,, for
infinitely many n: say, x,, € By for n € N1.E n By can be covered by finitely many balls
of radius 272, and at least one of them must contain z,, for infinitely many n € N;: say,
T, € By for n € N,. Continuing inductively, we obtain a sequence of balls B; of radius
277 and a decreasing sequence of subsets N; of Z-; such that z, € B; for n € N;. Pick
ny € Ny,ng € Ny, ... such that ny < ny < ---. Then {x,,} is a Cauchy sequence, for
p(Tn;, Tn,) < 277 if k> j, and since E is complete, it has a limit in E.

(b) implies (a): We show that if either condition in (a) fails, then so does (b). If E is
not complete, there is a Cauchy sequence {z,} in £ with no limit in £. No subsequence of
{x,} can converge in E, for otherwise the whole squence would converge to the same limit.
On the other hand, if F is not totally bounded, let € > 0 be such that E cannot be covered
by finitely many balls of radius €. Choose x,, € F inductively as follows. Begin with any
r; € E, and having chosen z1, ..., z,, pick x,41 € E N~ ] B(e,z;). Then p(z,, ) > ¢
for all n,m, so {r,} has no convergent subsequence.
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(a) and (b) imply (c): It suffices to show that if (b) holds and {V,} ., is a cover of
E by open sets, there exists ¢ > 0 such that every ball of radius € that intersects E' is
contained in some V,, for E can be covered by finitely many such balls by (a). Suppose to
the contrary that for each n € Z-; there is a ball B,, of radius 27" such that B, n F # @
and B, is contained in no V,. Pick z,, € B, n E; by passing to a subsequence we may
assume that {z,} converges to some x € E. We have x € V, for some «a, and since V
is open, there exists ¢ > 0 such that B(e,z) < V,. But if n is large enough so that
p(xn,x) <e/3 and 27" < ¢/3, then B,, < B(e, z) < V,, contradicting the assumption on
B,.

(c) implies (b): If {x,} is a sequence in F with no convergent subsequence, for each
x € E there is a ball B, centered at x that contains x,, for only finitely many n (otherwise
some subsequence would converge to z). Then {B,} 5 is a cover of £ by open sets with
no finite subcover. O

A set F that possesses the properties (a)-(c) of Theorem 27 is called compact. Every
compact set is closed (by Proposition 26) and bounded; the converse is false in general
but true in R™.

Proposition 0.28: 0.26.

Every closed and bounded subset of R" is compact.

Proof. Since closed subsets of R™ are complete, it suffices to show that bounded subsets
of R™ are totally bounded. Since every bounded set is contained in some cube

Q= |[-R,R]" = {x e R" | max(|z1|,..., |z,|) < R}
it is enough to show that @ is totally bounded. Given € > 0, pick an integer k > Ry/n/e,
and express () as the union of £" congruent subcubes by dividing the interval [—R, R)|
into k equal pieces. The side length of these subcubes is 2R/k and hence their diameter
is v/n(2R/k) < 2¢, so they are contained in the balls of radius € about their centers. [J

Two metrics p; and ps on a set X are called equivalent if
Cp1 < pa < C'py for some C,C" > 0

It is easily verified that equivalent metrics define the same open, closed, and compact
sets, the same convergent and Cauchy sequences, and the same continuous and uniformly
continuous mappings. Consequently, most results concerning metric spaces depend not on
the particular metric chosen but only on its equivalence class.

1 Measures

In this chapter we set forth the basic concepts of measure theory, develop a general
procedure for constructing nontrivial examples of measures, and apply this procedure to
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construct measures on the real line.

1.1 Introduction

One of the most venerable problems in geometry is to determine the area or volume of a
region in the plane or in 3-space. The techniques of integral calculus provide a satisfactory
solution to this problem for regions that are bounded by “nice” curves or surfaces but are
inadequate to handle more complicated sets, even in dimension one. Ideally, for n € Z-,
we would like to have a function p that assigns to each E < ZZ, a number pu(E) € [0, ],
the n-dimensional measure of F, such that u(FE) is given by the usual integral formulas
when the latter apply. Such a function p should surely possess the following properties:

(i) If By, Es, ... is a finite or infinite sequence of disjoint sets, then
p(Ey o By ---) = p(Er) + p(E) + -+

(ii) If F is congruent to F' (that is, if £ can be transformed into F' by translations,
rotations, and reflections), then u(E) = u(F).
(ili) (@) =1, where @ is the unit cube
Q={reR"|0<zj<lforj=1,...,n}
Unfortunately, these conditions are mutually inconsistent. Let us see why this is true
for n = 1. (The argument can easily be adapted to higher dimensions.) To begin with,
we define an equivalence relation on [0, 1) by declaring that z ~ y if and only if z — y is
rational. Let NV be a subset of [0, 1) that contains precisely one member of each equivalence
class. (To find such an N, one must invoke the axiom of choice.) Next, let R = Q n [0, 1),
and for each r € R let
N, ={z+r|zeNn[0,1-r)}u{z+r—1|zeNn[l—-r1)}
That is, to obtain NV, shift N to the right by r units and then shift the part that sticks
out beyond [0, 1) one unit to the left. Then N, < [0,1), and every z € [0, 1) belongs to
precisely one N,. Indeed, if y is the element of N that belongs to the equivalence class of
x,then x € N, wherer =z —yifz >yorr=2x—y+1if 2 <y; on the other hand, if
x € N, NN, then z —r (or x —r+1) and x — s (or x — s + 1) would be distinct elements
of N belonging to the same equivalence class, which is impossible.
Suppose now that p: P(R) — [0, oo] satisfies (i), (ii), and (iii). By (i) and (ii),
w(N) = p(N 0 [0,1=r)) + p(N A [1=r1)) = u(N,)

for any r € R. Also, since R is countable and [0, 1) is the disjoint union of the N,s,

u(0.0) =S u(,)
by (i) again. But u([0,1)) = 1 by (iii), and since p(N,) = pu(NN), the sum on the right is
either 0 (if u(N) = 0) or oo (if u(N) > 0). Hence no such u can exist.
Faced with this discouraging situation, one might consider weakening (i) so that
additivity is required to hold only for finite sequences. This is not a very good idea, as we
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shall see: The additivity for countable sequences is what makes all the limit and continuity
results of the theory work smoothly. Moreover, in dimensions n € Z-3, even this weak
form of (i) is inconsistent with (ii) and (iii). Indeed, in 1924 Banach and Tarski proved
the following amazing result:

Let U and V be arbitrary bounded open sets in R", n € Z~3. There exist k € R and
subsets Fy, ..., Ey, Fy, ..., F} of R” such that

e the I;s are disjoint and their union is U;
e the Fjs are disjoint and their union is V/;
e [J; is congruent to Fj for j =1,... k.

Thus one can cut up a ball the size of a pea into a finite number of pieces and
rearrange them to form a ball the size of the earth! Needless to say, the sets E; and F;
are very bizarre. They cannot be visualized accurately, and their construction depends
on the axiom of choice. But their existence clearly precludes the construction of any
p: P(R™) — [0, 00] that assigns positive, finite values to bounded open sets and satisfies
(i) for finite sequences as well as (ii).

The moral of these examples is that R™ contains subsets which are so strangely put
together that it is impossible to define a geometrically reasonable notion of measure for
them, and the remedy for the situation is to discard the requirement that p should be
defined on all subsets of R". Rather, we shall content ourselves with constructing x on a
class of subsets of R" that includes all the sets one is likely to meet in practice unless one
is deliberately searching for pathological examples. This construction will be carried out
for n = 1 in Folland Section 1.5 and for n > 1 in Folland Section 2.6.

It is worthwhile, and not much extra work, to develop the theory in much greater
generality. The conditions (ii) and (iii) are directly related to Euclidean geometry, but
set functions satisfying (i), called measures, arise also in a great many other situations.
For example, in a physics problem involving mass distributions, p(E) could represent the
total mass in the region E. For another example, in probability theory one considers a
set X that represents the possible outcomes of an experiment, and for £ < X, u(FE) is
the probability that the outcome lies in £. We therefore begin by studying the theory of
measures on abstract sets.

1.2 Sigma Algebras

In this section we discuss the families of sets that serve as the domains of measures.

Let X be a nonempty set. An algebra of sets on X is a nonempty collection A
of subsets of X that is closed under finite unions and complements; in other words, if
Ey,...,E, € A, then | J] E; € A; and if E € A, then E° € A. A o-algebra is an algebra
that is closed under countable unions. (Some authors use the terms field and o-field
instead of algebra and c-algebra.)
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We observe that since ) i B = | ; EX)°, algebras (resp. o-algebras) are also closed
under finite (resp. countable) intersections. Moreover, if A is an algebra, then @ € A and
XeA, forif Ee Awehave @=FEn E°and X = E U E°.

It is worth noting that an algebra A is a o-algebra provided that it is closed under
countable disjoint unions. Indeed, suppose {E;}]” < A. Set

k—1 k-1 ¢
Fy = By, ~ [Ul Ej] — B n [Ul EJ}
Then the Fjs belong to A and are disjoint, and | J;” E; = | J;” Fs. This device of replacing
a sequence of sets by a disjoint sequence is worth remembering; it will be used a number
of times below.
Some examples: If X is any set, P(X) and {&, X} are o-algebras. If X is uncountable,
then

A ={E c X | E is countable or E° is countable }

is a o-algebra, called the o-algebra of countable or co-countable sets. (The point here is
that if {F;}” = A, then | J{” E; is countable if all E; are countable and is co-countable
otherwise.)

It is trivial to verify that the intersection of any family of o-algebras on X is again a
o-algebra. It follows that if € is any susbset of £(X), there is a unique smallest o-algebra
E(€) containing &, namely, the intersection of all o-algebras containing €. (There is
always at least one such, namely, £(X).) () is called the o-algebra generated by €. The
following observation is often useful:

Lemma 1.1: 1.1.
If € < M(F) then M(E) = M(F).

The proof is an exercise.

If X is any metric space, or more generally any topological space (see Folland Chapter
4), the o-algebra generated by the family of open sets in X (or, equivalently, by the family
of closed sets in X) is called the Borel o-algebra on X and is denoted by Bx. Its members
are called Borel sets. By thus includes open sets, closed sets, countable intersections of
open sets, countable unions of closed sets, and so forth.

There is a standard terminology for the levels in this hierarchy. A countable intersection
of open sets is called a G set; a countable union of closed sets is called an F', set; a
countable union of G sets is called a Gs, set; a countable intersection of F, sets is called
an F,s set; and so forth. ( § and o stand for the German Durchschnitt and Summe, that
is, intersection and union.)

The Borel g-algebra on R will play a fundamental role in what follows. For future
reference we note that it can be generated in a number of different ways:
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Proposition 1.2: 1.2.

Br is generated by each of the following:

(a) the open intervals: &1 = {(a,b) | a < b},

(b) the closed intervals: €, = {[a,b] | a < b},

(c) the half-open intervals: €3 = {(a,b] | a < b} or &4 = {[a,b) | a < b},
(d) the open rays: &5 = {(a,0) | a € R} or ¢ = {(—0,a) | a € R},

(e) the closed rays: €7 = {[a, ) | a € R} or € = {(—0,a] | a € R}.

Proof. The elements of €; for j # 3,4 are open or closed, and the elements of €3 and
&4 are G sets—for example, (a,b] = () (a,b+n~'). All of these are Borel sets, so by
Lemma 1, £(&;) < g for all j. On the other hand, every open set in R is a countable
union of open intervals, so by Lemma 1 again, Eg < £(&;). That Eg < E(g;) for j = 2 can
now be established by showing that all open intervals lie in £(€;) and applying Lemma 1.
For example, (a,b) = |J;[a + n™',b —n~'] € E(&,). Verification of the other cases is left
to the reader (Folland Exercise 1.2). O

Let {Xo},.4 be an indexed collection of nonempty sets, X =[] .4 Xq, and 7o X —
X, the coordinate maps. If M, is a g-algebra on X, for each «, the product o-algebra
on X is the o-algebra generated by

(mHEL) | Eq € My, ae A

We denote this o-algebra by &) .4 Ma. (If A = {1,...,n} we also write Q] M; or
My ®---®M,.) The significance of this definition will become clearer in Folland Section
2.1; for the moment we give an alternative, and perhaps more intuitive, characterization
of product o-algebras in the case of countably many factors.

Proposition 1.3: 1.3.
If A is countable, then ), 4, M, is the o-algebra generated by {[ [,c4 Ea | Ea € Ma}.

Proof. If E, € My, then 7' (E,) = [, Ep where Eg = X for 8 # a; on the other
hand, [[,c4 Ea = [\aes o (Ea). The result therefore follows from Lemma 1. O

Proposition 1.4: 1.4.

Suppose that M, is generated by €4, € A. Then ), .4 M, is generated by M; =
{7 (Es) | Ea € My, € A}, If A is countable and X, € M, for all o, Q) .4 M, is
generated by My = {[ [cs Ea | Ea € My}

Proof. Obviously M(M;) © &),c4 Ma. On the other hand, for each «, the collection
{Fc X, | (E) e M(M,)} is easily seen to be a c-algebra on X, that contains M,
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and hence M,. In other words, n'(E) € M(M,) for all E € M,, a € A, and hence
Xpes Mo © M(M;). The second assertion follows from the first as in the proof of
Proposition 3. O

Proposition 1.5: 1.5.

Let Xi,..., X, be metric spaces and let X = [} Xj, equipped with the product
metric. Then &)} Bx, < Bx. If the X)s are separable, then &)} Bx, = Bx.

Proof. By Proposition 4, ®]Bx; is generated by the sets ;' (U;), 1 < j < n, where Uj is
open in X;. Since these sets are open in X, Lemma 1 implies that ®]Bx, < Bx. Suppose
now that C; is a countable dense set in X, and let B, be the collection of balls in X
with rational radius and center in C;. Then every open set in X is a union of members of
B;—in fact, a countable union since B; itself is countable. Moreover, the set of points in
X whose jth coordinate is in C; for all j is a countable dense subset of X, and the balls
of radius r in X are merely products of balls of radius r in the X;s. It follows that By, is
generated by B; and By is generated by {[ [} E; | E; € B;}. Therefore Bx = Q] Bx, by
Proposition 4. O

Corollary 1.6: 1.6.
BRn = ®711 BR.

We conclude this section with a technical result that will be needed later. We define
an elementary family to be a collection € of subsets of X such that

o Je g,

o if £, Fe& then EnFecg,

o if /e € then E° is a finite disjoint union of members of &.

Proposition 1.7: 1.7.

If € is an elementary family, the collection € of finite disjoint unions of members of &
is an algebra.

Proof. . If A,B € & and B® = | J] C;(C; € &, disjoint), then A~ B = U{(A ;) and
AU B = (AN B)u B, where these unions are disjoint, so AN B € € and Au B € €. It now
follows by induction that if A; ..., A, € &, then | J{ A; € &; indeed, by inductive hypothesis
we may assume that A, ..., A, are disjoint, and then | J{ A; = A,, U U?il(Aj N A,
which is a disjoint union. To see that € is closed under complements, suppose A, ... A, € €

and A, = Uj:l BJ with Bl ... B’ disjoint members of & Then

(U;:1 Am)c — ﬂfnzl(Uj; Bg@) — 1Bl a0 B [ 1< o < T 1 <m <},
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which is in A. O

Exercise 1.8: Folland Exercise 1.1.

A family of sets R < R(X) is called a ring if it is closed under finite unions and
differences (i.e., if By, ..., E, € R, then | J{ E; € R, and if £, F' € R, then E \ F € R).
A ring that is closed under countable unions is called a o-ring.

(a) Rings (resp. o-rings) are closed under finite (resp. countable) intersections.

(b) If R is a ring (resp. o-ring), then R is an algebra (resp. o-algebra) if and only if

(c) If Ris a o-ring, then {F < X | E € R or E° € R} is a o-algebra.
(d) If R is a o-ring, then {F < X | En F € R for all F € R} is a o-algebra.

X e R.

Solution.

(a)

First, we make the following claim: Let {£;};c; be a family of sets indexed by I, and
let £ = J,.; Ei, then

el
,&:E\(
el

We will prove this by showing each is a subset of the other.

(€) Let e € [),; Ei- Then e € E; for all i € I, and clearly e € E. Also, since
e € E; for all i, we see that e ¢ E \ E; for any i € I. Then e ¢ | J,.; E \ E;. Since
eeFande¢ |, ; ENE;,thenee EX (U, E N E)).

(2) Now assume e € £\ (| ,.; E ~ E;). Then we have e € £ and e ¢ £\ E; for
any ¢. That is to say e¢ F or e € E; for all i € I. We’ve already established e € F,
so we must have e € E; for all i € I, then we have e € [),_; E;.

Now we have established the two sets are equal. Let R be a ring (o-ring), and
let {E;}ier be a family of sets indexed by the finite (countable) set I. Then we have
E = J,.; Ei is the finite (countable) union of sets in R, and so E € R. Since R is
closed under finite set differences, we have that (,_; E; = E~ (U,.; E ~ E;) € R.
Therefore, any ring (o-ring) R is closed under finite (countable) intersection.

We suppose R is a ring (o-ring) and is therefore closed under finite (countable) unions
and differences. We also make the assumption that R is nonempty, as otherwise, R
is trivially closed under unions, differences, and complements.

( = ) Suppose R is an algebra (c-algebra). Then R is closed under complements.
As R is nonempty, there exists £ € R, where £ < X. As R is closed under
complements, £ € R. As R is closed under finite (countable) unions, F u E° € R.
But X = FuU E° so X eR.

( <= ) Suppose X € R. As R is closed under differences, then for all £ € R, we
know X ~\ F € R. But £ = X \ F, so for all E € R, we have that £ € R, so R
is closed under complements. Hence, as R is closed under complements and finite
(countable) unions, then R is an algebra (o-algebra).

,E\E>
I

€
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(c) Welet S={F c X |FEeRor E°e R}. To prove S is a o-algebra, we must show it
is closed under countable unions and complements.

To prove S is closed under complements, we consider an arbitrary subset, F € S.
Because E € S, it must be that either £'e R or E° e R. As (E°)¢ = F, this means
that (E°)¢ e R or E° € R, which means that E° € S by the definition of S. Hence, S
is closed under taking complements.

To prove that S is closed under countable unions, let {E;};cz., be a countable
collection of sets in S. We need to show that either ( J;,_ Ej € Ror (Uez., )" =

iz, £¢ € R. We know that for each Fj € S, we have that either £; € R or
ESeR. Let A= {n¢€Zs | E, € R} and note that this implies if n € Z; \ A then
E, ¢ R and so Ef € R. As Zz, is countable, then A and Z-, \ A are both countable
as subsets of a countable set are countable. Therefore, | ;.4 Ej € R as this is a
countable union of elements in R and R is a o-ring, and [ iez-,a B € R as o-rings
are closed under countable intersections by part (a) We note that we can always split
up a set into a disjoint union £ = (E n F) u (E n F*), which we use to say that

mjezzl\A EJC - <ﬂj€Z>I\A E]c 4 UJ'GA Ej) v (ﬂjeZ>1\A EJC a (UjeA Ej)c)

noting that ({J;cs E5)° = (jea B We get that

ﬂjeZ>1 E]C - (ﬂjeZ>1\A E]C a (UjeA Ej)c) - ﬂjezzl\A E;\ (ﬂjeZ>1\A EJC a UjeA Ej)

As Njezoron B5 N (Njezoyoa B 0 Ujea Ej) is taking the difference and finite inter-
section of elements of R, and R is a o-ring, this implies ﬂj€Z>1 E7 € R. Therefore,
Ujezo, Bi = (Njezo, E5)° is an element of S, and so S is closed under countable
unions.
Hence, as S is closed under countable unions and complements, S is a g-algebra.
(d) Welet S ={FEc X|EnFeRforall FeR}. We want to show that S is a o-
algebra given that R is a o-ring, which means we must show it is closed under
countable unions and complements.
To show S is closed under complements, suppose £ € S. Then for all F' € R, we

have that £ n F € R, and as R is closed under taking differences, we have that
ECnF=F~N(EnF)eR
as F' and I n F are both in R. Hence, for all F' € R, we have that £ n F' € R, and
so E¢e S. As E € S was arbitrary, S is closed under taking complements.
To show S is closed under countable unions, let {£;},cz., be a countable collection
of sets in S. Fix ' € R. For each F; € S, we have that E; n F' € R. As R is a o-ring,
it is closed under countable unions, and so

Uj%l(Ej NF)e®R

Ujezzl(Ej AF) = (Uj@l Ej) AF
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by observing that if = € UjGZ;l(Ej N F), then x € (E; n F) for some j € Z>y,
which implies that z € Ej and x € F, so © € (;., £;) and @ € F, and therefore
2 € (Ujez., Bj) 0 F. Similarly, if z € ({Uep., Ej) 0 F, thenz € Fand z € (o, Ej
soz € F and x € Ej for some j € Z>1, so x € E; n F, and hence z € | E;nF).
Therefore, we know that

(Uj%l E;) 0 F = U (Bsn P e
As F € R is arbitrary, we have that for all F' € R, (Uj6221 E;)n F € R, and so

Ujez., £; € S by definition. Therefore, S is closed under countable unions and
complements, so S is a g-algebra. O

jeZzl(

Exercise 1.9: Folland Exercise 1.2.

Complete the proof of Proposition 2.

Solution. To complete the proof of Proposition 2, it suffices to show Br < B(B;) for
2 < j < 8. Folland shows that M(M;) for 1 < j < 8 and Mg < M(M,) is trivial. We
have the following representations:

o M(My) : (a,b) = Uy (a+1/n,b—1/n].
e M(Ms3) : (a,b) = J{ (a,b—1/n].

o M(My) : (a,b) =, [a + 1/n,b).

e M(M;) : (a,b) = (a,0) n (—0,b).

o M(Ms) : (a,b) = (a,®0) n (=00, b).

e M(My) : (a,b) = (a,0) N (—0,b).

o M(Ms) : (a,b) = (a,0) N (—0,b).

It follows that every open set is generated by taking countable unions, complements, and
intersections of sets from €; for all 1 < j < 8. m

Exercise 1.10: Folland Exercise 1.3.

Let M be an infinite o-algebra.

(a) M contains an infinite sequence of disjoint sets.
(b) card(M) > c.

Exercise 1.11: Folland Exercise 1.4.

An algebra A is a g-algebra if and only if A is closed under countable increasing unions

(ie., if {E;}]"c A and By « By < -+, then |} Ej € A).

Solution. Let A be a g-algebra. Then by definition, A is closed under countable unions,
so in particular A is closed under countable increasing unions.
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Conversely, suppose A is an algebra and A is closed under countable increasing
unions. Let {£;};ez., be a countable family of sets where E; € A for all i € Zz,. Define
F, =J,_, Ex for all i € Z>,. Since A is an algebra, it is closed under finite unions, and
so F; € A for all i € Z>,. Also note that {F;}cz., as defined is an increasing family of
sets, that is F; € Fj,; for all i € Z~,. Therefore we have Uiez21 F; € A. Finally note that

Uiezo, Fi = Uicz., i and so ey, Ei € A. -

Exercise 1.12: Folland Exercise 1.5.

If M is the o-algebra generated by M, then M is the union of the o-algebras generated
by M as M ranges over all countable subsets of M. (Hint: Show that the latter object
is a o-algebra.)

1.3 Measures

Let X be a set equipped with a o-algebra M. A measure on M (or on (X, M), or
simply on X if M is understood) is a function p: M — [0, oo] satisfying the following two
properties.

(i) u(@) = 0.
(ii) If {E;} is a sequence of disjoint sets in M, then u(lJ;” E;) = X" n(E;).
Property (ii) is called countable additivity. It implies finite additivity:
(i) If By, ... E, are disjoint sets in M, then p(|J] E;) = D) u(Ej),
because one can take E; = @ for j > n. A function p that satisfies (i) and (ii’) but not
necessarily (ii) is called a finitely additive measure.

If X is a set and M < M(X) is a o-algebra, (X, M) is called a measurable space and
the sets in M are called measurable sets. If 1 is a measure on (X, M), then (X, M, u) is
called a measure space.

Let (X, M, 1) be a measure space. Here is some standard terminology concerning
the “size” of u. If u(X) < oo (which implies that u(E) < oo for all £ € M since
w(X) = u(E)+ p(E)), p is called finite. If X = ()" E; where E; € M and u(FE;) < oo for
all j, u is called o-finite. More generally, if E = J; E; where E; € M and u(E;) < o for
all 7, the set F is said to be o-finite for p. (It would be correct but more cumbersome to
say that F is of o-finite measure.) If for each F € M with u(E) = o there exists F' € M
with F' < F and 0 < u(F) < oo, v is called semifinite.

Every o-finite measure is semifinite (Folland Exercise 1.13), but not conversely. Most
measures that arise in parctice are o-finite, which is fortunate since non- o-finite measures
tend to exhibit pathological behavior. The properties of non- o-finite measures will be
explored from time to time in the exercises.

Example 13. Let us examine a few examples of measures. These examples are of a rather
trivial nature, although the first one is of practical importance. The construction of more
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interesting examples is a task to which we shall turn in the next two sections.

o Let X be any nonempty set, M = M(X), and f any function from X to [0, 0].
Then f determines a measure p on M by the formula p(E) =Y, . f(x). (For the
definition of such possibly uncountable sums, see Folland Section 0.5.) The reader
may verify that u is semifinite if and only if f(x) < o for every x € X, and p is
o-finite if and only if u is semifinite and {x | f(x) > 0} is countable. Two special
cases are of particular significance: If f(x) =1 for all x, p is called counting measure;
and if, for some xo € X, f is defined by f(xo) = 1 and f(x) = 0 for x # xo, p is
called the point mass or Dirac measure at xo. (The same names are also applied to
the restrictions of these measures to smaller o-algebras on X.)

o Let X be an uncountable set, and let M be the o-algebra of countable or cocountable
sets. The function p on M defined by u(E) = 0 if E is countable and u(E) =1 if E
15 co-countable is easily seen to be a measure.

o Let X be an infinite set and M = M(X). Define un(E) = 0 if E is finite, u(E) = o
if B is infinite. Then p is a finitely additive measure but not a measure.

The basic properties of measures are summarized in the following theorem.

Theorem 1.14: 1.8.

Let (X, M, p) be a measure space.

(a) (Monotonicity) If £, Fe M and E < F, then u(E) < u(F)

(b) (Subadditivity) If {E;}7 = M, then u(JS E;) < 37 u(E))

(¢) (Continuity from below) If {E;}" < M and E; < Ey < ---, then u(|J;" E;) =
lim; o0 pu(Ej).

(d) ((éﬁloginui)ty from abox(/e) )If {E;} « M,E; o Ey o -+, and u(FE;) < o0, then
1% 1 Ej = limjaoou Ej .

Proof. (a) If E < F, then u(F) = p(E) + u(F \ E) = p(E).
(b) Let Fy = Fy and Fj, = E; ~ (Ui " E;) for k > 1. Then the Fys are disjoint and
UL F; = U} E; for all n. Therefore, by (a),

0 0 0 0
M(Ul Ej) = M(Ul Fa) =, wEy) <) k)
(c) Setting Fy = &, we have
0 0 ) n .
u(Ul Ej) =D, WE; N Bjy) = lim 3 (B~ Ej) = lim p(E,)
(d) Let F; = E; \ Ej; then Fy ¢ Fy < - u(Ey) = p(Fy) + p(E;), and | F; =
By~ (N Ej). By (c), then,

u(Er) = u(ﬂjo Ej) + lim p(Fy) = u(ﬂf Ej) + lim [1(Er) — n(E;)]

Since pu(E;) < o0, we may subtract it from both sides to yield the desired result. O
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We remark that the condition u(E;) < o in part (d) could be replaced by p(E,) < o
for some n > 1, as the first n — 1F;s can be discarded from the sequence without affecting
the intersection. However, some finiteness assumption is necessary, as it can happen that
w(E;) = oo for all j but u(()” E;) < o0. (For example, let u be counting measure on
(Z1,P(Z=1)) and let E; = {n | n > j}; then (" E; = 2.)

If (X, M, 1) is a measure space, a set £/ € M such that p(E) = 0 is called a null set.
By subadditivity, any countable union of null sets is a null set, a fact which we shall use
frequently. If a statement about points x € X is true except for x in some null set, we
say that it is true almost everywhere (abbreviated a.e.), or for almost every z. (If more
precision is needed, we shall speak of a p-null set, or p-almost everywhere).

If u(E)=0and F < E, then pu(F) = 0 by monotonicity provided that £ € M, but in
general it need not be true that F' € M. A measure whose domain includes all subsets
of null sets is called complete. Completeness can sometimes obviate annoying technical
points, and it can always be achieved by enlarging the domain of pu, as follows.

Theorem 1.15: 1.9.

Suppose that (X, M, 1) is a measure space. Let M = {N € M | u(N) = 0} and M=
{EuF: EeMand F'c N for some N € M}. Then M is a o-algebra, and there is a
unique extension 1 of p to a complete measure on M.

Proof. Since M and M are closed under countable unions, so is M. If E U F € M where
EeMand Fc N eM, we can assume that £ n N = & (otherwise, replace F' and N by
FNEand N\E). Then EOUF = (EUN)n(N°U F),s0 (FUF)* = (EUN)°U(NNF).
But (Fu N)*e Mand N \ F < N, so that (E u F)°e M. Thus M is a o-algebra.

If EUF € M as above, we set [i( E U F) = pu(E). This is well defined, since if £, U Fy =
Ey U Fy where F; < N; € M, then Ey < Ey U Ny and so pu(E7) < pu(Es) + p(N2) = p(Es),
and likewise p(FEs) < u(Ey). Tt is easily verified that 7 is a complete measure on M, and
that 7 is the only measure on M that extends y; details are left to the reader (Folland

Exercise 1.6). O

The measure 77 in Theorem 15 is called the completion of i, and M is called the
completion of M with respect to p.

Exercise 1.16: Folland Exercise 1.6.

Complete the proof of Theorem 15.

Exercise 1.17: Folland Exercise 1.7.

If uy,..., 1, are measures on (X, M) and ay,...,a, € [0,00), then >

=1 ajf; 18 a
measure on (X, M).
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Solution. We have
() = ijl ajp;i () = ijl a; -0 =0,

where the second equality is because f; is a measure for each j € {1,...,n}. Now let
{E;}7, be a countable subset of M consisting of mutually pairwise disjoint subsets. Then

”(Uj; Ej) - Zn 4t (UZO 1 E’“)

— Z] 4 (2 11 (Ey )) (by countable additivity of each ;)
= Z] L% ]\lflﬂOO (Z:f ) ,u(Ek)> (definition of infinite sum)
= &1_1)%0 (ZJ L Ek M ) (limit of a finite linear combination)
= Zk—l w(E;), (finite linear combination of limit of sum)
so u is countably additive. Thus u is a measure. O]

Exercise 1.18: Folland Exercise 1.8.

If (X, M, p1) is a measure space and {£;}72, = M, then
p(liminf;_,o, E;) < liminf; . p(E;).
Also,
p(limsup;_,, E;) = limsup,_,,, pu(E})
provided that u(|J7Z, E;) < o

Solution. Let {E;}7, be any countable collection of elements of M, where M is the
o-algebra on which p is defined.

e u(liminf; o E]) < liminf; o p(E;): We have

p(liminf, ., E; (UnEZ>1 ﬂpn ) Jﬂp(ﬂj)n Ej> < liminf, ., Ej,

where the third equahty is by continuity from below and the final inequality can be
argued as follows. Since

ﬂ]}n E;c Ejforall j =n
by monotonicity of i, we have

u(ﬂj>n E) p(E;) for all j >
Thus 4((;,, Ej) is a lower bound for {u(Ej) | j = n}. It follows that

() o) <t B
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Sending n — 00, we obtain

u(ﬂj}n Ej) < lim inf F; = liminf, o, u(E;).

n—o j=n
e limsup, ., u(E,) < p(limsup, ., Fj) if M(U;O:I E;) < o0 Suppose ,u(U?o:1 E;) < .
Then
limsup;_,,c p(E;) = lim sup;, p(E;) < p(limsup;_,., Ej),
where the final inequality holds because
u(lim SUPj—o0 Ej) - M(“nelzl Uj?n Ej) - 7}i—I>rololu<Uj>n Ej) > 7}1_{130 SUPjzn M<Ej)’
where the second last equality is by continuity from above since M(U;Ozl E;) <o

and the inequality is because u(| J;s,, F;) is an upper bound for {4(Ej) | j = n}, for
all n € Zo1. O

Exercise 1.19: Folland Exercise 1.9 (Strenthened Version).

Let (X, M, i) be a measure space.
(a) If E, F € M, then
p(E) + p(F) = p(E v F) + p(En F).
(b) If F < X is p*-measurable, then for every subset A — X we have
pH(E) + p*(A) = p*(En A) + p*(E v A).

Note that only one subset needs to be p*-measurable, unlike for measures!

Solution.
(a) First note that £ u F, E n F, E\F € M. Thus
w(E) + p(F) = p(E\F) + p(E N F) + p(F) = p(E v F) + p(En F),
where we have used the facts
(EA\F)n(EnF)=g = (E\F)nF.
(b) Since E is p*-measurable, we can write
P (E) + p*(A) = p*(E) + p*(An E) + p*(A n E°).
Applying that F is p*-measurable once again yields
pr(EuvA) =p* (EvA)NE)+u*((EuA)n E) =p*(E)+ pu*(An E°.
Combining the last two equations proves that
P (E) + p*(A) = p*(E) + W (AN E) + p*(An EY) = p*(En A) + p* (B v AJl
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Exercise 1.20: Folland Exercise 1.10.

Given a measure space (X, M, u) and E € M, define up(M) = pu(A n E) for A e M.
Then pp is a measure.

Solution. First observe that ug() = w(J N E) = pu(J) = 0. Next, given a sequence of
disjoint sets in M, {E;},.,_ , note that {E; n E'} are disjoint and

HE (UjeZ>1 Ej) - ((Uje@l Ej) " E) B “(Ujezzl(Ej " E>) - zje@l HiE; 0 E) = ZjeZ>1 Hs(Ej

Thus pg is a measure. O]

JE€ZL=1

Exercise 1.21: Folland Exercise 1.11.

A finitely additive measure p is a measure if and only if it is continuous from below as
in Theorem 14(c). If u(X) < o0, p is a measure if and only if it is continuous from
above as in Theorem 14(d).

Exercise 1.22: Folland Exercise 1.12.

Let (X, M, p) be a finite measure space.
(a) If B, F e M and u(EAF) = 0, then u(E) = p(F).
(b) Say that E ~ F if y(EAF) = 0; then ~ is an equivalence relation on M.
(c) For E,F € M, define p(E, F) = u(EAF). Then p(E,G) < p(E,F) + p(F,G),
and hence p defines a metric on the space M/ ~ of equivalence classes.

Solution.
(a) First, recall that the symmetric difference is defined by FAF = (E\F) u (F\E).
Since F\F and F\FE are disjoint, we have

W(EAF) = p(E\F) + u(F\E),
so that if u(EFAF) =0 (since p only takes on nonnegative values) we have
W(EVF) = 0 = u(F\E).
Therefore,
p(E) = p(E 0 F) + p(E\F) = p(E 0 F) + p(F\E) = p(F).
(b) Reflexive: As u(EAE) = pu() = 0 for all E € M, we have E ~ E for all E € M.
Symmetric: Since EAF = FAFE by definition (as the name symmetric difference

suggests!), if £ ~ F then 0 = u(FAF) = u(FAFE) so that F' ~ E for all E, F € M.
Transitive: Suppose that £ ~ F and F' ~ G for E, F,G € M. Then we have that

W(EAF) = 0 = u(FAG).
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As we want to show that u(EAG) = 0, we first note that both F\G = F n G° and
G\E = G n E° are measurable since F and G are. Furthermore, one sees

E\G = (E\F) v (F\G), G\E < (G\F)u (F\E),
so that both E\G and G\F are null sets. Therefore, we conclude u(EAG) = 0 so
that £ ~ G.

(c) By definition, we have that p: M/ ~— [0, o0]. Furthermore, u(EAF) = p(E,F) =0
if and only if £ ~ F', that is, F' and F' are in the same equivalence class. As we just
proved, i, and hence p, is symmetric. By our remarks in proving b., it is clear that

EAG c (EAF) u (FAG).
Hence, by monotonicity we have
p(EAG) = n(EAG) < u(EAF) + n(FAG) = p(EAF) 4+ p(FAG),
so that the triangle inequality holds. Therefore, p defines a metric on the space
M/ ~ of equivalence classes.
[

Exercise 1.23: Folland Exercise 1.13.

Every o-finite measure is semifinite.

Solution. Let u be o-finite, and fix E € 9t with p(E) = 400. Since p is o-finite, it can be
expressed as a countable union of sets {U;};2, of finite measure. We have E 1y B¢ = X =
U:2, Us, which implies

E= (Uil Uz-) B =S winE) = (WinE).

+oo = pu(E) = “(UZKUi A E)) <3 ulUin E).

Now, for each i, we know that U; n F < E, and u(U; n E) < o since u(U;) < oo. It
remains to show that 0 < u(Uy n E) < oo for some k. Suppose there were no such k; then
for all i, we would have u(U; n E) = 3,2, (0) = 0, which contradicts our assumption that
w(E) = 4o0. This completes the proof. O

Therefore,

Exercise 1.24: Folland Exercise 1.14.

If 41 is a semifinite measure and p(F) = oo, for any C' > 0 there exists F' — E with
C < u(F) < oo.
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Exercise 1.25: Folland Exercise 1.15.

Given a measure p on (X, M), define pp on M by
o(E) = suplu(F) | F < E and u(F) < oc}.
(a) o is a semifinite measure. It is called the semifinite part of p.
(b) If u is semifinite, then p = py. (Use Folland Exercise 1.14.)
(c) There is a measure v on M (in general, not unique) which assumes only the values
0 and oo such that pu = po + v.

Exercise 1.26: Folland Exercise 1.16.

Let (X,M, ) be a measure space. A set E < X is called locally measurable if
En AeM for all Ae M such that u(A) < co. Let M be the collection of all locally
measurable sets. Clearly M < M; if M = M, then u is called saturated.

(a) If p is o-finite, then p is saturated.

(b) M is a o-algebra.

(¢) Define /i on M by (E) = p(E) if Ee M and fi(E) = co otherwise. Then fi is a

saturated measure on M, called the saturation of p.
(d) If p is complete, so is i.

(e) Suppose that g is semifinite. For E e M, define wE) =
sup{p(A) | Ae M and A c E}. Then y is a saturated measure on M that extends
i

(f) Let Xy, X5 be disjoint uncountable sets, X = X; u X3, and M the o-algebra of
countable or co-countable sets in X. Let po be counting measure on M(X;), and
define y on M by u(E) = pio(E n X1). Then p is a measure on M, M = M(X),
and in the notation of parts (c) and (e), it # p.

Exercise 1.27: The Borel-Cantelli Lemma.

Let (X, 97, 1) be a measure space, let {F;}7, < 9, and let limsup £; denote the set
of points that lie in infinitely many of the E;. If

o0
Zj=1M<Ej) <,
then
p(limsup E;) = 0.

Solution. Notice that p(lJ;Z, E;) < +oo since
M(UOO Ej) < Z;il w(Ej) (by monotonicity)

j=1
< 4o (given).
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So, by continuity from above, we have

p(limsup E;) = p (ﬂ;il Ujozk Ej> (definition of limsup E;)
. e . .
= kh—IBo u(Uj:k Ej) (continuity from below)
. 0 o .
< klglolo ik L(E;) (monotonicity)

Since we know that Zj’;l p(E;) < +o, it follows that limy_,q Z;E:k p(E;) = 0. Hence,
the above limit is zero, as desired. O]

1.4 Quter Measures

In this section we develop the tools we shall use to construct measures. To motivate
the ideas, it may be useful to recall the procedure used in calculus to define the area of
a bounded region E in the plane R%. One draws a grid of rectangles in the plane and
approximates the area of E from below by the sum of the areas of the rectangles in the
grid that are subsets of F, and from above by the sum of the areas of the rectangles in
the grid that intersect E. The limits of these approximations as the grid is taken finer
and finer give the “inner area” and “outer area” of E/, and if they are equal, their common
value is the “area” of E. (We shall discuss these matters in more detail in 2.6.) The key
idea here is that of outer area, since if R is a large rectangle containing F/, the inner area
of FE is just the area of R minus the outer area of R \ E.

The abstract generalization of the notion of outer area is as follows:

Definition 28. An outer measure on a nonempty set X is a function p*: P(X) — [0, 0]
that satisfies

e M*(g ) =0,

o u*(A) < p*(B) if Ac B, and

o (U Aj) < X7 1 (Ay).

The most common way to obtain outer measures is to start with a family & of
“elementary sets” on which a notion of measure is defined (such as rectangles in the plane)
and then to approximate arbitrary sets “from the outside” by countable unions of members
of €. The precise construction is as follows.

Proposition 1.29: 1.10.

Let €  E(X) and p: € — [0, 0] be such that @ € £, X € €, and p(&) = 0. For any
A c X, define

p(A) = inf{Zio w(E;) ) E;efand Ac Ujo Ej}

Then p* is an outer measure.
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Proof. For any A < X there exists {E;};” < € such that A < | J] E; (take E; = X for all
J) so the definition of p* makes sense. Obviously p*(@) = 0 (take E; = @ for all j), and
w*(A) < p*(B) for A € B because the set over which the infimum is taken in the definition
of u*(A) includes the corresponding set in the definition of x*(B). To prove the countable
subadditivity, suppose {A4;}}” c &(X) and & > 0. For each j there exists {E}}" < &
such that A; < |J,_, Ef and >, p(EF) < p*(A;) + €277, But then if A = J” 4;, we
have A < (J7,_; B} and 3, p(E}) < X, p*(A;) + &, whence p*(A) < 3, p*(A4)) + €.
Since ¢ is arbitrary, we are done. m

The fundamental step that leads from outer measures to measures is as follows:

Definition 30. If u* is an outer measure on X, a set A < X 1is called p*-measurable if
W (E)=u*(EnA) +u (En A forall E c X.

Of course, the inequality p*(E) < p*(E n A) + p*(E n A°) holds for any A and E, so
to prove that A is p*-measurable, it suffices to prove the reverse inequality. The latter is
trivial if u*(FE) = o0, so we see that A is p*-measurable iff

p(E) = p*(EnA)+ p*(E n A°) for all E < X such that p*(F) < oo.
Some motivation for the notion of y*-measurability can be obtained by referring to the
discussion at the beginning of this section. If F is a “well-behaved” set such that £ > A,
the equation p*(E) = p*(E n A) + p*(E n A°) says that the outer measure of A, u*(A),
is equal to the “inner measure” of A, u*(E) — p*(E n A°). The leap from “well-behaved”

sets containing A to arbitrary subsets of X a large one, but it is justified by the following
theorem.

Theorem 1.31: 1.11: Carathéodory’s Theorem.

If ©* is an outer measure on X, the collection M of p*-measurable sets is a o-algebra,
and the restriction of u* to M is a complete measure.

Proof. First, we observe that M is closed under complements since the definition of
p*-measurability of A is symmetric in A and A¢. Next, if A, Be M and £ c X,

P (E) = p*(En A) + @ (E n A

=W (EnAnB)+p (EnAnB)+u"(EnA°n B)+ p*(En A°n B°).
But (AuB)=(AnB)u(An B° u(A°n B), so by subadditivity,

PENANB)+ " (EnAnBY)+pu (EnA°nB)=pu"(En(AuB))
and hence

pr(E) 2 p*(En (Av B)) + p*(En (Au B)Y)
It follows that A u B € M, so M is an algebra. Moreover, if A, Be M and An B =&,
WA U B) = (AU B) A A) + (AU B) 1 A%) = *(A) + pu*(B),

Version of April 30, 2024 at 11pm EST Page 37 of 368


https://www.greysonwesley.com/home

Greyson C. Wesley §1.4: Outer Measures

so p* is finitely additive on M.

To show that M is a o-algebra, it will suffice to show that M is closed under countable
disjoint unions. If {A;})” is a sequence of disjoint sets in M, let B, = |J; A; and
B =J{ 4;. Then for any F < X,

W (EnB,)=p(EnB,nA,)+p"(EnB,nA))
= (EnA,)+p*(EnB,)
so a simple induction shows that p*(E n B,) = Y| u*(E n Aj;). Therefore,
W (E) = (0 Bo) + 7 (B 0 By) 2 35017 (E 0 Ay) + 1 (B 0 BY)
and letting n — oo we obtain
* 0 * * C * D * C
pHE) = 3 W B Ay + (B 0 B) =t (| (B 0 4)) + (B 0 BY)
— W*(E A B) + 1*(E 0 B) > 5*(B)
All the inequalities in this last calculation are thus equalities. It follows that B € M
and—taking £ = B—that u*(B) = Y7 u*(A;), so u* is countably additive on M. Finally,
if p*(A) =0, for any F < X we have
W (E) < 1 (E 0 A) + 1 (E 0 A) = (B 0 A%) < p*(E)

so that A € M. Therefore p* | M is a complete measure. m

Our first applications of Carathéodory’s theorem will be in the context of extending
measures from algebras to o-algebras. More precisely, if A ¢ A(X) is an algebra, a
function pg: A — [0, 00] will be called a premeasure if

o 11p(2) =0,

o if {A;}]” is a sequence of disjoint sets in A such that | J;” 4; € A, then uo(|J;” 4;) =

20 HolAy).
In particular, a premeasure is finitely additive since one can take A; = @ for j large.
The notions of finite and o-finite premeasures are defined just as for measures. If g
is a premeasure on A < A(X), it induces an outer measure on X in accordance with
Proposition 29, namely,

W (E) = inf{Zf pio(A;) ( AjeAEC| S Aj}

Proposition 1.32: 1.13.

If po is a premeasure on A and p* is defined by (1.12), then
(a) p* [ A = po;
(b) every set in A is p* measurable.

Proof. (a) Suppose E € A. If E < | JT A; with A; € A, let B, = En (A, ~ " 4)).

Version of April 30, 2024 at 11pm EST Page 38 of 368


https://www.greysonwesley.com/home

Greyson C. Wesley §1.4: Outer Measures

Then the B,s are disjoint members of A whose union is F, so uo(E) = >\ uo(B;) <
> mo(A;). Tt follows that po(E) < p*(E), and the reverse inequality is obvious since
Ec|J{ A; where A} = F and A; = & for j > 1.
b)If Ae A,E < X, and € > 0, there is a sequence {B;}; < A with F < | J{” B, and
( ) ) ) ’ q JJ1 1 J
> po(Bj) < p*(E) + e. Since pp is additive on A,

p(E)+e= Zjo po(B; N A) + ZT po(Bj N A°) = p*(En A) + p*(E n A9

Since ¢ is arbitrary, A is p*-measurable. O

Theorem 1.33: 1.14.

Let A < A(X) be an algebra, 1 a premeasure on A, and A the o-algebra generated
by A. There exists a measure y on A whose restriction to A is pp—mnamely, p = p* | A
where p* is given by (1.12). If v is another measure on A that extends g, then
v(E) < p(E) for all E € A, with equality when p(E) < co. If ug is o-finite, then p is
the unique extension of yy to a measure on A.

Proof. The first assertion follows from Carathéodory’s theorem and Proposition 32 since

the o-algebra of p*-measurable sets includes A and hence A. As for the second assertion,
if Ee Aand E < |J” A; where A; € A, then v(FE) < > v(4;) = 37 uo(4,), whence
V(E) < u(E). Also, if we set A = J;” A;, we have

) = fim ({7 40) = Jim (U 4) = )
If ;(E) < oo, we can choose the Ajs so that p(A) < p(E) + €, hence pu(A N E) < ¢, and
wE) < pu(A) =v(A)=v(E)+v(ANE)<v(E)+ pf(ANE)<v(E)+¢
Since ¢ is arbitrary, u(E) = v(E). Finally, suppose X = | J;” A; with uo(A;) < o0, where
we can assume that the A;s are disjoint. Then for any F € M,

u(B) = 327 pE Ay = ) w(E 0 Ay) = v(E)
SO V = [i. O

The proof of this theorem yields more than the statement. Indeed, 1o may be extended
to a measure on the algebra M* of all ©*-measurable sets. The relation between M and M*
is explored in Folland Exercise 1.22 (along with Folland Exercise 1.20(b), which ensures
that the outer measures induced by o and p are the same).

Exercise 1.34: Folland Exercise 1.17.

If ©* is an outer measure on X and {Aj};il is a sequence of disjoint p*-measurable

sets, then
w (E N (Uil Aj)) = Zil 15 (B~ A)
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for any £ < X.

Solution. By subadditivity, we immediately have

15 (E A (Ve A3)) = 15 (Ujez B 0 A)) < ZjEZ% p*(EnAj), forany Ec X.
On the other hand, since E' n (UF_1A;) © E N (Ujez., Aj), it follows that
2?21 (B nAj) = p(En (U1 A7) < p(E 0 (Ujeze, 45)),  forall n and any F < X.
Therefore, taking the limit n — oo yields the inequality, and combining the inequalities
proves that

pHE A (Ujeza Ag)) =D pH(En4y), forany Ec X

JEL>1

Exercise 1.35: Folland Exercise 1.18.

Let A < A(X) be an algebra, A, the collection of countable unions of sets in A, and
Ays the collection of countable intersections of sets in A,. Let uo be a premeasure on
A and p* the induced outer measure.
(a) Forany £ < X and € > 0, there exists A € A, with £ < A and p*(A) < p*(E)+e.
(b) If p*(E) < o0, then E is p*-measurable if and only if there exists B € A,s with
E c B and p*(B\ E) = 0.
(c) If pp is o-finite, the restriction p*(F) < oo in (b) is superfluous.

Exercise 1.36: Folland Exercise 1.19.

Let p* be an outer measure on X induced from a finite premeasure py. If £ < X,
define the inner measure of F to be p,(E) = po(X)—p*(E°). Then E is p*-measurable
if and only if ©*(E) = p«(F). (Use Folland Exercise 1.18.)

Exercise 1.37: Folland Exercise 1.20.

Let p* be an outer measure on X, M* the o-algebra of p*-measurable sets, @ = p* | M*,
and p* the outer measure induced by 7z as in (1.12) (with @ and M* replacing 1o and
(a) If E < X, we have p*(F) < p*(F), with equality if and only if there exists
AeM* with A > E and p*(A) = u*(B).
(b) If u* is induced from a premeasure, then p* = u*. (Use Folland Exercise 1.18a.)
(c) If X = {0, 1}, there exists an outer measure p* on X such that p* # p*.
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Exercise 1.38: Folland Exercise 1.21.

Let p* be an outer measure induced from a premeasure and 7z the restriction of p* to
the p*-measurable sets. Then 1 is saturated. (Use Folland Exercise 1.18.)

Exercise 1.39: Folland Exercise 1.22.

Let (X, M, 1) be a measure space, u* the outer measure induced by p according to
(1.12), M* the o-algebra of p*-measurable sets, and @ = p* | M*.

(a) If p is o-finite, then 7 is the completion of u. (Use Folland Exercise 1.18.)

(b) In general, 7z is the saturation of the completion of u. (See Exercises 16 and 21.)

Exercise 1.40: Folland Exercise 1.23.

Let A be the collection of finite unions of sets of the form (a,b] N Q where —0 < a <
b < .
(a) A is an algebra on Q. (Use Proposition 7.)
(b) The o-algebra generated by A is A(Q).
(c) Define pp on A by (@) = 0 and pg(A) = oo for A # @. Then py is a premeasure
on A, and there is more than one measure on A(Q) whose restriction to A is .

Exercise 1.41: Folland Exercise 1.24.

Let p be a finite measure on (X, M), and let u* be the outer measure induced by pu.
Suppose that £ < X satisfies p*(E) = p*(X) (but not that £ € M).
(a) f ABeMand An E = Bn E, then u(A) = u(B).
(b) Let Mg = {An E | Ae M}, and define the function v on Mg defined by (A4 n
E) = p(A) (which makes sense by (a)). Then Mg is a o-algebra on E and v is a
measure on Mg.

1.5 Borel Measures on the Real Line

We are now in a position to construct a definitive theory for measuring subsets of R
based on the idea that the measure of an interval is its length. We begin with a more
general (but only slightly more complicated) construction that yields a large family of
measures on R whose domain is the Borel o-algebra Bg; such measures are called Borel
measures on R.

To motivate the ideas, suppose that p is a finite Borel measure on R, and let F'(x) =
pu((—oo, x]). (F is sometimes called the distribution function of p.) Then F is increasing
by Theorem 14a and right continuous by Theorem 1.8 d since (—o0,z] = (" (—0, 2]
whenever x,, N\, z. (Recall the discussion of increasing functions in §0.5.) Moreover,
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if b > a,(—0,b] = (—o0,a] v (a,b], so u((a,b]) = F(b) — F(a). Our procedure will
be to turn this process around and construct a measure p starting from an increasing,
right-continuous function F. The special case F(x) = z will yield the usual “length”
measure.

The building blocks for our theory will be the left-open, right-closed intervals in
R—that is, sets of the form (a, b] or (a, ) or &, where —o0 < a < b < 0. In this section
we shall refer to such sets as h-intervals (h for “half-open”). Clearly the intersection of
two h-intervals is an h-interval, and the complement of an h-interval is an h-interval or
the disjoint union of two h-intervals. By Proposition 7, the collection A of finite disjoint
unions of h-intervals is an algebra, and by Proposition 2, the o-algebra generated by A is

Ag.
Proposition 1.42: 1.15.

Let F': R — R be increasing and right continuous. If (a;,b;] (j = 1,...,n) are disjoint
h-intervals, let

o (UT(% bj]) = Z?[F(bj) — F(ay)]

and let po(@) = 0. Then pyg is a premeasure on the algebra A.

Proof. First we must check that pg is well defined, since elements of A can be represented
in more than one way as disjoint unions of h-intervals. If {(a;,b;]}] are disjoint and
U (a;,b5] = (a,b], then, after perhaps relabeling the index j, we must have a = a; <
by =ay < by =...<b, =b,s0X][F(bj) — F(a;)] = F(b) — F(a). More generally, if
{I,}] and {J;}]" are finite sequences of disjoint h-intervals such that | J] I; = [ J] J;, this

reasoning shows that
2, kol = Z” po(li 0 Jj) = Zj po(J;)

Thus pg is well defined, and it is finitely additive by construction.

It remains to show that if {I;}" is a sequence of disjoint h-intervals with | J;" I; € A
then uo(J; I;) = X7 po(Z;). Since | J; I; is a finite union of h-intervals, the sequence
{I;}7 can be partitioned into finitely many subsequences such that the union of the
intervals in each subsequence is a single h-interval. By considering each subsequence
separately and using the finite additivity of ug, we may assume that U;O I, is an h-interval
I = (a,b]. In this case, we have

po(l) = uo(U? fj> + o (1' U Ij) > uo(UT Ij) =7 (1)
Letting n — o0, we obtain (1) = Y.” u(I;). To prove the reverse inequality, let us
suppose first that a and b are finite, and let us fix ¢ > 0. Since F is right continuous,
there exists § > 0 such that F(a +J) — F(a) < ¢, and if I; = (a;,b;, for each j there
exists 0; > 0 such that F(b; + d;) — F(b;) < 277. The open intervals (a;,b; + d;) cover
the compact set [a + 0,b], so there is a finite subcover. By discarding any (a;, b; + 0;)
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that is contained in a larger one and relabeling the index j, we may assume that - the
intervals (al, by + (51), Ceey (CLN, by + 5N> COVGI‘[CL + 9, b], - bj + 6]' € (aj+1, bj+1 + 5j+1) for
7=1....,N—1

But then
po(I) < F(b) — Fla+9) +¢
gF(bN—F(;N)—F(CLl)-Fé‘
= Flby +6x) — Flay) + Y [Flagsr) — Flay)] +¢
< Flby +6x) — Flay) + Y [F(b; +6;) — F(a;)] + ¢

<SR + 27— Fla))] + ¢

<0 (L) + 2
Since ¢ is arbitrary, we are done when a and b are finite. If a = —o0, for any M < o
the intervals (a;b; + 0;) cover [—M,b], so the same reasoning gives F'(b) — F(—M) <
> po(I;) + 2e, whereas if b = oo, for any M < o0 we likewise obtain F(M) — F(a) <
>3 po(I;) + 2e. The desired result then follows by letting € — 0 and M — co. O

Theorem 1.43: 1.16.

If F: R — R is any increasing, right continuous function, there is a unique Borel
measure ppr on R such that up((a,b]) = F(b) — F(a) for all a,b. If G is another such
function, we have up = ug if and only if F' — G is constant. Conversely, if p is a Borel
measure on R that is finite on all bounded Borel sets and we define

w((0,z]) ifx>0
F(z)=10 ifz=0
—u((—=z,0]) ifx<0

then F' is increasing and right continuous, and p = pp.

Proof. Each F induces a premeasure on A by Proposition 42. It is clear that F' and G
induce the same premeasure if and only if F' — G is constant, and that these premeasures
are o-finite (since R = (J* (j,7 + 1]). The first two assertions therefore follow from
Theorem 33. As for the last one, the monotonicity of x implies the monotonicity of F,
and the continuity of y from above and below implies the right continuity of F' for x > 0
and x < 0. It is evident that ¢ = ur on A, and hence p = pp on Ag by the uniqueness
in Theorem 33. [

Several remarks are in order. First, this theory could equally well be developed by
using intervals of the form [a, b) and left continuous functions F. Second, if 4 is a finite
Borel measure on R, then p = pp where F/(z) = pu((—o0, x]) is the cumulative distribution
function of y; this differs from the F' specified in Theorem 43 by the constant p((—o0,0]).
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Third, the theory of Folland Section 1.4 gives, for each increasing and right continuous F,
not only the Borel measure iz but a complete measure i whose domain includes Bg. In
fact, 7ip is just the completion of up (Folland Exercise 1.22a or Theorem 46 below), and
one can show that its domain is always strictly larger than Bg. We shall usually denote
this complete measure also by up; it is called the Lebesgue-Stieltjes measure associated
to F.

Lebesgue-Stieltjes measures enjoy some useful regularity properties that we now
investigate. In this discussion we fix a complete Lebesgue-Stieltjes measure g on R
associated to the increasing, right continuous function F', and we denote by M, the
domain of p. Thus, for any £ e M,

u(B) = inf{ 3 [F (b))~ Fla)] | B < ] (05,051}
—inf {3} ull(a;.by] ( B e (a0}

We first observe that in the second formula for x(E) we can replace h-intervals by open
h-intervals:

Lemma 1.44: 1.17.
For any F € M,

() = {37 wl(as,0)) | B = a0}

Proof. Let us call the quantity on the right v(E). Suppose E < | J;(a;,b;). Each (a;,b;)

is a countable disjoint union of h—intervals IF(k = 1, 2,...); specifically, IF = (c&, 1]
where {c;} 1s any sequence such that ¢ = a; and ¢} increases to b; as k: — 0. Thus
E - Uj k=1 ] )

0 0
D mllag b)) =, nIf) = p(E)
and hence v(F) > p(FE). On the other hand, given € > 0 there exists {(a;,b;]}; with

E < ! (a;,b;] and > 1((a;,b;]) < p(E) + €, and for each j there exists J; > 0 such
that F(b; 4+ 6;) — F(b;) < e277. ThenEcU1 (aj,b + 0,) and

oe]

0
ST gty +67)) < 37 (g b)) + = < p(B) + 22
so that v(E) < u(E). O

Theorem 1.45: 1.18.
If E e M,, then

p(E) =inf{u(U) | U > E and U is open }
= sup{u(K) | K ¢ FE and K is compact }.
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Proof. By Lemma 44, for any € > 0 there exist intervals (a;, b;) such that £ < | J{"(a;, b;)
and u(E) < > ((a], ;) +e. If U =J(a;,b;) then U is open, U > E, and u(U) <
u(E) +e. On the other hand, pu(U) = p(E) whenever U o E, so the first equality is valid.
For the second one, suppose first that E is bounded. If E is closed, then FE is compact
and the equality is obvious. Otherwise, given € > 0 we can choose an open U > E \ E
such that u(U) < u(E\ E) +¢. Let K = E~ U. Then K is compact, K < E, and

u(K) = w(E) = p(EnU) = w(E) — [(U) = u(U \ E)]
> u(E) —pU)+ (BN E) > pw(E) —¢
If £ is unbounded, let E; = E n (j,j + 1]. By the preceding argument, for any € > 0
there exist compact K; ¢ E; with u(K;) > u(E;) —279. Let H, = J",, K;. Then H,

is compact, H, c F, and w(Hy) = p(lJ",, Ej) —e. Since u(E) = lim,, o, p(lJ",, E;), the
result follows. ]

Theorem 1.46: 1.19.

If £ < R, the following are equivalent.
(a) EeM,.
(b) E =V ~ Nj where V is aGy set and u(N

1) = 0.
(¢) E=H u Ny where H is an F,, set and u(N2) = 0.

Proof. Obviously (b) and (c) each imply (a) since p is complete on M,,. Suppose E € M,
and p(E) < co. By Theorem 45, for j € Z=; we can choose an open U; D E and a compact
K; © E such that

p(Us) =277 < w(E) < p(K;) + 27,
Let V=, U;and H = J K;. Then H <« Ec V and u(V) = u(H) = p(F) < o0, so
w(V N E)=p(E~ H) =0. The result is thus proved when u(E) < oo; the extension to
the general case is left to the reader (Folland Exercise 1.25). O]

The significance of Theorem 46 is that all Borel sets (or, more generally, all sets in M,,)
are of a reasonably simple form modulo sets of measure zero. This contrasts markedly
with the machinations necessary to construct the Borel sets from the open sets when
null sets are not excepted; see Proposition 60 below. Another version of the idea that
general measurable sets can be approximated by “simple” sets is contained in the following
proposition.

Proposition 1.47: 1.20.

If EeM, and pu(E) < oo, then for every € > 0 there is a set A that is a finite union
of open intervals such that u(EFAA) < e.

Proof. See Folland Exercise 1.26. n
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We now examine the most important measure on R, namely, Lebesgue measure: This
is the complete measure pp associated to the function F(z) = z, for which the measure
of an interval is simply its length. We shall denote it by m. The domain of m is called
the class of Lebesgue measurable sets, and we shall denote it by £. We shall also refer to
the restriction of m to L as Lebesgue measure.

Among the most significant properties of Lebesgue measure are its invariance under
translations and simple behavior under dilations. If F < R and s, € R, we define

E+s={x+s|xeFE}, rE={rz|zeFE}.

Theorem 1.48: 1.21.

If Ee L, then E+se L and rE € £ for all s,r € R. Moreover, m(E + s) = m(F)
and m(rE) = |rlm(E).

Proof. Since the collection of open intervals is invariant under translations and dilations,
the same is true of Bg. For E € By, let ms(F) = m(E + s) and m"(E) = m(rE). Then
ms and m” clearly agree with m and |r|m on finite unions of intervals, hence on By by
Theorem 33. In particular, if F € Bg and m(E) = 0, then m(E + s) = m(rE) = 0, from
which it follows that the class of sets of Lebesgue measure zero is preserved by translations
and dilations. It follows that B (the members of which are a union of a Borel set and a
Lebesgue null set) is preserved by translation and dilations and that m(E + s) = m(E)
and m(rE) = |r|m(F) for all E € B. O

The relation between the measure-theoretic and topological properties of subsets of R
is delicate and contains some surprises. Consider the following facts. Every singleton set
in R has Lebesgue measure zero, and hence so does every countable set. In particular,
m(Q) = 0. Let {r;}}” be an enumeration of the rational numbers in [0, 1], and given € > 0,
let I; be the interval centered at r; of length €277, Then the set U = (0,1) n | J; ; is
open and dense in [0,1], but m(U) < 3,277 = ¢; its complement K = [0,1] \ U is
closed and nowhere dense, but m(K) > 1 —e. Thus a set that is open and dense, and
hence topologically “large,” can be measuretheoretically small, and a set that is nowhere
dense, and hence topologically “small,” can be measure-theoretically large. (A nonempty
open set cannot have Lebesgue measure zero, however.)

The Lebesgue null sets include not only all countable sets but many sets having the
cardinality of the continuum. We now present the standard example, the Cantor set,
which is also of interest for other reasons.

The Lebesgue null sets include not only all countable sets but many sets having the
cardinality of the continuum. We now present the standard example, the Cantor set,
which is also of interest for other reasons.
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Each x € [0, 1] has a base-3 decimal expansion z = >)" a;37/ where a; = 0,1, or 2.
This expansion is unique unless z is of the form p3~* for some integers p, k, in Wthh case
x has two expansions: one with a; = 0 for j > k£ and one with a; = 2 for j > k. Assuming
p is not divisible by 3, one of these expansions will have a; = 1 and the other will have
ar = 0 or 2. If we agree always to use the latter expansion, we see that

alzlifandonlyif1<x<—,
3 3
=1 if and 1'f1< <2 Z< < -
a; # 1 and as = 1 if and only i 9 T 90r9 T 9’
and so forth. It will also be useful to observe that if 2 = >}a;377 and y = >,0,377, then
x <y if and only if there exists an n such that a,, = b, and a; = b; for j <n.

The Cantor set C is the set of all z € [0, 1] that have a base-3 expansion x = >, a;377

with a; # 1 for all j. Thus C is obtained from [0, 1| by removing the open middle third
12

(%, %), then removing the open middle thirds (5, 5) and (9, 9) of the two remaining

intervals, and so forth. The basic properties of C' are summarized as follows:

Proposition 1.49: 1.22.

Let C be the Cantor set.

(a) C is compact, nowhere dense, and totally disconnected (i.e., the only connected
subsets of C' are single points). Moreover, C' has no isolated points.

(b) m(C) = 0.

(c) card(C) = c.

Proof. We leave the proof of (a) to the reader (Folland Exercise 1.27). As for (b), C
obtained from [0, 1] by removing one interval of length %, two intervals of length % d
so forth. Thus

Ly ¥y 11

B o3 1T 1-(2/3)
Lastly, suppose z € C, so that z = Y7 ;377 where a; = 0 or 2 for all j. Let f(z) =
> b;277 where b; = a;/2. The series defining f(z) is the base-2 expansion of a number

n [0,1], and any number in [0, 1] can be obtained in this way. Hence f maps C onto
[0,1], and (c) follows. O

Let us examine the map f in the preceding proof more closely. One readily sees that if
xz,y € C' and z < y, then f(z) < f(y) unless x and y are the two endpoints of one of the
intervals removed from [0, 1] to obtain C. In this case f(z) = p2~* for some integers p, k,
and f(z) and f(y) are the two base-2 expansions of this number. We can therefore extend
f to a map from [0, 1] to itself by declaring it to be constant on each interval missing
from C. This extended f is still increasing, and since its range is all of [0, 1] it cannot
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have any jump discontinuities; hence it is continuous. f is called the Cantor function or
Cantor-Lebesgue function.

The construction of the Cantor set by starting with [0, 1] and successively removing
open middle thirds of intervals has an obvious generalization. If I is a bounded interval
and a € (0,1), let us call the open interval with the same midpoint as I and length equal to
« times the length of I the “open middle ath” of I. If {«;}]” is any sequence of numbers in
(0,1), then, we can define a decreasing sequence {K;} of closed sets as follows: Ky = [0, 1],
and Kj; is obtained by removing the open middle a;th from each of the intervals that
make up K;_;. The resulting limiting set K = ()" K is called a generalized Cantor set.
Generalized Cantor sets all share with the ordinary Cantor set the properties (a) and (c)
in Proposition 49. As for their Lebesgue measure, clearly m(K;) = (1 — a;)m(K;_1), so
m(K) is the infinite product [[}"(1 — a;) = lim, o [[7(1 — ;). If the «; are all equal
to a fixed a € (0,1) (for example, o = 5 for the ordinary Cantor set), we have m(K) = 0.
However, if a; — 0 sufficiently rapidly as j — oo, m(K) will be positive, and for any
p € (0,1) one can choose «; so that m(K) will equal 3; see Folland Exercise 1.32. This
gives another way of constructing nowhere dense sets of positive measure.

Not every Lebesgue measurable set is a Borel set. One can display examples of sets in
L~ Lgr by using the Cantor function; see Folland Exercise 2.9.

Exercise 1.50: Folland Exercise 1.25.

Complete the proof of Theorem 46

Exercise 1.51: Folland Exercise 1.26.
Prove Proposition 47. (Use Theorem 45.)

Exercise 1.52: Folland Exercise 1.27.

Prove Proposition 49(a). (Show that if ,y € C' and x < y, there exists z ¢ C such
that r < z < y.)

Exercise 1.53: Folland Exercise 1.28.

Let F' be increasing and right continuous, and let ur be the associated measure. Then
pr(fa}) = F(a) = F(a—), pr([a, b)) = F(b—) = F(a—), pr([a, b]) = F(b) = F(a—), and
pur((a,b)) = F(b—) — F(a).
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Exercise 1.54: Folland Exercise 1.29 (Variant).

Let p* be an outer measure on X. If V' is a p*-measurable subset of X and F is a
p*-measurable subset of X contained in V', then

W (ENV)>0.

Proof. If p*(EXV) = 0, then EXV is p*-measurable. so En(E~V)¢ = EX(V\V) =1V,
a contradiction. Thus p*(V ~ A) > 0. O

Remark 55. Since every null set is p*-measurable and p* restricted to the o-algebra
of w*-measurable sets is a complete measure, it is clear that p*(E) > 0 if E contains a
w*-nonmeasurable set. Indeed, if V' is a nonmeasurable set in E but u*(E) = 0, then since
any subsets of null sets are measurable when the measure is complete, this would mean V
would be measurable, a contradiction. Thus pu*(E) > 0.

Exercise 1.56: Folland Exercise 1.30.

If £ € £ and m(E) > 0, for any o < 1 there is an open interval I such that
m(E n 1) >am(I).

Exercise 1.57: Folland Exercise 1.31.

If £ € £Land m(E) > 0, theset E — E = {x —y|x,ye E} contains an interval
centered at 0. (If [ is as in Folland Exercise 1.30 with o > %, then I/ — I’ contains

(=3m(I), 3m(I)).)

Exercise 1.58: Folland Exercise 1.32.

Suppose {a;};” < (0,1).
(a) T17(1 —ay) > 0 if and only if " a; < c0. (Compare ;" log(1 — ;) to > ;)
(b) Given 8 € (0,1), exhibit a sequence {a;} such that [];"(1 — a;) = 5.

Exercise 1.59: Folland Exercise 1.33.

There exists a Borel set A < [0, 1] such that 0 < m(An 1) < m(I) for every subinterval
I of [0,1]. @

“Hint: Every subinterval of [0, 1] contains Cantor-type sets of positive measure.

Proposition 1.60: 1.23.

M(E) = ,eq Mo, where Q is the set of countable ordinals.
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Proof. Transfinite induction shows that £, < E(E) for all a € €2, and hence | J .o €a <
E(E). The reverse inclusion follows from the fact that any sequence in € has a supremum
in  (see Folland Proposition 20): If E; € €,, for j € Zz, and 3 = sup{o,}, then E; € &,
for all j and hence | J;” E; € €3 where 3 is the successor of a. O

Combining Proposition 60 with Folland Proposition 15, we see that if card(Zs;) <
card(&) < ¢, then card(€(€)) = ¢. (See Folland Exercise 1.3.)

2 Integration

2.1 Measurable Functions

We first study the category of measurable spaces, whose morphisms are measurable
mappings. Recall that any set map f: X — Y induces a mapping f~': P(Y) — P(X),
given by the preimage of f, that preserves unions, intersections, and complements. (Check!)
Thus, if N is a o-algebra on Y, then M = f~1(N) is a o-algebra on X.

Definition 1. A morphism of measurable spaces is called a measurable function. That
is, given measurable spaces (X, M), (Y,N) and a set map f: X - Y, f is called (M, N)-
measurable, or simply measurable when M and N are understood, if f~(E) € M
whenever E € N. One can check that this in fact makes the collection of measurable spaces
with measurable mappings into a category.

Proposition 2.2: 2.1.

If N =M(&), then f: X — Y is (M, N)-measurable if and only if f~'(E) e M for all
Eeé.

Proof. The forward implication is trivial. Conversely, if {F < Y | f~}(E) € M} is a
o-algebra containing €, then it contains M. O]

Corollary 2.3: 2.2.

If X and Y are topological spaces, then every continuous f: X — Y is (Bx, By)-
measurable.

Proof. This is almost trivial, and becomes so when noting f is continuous if and only if
f~YU) is open for all open subsets U of Y. O

If (X,M) is a measurable space, a real- or complex-valued function f on X is called
M-measurable, or simply measurable when M is understood, if f is (M, Bg)- or
(M, B¢ )-measurable.
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Br or B¢ are always understood as the g-algebra on the codomain unless otherwise
specified. In particular, f: R — C is Lebesgue measurable (resp. Borel measurable)
if it is (£, Bc)- (resp.(Bg, Bc)-)measurable; likewise for f: R — R.

Warning 2.4.

If f, g are Lebesgue measurable, it is not necessarily the case that f o g is Lebesgue
measurable, even if g is assumed to be continuous.

Proposition 2.5: 2.3.

If (X,M) is a measurable space and f: X — R, the following are equivalent:
e f is M-measurable.

o {f>a} = _((,oo))erorallae]R.
o {f=a}:= f|a,0)) eM for all a € R.
o {f<a}l:=f1(—w,a))eM for all a € R.
o {f<a}=f1((—mw,a]) e M for all a € R.

Proof. This is an immediate consequence of Proposition 2. n

Sometimes we wish to consider measurability on subsets of X. If (X, M) is a measurable
space, f is a function on X, and F € M, we say that f is measurable on FE if
fYB) n E € M for all Borel sets B. (Equivalently, f|g is Mpg-measurable, where
Mg ={FnE]|FeM})

Given a set X, if {(Ya,Na)},ca is & family of measurable spaces, and f: X — Y, is
a map for each o € A, there is a unique smallest o-algebra on X with respect to which
the f.s are all measurable, namely, the o-algebra generated by the sets f;!(E,) with
E, e N, and o € A. It is called the o-algebra generated by {fu} .. In particular, if
X = [lea Yo, we see that the product o-algebra on X is the o-algebra generated by the
coordinate maps m1: X — Y.

Proposition 2.6: 2.4.

Let (X, M) and (Y,,N,)(a € A) be measurable spaces, Y = [[,c4 Yo, N = &) c4 Na,
and 7, : Y — Y, the coordinate maps. Then f: X — Y is (M, N)-measurable if and
only if f, = 7, 0 [ is (M, N,)-measurable for all .

Proof. If f is measurable, so is each f, since the composition of measurable maps is
measurable. Conversely, if each f, is measurable, then for all E, € N, f~}(m 1 (E,)) =
Y E,) € M, for which f is measurable by Proposition 2. H
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Corollary 2.7: 2.5.

A function f: X — C is M-measurable if and only if Re f and Im f are M-measurable.

Proof. This follows from Proposition 6 since B¢ = Bre = Br ® Br by Proposition 5. [

It is sometimes convenient to consider functions with values in the extended real
number system R = [0, 00]. We define Borel sets in R by Bg = {E < R | E n R € Bg}.
(This coincides with the usual definition of the Borel o-algebra if we make R into a metric
space with metric p(z,y) = |A(x) — A(y)|, where A(z) = arctanz.) It is easily verified as
in Proposition 5 that Bg is generated by the rays (a, o] or [0, a)(a € R), and we define
f: X — R to be M-measurable if it is (M, Bg)-measurable.

We now establish that measurability is preserved under the familiar algebraic and
limiting operations.

Proposition 2.8: Extended Version of 2.6.

Let (X, M) be a measurable space and suppose f, g, and f are M-measurable for all
k.

1) The sets {f < g}, {f < g}, and {f = ¢} are in M for all £,

2) The restriction of f to any E € M is M-measurable,
3) f + g is M-measurable,

5

(1)
(2)
(3)
(4) Af for any constant A is measurable,
(5) fg is M-measurable, and

(6)

6) supy fr, infx fr, limsup,, fi, liminfy fi are all M-measurable.

Proof. For (1), write

"5
(F<at=U_ ((r<rntr<gf)em

e M by
(5)

so{f<gl={g<f}and {f =g} ={f <g}n{g < f}arealsoin M. For (2), note that
{fle <a} = {f <a} n E for any a € R. For (3), write {f + g > a} = J,olf >7}n
{g >a—r}. To see (4), first note if ¢ = 0 then ¢f = 0 is M-measurable because
constant functions are measurable. If ¢ > 0 then {c¢f > a} = {f > a/c}. If ¢ < 0 then
{f < a/c}. (5) follows from the fact fg = (f + g)* — (f — g)* together with the previous
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points. To see (6), write {sup, fx > a} = U, {fr > a}, and infy fr = —sup(—/fi),
limsupy_,.,, = infy sup,,~;, fn = infy sup,, fnek, and similarly for liminfy . fi. O

Remark 9. Proposition 8 holds for R-valued functions. (Check!)

To prove the following two corollaries, apply Corollary 7.

Corollary 2.10: 2.8.

If f,g: X — R is measurable, then so are max{f, g} and min{f, g}.

Corollary 2.11: 2.9.

If {f,: X — C}°_, is a sequence of measurable functions and f,, — f pointwise, then
f is measurable.

By Corollary 11, measurability is closed under pointwise limits. We will soon define an
integral on the set of nonnegative measurable functions, which will mean that if we have
a pointwise limit of integrable functions, then the limit is integrable. This is something
that we didn’t necessarily have before measures, as shown in the following example.

2.2 Constructing Measurable Functions from Simple Functions

We now build functions from building blocks. Let (X, M) be a measurable space.

Definition 12. Giwen E < X, define a map xg: X — R, called the characteristic
function of E, by

@) =00 eeR

The standard representation of a simple function f is

= ijl ZjXEj»
where B; = f~1({z;}), im f = {z1,..., 2,}. Note that the E; are disjoint sets. We can
write it this way because any simple function is a finite linear combination of characteristic

functions. Note that we allow z; = 0, and indeed these sets may play an important role
when multiplying or composing functions.

Remark 13. Note that xg is measurable if and only if E € M. (Check!)

Remark 14. [t is useful to know how to construct or disassemble characteristic functions
of given measurable sets. To that end, here are some useful characteristic function
identities. Let K, F' € M.

{1 ifrekb,

Xee =1 —XE,

Version of April 30, 2024 at 11pm EST Page 53 of 368


https://www.greysonwesley.com/home

Greyson C. Wesley §2.2: Constructing Measurable Functions from Simple Functions

XEUF = XE + XF — XEXF;
XEnF = XEXF,

xer = Xe(l = Xr),

XEAF = XE T XF — 2XEXF,

HW(EAF) = J|XE — xr|dp.
Definition 15. A simple function f: X — C is a finite linear combination of charac-

teristic functions.

Remark 16. It is useful to note that f: X — C is simple if and only if f is measurable
and im f 1s a finite set.

Notation 17. Given any sequence {f,: X — R} of set functions and a set function
f: X =R, we will write f,, /" f to mean

<fo<--<f

and f, — f pointwise.

Theorem 2.18: 2.10.

Let (X,M) be a measurable space.

(a) If f: X — [0,00] is measurable, then there exist simple functions {¢,};_, such
that ¢, / f, and this convergence is uniform on any set where f is bounded.

(b) If f: X — Cis measurable, then there exists a sequence {¢}*_; of simple functions
such that |¢,| ' |f| and ¢, — f pointwise, and the latter convergence is uniform
on any set where f is bounded.

Proof. This is a constructive proof. We will prove (a) since (b) will then follow. Suppose
f: X — [0,00] is measurable. Let

- (2 5]) wa A

2n
where 0 < k < 22" — 1 and n ranges over all nonnegative integers. Define
2n
b= QEnXEﬁ +2"Xr,
One can check f,, /' f by induction. Further note that 0 < f — ¢,, < 1/2" on a set where
f < 2", which again follows from an induction argument, and completes the proof of (a).
To get part (b) from part (a), let f = g + ih, where g and h are real functions, so that
f=g9g"—g +i(ht —h7), where g*,g7,h",h7: X — [0,0]. Then the result follows
from part (a) and the triangle inequality. ]

Version of April 30, 2024 at 11pm EST Page 54 of 368


https://www.greysonwesley.com/home

Greyson C. Wesley §2.2: Constructing Measurable Functions from Simple Functions

Proposition 2.19: Slight Alteration of 2.11.

e If f is measurable and f = g a.e., then ¢ is measurable.
o If {f,}*_, are measurable and f,, — f a.e., then f is measurable.

Proof. (a) If f = g p-a.e., then u({f = g}°) = 0. Then since p is complete, any subset of
{f = g}° is measurable. We want to show {g > a} is measurable for any a € R. Since

{g>al={g9>a}n{f=9g})v{g>aln{f=yg})

)
~ ~

~~

:NC{f:g},
w(N)=0

we have
{gi>a}={f>a}u N .

< — =

~~ ~-

measurable  measurable Measurable

For (b), let £ = {f, — f}. Since f, — f p-a.e., u(E) = 0. By Proposition 8, f is
measurable on F°, so {f > a} n E° is measurable. Then

{f>a}={f>a}n E°VU{f>a}nE. O
N~~~ ~ ~- -~ ~~ -
measurable measurable c null set E

= measurable

Remark 20. Proposition 19(a) implies p is complete. In fact, Proposition 19(b) also
implies p is complete. (Check!)

Exercise 2.21.

If X = Au B where A, B € M, a function on X is measurable if and only if f is
measurable on A and B.

Solution. This proof can be found here. Let f4 = f|, and fg = f|g. If f is measurable,
then for each C' € Bg we have for J € {A, B} that

(f)7HC) = fHC) nTeM.
Hence f4 and fp are measurable. Now for the converse, note that
FHO) = (FHC) n A U (fHC) n B) = (fa) (C)u (f) (C)eM

and thus f is measurable. O

Proposition 2.22: 2.12.

Let (X, M, ) be a measure space and (X, M, 7i) its completion. If f is M-measurable
on X, then there exists a M-measurable function g such that f = g u-a.e.
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Proof. First we show this for simple functions. If f = yp, where E € M, then E = AU N,
where A e M and u(N) =0. Let g = xa. Then {f # g} ¢ N = f =g f-a.e.

Now suppose f is a simple function, say f = Z?:I 2jXg,, where E; = f~*({z;}). One
can then use induction to prove there exist M-measurable g such that ¢ = ¢ p-a.e.
(Check!). By Theorem 18, there exists a sequence {¢, }r_; such that ¢, — f. Then there
exists a sequence {1, }°_; of M-measurable simple functions such that ¢, = f except on
a set E,,, where i(E,) = 0. We fix M > N = J_, E, such that u(N) = 0. Then set

g = lim XN wn,
~~
measurable

so that g = f u-a.e. n

2.3 Integration of Nonnegative Functions

Fix a measure space (X, M, ) and define
L*(p) = {M-measurable functions f: X — [0, 0]}.

If the measure space (X, M, u) is understood, then we simply write L* to mean L*(u).
Note that writing L*(u) specifies not only the measure but the whole measure space
(X, M, i), because given a measure p: M — X the o-algebra M is specifies since it is the
domain of p and the underlying set X is specified since it is the unique maximal set in M.

Given a simple function ¢ € L™ with standard representation ¢ = 2?21 ajXg;. We
define

f¢mL " (B

We may also write this as § ¢(z) du(z), or even sunply § ¢ when the measure 4 is understood.
Here we are using the conventlon 0-00 = 0. Given £ € M, we define

L¢W:JWEW

Proposition 2.23: 2.13.

Let ¢, 1 be simple functions in L.
(a) If ¢ = 0, then {cp = c§o.
(b) §(&+v) =§o+{v.
(c) If ¢ <9, then [ o < (.
(d) The map vy: M — [0, 0] given by v4(E) = §_ dp is a measure on M.

Proof. (a), (b), and (c) are immediate by definition of the integral for simple functions.
To see (d), note that for any E € M, 11 (E) = {, du = p(E). Thus vy = p, which and we

already know p is a measure, so v is a measure. O

Version of April 30, 2024 at 11pm EST Page 56 of 368


https://www.greysonwesley.com/home

Greyson C. Wesley §2.3: Integration of Nonnegative Functions

We now extend the definition of the integral to all f € L™. We define

Jf dp = sup{f¢ dp|0< o< f, ¢ simple}.
By Proposition 23, this definition satisfies
ch = cff for all ¢ = 0,

and

f<g = Jféfg-

Theorem 2.24: 2.14: Monotone Convergence Theorem.

If{f.} < L™ () and f, / f as n — oo, then
Jf = lim | f,.

n—oo

Proof. Since f, < f for all n € Z-; and the integral is monotone, by taking the limit as
n — o0 we obtain

lim | f, < J f

n—0oo

It remains to show the reverse inequality. Let ¢ be a simple function with 0 < ¢ < f,
and let E, = {z | f,(z) = ad(z)} for a fixed o € (0,1). Then the FE, form an increasing
sequence in the sense that Ey < E, < ---. The E; are measurable (Check!) and
U/, Ej = X (Check!). Now § f, > §, > af, ¢ by Proposition 23 and continuity from
below of the measure A — {, dpu. Since this is true for all @ < 1, taking the limit as
o — 1 from below gives that it also holds for v = 1, that is, that { f, > SEn ¢. Taking the
supremum over all simple functions 0 < ¢ < f, we obtain

| 7<im | 1.
n—oo
which completes the proof. O

Before continuing, we introduce an extremely powerful technique for proving results
with the theory we have so far developed: an induction principle on measurable functions:

Theorem 2.25: Induction Principle for Measurable Functions.

Let (X, M) be a measurable space, F the set of measurable functions (resp. measurable
nonnegative functions) with property P such that the following hold.

(a) Forall EeM, yged.
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(b) For all f,ge F, af +bge F for all a,be R (resp. all nonnegative a,b € R).
(c) For all {f,}*_;  F such that f, /' f, feT.

Then F contains all measurable functions (resp. nonnegative measurable functions).

Proof. Prove the case of nonnegative measurable functions first as follows: Note (a) with
(b) implies simple functions are in F. Then approximate any f € L™ by simple functions,
and then apply (c). To prove the case for all a,b € R, then JF satisfying (a), (b’), and (c)
contain all measurable functions by applying the nonnegative case above to each of f,
f~, then using part (b) to the sum f = f* — f~ to get the result, since f*, f~ > 0 and
are measurable. O]

Theorem 2.26: 2.15: MCT for Series.
If {f,} = L", then

[P I

Proof. Suppose fi, fo € L. Then there exist simple functions ¢,, 1, such that ¢, / fi
and ¥, /" fo. Then ¢, + ¢, / f1 + fo. Then

[ 2 S0 [t 6 0) = lim [+ Jim [0 [ 14 [

Continuing similarly, we can see N,

JZL fn = ZnNzl an- (2.26.1)

for all positive integers N. Sending n — o0, we obtain
e T N (2.26.1) .. N (MCT) 0
Zn=1 ffn o ]\lfl—IgoZn=1 an o ]\lfglleznzl fn o J2n=1 fn D

Proposition 2.27: 2.16.

Let f e L™. Then
szO — f=0ae.

Proof. (=) If f is simple, say with standard representation Z;L:l a;jXg;, then

Osz:Zé laj,U(Ej) «— aj=0or u(E;)=0forall j =1,...,n,
j=

so [ can only be nonzero on null sets, and hence f = 0 a.e.
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Now suppose f is any function and f = 0 a.e. Then any simple function ¢ with
0 < ¢ < f must also equal 0 a.e., and since § f is defined as the supremum of such simple
functions we conclude { f = 0.
(<) We will show that if f # 0 a.e., then {f # 0. Suppose f # 0 a.e. Then
w({f > 0})0. We can write
0
(>0 =", (@) > L/n}.

~

—E,
Then u(E,) > 0 for some n € Zsy. Then f > xp,/n, so { f > p(E,)/n > 0, which
completes the proof. O

Corollary 2.28: 2.17: MCT for Convergence Almost Everywhere.
If{f.,} < L*, feL" and f, / f a.e., then

sz lim | f,.

n—0o0

Proof. Suppose f, increases to f(x) for all x € E' and u(E°) = 0. Then
flx) ifxekF,
Ixe(x) = { (@)

0 if x € E°.
So, f — fxg = 0 a.e. Similarly, f, — f.xg = 0 a.e. Then
24 MCT) .. 27) ..
ff = JfXE( = )gg;ofnx]; Z hmjfn. O

Remark 29. The assumption that {f,} be increasing to f is a crucial one. For example,
consider f, = nX(0,1/n) for each x. But, with respect to the Lebesque measure, we have

7}1_1}13()]%—0;«'&1—n(> an

Theorem 2.30: 2.18: Fatou’s Lemma.
If {f.}>, = L*, then

flim inf,, o f, < liminf, ., ffn

Proof. For each fixed k € Z>1, we have inf, >, f, < f; whenever j > k. Thus S1nfn>k fn <
§ f; whenever j > k. Taking the infimum of both sides over all j > k, we obtain

f inf f, < inf J £ (2.30.1)

n=k
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Letting k — oo, we find
(2.30.1)
Jlim inf f, < lim | inf f, < lim infn_,ooffn. O

k—o0 n=k k—ow | n=k

Corollary 2.31: 2.19.

If{f.} < L, feL" and f, — f a.e., then
ff < liminf, o an

Proof. This is almost verbatim the proof of Corollary 28. O

Proposition 2.32: 2.20.

If fe L™ and { f < oo, then {f = o0} is a null set, and {f > 0} is o-finite.

Proof. {f = +o} =\ _,{f = n}. We have for each n that
Wi = vl <pf =) = | dus [5<iu

{f=n}
for some M > 0, where such an M exists because § f < o0. Sending n — o, the right-hand

side vanishes. Thus {f = o} has measure zero.
We now show {f > 0} is o-finite. Write

o0
{f=0y=J _ {f>1/n}
n=1 1
— E,
so if F, = E, ~ |J;~! E then {f > 0} is the countable disjoint union of F,. If some F),

has infinite measure, then
Jr=| s+] 1=
P, Fe
| I | I |

=00 > 0, since
feL*

contradicting { f < oo. O

Exercise 2.33: Folland Exercise 2.13.

Suppose {f,} < L*, § f <. f, » f,and § f,, = { f < o0, then § f, — {, f for all
EeM.

Solution. Let E € M. Since f, — f pointwise, f € L™. Then
(30)
f f= ffXE < lim infn_,ooffan = liminf,, ., fn,
E
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so we only need to show limsup,, ., §. f, < §f. Since f — fxp e LT, we can write

(30)
[r=[ 5 < it [t = fixe) = timintos [ g = timsup, o | g = [ 7= timsup, . |
E E E
Since § f < o0, we can subtract it from both sides to obtain limsup,,_, ., SE fn<(f O

Remark 34. The above clavm fails if SE fn — SEf = . To see this, consider the
Lebesgue measure space (R, L,m), f = X[2,0), fn = X[2,00) T MX[0,1/n) and E = [0,1). In
this case f, — [ pointwise, § f = § f, = 0 and hence § f = lim, o § f, but
f f=0#1=1lim 1= limn-m([0,1/n)) = lim | f,.
E E

n—0o0 n—0o0 n—0o0

Exercise 2.35: Folland Exercise 2.16.

If feL" and § f < oo, then for all € > 0 there exists E € M such that y(E) < oo and
SE /> (S f) - &

Solution. Let € > 0. Since sup{ggb ‘ 0 < ¢ < f, where ¢ is Simple} = { f < o, by defini-
tion of the supremum there exists a simple function ¢ such that 0 < ¢ < f and

[om ([1) - o)

Write can ¢ as ¢ = 2?21 ajXg;, where a; > 0 and the E; are disjoint elements of M. Let

E=J, E;. Then
ng _ L¢ < Lf (2.35.2)

by monotonicity of the integral. Combining Equations (2.35.1) and (2.35.2), we conclude

1o g2 ] (1) < :

Exercise 2.36: Folland Exercise 2.17.

Assume Fatou’s Lemma and deduce the MCT from it.

Solution. Let {fn,}*y < LT, f, / f (so f e L™). We want to show { f = lim,,_,. § f,. By
Fatou’s Lemma, § f < liminf, . § f,, so we need to show limsup, { f,, < {f. But f, < f
for all n, so taking the limsup of both sides gives limsup,, . { f, < limsup f = { f, as
desired. O

2.4 Integration of Complex Functions

We again fix a measure space (X, M, ). The integral can be extended from L* to all
complex-value d measurable functions in the following way. We first extend the integral
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to all real-valued functions by considering the positive part f* and the negative part f~
of a given measurable real valued function f: X — R, and define

-

whenever at least one of { f* and { f~ is finite. If both { f and { f~ are both < o0, or
equivalently if §|f| < oo, we say f is integrable. We say a measurable complex-valued
function f: X — C is integrable if {|f| < co. More generally, if E € M, f is integrable
on E if {,_|f| < co. Since |f| < |Re f| +|Im f| < 2|f], f is integrable if and only if Re f
and Im f are both integrable, and in this case we define

ffzJReeriJImf

The set of real-valued integrable functions is a complex valued vector space and the
integral is a linear functional on it.

Proposition 2.37: 2.21.

Proof.

This follows from the fact that |af + bg| < |al|f| + |b||g|, and it is easy to check that
Saf =af fforany a € R. (Check!) To show additivity, suppose that f and g are integrable
and let h = f+g. Thenh®™ —h™ = ft—f~+g"—¢g ,soht+f " +9g =h"+ ft+g".

By Theorem 26,
Jh++ff‘+fg‘ =Jh‘+Jf++Jg+,

and regrouping then yields the desired result:

S T P P I PR

Showing the analogous statement for the complex case is left as an exercise.

The superscript 1 is standard notation, but it will not assume any significance for us
until Chapter 6.

Proposition 2.38: 2.22.

If f: X — C is integrable, then |§ f| < §|f].

Proof. The claim is true if { f = 0, and if f is real valued then

[o-{Jrfrlefr e fr -
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which also affirms the claim. If f is complex-valued and § f # 0, let a = sgn({ f). Then
‘Sf‘ =aff="{af, so{af is real, which means

Uf'=Refaf=fRe<af><f|Re<af>|<f|af|=f\f|. 0

Proposition 2.39: 2.23.

(a) If f: X — C is integrable, then {f # 0} is o-finite and {|f| = +o0} is a null set.
(b) If f,g: X — C are integrable, then

Jf:fgforallEeM — f\f—g\zo = f=ga.e.
B B

Proof. (a) and the second equivalence in (b) follow from Propositions 27 and 32. If
§1f —g| =0, then for any E € M,
(35)

Lf—ng < JXE|f—9| <J|f—9| =0,

so that SE f= SE g. Conversely, if f # g a.e., then at least one of the positive or negative
parts of the functions u = Re(f — g) or v = Im(f — g) are nonzero on a set of positive
measure. We may assume u* > 0 to is nonzero on a set F of positive measure, since the
other cases are similar. In this case we have Re({, f —{,9) = {,u" > 0 since u™ = 0 on
E affirming the claim. O]

Proposition 39 shows that for the purposes of integration it makes no difference if we
alter functions on null sets. Indeed, one can integrate functions f that are only defined
on a measurable set £ whose complement is null simply by defining f to be zero (or
anything else) on E°. In this fashion we can treat R-valued functions that are finite a.e.
as real-valued functions for the purposes of integration.

With this in mind, it is convenient to define L'(x) (or L'(X, u), or L'(X), or simply
L', depending on the context) as the set of equivalence classes of a.e.-defined integrable
functions on X, where f and g are considered equivalent if and only if f = g a.e. Then
L'(u) is a complex vector space under pointwise a.e. addition and scalar multiplication,
and we will write “f € L'(u)” to mean that f is an a.e.-defined integrable function.

Remark 40 (Very important remark). Here we will make some critical observations.

(1) If @ is the completion of p, Proposition 22 yields a natural one-to-one correspondence
between L'() and L'(p), so we can and will identify these spaces. In other words,
when discussing the complex vector space of complex-valued integrable functions with
respect to a measure space (X, M, i), we may assume p is complete.

(2) L' is a metric space with distance function p(f,q) = §|f—g|. (The triangle inequality
is easily verified, and obviously p(f,g) = p(g, f); but to obtain the condition that
p(f,g) = 0 only when f = g, one must identify functions that are equal a.e., according
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to Proposition 39(b).) We shall refer to convergence with respect to this metric as
convergence in L'; thus f, — f in L' if and only if §| f, — f| — 0.

Exercise 2.41.

The integral is absolutely continuous on L'. In other words, if f € L', then for all
e > 0, there exists § > 0 such that for all £ € M,

pwE)<d = JE\f\ <e.

Solution. Since f € L', u({|f| = o0}) = 0. Thus there exists some M such that pu({|f] >
M}) <e/2. Let 6 = ¢/(2M) and suppose E € M has pu(FE) < 6. Then

£ £
NS LIRS L RS < S+ =
E (f>M}nE (f<M}nE (f=M) (f<M}nE 2 2
as desired. 0

Theorem 2.42: Folland Exercise 2.18: Strenghtened Fatou’s Lemma.

Let {f,: X — R} be any sequence of measurable functions.

(a) If for all n, —f, < g for some g€ L' n L™, then
flim inf,, o f, < liminf, ., an
(b) If for all n, f, < g for some g€ L' n LT, then

limsup,,_,, ffn < flim SUP,,_yo0 fr-

Proof. By Proposition 39(b), it suffices to replace the “a.e.” with “everywhere”. We first
show (a). The hypotheses imply {g + f.}i, < L*

(30)
Jg—I—Jhm inf, o fr = Jlim inf, Lo (g+fn) < liminf, 4 J(Q‘an) = Jg+lim infnaooffn.

Since § g 1s finite, we can subtract it from both sides to obtain the desired result.
For (b), the hypotheses imply {g — f.}?°, < L*

(30)
J Jhm inf, ,o(—fn) = Jlim inf, (g — fn) < liminf,_ f(g — fn) = Jg — limsup,,_,, ffn

Since S g is finite, we can subtract it from both sides and use that Slim inf, Lo (—fn) =
{limsup,,_,., fn to obtain the desired result. O

The following theorem has an intuitive explanation. In the context of integration on R
with Lebesgue measure as in the discussion preceding Fatou’s Lemma, the idea behind this
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theorem is that if f, — f a.e. and the graph of |f,| is confined to a region of the plane
with finite area so that the area beneath it cannot escape to infinity, then § f,, — { f.

Theorem 2.43: 2.24: Dominated Convergence Theorem (DCT).

If {f,: X - C}*_, is a sequence of measurable functions such that f, — f a.e. and
there is some g € L' such that |f,,| < g a.e. for all n, then f € L' and

ff: lim | f,.

n—0o0

Proof. Note f € L' since otherwise | f(z)| = g for all z in some set of positive measure, so
since f, — f a.e. we also have |f,,(x)| = g for large enough n, contradicting the hypothesis.
We may assume f is real-valued, since we can show convergence in real and imaginary
parts. Since |f,| < g implies —g < f,, < g, that is, — f,, < g and f,, < —g, we obtain

. (42(0)) (.. o (42(a)) (.. .
limsup,_,,, | fn < limsup,, ., fn=| f= | liminf, o fr, < liminf, .o | fa,
so lim,, o, § f,, exists and equals { f. O

Exercise 2.44: Folland Exercise 2.19.

Suppose {f,}*_, = L' and f, — f uniformly.
(a) If p(X) < o0, then fe Lt and § f,, — ( f.
(b) If u(X) = oo, then the conclusions of (a) can fail.

Solution. (a) If f, — f a.e., then for all sufficiently large n we have |f, — f| < 1, and
hence that |f,| < [f| + 1,|f| <|fu] + 1,80 f € L' And 1€ L' because {|1| = u(X) < oo,
so |fu| <|f] + 1€ L' Then by the DCT, fe L' and §{ f, — f.

(b) If fn = X{o,n}/n- Then f, — 0 uniformly, but lim,_ § f,, = lim,, ., 1 =1#0. O

Exercise 2.45: Folland Exercise 2.26.

Let m be the Lebesgue measure on R. If f € L'(m), then

F(z) = f_ F(t) dt

is continuous on R.

Solution. Let x,, — x. Then |fx(—wz.| < |f] € L'(m) and fX(—c0wn] = fX(—02] 8-€, SO
by the DCT we have
lim F(zn) = lim | fX(-c00,) = ffX(oo,x] = F(z).

Hence F' is continuous. O
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Exercise 2.46: Folland Exercise 2.20: Generalized DCT.

Ifge L', f, > [ ae., g, — g ae., |fo] < gn, and (g, — (g, then f e L' and
lim fn:Jf.

n—o0

Solution. Since | fn| < gns {Gn + fu} 1 {gn — fu}>, © L' n LT. Applying Fatou’s Lemma
to both, we obtain

Jg + Jf < liminf, o J(gn + fn) = Jg + lim inf,,_, o an,

fg—ff < liminf, ... f(gn—fn) _ Jg—nmsupn%ffn.

Since g € L', we can subtract { ¢ from both sides to obtain

limsup,,_,, J fn < ff < liminf,_, 4 an
Thus lim,, an = Sf O

Exercise 2.47: Folland Exercise 2.21.
Suppose f,, f € L' and f, — f a.e. Then

Jit=sim0 = [l [in

(In other words, if f,, f € L' and f, — f a.e., then f, — f in L' if and only if
§S1fal = S171)

Solution. If §| f, — f| — 0, then by the triangle inequality 0 < §| .| = §f| < {|f. — f| — 0,
so {|f.] — (|f| by the squeeze theorem. (Note the a.e. convergence hypothesis was not
used).

Conversely, if {|f.| — §|f|, then g, = |f] + |fa| = 0 and h,, = |f, — f| satisfy

o hy,gne Lt

o |hn| = |fu— fl <|ful +[f] = gn, and

o §gu=Sfal + §IfI = 2§|fI € L' (by hypothesis),
so by Folland Exercise 2.20 we conclude § h,, — {lim, o b, = {0 =0, that is, §| f, — f| —
0. |

Theorem 2.48: 2.25: DCT for Series.
Suppose that {f,} is a sequence in L' such that Y," , {|f.| < c0. Then >,”  f,
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converges a.e. to a function in L', and

(DI I

Proof. By Theorem 26, {37 ;| = 2.1 §|f;| < o0, so the function g = >\ °|f;] is in L. In
particular, by Proposition 32 Y. °|f;(x)]| is finite for a.e. x, and for each such z the series
> fi(z) converges. Moreover, |Y.7 f;| < g for all n, so we can apply the DCT to the
sequence of partial sums to obtain {>° f; = 31" § f;. O

Theorem 2.49: 2.26.

(a) The integrable simple functions are dense in L' in the L' metric. More precisely,
if f e L'(u) and € > 0, there is an integrable simple function ¢ = Zj 1 45X E;
such that {|f — ¢| <e.

(b) If p is a Lebesgue-Stieltjes measure on R, the sets E; in the definition of ¢ can
be taken to be finite unions of open intervals; moreover, there is a continuous
function g that vanishes outside a bounded interval such that §|f — g|du < e.

Proof. Let {¢,} be as in Theorem 18(b); then {|¢, — f| < ¢ for n sufficiently large by
the DCT, since |¢, — f| < 2|f]. If ¢, = Za]XE7 where the E; are disjoint and the a;
are nonzero, we observe that p(F;) = |a;|~ SE 6| < Jaz] ™! S|f| < 0. Moreover, if E
and F are measurable sets, we have u(EAF) = S|XE — xr|. Thus if p is a Lebesgue-
Stieltjes measure on R, by Proposition 47 we can approximate x g, arbitrarily closely in
the L' metric by finite sums of functions x;, where the I;s are open intervals. Finally, if
I = (a,b) we can approximate Y, in the L' metric by continuous functions that vanish
outside (a, b). (For example, given € > 0, take g to be the continuous function that equals
0 on (—o0,a] and [b, o0), equals 1 on [a +¢,b—¢], and is linear on [a,a +¢] and [b—¢,b].)
Putting these facts together, we obtain the desired assertions. O

The next theorem gives a criterion, less restrictive than those found in most advanced
calculus books, for interchanging limits or derivatives with integrals.

Theorem 2.50: 2.27.

Suppose for each t € [a,b] (—0 <a <b<®), fi: X - Cis L'
(a) (Interchanging integrals with limits). If for all ¢, | f;| < g € L*(u), then

tli)nt}) fft ftlg% Jts

whenever lim; ¢, f; = fi,-
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(b) (Interchanging integrals with derivatives). If for all ¢, |0f;/0t| < g € L'(u), then
af 3
G-

Proof. For (a), apply the DCT to f,(z) = f(z,t,) where {t,} is any sequence in |[a, D]
converging to to. For (b), observe that

of f(@,tn) — [z, to)

ot t — 1 ’
{t,} again being any sequence converging to to. It follows that 0f/0t is measurable, and
by the mean value theorem,

whenever 0f /0t exists.

—(z,t9) = lim h,(z) where h,(z) =

of

|hn ()] < SUDyepq ) ot

Fw0)] < 9(o),

so the DCT can be invoked again to give
F(t,) — F(t
Flty) = nmw _ lim J o () da(z) — J g—{(x,t)du(x)
n — L0

Note that the device of using sequences converging to ty in this proof is technically
necessary because the DCT deals only with sequences of functions. However, in such
situations we shall usually just say “let ¢ — t;” with the understanding that sequential
convergence is underlying the argument. O

It is important to note that in Theorem 50 the interval [a,b] on which the estimates
on f or df/0t hold might be a proper subinterval of an open interval I (perhaps R itself)
on which f(z,-) is defined. If the hypotheses of (a) or (b) hold for all [a,b] — I, perhaps
with the dominating function g depending on a and b, one obtains the continuity or
differentiability of the integrated function F' on all of I, as these properties are local in
nature.

Example 51 (Folland Exercise 2.28). We will compute the limits

(b) lim,, So H”’” = dx and
(¢) limy, o SOO ns?ﬁg/?n dx.

For (b), note that by the Bernoulli inequality we have (1+z*)" = 1+nx?, so (1+na?)/(1+
r?) < 1€ LY(m,[0,1]). Then by the DCT,

1 2 1 2 1
1 1
lim _:%;MZJ(MP:ﬁ;):JOMZQ
n—® Jo (14 22)" o \n—o (1 +22)" 0

For (c), first estimate by writing
1 f * dx s
and = — < w0,

T 1422 o 1+22 2

nsin(z/n)
x(1 + 22?)
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(where the first inequality is for all sufficiently large n) so by the DCT
a0 : Q0 : Q0
nsin(xz/n) s :J lim nsin(z/n) s :J dx

o o x(l + a2?) o 1422

i
no o x(l+a?)

S

2.4.1 Comparing the Riemann and Lebesgue Integrals

In the special case where the measure p is Lebesgue measure m on R, the integral we
have developed is called the Lebesgue integral. Let [a,b] be a compact interval in R. A
partition of [a,b] is a finite sequence P = {t;}7_, such that a =ty <t; <--- <t, =b.
Let f be an arbitrary bounded real-valued function on [a,b]|. For each partition P we
define

Spf = 2? M;(t; —tj-1) and  spf = En m;(t; —tj-1)

where M; and m; are the supremum and infimum of f on [t;_;,¢;]. Then we define

TZ(f) :infSpf and I°(f) = supp spf

where the infimum and supremum are taken over all partitions P. If T. Jf) = I2(f), their
common value is the Riemann integral S f(z)dz, and f is called Riemann integrable.

Theorem 2.52: 2.28.
Let f: [a,b] — R be any bounded function.

(a) If f is Riemann integrable, then f is Lebesgue measurable (and hence integrable
n [a, b] since it is bounded), and

)
fb f(z)dx = f dm.
a [a,b]

(b) f is Riemann integrable if and only if the set
D(f) ={x €[a,b] | f is discontinuous at x}

has Lebesgue measure zero.

Proof. We adopt the notation from above. Suppose f is Riemann integrable. For each
partition P of [a, b], define simple functions

GP - 2 MJX t] 1 t] and gP = 21 ij(tj—l’tj]’

so that Spf = {Gpdm and spf = §gp dm. There is a sequence {Py} of partitions whose
mesh (i.e., max;(t; —t;_1)) tends to zero, each of which includes the preceding one (so
that gp, increases with k while Gp, decreases) such that Sp, f and sp, f converge to
S f(z)dz. Let G = hrmHOO Gp, and g = limy_,, gp,. Then g < f < G, and by the DCT,
Sde §gdm = S f(z)dz. Hence §(G — g)dm = 0, so by Proposition 27 G = g a.e.,
and thus G = f a.e. Smce G is measurable (being the limit of a sequence of simple
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functions) and m is complete, f is measurable and S[a o fdm = §Gdm = SZ f(x)dx. This
proves (a).
To prove (b), we first prove the following lemma.

Lemma 2.53: Folland Exercise 2.23.

Given a bounded function f: [a,b] — R, the following hold for the functions given by
H(z) = limsupy, ;< f(y)  and  h(z) = him inf f (y)-

0 |y—z|<d
(i) H(x) = h(x) if and only if f is continuous at z.
(ii) In the notation of the proof of part (a) above, H = G a.e. and h = g a.e.
(iii) # and h are Lebesgue measurable, and §, ,, H dm = 1,(f) and Say rdm =
L(f). | |

Proof. To prove (i), suppose € > 0. Since f is continuous at x, there exists § > 0 such
that f(x) —e < f(y) < f(y) + € whenever |z — y| < J. Thus

flz) —e< |riry1|f<§f(y) < f(z) <sup,_y <5 < f(y) + e

Sending € — 0 (and hence we may assume § — 0), we obtain
H(@) = limsupy 125 £(5) = (@) = lim inf f(y) = h(a)

0 |z—y|<d
as desired. Conversely, suppose H(z) = h(z). Then

lim (supy—yy<s f(5) —  nf () =0,
so given € > 0, there exists dy > 0 such that for all |x — y| < do,
([f(z) = f(y)| <) supju_yj<s, f(¥) — \x_iﬁ{; . fly) <e.
Since £ > 0 was arbitrary, we conclude f is continuous at z. This proves (i).

The proof of (ii) goes as follows, and can be found here. Consider the sequence of
partitions { Py} used in the proof of part (a) above. Now set F = {points of P for all k}.
Since each P, has a finite number of points, £ is countable and hence has Lebesgue
measure zero.

We will show that H = G in [a,b] \ E. If x € [a,b] \ E, then Gp, () = H(z), since if
z € (tj1,t;) we have Gp () = supyeq, , 1,1 f(y) = H(x). Hence G(z) > H(z).

If H(x) < G(x), choose a € R such that H(z) < a < G(z). By definition of H, there
exists g > 0 such that if 0 < § < §y we have f(y) < a if |y — x| < §. But since the mesh
of the partitions P tends to zero, for large k,x € (t;_1,t;) and t; — ¢, < ¢, hence

Gp, (l’) = Mj = SUPye(t; 4 .45] f(y) sa
Since the sequence {Gp,} is decreasing, we have G(x) < Gp, (x) < a < G(x), which
gives us a contradiction, hence H = G in [a,b] \ E, therefore H = G a.e. The proof that
h = g a.e. is similar.
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It remains to prove (iii). Since G and g are measurable, H = G,h = g a.e. and since

m is a complete measure, H and h are measurable. Moreover,
f Hdm = J Gdm = limj Gp, dm = lim Sp, f = T.(f),
[avb] [C’"b] [a"b]

and

f hdm:f gdm:hmJ g dm =limsp, f = I%(f). =
[a,b] [a,b] [a,b]

We can now prove part (b) of the theorem. If f is Riemann integrable, then by Folland

Exercise 2.23,
b
f Hdmzf f(x)dxzj h dm.
[a,b] a [a,b]

Hence H = h a.e. by Proposition 39. Thus the set of discontinuity points of f has zero
Lebesgue measure by Folland Exercise 2.23.

Conversely, if D(f) has zero Lebesgue measure, H = h a.e. by Folland Exercise 2.23(i)
and Folland Exercise 2.23(ii). Then by Proposition 39 and Folland Exercise 2.23(iii), we
obtain

L= | Hin= [ ndn- 1),
[a,b] [a,b]
so f is Riemann integrable.

The (proper) Riemann integral is thus subsumed in the Lebesgue integral. Some
improper Riemann integrals (the absolutely convergent ones) can be interpreted directly
as Lebesgue integrals, but others still require a limiting procedure. For example, if f
is Riemann integrable on [0,b] for all b > 0 and Lebesgue integrable on [0, ), then
S[Q oy f dm = Timy_oo Sg f(x)dx (by the DCT), but the limit on the right can exist even
when f is not integrable. (Example: f = >"n"'(=1)"X(nn+1].)

Notation 54. Henceforth we shall tend to use the motation SZ f(z)dx for Lebesque
integrals.

The Lebesgue theory offers two real advantages over the Riemann theory.

(1) First, much more powerful convergence theorems, such as the monotone and DCTs,
are available. These not only yield results previously unobtainable but also reduce
the labor in proving classical theorems.

(2) Second, a wider class of functions can be integrated. For example, if R is the
set of rational numbers in [0, 1], xg is not Riemann integrable, being everywhere
discontinuous on [0, 1], but it is Lebesgue integrable, and { xzdm = 0. (Actually,
this is in some sense a trivial example since x g agrees a.e. with the constant function
0. For a more interesting example, see Folland Exercise 2.25.)
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2.5 Modes of Convergence

If X is a measure space, one can speak of a.e. convergence or convergence in L. Of
course, uniform convergence implies pointwise convergence, which in turn implies a.e.
convergence (and not conversely, in general), but these modes of convergence do not imply
L' convergence or vice versa. It will be useful to keep in mind the following examples on
R (with Lebesgue measure):

1 o — _ (where n = 2F + 5
fo = 3 X101, In = Xnm+1): = nX[0/m);  Kn = X[j/2%,(+1)/24] and 0<j<2¥)
uniformly “floating carpet” spikes to “wanders” around
flattens to 0 flying into the distance infinity at O the unit interval [0,1]

(\\0 in measure and in L!
but not a.e. or uniformly)

(\\0 uniformly and in L') (\,0 pointwise and in L') (\,0 a.e. and in L)
Note f, — 0 uniformly, g, — 0 pointwise, and h,, — 0 a.e. (namely, everywhere except
zero), but none of these converge to 0 in L'. In fact § f, = { g, = {h, = 1 for all n for all
n. But k, — 0 in L' since {|k,| = 27F for 2¥ < n < 251 but k,(z) does not converge at
any x € [0, 1], since there are infinitely many n for Wthh k,(x) = 0 and infinitely many
for which k,(z) = 1.

On the other hand, if f,, is arbitrary, f, — f a.e. and |f,| < g € L' for all n, then
fn — fin L*. (This is clear from the DCT since |f, — f| < 2g.) Also, we shall see
below that if f, — f in L' then some subsequence converges to f a.e. Another mode of
convergence that is frequently useful is convergence in measure. We say that a sequence
{fn} of measurable complex-valued functions on (X, M, u) is Cauchy in measure if for
every € > 0,

p{lfu(@) = fn(2)] = €}) = 0 as m,n — o,

and that {f,} converges in measure to f if for every ¢ > 0,

p({|fu(z) = f(z)| = €}) - 0 as n — .

For example, the sequences the spike f,,, h,, and k, above converge to zero in measure,
but g, is not Cauchy in measure.

Proposition 2.55: 2.29.

If f, — fin L', then f, — f in measure.

Proof. Let E, . = {|f. — f| = €}. Then
f|fn fl= J | fu — [ >5M(En,€)a

0 < u(Ene) < ﬁfn fl — 0asn — oo, ]

so u(E,) — 0 as v — 0.

SO
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The converse of Proposition 55 is false, as examples f,, (which uniformly flattens to 0
everywhere) and h,, (which spikes to infinity at = 0) show.

Theorem 2.56: 2.30.

e A sequence {f,}_; that is Cauchy in measure converges in measure to some
(measurable) function in measure, and that limit is unique up to null sets.
o If f,, — f in measure, then there exists a subsequence f,; such that f,, — f a.e.

Proof. This proof can be found here. Since {f,} is Cauchy in measure, we can find n,
such that

p({|fn — fral = 1/2}) < 1/2 for all n,m = ny. (2.56.1)
Set g1 = fn,. Likewise, we can choose ny > ny such that u({|f, — fn| = 1/4}) < 1/4
for all n,m > ny. Set go = fu, and Ey = {gi1(x) — ¢2| = 1/2}. Then by Equa-
tion (2.56.1) we have pu(E;) < 27'. Inductively we can choose nj.1 = nj,g; = fa,

and E; = {z € X | [g;(z) — gj1(2)| = 277} with p(E;) <277,
Now for each k, set Fj, = U;’;k E; then u(Fy) < Z;D:k 277 = 217% and for = ¢ F, and
t = 7 = k we have

9:@) = 9: @) < X Jop(@) ~ (@] <Y

and thus {g;} is pointwise Cauchy on F¢. If F' = (\,_, F;, = limsup Ej, then u(F) =
lim; o p(E;) = 0, and {g;} is pointwise Cauchy on F*. Set f(z) = lim g;(z) for x € F°
and f(x) = 0 for x € F' (by Folland Exercise 2.3,Folland Exercise 2.5, f is measurable).
Hence g; — f a.e.

Using Equation (2.56.2) and sending — oo for each x € Ff, we have |g;(z) — f(z)| <
277 and since u(Fy) — 0 as k — o0, g; — f in measure. Now

{reX||fulx)—f(z)|ze}of{re X ||fulx)—gj(x)] =ec/2} u{re X ||gj(z) — f(x)] = e/2}.

and thus f, — f in measure, since the measure of both sets on the right side converge to
zero as n, j — o0. Now assume that f, — ¢ in measure and fix k € Z~o,. We have

{z e X[f(z) —g(2)|= k")
c{re X |[f(2) = ful@)| = k71/2} U {z € X | [ fu(z) — g(x)] = k~/2}
for all n, and making n — o we obtain u({re X ||f(z)—g(z )|>k =

0. Thus, since {ze X | f(x) # g(x)} = (_{re X ||f(x) —g(x)| =k}, we have
u{z e X | f(x) # g(x)}) = 0 and hence f = g a.e. O

i—1

2P < 217, (2.56.2)

Exercise 2.57: Folland Exercise 2.32.

Suppose u(X) < oo. If f,g: X — C are measurable functions. Define

o(f.g) = f allf — gl) i,
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where u: R — R via u(x) = z/(1 + x). Then p is a metric on the space of measurable
functions on X where we identify functions f and ¢ if f = ¢ a.e., and f,, — f with
respect to p if and only if f,, — f in measure.

Proof. We only show f,, — f with respect to p if and only if f,, — f in measure. Suppose
pfn, f) =0, >0, and E = {|fo — f| = ¢}. Then [f, — f| 2 & = u(e) <u(|fn — [)

since wu is increasing, so

w@uE) = | )< [ ullh = 1) = ol £) =0,

so u(E) — 0 as n — oo. Hence f,, — f in measure.
Conversely, suppose f, — f in measure. Since |f, — f| = u(|f, — f|), we can write

u(lfo = fI) 2 e = [fu— f| = &, which implies {u(|fn — f]) = e} < {[fn — f] = £}, s0
pl{ullfo = f1) = €}) < p(E),

mm>—fmm 7)

=f wmfwo+f a(lfo = £1)
{u(|fn—fl)<e} {u(|fn—fl)=¢e}

£
< ep(X 0
e+ wilfa—thze) 1 [fo = f]
< epX) +ep{ull fn - f1) = €}).

—uU as Ti—>U, blll(,U

fn—f in measure

<ep(X) +eu(E).

Since € > 0 was arbitrary, we conclude p(f,, f) = 0 as n — o0. ]

Exercise 2.58: Folland Exercise 2.33.

If f, € Zzo and f,, — f in measure, then { f < liminf, ., { f,

Solution. The limit infimum of a sequence is a limit point of that sequence by definition,
so there exists a subsequence f,, of f, such that { f,, — liminf{ f,. Then f,, — f in
measure, so there is a subsubsequence f,, — f a.e. Since f = 0, by Fatou’s Lemma,

ff = flim inf; o fnkj < liminf;, ank] = lim infj_,ooffn. O

In general, if f,, — f a.e. does not imply f,, — f in measure. However, if u(X) < oo,
then this does hold.

Definition 59. If {f: X — C} is a sequence of measurable functions such that for all
e > 0, there exists E < X such that u(E) < e and f, — [ uniformly on p(E°), then we
say f, — [ almost uniformly.
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Exercise 2.60: Folland Exercise 2.39.

If f, — f almost uniformly, then f, — f a.e. and in measure.

Solution.

e f, — f in measure: Let ¢ > 0. Since f, — f almost uniformly, there exists
E € M such that u(E) < e and f,, — f uniformly on E°. This means given &’ > 0,
\fn — f] < € for all sufficiently large n. But this means {|f, — f| = ¢} < FE, so
w({lfn — fl = €}) < u(E) <e. Thus f, — f in measure.

o f, > fae: Let e >0andlet F = {x e X | f.(x) » f(x)}. Since f, — f
almost uniformly, there exists £ € M such that u(F) < e and f,, — f uniformly on
E*. Since uniform convergence implies a.e. convergence, ¢ < F¢. Thus F c F.
Hence p(F) < u(E) < e. Since € was arbitrary and independent of F', we conclude
w(F) =0. Thus f, — f a.e. O

Theorem 2.61: 2.33: Egoroff’s Theorem.

If W(X) < oo and {f,: X - C}°_, is a sequence of measurable functions converging
a.e. to f, then f,, — f almost uniformly.

Proof. This proof can be found here. Assume first that f, — f pointwise on X. For
k,n € Z~, define
Eu(k) = e e X | 1fi@) — f(2) = k)

If k is fixed, then {E,(k)}, is a decreasing sequence and since f;(z) — f(x) as j — o
for each z € X, we have (_, E,(k) = @. Since u(X) < o0, from the continuity from
above, we have p(E,(k)) — 0 as n — oo. Given € > 0 and k € Zs, choose n;, such that
w(En, (k) <e27%and let £ =J;_, B, (k). Then u(E) < ¢ and |f,(z) — f(z)| < k™' for
n = ng and x ¢ E. Thus f,, — f uniformly on E°.

Now if f, — f a.e., let F' < X be the set with u(F) = 0 such that f,, — f everywhere
on F¢. Thus, from the previous result (with £ instead of X), given € > 0 there exists a
set B F¢ with u(E) < € and f, — f uniformly on £E°. Thus taking A = E u F then
wW(A) = u(E) + p(F) = u(E) < e and A° = E°n F° = E°, hence f,, — f uniformly on
Ac. O

Exercise 2.62: Folland Exercise 2.40: Strengthened Egoroff’s Theorem.

If {f,: X — C}*_, is a sequence of measurable functions such that f, — f a.e. and
there exists g € L' n L' such that |f,| < g for all n, then f, — f almost uniformly.

Solution. This proof can be found here. From the DCT {|f| < {g and fe L'(y). Asin
the proof of Egoroftf’s Theorem, we can assume without loss of generality that f, — f
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pointwise, and we set
*© -1
En(k) =, {re X |1f;(2) - f(0)| = K71},
If we can prove that pu(E;(k)) < oo for all k, then as in the proof of Egoroff’s Theorem,

it will follow that p(E,(k)) — 0 as n — o and the rest of the proof remains unchanged.
Now, if z € Ey(k) then there exists j € Zsg such that |f;(x) — f(z)| = k~'. Hence

(B (k) = f Xyl = L s L ) = 1@
<k Ll(k)ﬂfj(w)! 1 (@)])dp < 2 f gdp < 2k f gdu < o,

E1(k)
since g € L' (). Therefore the result follows. O

The following corollary is then immediate.

Corollary 2.63.

If {f,}®_, is a sequence of measurable functions and there exists g € L' n L™ such that
|ful < gae. and f, — f a.e., then f, — f in measure.

Exercise 2.64: Folland Exercise 2.38.

If {f,}, and {g,}°_, are sequences of measurable functions such that f, — f and
gn — ¢ in measure, then the following hold.

(1) |ful = |f| in measure.

(2) fon+ gn — f+ g in measure.

(3) f2 — f*in measure if u(X) < 0.

(4) fngn — fg in measure if p(X) < o0, but not necessarily if u(X) = oo.

Solution.

(1) Fix ¢,&’ > 0. We want some N such that for all n = N, u({||f.] = |f]| = ¢}) < €.
Since f,, — f in measure, there exists Ny such that for all n = N,

p{lfn = fl=e}) <<

Since |fn — f| 2 [[ful = IFIl, i |[fu(2)] = [f(2)]| = € then [f,(x) — f(z)| = . Hence

{[fnl = /1] = €} = {lfa=fI = e}, so p({{lful =[Sl 2 €}) < p({lfn—fl=e})
Since the left-hand side of this inequality is nonnegative and the right-hand side

vanishes as n — o0, the left-hand side also vanishes, so |f,,| — | f| in measure.
(2) Fix e, e’ > 0. Since | f, + 9o — f — 9| <|fo — fI + |90 — g, we can write (|f, + gn —
f—ygl=¢)c{|fn— f| = ¢} and {|g, — g| = €}. Thus for all sufficiently large n,
p{lfn + 90— F =gl = e}) < p({lfo = f1 = €}) + p({lgn — 9 = €})
<e/2+e/2=¢.
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(3) To see this, first suppose f,, — f in measure and let €,’, M > 0. Now

wlfn = Pl = el =l fu = fI-1fa + [l = €}
:#{’fn f| ‘fn+f| 5and|fn+f‘ M}
+p{lfo = fI- [fu+ fl = € and |fo + f| < M}
(by disjont additivity of )

< p{lfo = Sl 1o+ fl=eand |fu+ fl 2 M} + pf|fu — f| = e/ M},
where the last step is by monotonicity of u because |f, + f| < M and |f, — f] -
|fn + f| = € together imply k|f, — f| = ¢, and hence that |f,, — f| = ¢/M. Since
fn — [ in measure, there exists Ny such that for all n = Ny, u{|f, — f| = ¢/M} <

¢’/2. We now claim that there exists N7 such that for all n = Ny, p{|f, — f|-|fn + f| =
e and |f, + f| = M} < €'/2, which will complete the proof since then by the above
we can conclude pf|f? — f| = e} < & for all n > max{Ny, N;}. To see why such an
N exists, note that since f is complex valued,

N _ Al f1> M} =

0= u(_ {lfat 112 M}):Ay;nwmyfn fl = M})

~

Thus

~~
’:En,M

where we used continuity of p from above (noting there is no issue with any set here
being measurable), as

1(Enn) = p{lfo — fI = 1} < p(X) < 0.

Then in particular, there exists an N; such that for all n > Ny, pu(E, m) < €'/2.
Since

:U/{|fn f| |fn+f| e and |fn+f| M}CEn,Ma

we conclude by monotonicity of u that

p{lfo = f1- 1 fu+ [l = € and [fo + f}) = M} < p(Enn) <€'/2,

which proves f? — f in measure, and hence completes the proof by our previous
remarks.

(4) We first provide a counterexample to the statement of (3) in the case u(X) = .
Consider the Lebesgue measure space (R, £, m) and the nonnegative measurable
functions f,,g,: R — R given by f,(z) = x + 1/n and g, (x) = z. Then the f,, g,
are nonnegative measurable functions, f,(z), g,(z) — = in measure (so in this case
flx) =g(x) =z, f(x)g(x) — x? in measure, but f,,(z)g,(x) = 2 + x/n, which does
not converge to 22 in measure: indeed, |z* + z/n — 2% = |x/n| > ¢ for all z with
|z| = ne’; since the Lebesgue measure of all such z is infinite, f,g, does not converge
to fg in measure.
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Now instead assume p(X) < co. By writing

fg= %((f +9)°— 2 —g°),

we observe that

Fagn = ol = |5 (U + 907 = £2= ) = 5((F + 9 = f* — ?)
< 51U+ 000 = (F 497+ 5152 = £+ 3162 = ).

Since f, + g, — f + ¢ in measure by (2), it suffices to show that f,, — f in measure
implies f2 — f? in measure. But this is (3), so we are done. O

Exercise 2.65: Folland Exercise 2.34.

If |f,] < ge L' and f, — f in measure, then

a) §f=lim, . f, and
(b) fn - f in L'.

Solution.

(a) Suppose § f, - § f. Then there exists £ > 0 and a subsequence {ank}zozl such that

[1t=s1={[ 1| 1

But f, — f in measure, so f,, — f in measure, so there exists a subsequence
{ fo, }221 converging a.e to f. But |f,,,| < g € L' for all ¢, so by the DCT f e L'
and § f,,, — § f, contradicting Equation (2.65.1).

(b) By Folland Exercise 2.21, it suffices to show | f,| — §|f|. Since fn — f in measure,
| fo] = |f| in measure by Folland Exercise 2.38. Then by part (a), {|f.| — {|f], as
desired. O

> e (2.65.1)

2.6 Product Measures

Let (X, M, ) and (Y, N, v) be measure spaces. We define a (measurable) rectangle
to be a set of the form A x B, where A € M and B € N. Note that

(AxB)n(ExF)=(AnE)x(BnF) and (AxB)‘=(XxB u(A°xB),
so by Proposition 7 the collection A of finite disjoint unions of rectangles is an algebra.
The o-algebra it generates is M ® N.

Suppose A x B is a rectangle that is a countable disjoint union of rectangles {A; x
Bj}¥, = MxN. Then for any re€ X and y e Y,

A@XB(0) = (@) = D Xapes, (@,9) = Y

0

i1 XA, (I)XB]- (y).
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If we integrate with respect to z and apply the MCT for series (Theorem 26), we obtain

#(A)xs(y) = j xal@)xs(y) du(z) = 3" f xa; (0)xs, (y) dle) = D7 ulA)x, ().
Similarly, integration with respect to y yields
p(AW(B) = 3 n(A)v(By).

It follows that if E' € A is the finite disjoint union of rectangles A; x By, ..., A, x B,,, and
we define
m(E) = ijl n(Aj)v(E;)

(with the usual convention that 0 -0 = 0), then 7 is well-defined on A since any two
representations of £ as a finite disjoint union of rectangles have a common refinement, and
7 is a premeasure on A. According to Theorem 33, therefore, 7w generates an outer measure
on X xY whose restriction to M x N is a measure that extends 7. We call this measure
the product of p and v and denote it by puxv. Moreover, if u and v are o-finite—say,
X =4, and Y = |J;” By with u(A;),v(By) < oo—then X xY = Uszl A; x By, and
pxv(A;x By) < o0, so pxv is also o-finite. In this case, by Theorem 33, px v is the
unique measure on M ® N such that uxv(Ax B) = u(A)v(B) for all rectangles A x B.

The same construction works for any finite number of factors. That is, suppose
(X;, M, uuj) are measure spaces for j = 1,...,n. If we define a rectangle to be a set of
the form A; x---x A, with A; € M, then the collection A of finite disjoint unions of
rectangles is an algebra, and the same procedure as above produces a measure fiq X - - - X fiy,
on M; ®---®M,, such that

X X (A3 x Ay) = HTMj(Aj>‘

Moreover, if the p s are o-finite so that the extension from A to ®?:1 M, is uniquely
determined, the obvious associativity properties hold. For example, if we identify X; x
Xy x X3 with (X7 x X3) x X3, we have My ® My ® M3 = (M; @ My) ® M3 (the former
being generated by sets of the form A; x Ay x A3 with A; € M;, and the latter by sets
of the form B x A3 with B € M; ® My and Az € M3), and g X o X 3 = (pq X fig) X pi3
(since they agree on sets of the form A; x Ay x Az, and hence in general by uniqueness).
Details are left to the reader (Folland Exercise 2.45). All of our results below have obvious
extensions to products with n factors, but we shall stick to the case n = 2 for simplicity.

Definition 66. Let (X, M, ) and (Y, N,v) be any two measure spaces. For any E < XxY
and any x € X and y € Y we define the x-section of E, and y-section of E, denoted
E, and EY, respectively, by

E,={yeY |(z,y) e £} and EY={xe X | (v,y) € E}.
Also, if f is a function on X xY we define the x-section of f and the y-section of f,
denoted f, and fY, respectively, by

fo(y) = [Y(x) = f(z,y).
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Example 67. We can write (xg), = x5, and (xg)? = Xpv.

Proposition 2.68: 2.34.

(a) If Ee M®N, then E, € N for all z € X and EY e M for all y e Y.
(b) If f is M ® N-measurable, then f, is N-measurable for all x € X and f¥ is
M-measurable for all y € Y.

Proof. Let R be the collection of all subsets F of X xY such that E, € N for all x and
EY € M for all y. Then R obviously contains all rectangles (e.g., (Ax B), = Bif x € A,
and (AxB), = @ otherwise). Since (" E;), = U, (E;), and (E°), = (E,)°, and likewise
for y-sections, R is a o-algebra. Therefore R > M ® N, which proves (a). (b) follows from
(a) because (f,)"'(B) = (f}(B)), and (f*)"'(B) = (f/7/(B))". O

Before proceeding further we need a technical lemma. We define a monotone class on
a space X to be a subset € of P(X) that is closed under countable increasing unions and
countable decreasing intersections (that is, if F; € € and Ey < Ey < -+ -, then | JE € C,
and likewise for intersections). Clearly every o-algebra is a monotone class. Also, the
intersection of any family of monotone classes is a monotone class, so for any P < P(X)
there is a unique smallest monotone class containing P, called the monotone class
generated by P.

Theorem 2.69: 2.35: The Monotone Class Lemma.

If A is an algebra of subsets of X, then the monotone class C generated by A coincides
with the o-algebra M generated by A.

Proof. Since M is a monotone class, we have € < M; and if we can show that C is a
o-algebra, we will have M < €. To this end, for E € € let us define
C(E)={FeC|E~NF,F<FE and En F are in C}.

Clearly @ and F are in C(F), and F € C(F) if and only if F' € C(FE). Also, it is easy to
check that C(FE) is a monotone class. If F € A, then F € C(F) for all F' € A because A is
an algebra; that is, A < C(F), and hence C < C(F). Therefore, if F' € C, then F' € C(E)
for all £ € A. But this means that F € C(F') for all F € A, so that A < C(F') and hence
C < C(F). Conclusion: If E, F € C, then E \ F and E n F are in C. Since X €e A c C,C
is therefore an algebra. But then if {F;};” < €, we have | J] E; € € for all n, and since C
is closed under countable increasing unions it follows that | J;” E; € €. In short, € is a
o-algebra, and we are done. O

We now come to the main results of this section, which relates integrals on X xY to
integrals on X and Y.
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Theorem 2.70: 2.36.

Suppose (X, M, u) and (Y, N, v) are o-finite measure spaces. If £ € M ®N, then the
functions x — v(FE,) and y — p(EY) are measurable on X and Y, respectively, and

pxv(E) = | V() dpte) = L u(EY) du(y).

Proof.

e Case 1: u and v are finite. Let C be the set of all E € M ® N for which the
conclusions of the theorem are true. If £ = Ax B, then v(E,) = xa(z)v(B) and
w(EY) = u(A)xs(y), so E € C. By countable additivity it follows that finite disjoint
unions of rectangles are in €, so by Theorem 69 it will suffice to show that C is a
monotone class. If {E,} is an increasing sequence in € and E = | J{” E,, then the
functions f,,(y) = u((E,)”) are measurable and increase pointwise to f(y) = u(EY).
Hence f is measurable, so by the MCT,

f (EY) dv(y) = lim f = lim pxv(E,) = pxv(E).

Likewise uxv(FE) = S (E.)du(z), so E € C. Similarly, if { £,,} is a decreasing sequence
in € and (° E,, the function y — p((E1)") is in L' (v) because p((E1)?) < u(X) < o
and v(Y) < o0, so the DCT can be applied to show that E € €. Thus € is a monotone
class, and the proof is complete for the case of finite measure spaces.

e Case 2: p and v are o-finite. Then we can write X xY as the union of an increasing
sequence {X; xY;} of rectangles of finite measure. If £ € M ® N, the preceding
argument applies to E n (X xY;) for each j to give

(B 0 (G %5)) =[x (@ EBs 2 Vi) = [ xos )u(EY 0 X,)iv),
and a final application of the MCT then yields the desired result. m

Theorem 2.71: 2.37: The Fubini-Tonelli Theorem.

Suppose that (X, M, u) and (Y, N, ) are o-finite measure spaces.

(a) (Tonelli) If f e LT(X xY), then the functions g(x) = { f, dv and h(y) = { f¥du
are in LT (X) and LT (Y), respectively, and

de X v) :JUM W) duly )]du JUM o) du(x )]du( ) (271.1)

(b) (Fubini) If f € L'(uxv), then fm € Ll( ) for a.e. =€ X,, f¥ e LY(p) for a.e.
yeY, the a.e-defined functions g(z) = { f, dv and h(z) = { fYdv are in L'(p)
and Ll( ), respectively, and Equatlon (2.71.1) holds.

Proof. Tonelli’s theorem reduces to Theorem 70 in case f is a characteristic function, and
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it therefore holds for nonnegative simple functions by linearity. If f e L*(X xY), let {f,.}
be a sequence of simple functions that increase pointwise to f as in Theorem 18. The
MCT implies, first, that the corresponding g,, and h,, increase to g and h (so that g and
h are measurable), and, second that

[ g =tim [ g de = tim | fudexv) = [ i),

Jhdyzhmfhndy zlimffnd(,uxy) - de(uxy),

which is Equation (2.71.1). This establishes Tonelli’s theorem and also shows that if f €
LY (X xY) and § fd(uxv) < oo, then g < 0 a.e. and h < o0 a.e., that is, f, € L'(v)
for a.e. x and fY € L'(u) for a.e. y. If f € L'(uxv), then, the conclusion of Fubini’s
theorem follows by applying these results to the positive and negative parts of the real
and imaginary parts of f. O]

Notation 72. We shall usually omit the brackets in the iterated integrals in Fqua-
tion (2.71.1), thus:

f”fxydu }du ffxydu )dv(y deudz/

A few remarks are in order:

e The hypothesis of o-finiteness is necessary; see Folland Exercise 2.46.
e The hypothesis f € LT™(X xY) or f € L*(uuxv) is necessary in the following two
ways.

(i) First, it is possible for f, and f¥ to be measurable for all z, y and for the iterated
integrals {§ f dudv and ( f dv du to exist even if f is not M ® N-measurable.
However, the iterated integrals need not then be equal; see Folland Exercise
2.47.

(ii) Second, if f is not nonnegative, it is possible for f, and f¥ to be integrable
for all z, y and for the iterated integrals {§ f dudv and { f dv du to exist even
if §|f]d(puxv) = co. But again, the iterated integrals need not be equal; see
Folland Exercise 2.48

e The Fubini and Tonelli theorems are frequently used in tandem. Typically one wishes
to reverse the order of integration in a double integral {§ f du dv. First one verifies that
§1f1d(px v) < o0 by using Tonelli’s theorem to evaluate this integral as an iterated
integral; then one applies Fubini’s theorem to conclude that §{ f dupdv = {§ f dv dp.
For examples, see the exercises in Folland Section 2.6.

e Even if y and v are complete, pu x v is almost never complete. Indeed, suppose
that there is a nonempty A € M with p(A) = 0 and that N # P(Y). (This is the
case with p = v = Lebesgue measure on R, for example.) If £ € P(Y) \ N, then
AxE ¢ M®N by Proposition 68, but Ax E < AxY, and uxv(AxY) =0.
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Notice that we did not assume v(Y') < o0, hence, we employed the convention that
0-(+o0) = 0 in measure theory (unless stated otherwise). In fact, this convention needs to
be taken in order to call ux v a measure as the following elementary observation regarding
continuity from below shows:

Consider X =Y = R and the Lebesgue measure, m, on each space. Then in the above
example, let £ = {0} and choose any nonmeasurable subset of [—1,1] (note that this
subset will not be a subset of a null set since m is complete). Then we clearly have that

ExN c Ex[—n,n] c ExR, for each n € Z.

As each E x [—n,n] is a rectangle, we have m x m(E x [—n,n]) = 0 (2n) = 0 for
each n € Zsg. Furthermore, E, = E x[—n,n] is a increasing, nested set such that
UnezooPn = E xR, and continuity from below applied to the measure m xm = X shows
that we must have

AMEXR) = MUpezooBn) = lim A(E,,) = lim mxm(E x[—n,n]) = lim 0 = 0.
n—00 n—0o0 n—o

As continuity from below holds for all measures, if we took any other convention than
0 - (+o0) = 0 in this setting, the product measure would not be a measure!

Although the o-finite assumption is needed for Tonelli (see Folland Exercise 2.46), it
turns out that is not needed for Fubini (see Tao’s Remark 1.7.22 in his notes on measure
theory). But by Proposition 32 the support of an L' function is o-finite, so there is no
harm in assuming o-finiteness in general. (But this is not true in general for f € L* only.)
Nevertheless, the hypotheses f € Lt or f € L' is needed (see Folland Exercise 2.47,Folland
Exercise 2.48).

If one wishes to work with complete measures, of course, one can consider the comple-
tion of uxv. In this setting the relationship between the measurability of a function on
X xY and the measurability of its x-sections and y-sections is not so simple. However,
the Fubini-Tonelli theorem is still valid when suitably reformulated:

Theorem 2.73: 2.39: The Fubini-Tonelli Theorem for Complete Measures.

Let (X, M, ) and (Y, N, v) be complete, o-finite measure spaces, and let (X xY, L, \)
be the completion of (X xY, M @N, uxv). If f is L-measurable and either (a) f = 0

r (b) f e L'Y(\), then f, is N-measurable for a.e.  and f¥ is M-measurable for a.e.
y, and in case (b)f, and fY are also integrable for a.e. x and y. Moreover, z +— { f, dv
and y — { f¥ dp are measurable, and in case (b) also integrable, and

ffdA meydu ) dv(y Jf:vydu ) du(z).

This theorem is a fairly easy corollary of Theorem 71; the proof is outlined in Folland
Exercise 2.49.
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Exercise 2.74: Folland Exercise 2.45.

If (X;,M;) is a measurable space for j = , then ®@M; = (M; ® M2)® Ms.
Moreover, if 1; is a o-finite measure on (X;, M ) then p1 X g X iy = (g X fg) X 3.

Exercise 2.75: Folland Exercise 2.46.

Let X =Y = [0,1], M = N = Bjg,1}, # = Lebesgue measure, and v = counting measure.
If D= {(x,z) |z €[0,1]} is the diagonal in X xY", then {{ xp dudv, { xp dvdu, and
§ xpd(p x v) are all unequal. (To compute {xpd(uxv) = uxv(D), go back to the
definition of pxv.)

Solution. First we note that D is measurable. Indeed, given n € Z, define 1, j, = [ Z , kzl]

fork=0,---,n—1land E, = Z;é(ln,k x I,x). Thus D = ("_, E, € M @M. We have

1
f j \odudy = f f Yoz, y)dzdu(y),
[0,1] Jo

but for each fixed y € [0, 1], we have yp(z,y) = 0if z # y and yp(x,y) = 1 if z =y,
hence xp(-,y) = Op-a.e., and thus

Now since v({z}) = 1 for each x € [0, 1] we have

1 1
ff Xpdvdu = J f Xp(z,y)dv(y)de = f ldr = 1.
0 Jo. 0

To compute p x v(D), we will use the outer measure 7*, the restriction of which to
M ® N we recall is the definition of p xv. Assume that D < U;O:I(Aj x B;) where
Aj, Bj € By for all j. Since D = U N (A; x Bj), then given z € [0, 1] we have
(x :E) (A ><B ) for some j, that is, = € A~ N Bj, and hence |J7_; A; n B; = [0,1].
Therefore there exists j € Z=o such that u(Aj N Bj) > 0, thus pu(A4;) = u(4; n B;) >0
and p(B;) = u(A; n B;) > 0, and in particular, v(B;) = o (since if v(B;) < o implies
that p(B;) =0). Hence puxv(A;x B;) = o0, and thus Z;’il pxv(A;x Bj) = . Since
this is true for any cover of D by rectangles, we have ux v (D) = . O]

Exercise 2.76: Folland Exercise 2.47.

Let X = Y be an uncountable linearly ordered set such that for each = € X,
{y € X |y <z} is countable. (Example: the set of countable ordinals.) Let M =N
be the o-algebra of countable or co-countable sets, and let 4 = v be defined
on M by u(A) = 0 if A is countable and pu(A) = 1 if A is co-countable. Let
E = {(z,y) € XxX | y < x}. Then E, and EY are measurable for all x,y, and
\$xe dpdr and §§ x g dv du exist but are not equal. (If one believes in the continuum
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hypothesis, one can take X = [0, 1] [with a nonstandard ordering| and thus obtain a
set £ < [0,1]? such that E, is countable and EY is co-countable [in particular, Borel]
for all z,y, but F is not Lebesgue measurable.)

Exercise 2.77: Folland Exercise 2.48.

Let X =Y =Z>0,M =N = P(Z>y), p = v = counting measure. Define f(m,n) = 1 if
m =n, f(m,n) = —1ifm=n+1,and f(m,n) = 0 otherwise. Then {|f|d(uxv) = o,
and {{ f dpdv and (§ f dv dp exist and are unequal.

Exercise 2.78: Folland Exercise 2.49.

Prove Theorem 73 by using Theorem 71 and Proposition 22, together with the following
lemmas.
(a) f FEe M®N and pxv(E) =0, then v(E,) = p(EY) = 0 for a.e. x and y.
(b) If f is L-measurable and f = 0 A-a.e., then f, and fY are integrable for a.e. z
and y, and { f, dv = { f¥dp = 0 for a.e. z and y. (Here the completeness of p
and v is needed.)

Exercise 2.79: Folland Exercise 2.50.

Suppose (X, M, i) is a o-finite measure space and f € L*(X). Let

Gy =A{(z,y) e X x[0,00] [y < f(x)}.
Then Gy is M x Bg-measurable and puxm(Gy) = { fdu. The same is also true if
the inequality y < f(z) in the definition of Gy is replaced by y < f(z). (To show
measurability of G, note that the map (x,y) — f(x) —y is the composition of
(z,y) = (f(%),y) and (2,y) — z — y.)
This is the definitive statement of the familiar theorem from calculus which states
the integral of a function is the area under its graph.

Solution. G is measurable because the map (z,y) — (f(z),y) — f(x)—y is a composition
of measurable functions, under which G is the preimage of the measurable set [0, ) (or
(0,0) in the case of ‘<’ instead of ‘<’). Then x¢, € L™ (1 xm), so by Tonelli’s Theorem
we have

uxm(Gﬁ:Jfod(uxm):L(fo Y dy)du ff ) dpi(w

as desired. O
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Exercise 2.80: Folland Exercise 2.51.

Let (X, M, p) and (Y, N, v) be arbitrary measure spaces (not necessarily o-finite).
(a) If f: X — C is M-measurable, g: Y — C is N-measurable, and h(x,y) =
f(z)g(y), then h is M ® N-measurable.
(b) If fe L*(n) and g € L*(v), then h e L*(uxv), and

fhd(uxy) - deu> (Jgdu).

(a) h is the composition (z,y) — (f(x),g(y)) — f(x)g(y), which is a composition of
measurable functions, and hence measurable.
(b) If f =x4 and g = xp for Ae M and B € M, then h = x4 X XB = XaxB, SO

Jhd(uxy) = uxv(AxB)

s ([ rw) - (] ) f4)

where we used that uxv(Ax B) = pu(A)xv(B) by definition of the product measure.
Now suppose f is a simple nonnegative function f = >  ¢;xa, and g = xs.
Then h = 3" | ¢;xaxp and thus

Jhd(u X V) = Zj: e x v(A;x B) = Z:‘: cipu(A U fdu> (J gdy> .

Now suppose th f and g are M and M measurable (respectively) simple nonnega—
tive functions. Then g = > " | dixp, and we set hy = dy fxp, for each k =1,
Then by the previous case, we have

et - e [ st - e [ 1a0) [sa) - ([ 1) fdeBkdy).

Summing over k € {1,...,m}, we obtain the result.

Now suppose f € L*(X), ge L*(Y). Then there exist sequences {s,} and {r,} of
nonnegative simple M and M-measurable functions that increase pointwise to f and
g respectively. Then h,, = f,g, € LT (X xY") as a product of measurable functions,
and {h,} increases to fg. Then by the MCT,

- it - [ ) ) - ([ ) )

For f € L'(u) and g € L'(v) real functions, the result follows by applying the previous
case to fTg", fTg~, f~gTand f~g~. For complex functions, just apply the real L!
case to Re fReg,Re fImg,Im f Reg and Im fImg. O

Solution.
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Exercise 2.81: Folland Exercise 2.52.

The Fubini-Tonelli theorem is valid when (X, M, x1) is an arbitrary measure space and
Y is a countable set, N = P(Y), and v is counting measure on Y. (See Theorems 26
and 48.)

2.7 The n-Dimensional Lebesgue Integral

The n-dimensional Lebesgue measure m"™ on R" is the completion of the n-fold
product of Lebesgue measure on R with itself, that is, the completion of m x---xm on
Br® - ® Br = B, or equivalently the completion of mx---xmon L& --- QL of m"
is the class of Lebesgue measurable sets in R"; we will denote this complete o-algebra
by £". (Sometimes we shall also consider m™ as a measure on the smaller domain Lgn.)
When there is no danger of confusion, we shall usually omit the superscript n and write
m for m™, and as in the case n = 1, we shall usually write { f(z) dz for § f dm.

We begin by establishing the extensions of some of the results in Folland Section 1.5
to the n-dimensional case. In what follows, if £ =[] E; is a rectangle in R", we shall
refer to the sets E; — R as the sides of E.

Theorem 2.82: 2.40.

Suppose E e L".
(a) We can write
m(E) = inf{m(U) | U is an open set containing E'}
= sup{m(K) | K is a compact set inside E}.
(b) E = A; U Ny = Ay~ N, where A; is an F, set, As is a Gy set, and m(N;) =
(¢) If m(E) < oo, for any € > 0 there is a finite collection {Rj}jlv of disjoint rectangles
whose sides are intervals such that m(EA | JY R;) < e.

Proof. By the definition of product measures, if £ € L™ and € > 0 there is a countable
family {7} of rectangles such that £ < | J”Tj and },°m(T;) < m(E) + . For each
J, by applying Theorem 45 to the sides of ; we can find a rectangle U; > F; whose
sides are open sets such that m(U;) < m(T};) +e277. It U = | J;" Uj, then U is open and
m(U) < Y.”m(U;) < m(E) + 2e. This proves the first equation in part (a); the second
one, and part (b), then follow as in the proofs of Theorems 45 and 46. Next, if m(F) < o,
then m(U;) < oo for all j. Since the sides of U; are countable unions of open intervals, by
taking suitable finite subunions we obtain rectangles V; < U; whose sides are finite unions
of intervals such that m(V;) = m(U;) —e279. If N is sufficiently large, then, we have

m(E\ UJIVVJ> < m<UiV U; ~ VJ> +m(Uj\j+1 Uj) < 2¢
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and

m(l | vi~E) <m(| |TU,~E) <e,
(U v B) <m(U v )

so that m(EA Y V;) < 3e. Since (Y V; can be expressed as a finite disjoint union of
rectangles whose sides are intervals, we have proved (c). ]

Theorem 2.83: 2.41.

If fe L'Y(m) and € > 0, there is a simple function ¢ = Ziv ajXr;, where each R; is a
product of intervals, such that §|f — ¢| < ¢, and there is a continuous function g that
vanishes outside a bounded set such that {|f —g| <e.

Proof. We first sketch the argument we will give. As in the proof of Theorem 49, we
can approximate f by simple functions. We will then use Theorem 82(c) to approximate
the latter by functions ¢ of the desired form. Finally, we will approximate such ¢s by
continuous functions by applying an obvious generalization of the argument in the proof
of Theorem 49.

We now give the argument. Fix ¢ > 0. By Theorem 18, there exists a sequence of
simple functions {gzﬁj} "~ such that |¢;| /' |f| and ¢; — f pointwise as j — 0. Since
\0; — f| < |o;| + |f] < 2|f] € L*(m) for each j, we can apply the dominated convergence
theorem to obtain lim; ., §|¢; — f| = {0 = 0. Thus there exists a simple function
¢o such that |¢o| < |f| and §|f — ¢o| < £/2. Write ¢y in its standard representation
¢o = Z?Zl ajXg,;, where a; € C and the E; € M are disjoint. We may assume a; # 0, since
it makes no difference in the proof, as will be seen. First note that the E; are m-finite,

because
Z |a;|pn(E f|¢o J|f|+f|¢0—f|<€/2+f|f|<+oo

Then by Theorem 82(c ), for each E; there exists a finite disjoint union of measurable
rectangles F;, = U]kvi R}, where the R; are have interval sides, such that m(FE;AF}) <
Note xp, = 2,12, Xy since the R are disjoint. Now define

¢ = Z:Zl ajXr; = Z:zl ZkNil AjXRj = ijk ajXRY-

Then ¢ is a simple function, and
<37 lasl [ es, x|

J|¢0 — ¢l = ﬂZ ajXE; — Z L GiXF;
n nolajle e
le |a;| fXEjAFj = Zj:1 laj|m(E;AFj) < Z i _ :

i=12|ajn

2\a n*

where the equality at () is because for any subsets A, B < X, we have |[x4 — X8| = XaarB-
(This can be seen by showing equality on each of AN B, BN A, An B, and (A u B)°.
On AN\ B, we have |xa — x| = |1 =0 =1 = xaap. On B~ A, we have |y4 — x| =
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0—1] =1 = xaap. On AN B, we have we have |xa — x| =[1 — 1| =0 = xaap. And
n (Au B)¢ we have x4 — xB| = [0 — 0] =0 = xyaap.) We can now write

J1r=ol<[1r=anl+ [lon=ol <e24 2=

so ¢ is the desired simple function.

For the second point of the statement, we use the fact we have just proved. Since there
exists a simple function ¢ = Z]kV:1 arX g, such that each Ry is a rectangle with interval
sides, ay, # 0, and {|¢ — f| < &/2. Now, for each index 1 < k < N, let ay be a continuous
map satisfying |xgr, — ax| < £/(2]ax|N). (Recall from basic analysis of a single variable
functions that such a map a4 exists, as we can connect the intervals on which yg, is
constant by steeper and steeper slopes.) Then the function g defined by g = fo:l ay .
Then ¢ is continuous as a finite linear combination of continuous functions, and we can
write

J1r=a=[1r=01+ [l6-9 <s/2+f12jf_l R T
g +Ziv |ag| J IXR, — k| < Zk 1 2|ak|€ =¢/2+¢/2 =¢,

so ¢ is the desired continuous function. O]

Theorem 2.84: 2.42.

The Lebesgue measure is translation-invariant. More precisely, for a € R" define
T, R" - R" by 7,(z) = = + a.
(a) If E € L™, then 7,(F) € L™ and m(7,(F)) = m(E).
(b) If f: R" — C is Lebesgue measurable, then so is f o 7,. Moreover, if either f > 0
or f € L*(m), then §(fo7,)dm = { fdm.

Proof. Since 7, and its inverse 7_, are continuous, they preserve the class of Borel sets. The
formula m(7,(E)) = m(E) follows easily from the one-dimensional result (Theorem 48) if
FE is a rectangle, and it then follows for general Borel sets since m is determined by its
action on rectangles (the uniqueness in Theorem 33). In particular, the collection of Borel
sets E such that m(FE) = 0 is invariant under 7,. Assertion (a) now follows immediately.

If f is Lebesgue measurable and B is a Borel set in C, we have f~1(B) = E'u N where
E is Borel and m(N) = 0. But 7, '(E) is Borel and m(r; (N)) = 0, s0 (f o 7,) " (B) € £"
and f is Lebesgue measurable. The equality {(f o 7,)du = § f du reduces to the equality
m(7_q(E)) = m(F) when f = xg. It is then true for simple functions by linearity, and
hence for nonnegative measurable functions by the definition of the integral. Taking positive
and negative parts of real and imaginary parts then yields the result for f € L*(m). O

Let us now compare Lebesgue measure on R™ to the more naive theory of n-dimensional
volume usually found in advanced calculus books. In this discussion, a cube in R" is a
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Cartesian product of n closed intervals whose side lengths are all equal.

Given k € Z, let @}, be the collection of cubes of side length 1/2% with vertices in the
lattice (5Z)". (That is, [ [}[a;,b;] € Qy if and only if 2*a; and 2"b; are integers and
bj —a; = 27" for all j.) Note that any two cubes in Q; have disjoint interiors, and that
the cubes in x4, are obtained from the cubes in @)} by bisecting the sides.

If £ < R", we define the inner approximation and outer approximation to E by

the grid of cubes @ to be
AER) = Qe |Q=E} and AE k) =| JIQe Qx| Qn E # 2},

respectlvely. The measure of A(E, k) (in either the naive geometric sense or the Lebesgue
sense) is just 27" times the number of cubes in Q; that lie in A(E, k), and we denote it
by m(A(E, k)); likewise for m(A(E, k)). Also, the sets A(E, k) increase with k while the
sets A(FE, k) decrease, because each cube in @ is a union of cubes in Q,;. Hence the
limits
K(E) = lim m(A(E,k)), ®(E)= lim m(A(E,k))
k—o0 k—00

exist. They are called the inner content and outer content of E/, and if they are equal,
their common value x(FE) is the Jordan content of E.

Remark 85. We make two remarks. First, Jordan content is usually defined using general
rectangles whose sides are intervals rather than our dyadic cubes, but the result is the
same. Second, although all the definitions above make sense for arbitrary E < R", the
theory of Jordan content is meaningful only if E is bounded, for otherwise R(E) always
equals o0.

Let
AE) = JTAE k) and  AB) =) AE k).

Then A(E) ¢ E ¢ A(E),A(E) and A(E) are Borel sets, and £(E) = m(A(FE)) and
%(E) = m(A(E)). Thus the Jordan content of E exists if and only if m(A(E)~\ A(E)) = 0,
which implies that E is Lebesgue measurable and m(FE) = k(FE).

To clarify further the relationship between Lebesgue measure and the approximation
process leading to Jordan content, we establish the following lemma. (The second part of
the lemma will be used later.)

Lemma 2.86: 2.43.

If U < R" is open, then U = A(U). Moreover, U is a countable union of cubes with
disjoint interiors.

Proof. If x € U, let 6 = inf{|y — x| | y ¢ U}, which is positive since U is open. If Q is a
cube in Q) that contains x, then every y € ) is at a distance at most 27%\/n from z (the
worst case being when |z; — y;| = 27 for all j), so we will have Q < U provided k is large
enough so that 27%\/n < §. But then z € A(U, k) = A(U).
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This shows that A(U) = U, and the second assertion follows by writing A(U) =
A(U,0) U UTTAU k) ~ AU,k —1)] - A(U,0) is a (countable) union of cubes in @, and
for £ > 1, the closure of A(U, k)~ A(U, k—1) is a (countable) union of cubes in ;. These
cubes all have disjoint interiors, and the result follows. O]

Lemma 86 immediately implies that the Lebesgue measure of any open set is equal
to its inner content. On the other hand, suppose that F' < R™ is compact. We can find
a large cube, say Qo = {z | max|z;| < 2™}, whose interior int(Q) contains F. If Q € Qy
and Q < Qo then either QN F # @ or Q < (Qo ~ F), so m(A(F, k) +m(A(Qo ~ F,k)) =
m(Qo). Letting k — oo, we see that B(F)+ x(Qo \ F) = m(Qo). But Qo F is the union
of the open set int (Qg) ~ F' and the boundary of )y, which has content zero, so that
K(Qo N F) = k(Int(Qo) N F) = m(Qo ~ F). It follows that the Lebesgue measure of any
compact set is equal to its outer content.

Combining these results with Theorem 82(a), we can see exactly how Lebesgue measure
compares to Jordan content. The Jordan content of F is defined by approximating F
from the inside and the outside by finite unions of cubes. The Lebesgue measure of F, on
the other hand, is given by a two-step approximation process: First one approximates F
from the outside by open sets and from the inside by compact sets, and then approximates
the open sets from the inside and the compact sets from the outside by finite unions of
cubes. The Lebesgue measurable sets are precisely those for which these outer-inner and
inner-outer approximations give the same answer in the limit. (See Folland Exercise 1.19).

We now investigate the behavior of the Lebesgue integral under linear transformations.
We identify a linear map 7': R” — R™ with the matrix (7;;) = (e; - Te;), where {e;} is the
standard ordered basis for R". We denote the determinant of this matrix by det7" and
recall that det(7 o0 .S) = (det T')(det S). Furthermore, we employ the standard notation
GL,(R) (the “general linear” group) for the group of invertible linear transformations of
R™. We shall need the fact from elementary linear algebra that every T € GL,(R) can
be written as the product of finitely many transformations of the three elementary linear
maps given by

Ty (1, oy gy ey @) = (T4, o0, €Ty oo, Tp) (c #0),
To(x1, Ty Tp) = (T1, .00, T + CTg, - ., X)), (k # j),
T5(21, ooy Ty ey Ty ey T) = (T, oo Ty e ooy Ty, Ty)

That every invertible transformation is a product of transformations of these three types is
simply the fact that every nonsingular matrix can be row-reduced to the identity matrix.

Theorem 2.87: 2.44.

Suppose T' € GL,(R).
(a) If f is a Lebesgue measurable function on R", sois foT. If f = 0 or f e L'(m),
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then
ff(x) dxr = |det T ff oT(x)dx. (2.87.1)
(b) If E € L" then T(F) e L™ and m(T(E)) = |det T'|m(E).

First suppose that f is Borel measurable. Then f o T is Borel measurable since T is
continuous. If Equation (2.87.1) is true for the transformations 7" and S, it is also true
for T'o S, since

Jf(x)dxz |detT\JfoT(:c)da:= |detT|]detS\J(foT)oS(:z;)da:

_ |det(ToS)|Jfo(ToS)(x)dx.

Hence is suffices to prove Equation (2.87.1) when T is of the types T}, 15, T3 described
above. But this is a simple consequence of the Fubini-Tonelli theorem. For T3 we
interchange the order of integration in the variables z; and z, and for 7} and T, we
integrate first with respect to x; and use the one-dimensional formulas

ff(t) dt = c|ff(ct) dt, Jf(t+a) dt:Jf(t) dt,

which follow from Theorem 48. Since it is easily verified that det T} = ¢,detT5 = 1, and
det T3 = —1, Equation (2.87.1) is proved. Moreover, if E is a Borel set, so is T'(F) (since
T-! is continuous), and by taking f = xr(g), we obtain m(T(E)) = |det T|m(E). In
particular, the class of Borel null sets is invariant under 7" and 7!, and hence so is £".

The result for Lebesgue measurable functions and sets now follows as in the proof of
Theorem 84.

Corollary 2.88: 2.46.

The Lebesgue measure is invariant under rotations.

Proof. Rotations are linear maps satisfying TT* = I where T™ is the transpose of T
Since det T = det T™*, this condition implies that |det T'| = 1. O

Next we shall generalize Theorem 87 to differentiable maps. Let G = (g1,...,gn)
be a map from an open set < R" into R" whose components g; are of class C', i.e.,
have continuous first-order partial derivatives. We denote by D,G the linear map defined
by the matrix ((dg;/0x;)(x)) of partial derivatives at z. (Observe that if G is linear,
then D,G = G for all z.) G is called a C*-diffeomorphism if G is injective and D,G
is invertible for all x € €). In this case, the inverse function theorem guarantees that
G~': G(Q) — Qs also a C"' diffeomorphism and that D,(G™") = [Dg-1G] ™" for all
x e G(N).
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Theorem 2.89: 2.47.

Suppose that  is an open set in R” and G: Q — R" is a C! diffeomorphism.

(a) If f is a Lebesgue measurable function on G(2), then foG is Lebesgue measurable
on G(£2), and

f f(z)dx = J foG(z)|det D, G| dx.
Q) Q

(b) If Ec Q and F e L", then G(E) € L™ and m(G(E)) = §,|det D, G| dz.

Proof. Tt suffices to consider Borel measurable functions and sets. Since G and G~! are
both continuous, there are no measurability problems in this case, and the general case
follows as in the proof of Theorem 84. A bit of notation: For x € R® and T = (T};) €
GL,(R), we set

o] = max|a;l, [T = max ) _ [Tl

We then have |Tz| < |T||z|, and {x | |x — a| < h} is the cube of side length 2h
centered at a.

Let @ be a cube in , say @ = {z ||z —a| <h}. By the mean value theorem,
gi(x) —gj(a) = 2;(z; — a;)(dg/0x;)(y) for some y on the line segment joining x and a, so
that for v € Q, |G(x) — G(a)|| < h(sup,cq|D,G|). In other words, G(Q) is contained in a
cube of side length sup,.o[ D,G|| times that of @, so that by Theorem 87, m(G(Q)) <
(supyeo | DyG[)"m(Q). If T e GL,(R), we can apply this formula with G replaced by
T~! o G together with Theorem 87 to obtain

m(G(Q)) = |det TIm(T~(G(Q))) < |det T|(sup,eq [T~ D,G|)"m(Q).

Since D,G is continuous in y, for any ¢ > 0 we can choose 6 > 0 so that
(D.G)"'D,G|" < 1+¢eifyze @Qand |ly—z| <4 Let us now subdivide Q into
subcubes @1, ... QN whose interiors are disjoint, whose side lengths are at most ¢, and

whose centers are z,...xy. Applying Section 2.7 with @ replaced by ); and with
T = D,,G, we obtain

m(G(Q))

N

S m(G(Q))
Y, ldet Dy, Gl(sup,eq, (D2, G) 7' D,GI)'m(Q)
< (1+2))) ldet D,,Glm(Q))

This last sum is the integral of Zjlv]det D,,G|xq,(x), which tends uniformly on @ to
|det D, G| as § — 0 since D, G is continuous. Thus, letting 6 — 0 and ¢ — 0, we find that

m(G(Q)) < fQ|det D,G|dx.

We claim that this estimate holds with ) replaced by any Borel set in €). Indeed, if
U < Q is open, by Lemma 86 we can write U = [ J{” Q; where the @Q;s are cubes with

N
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disjoint interiors. Since the boundaries of the cubes have Lebesgue measure zero, we have

m(GU)) < 3 m(GQ) <Y L‘|det D,G|dx = L|det D,G|dz.

Moreover, if £ < € is any Borel set of finite measure, by Theorem 82 there is a decreasing
sequence of open sets U; < Q of finite measure such that £ < ()" U; and m((" U; \ E) =
0. Hence by the DCT,

0 .
m(G(E)) < m(G(ﬂl Uj>) = limm(G(Uj;))
<lim | |det D,G| dx J det D, G| da
U; FE
Finally, since m is o-finite, it follows from this that m(G(E)) < {,|det D,G|dx for any

Borel set & < Q. If f = > a;x4, is a nonnegative simple function on G(2), we therefore
have

f(x)dr =) a;m(A;) < a-f det D, G| dx
Jy o @2 = a4 < Sy | jaet i
_ f [ o G(x)|det D, G| de.
Q
Theorem 18 and the MCT then imply that

J f(x)dngfoG(x)|detDmG|dx
GQ) Q

for any nonnegative measurable f. But the same reasoning applies with G replaced by
G~! and f replaced by f o G, so that

f foG(x)|det D,G|dx
Q

< f foGoG ! (z)|det D1 G||det D,G™'| dx = J f(z)dz.
G(Q) G(Q)

)
This establishes (a) for f = 0, and the case f € L' follows immediately. Since (b) is just
the special case of (a) where f = x¢(g), the proof is complete. n

Exercise 2.90: Folland Exercise 2.53.
Fill in the details of the proof of Lemma 86.

Exercise 2.91: Folland Exercise 2.54.

How much of Theorem 87 remains valid if T is not invertible?
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Exercise 2.92: Folland Exercise 2.55.

Let E = [0, ] [0, 1]. Investigate the existence and equality §, f dm?, Sé Sé f(z,y) dx dy,
and So So ,y) dy dx for the following f.
(2

(a) f(, ) 2 —y?) (@ + )
(b) f E%): ) “(a>0).

(1 -
(c) flz,y) = (z —%) 31f0<y<}x—%‘,f(x,y)zOotherwise.

Solution. (a) Note that
d( T )_:c2+y2—2x2 y? — 22

dr \ 22 + 3 @+ @+ )

SO we have
1 1 1

J J —Qx —Y dxdy = f — dy = —J ! dy = —tan~'(1) + tan™'(0) = —m/4
o T2 +y?%, o 1+y2

Ll 2 2
—Zd$d J J ————dxdy = /4
JJ V= 0 Jo (% +9?) Y /

Since the mtegrals are not equal, f ¢ L'(F;dm?) and the first integral above does not
exist. Alternatively, we can prove that f ¢ L'(E;dm?) directly using Tonelli’s:

J\f\dm —Jj—gdxdy Jf—gdydx J—_oo

where we have used the fact that for z,y > 0,22 — y* = (z — y)(x + y) > 0 if and only if
x >y. (b) Note that f € LTon E, so Tonelli’s applies and shows the three integrals are
equal for all a > 0. For those interested, direct calculation yields

(1— y a1 d
S Yy, a#l1
) “drdy = { 1 ?’(’1a )
ff Oog_ydy, a=1
both of which need special functions to explicitly calculate (the first needs hypergeometric
functions and the second is a polylogrithm). O]

Exercise 2.93: Folland Exercise 2.56.

If fis Lebesgue 1ntegrab1e on (0,a) and g(x S t=1f(t) dt, then g is integrable on
(0,a) and § g(z) dz = §; f(z) du.

Exercise 2.94: Folland Exercise 2.57.

Show that {; e™**z~!sinz dr = arctan(s™?) for s > 0 by integrating e~**¥ sinz with
respect to = and y. (It may be useful to recall that tan(3 —6) = (tan6)~'. (See
Folland Exercise 2.31(d).)
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Exercise 2.95: Folland Exercise 2.58.

Show that §e "z~ 'sin® xdx = {log(1 + 4s72) for s > 0 by integrating e *” sin 2zy
with respect to  and y.

Exercise 2.96: Folland Exercise 2.59.

Let f(x) = 27 'sina.
(a) Show that {|f(x dx =
(b) Show that limy_, So d:c = —7r by integrating e”*¥ sin x with respect to x and
y. (In view of part (a), some care is needed in passing to the limit as b — 0.)

Exercise 2.97: Folland Exercise 2.60.

C(x)T(y)/T(x +y) = S(l) t*1(1 —t)v=1dt for z,y > 0, where T is defined in Folland
Section 2.3. (Write I'(x)['(y) as a double integral and use the argument of the
exponential as a new variable of integration.)

Solution. Recall

Q0

[(x) = J u*te " du, Re(r)>0.
0

By Folland Exercise 2.51, if f € L'(u), g € L*(v), and h(z,y) = f(x)g(z), then f € L*(uxv)

Jhdmxy) y jfdu) ( fgdy)
o[ [

Now define G: (0,0) x (0,1) — (0,00) x (0,00), G(s,t) = (st,s(1 —t)), noting that the

Jacobian determinant of G is

0G1  0G1 t s
det(@ (;aGtz)zdet<1_t S)z—st—s(l—t)z—

s ot o
Therefore, by the change of variables theorem we have

1 poo
[(y) = J J (st)*te~[s(1 — t)]Y e * UV sdsdt
0 Jo

1 poo
= J f s"Hlems(1 — )Y tdsdt
0 Jo )

=T(x+ y)J "N 1=ty tdt, xy >0,
0
where we have applied Folland Exercise 2.51 once again. O

Hence we can write
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Exercise 2.98: Folland Exercise 2.61.

If f is continuous on [0, ), for a > 0 and = > 0 let
1 X
If(x :—J r— 1) f(t)dt
(@) = Fgy |, =010
I.f is called the ath fractional integral of f.

() Inipf = I1.(I5f) for all a, B > 0. (Use Folland Exercise 2.60.)
(b) If n € Z=o, I,,f is an nth-order antiderivative of f.

Solution. By definition,

L1a0)@) = o [ (w0 a0y

- W f -t f t( s)P1 f(s)dsdt
f J )t = 5)" 7 f(s)dsdt, @, 8> 0,2>0.

As we cannot integrate f d11"ectly7 reversing the order of integration is needed. Note that
f is continuous on [0, o) so it is bounded above by some positive constant on [0, ], and
the remainder of the integrand is nonnegative. Thus to apply Fubini’s Theorem, it suffices
to consider for a, 5 > 0,

1 X
J J )t — )P dsdt = EJ (x —t)*""Pdt < oo,
0

where we conclude the integral is less than infinity as convergence near 0 requires § > —1
whereas convergence near x requires « — 1 > —1. Hence, we apply Fubini to interchange
the order of integration (being mindful of the variables in the bounds of integration) as
follows:

Lo (Isf)(x) f f (2 — )Yt — )7L f(s)dsdt
J f VT (t — 5)PT f(s)dtds, o, B> 0,z = 0.

In order to integrate W1th respect to t, we will need to perform a substitution. We first
recall what was proven in Folland Exercise 2.60 regarding the beta function:
F(IL‘)F(y) ' z—1 y—1
B(x,y)—m—Lv (1 =0 dv, z,y>0.
Comparing this result with we are proving, we notice we need the limits of integration
to change from s and z to 0 and 1. This results in the substitution u = (¢t — s)/(z — s)
where u(z) = 1, u(s ) =0, and dt = (x — s)du. Hence, we compute

I(Isf)(x) j j oLt — )51 f(s)dbds
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_; x 1$_u$_3 —sa_lw—sﬁ_luﬂ_l N — $)duds
*F(a)F(ﬁ)LL( (= 5) = 5)*(z =) f(s)(@ — s)dud

_ 1 _ “ — ) YNz — ) YNz — s)PuP " f(s)duds
- T ), | 0 e e = e () dua
1

1(:6 —8)* P f(8)ds = Inypf(z), @,B8>0,2=0,

_WL

where we used Proposition 2 in the last line.
(b) Since

ILf(x) = f fde, w0,

it is clear that [; f is an antiderivative of f, and recall that the Lebesgue integral is
continuous (see Folland Exercise 2.26). The result now follows by induction and applying
what was proven in (a): Assume that I,, f,n € Z> is an n th-order antiderivative of f noting
that the integral is continuous once again, then write (1 /)" = [(I.(Lf)™] =

(Lf) =1 O

2.8 Integration in Polar Coordinates

The most important nonlinear coordinate systems in R? and R? are polar coordinates
(x = rcosf,y = rsinf) and spherical coordinates (x = rsin¢cosf, y = rsin¢gsinf, z =
rcos ¢). Theorem 89, applied to these coordinates, yields the familiar formulas (loosely
stated) dzdy = rdrdf and dxdydz = r?sin ¢drdfdg. Similar coordinate systems exist in
higher dimensions, but they become increasingly complicated as the dimension increases.
(See Exercise 109.) For most purposes, however, it is sufficient to know that Lebesgue
measure is effectively the product of the measure r"~'dr on (0,00) and a certain “surface
measure” on the unit sphere (df for n = 2, sin ¢dfd¢ for n = 3).

Our construction of this surface measure is motivated by a familiar fact from plane
geometry. Namely, if Sy is a sector of a disc of radius r with central angle 6 (i.e., the region
in the disc contained between the two sides of the angle), the area m(Sy) is proportional to
0; in fact, m(Sy) = %7“29. This equation can be solved for # and hence used to define the
angular measure 6 in terms of the area m(Sy). The same idea works in higher dimensions:
We shall define the surface measure of a subset of the unit sphere in terms of the Lebesgue
measure of the corresponding sector of the unit ball.

We shall denote the unit sphere {z € R" | |z| = 1} by S" L. If z € R"\{0}, the polar
coordinates of = are

r=l|z|e(0,0), 2= é—| e st
The map ®(z) = (r,2’) is a continuous bijection from R™\{0} to (0,0) x S"~! whose
(continuous) inverse is @1 (r, 2’) = rz’. We denote by m,, the Borel measure on (0, 00)xS™!
induced by ® from Lebesgue measure on R”, that is, m.(F) = m(®1(E)). Moreover, we
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define the measure p = p, on (0,0) by p(F) = SE =1y

Theorem 2.99.

There is a unique Borel measure o = o,,_; on S™~1 such that m, = pxo. If f is Borel
measurable on R™ and f = 0 or f € L'(m), then

P 1
Rnf dx—f Ln 1 (ra")yr" = do (2")dr. (2.99.1)

Proof. Equation (2.99.1), when f is a characteristic function of a set, is merely a restate-
ment of the equation m, = px o, and it follows for general f by the usual linearity and
approximation arguments. Hence we need only to construct o.

If £ is a Borel set in S™ !, for a > 0 let

E,=®'((0,a]xE) = {ra' |0 <r < a,2’ € E}
If Equation (2.99.1) is to hold when f = yg,, we must have
E
m(Ey) J J "do(a)dr = U(E)f oy = 22,
n

We therefore define o(E) to be n - m(E;). Since the map E — E; takes Borel sets to
Borel sets and commutes with unions, intersections, and complements, it is clear that o is
a Borel measure on S"~!. Also, since E, is the image of E; under the map z + ax, it
follows from Theorem 87 that m(FE,) = a"m(E}), and hence, if 0 < a < b,

n_ gn b
my((a,b] x E) = m(Ey\E,) = b - o(E) = O’(E)f "y

a

= pxo((a,b] x E).
Fix F € Bgn1 and let Ag be the collection of finite disjoint unions of sets of the
form (a,b] x E. By Proposition 7, Ag is an algebra on (0,00) x E' that generates the
o-algebra Mg = {AxE | A€ By }. By the preceding calculation we have m, = pxo
on Ag, and hence by the uniqueness assertion of Theorem 33, m, = pxo on Mg. But
U{Mpg | E € Bsn} is precisely the set of Borel rectangles in (0,00) x S"~!, so another
application of the uniqueness theorem shows that m, = px o on all Borel sets. O

Of course, Equation (2.99.1) can be extended to Lebesgue measurable functions by
considering the completion of the measure ¢. Details are left to the reader.

Corollary 2.100.

If f is a measurable function on R™, nonnegative or integrable, such that f(x) = g(|x|)
for some function g on (0, c0), then

[ oyt - o157 [ ot

0
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Corollary 2.101.

Let ¢ and C' denote positive constants, and let B = {x € R" | |z| < ¢}. Suppose that f
is a measurable function on R".
(a) If |f(z)| < C|z|~ on B for some a < n, then f € L*(B). However, if |f(z)| >
C|z|™ on B, then f ¢ L*(B).
(b) If | f(z)] < C|z|~* on B¢ for some a > n, then f € L'(B¢). However, if |f(z)| >
C|z|™™ on B¢, then f ¢ L'(B°).

Proof. Apply Corollary 100 to |z|~*xp and |z| *xpe. O

We shall compute o(S™!) shortly. Of course, we know that o(S!) = 2m; this is just
the definition of 27 as the ratio of the circumference of a circle to its radius. Armed with
this fact, we can compute a very important integral.

Proposition 2.102: 2.53.

If a >0,
9 T\ /2
J exp(—alz|*)dx = (—)

a

Proof. Denote the integral on the left by I,,. For n = 2, by Corollary 100 we have
oo o0
I, = QWJ re " dr = — (z>e_‘”2 =
0 a 0 a
Since exp(—alz|?) = [} exp(—ax?), Tonelli’s theorem implies that I,, = (11)". In particu-
lar, I) = (I,)'*, s0 I, = ()" = (/a)"?. O

™

Once we know this result, the device used in its proof can be turned around to compute
o(S™1) for all n in terms of the gamma function introduced in §2.3.

Proposition 2.103: 2.54.

n— /2
o(S"1) = lg(n/z)'

Proof. By Corollary 100, Proposition 102, and the substitution s = 72,

o0
" 0
o(S") (7 21 s a(S" 1) /n
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Corollary 2.104: 2.55.

n/2

If B" = {x e R" | |z| < 1}, then m(B") = Wn+1)'

r(3

Proof. m(B") = n~'o(S™!) by definition of ¢, and $nI'(in) = I'(3n + 1) by the func-
tional equation for the gamma function. O

=

We observed in §2.3 that I'(n) = (n — 1)!. The following proposition shows that we
can also evaluate the gamma function at the half-integers.

Proposition 2.105: 2.56.
P +3) = (=) (0= (vr

Proof. We have F(n + %) = (n — l) (n — 3) e (%)F(%) by the functional equation, and

by Proposition 102 and the substitution s = 72,

]_ o © 2 © 2
F(—) = J sV ds = 2f e "dr = J e dr = /7
2 0 0 —0o0

An amusing consequence of Proposition 105 and the formula I'(n) = (n — 1)! is that the
surface measure of the unit sphere and the Lebesgue measure of the unit ball in R™ are
always rational multiples of integer powers of 7, and the power of 7 increases by 1 when
n increases by 2. O

Exercise 2.106: Folland Exercise 2.62.

The measure o on S”~! is invariant under rotations.

Exercise 2.107: Folland Exercise 2.63.

The technique used to prove Proposition 103 can also be used to integrate any polyno-
mial over S"~'. In fact, suppose f(z) =[]} 2§7(a; € N U {0}) is a monomial. Then
{ fdo =0 if any «; is odd, and if all a;’s are even,

2F - 41
Jrte = Sy e = 5

Exercise 2.108: Folland Exercise 2.64.

For which real values of a and b is |z]*|log|z||" integrable over {z € R" | [z] < $}?
Over {x € R" | |z] > 2}7
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Exercise 2.109: Folland Exercise 2.65.
Define G: R" — R™ by G(r, ¢1,...,Pn_2,0) = (x1,...,2,), where

X1 =T1CcosS¢, Xy =TSin@qCcospy, T3 = TSsin@qsin @y cosPs,. ..,

Tp_1 =Tsing;---sin¢g,_ocosf, x, =rsing,---sineo, _osinf.

(a) G maps R™ onto R", and |G(r, ¢y, ..., ¢n_2,0)| = |r|.

(b) det Dygy,pm0)G =171 Sin™ 2 ¢ sin"™ "3 ¢y - - - sin @, _o.

(c) Let 2 = (0,00) x (0,7)" 2% (0,27). Then G | Q is a diffeomorphism and
m(R™"\G(Q2)) = 0.

(d) Let F(1,...,0n_2,0) = G(1,01,...,0,9,0) and ' = (0,7)"?x (0,27). Then
(F | )" defines a coordinate system on S™"~! except on a o-null set, and the
measure o is given in these coordinates by

o (1, .- Gu2,0) = sin"2 by s oy -+ sin G, _ody - - - 6.

3 Signed Measures and Differentiation

The principal theme of this chapter is the concept of differentiating a measure v with
respect to another measure p on the same o-algebra. We do this first on the abstract level,
then obtain a more refined result when g is Lebesgue measure on R". When the latter
is specialized to the case n = 1, it joins with classical real-variable theory to produce a
version of the fundamental theorem of calculus for Lebesgue integrals.

In developing this program it is useful to generalize the notion of measure so as to
allow measures to assume negative values. In applications such “signed measures” can
represent things such as electric charge that can be either positive or negative.

3.1 Signed Measures
Let (X, M) be a fixed measurable space.

Definition 1. A signed measure on (X, M) is a function v: M — [—o0, 0] such that
o V(@) =05
e v assumes at most one of the values +o0;
o if {E;} is a sequence of disjoint sets in M, then v({J; E;) = Y. v(E;), where the
latter sum converges absolutely if v(| ;" E;) is finite.
Thus every measure is a signed measure; for emphasis we shall sometimes refer to a
measure as a positive measure.

Example 2. First, if juy, po are measures on M and at least one of them is finite, then
v = [y — g 1S a signed measure. Second,
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Example 3. if p is a measure on M and f: X — [0, 0] is a measurable function such
that at least one of § ftdu and § f~du is finite (in which case we shall call f extended
p-integrable), then the set function v defined by v(E) = §, f du is a signed measure.

In fact, we shall see shortly that these are really the only examples: Every signed
measure can be represented in either of these two forms.

Proposition 3.4: 3.1.

Let v be a signed measure on (X, M).
(i) If {E;} is an increasing sequence in M, then v(| ;" F;) = lim;_o, v(E;).
(ii) If {E;} is a decreasing sequence in M and v(E)) is finite, then v((] E;) =
limj_,oo V(EJ>

The proof is essentially the same as for positive measures (Theorem 14) and is left to
the reader (Folland Exercise 3.1).

If v is a signed measure on (X, M), a set £ € M is called positive for v (resp.
negative for v, null for v) for v if v(F) = 0 (resp. v(F) < 0,v(F) =0) for all FeM
such that F' c E. (Thus, in the example v(E) = {, f du described above, E is positive,
negative, or null precisely when f >0, f <0, or f = Ou-a.e. on E.)

Lemma 3.5: 3.2.

Any measurable subset of a positive set is positive, and the union of any countable
family of positive sets is positive.

Proof. The first assertion follows from the definition of positivity. If Py, P, ... are positive
sets, let Q, = P, ~ |J!™" P;. Then Q,, < Py, so Q,, is positive. Hence if £ < [ J? P, then

IR

v(E) =Y v(EnQ;) =0, as desired. O

Theorem 3.6: 3.3: The Hahn Decomposition Theorem.

If v is a signed measure on (X, M), there exist a positive set P and a negative set
N for v such that PuU N = X and Pn N = @. If P, N’ is another such pair, then
PAP'(= NAN') is null for v.

Proof. Without loss of generality, we assume that v does not assume the value —oco.
(Otherwise, consider —v.) Let m be the supremum of v(FE) as E ranges over all positive
sets; thus there is a sequence {P;} of positive sets such that v(P;) — m. Let P = J;" P;.
By Lemma 5 and Proposition 4, P is positive and v(P) = m; in particular, m < oo. We
claim that N = X ~ P is negative. To this end, we assume that N is nonnegative and
derive a contradiction.
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First, notice that N cannot contain any nonnull positive sets. Indeed, if £ < N is
positive and v(E) > 0, then E U P is positive and v(E U P) = v(E) + v(P) > m, which
is impossible.

Second, if A < N and v(A) > 0, there exists B ¢ A with v(B) > v(A). Indeed, since
A cannot be positive, there exists C' ¢ A with v(C') < 0; thus if B = A~ C we have
v(B) =v(A) —v(C) > v(A).

If N is not negative, then, we can specify a sequence of subsets {A;} of N and a
sequence {n;} of positive integers as follows: n; is the smallest integer for which there
exists a set B < N with v(B) > ni', and A; is such a set. Proceeding inductively, n; is
the smallest integer for which there exists a set B < A;_; with v(B) > v(A;_1) + n; ',
and A; is such a set.

Let A = ([ A;. Then © > v(A) = limv(4;) > > n;', son; — o as j — .
But once again, there exists B = A with v(B) > v(A) + n~! for some integer n. For j
sufficiently large we have n < n;, and B < A,_;, which contradicts the construction of n;
and A;. Thus the assumption that N is not negative is untenable.

Finally, if P’, N’ is another pair of sets as in the statement of the theorem, we have
P~ P c Pand P~ P < N’, so that P~ P’ is both positive and negative, hence null;
likewise for P’ ~ P. O

The decomposition X = P u N if X as the disjoint union of a positive set and a
negative set is called a Hahn decomposition for v. It is usually not unique (v-null sets
can be transferred from P to N or from N to P), but it leads to a canonical representation
of v as the difference of two positive measures.

To state this result we need a new concept: We say that two signed measures p and v
on (X, M) are mutually singular, or that v is singular with respect to p, or vice
versa, if there exist £, F' € M such that En FF = @, F u F = X, F is null for p, and F'is
null for v. Informally speaking, mutual singularity means that p and v “live on disjoint
sets.” We express this relationship symbolically with the perpendicularity sign, namely
uw L.

Theorem 3.7: 3.4: The Jordan Decomposition Theorem.

If v is a signed measure, there exist unique positive measures v+ and v~ such that
v=vt—v and vt Lv.

Proof. Let X = P U N be a Hahn decomposition for v, and define v* (E) = v(E n P) and
v (E)=—v(E n N). Then clearly v = v* — v~ and v* Lv~. Ifalsov = p* — = and
ut L p, let E,F eMbesuchthat EnF =0, FuF =X, and p*(F) = pu (E) = 0.
Then X = F u F is another Hahn decomposition for v, so PAFE is v-null. Therefore,
for any A e M,u"(A) = pt(AnFE) =v(AnE) =v(An P) =v*(A), and likewise
voo= . [
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Definition 8. The measures v™ and v~ are called the positive variation of v and
negative variation of v, respectively, and v = v™ — v~ is called the Jordan decompo-
sition of v, by analogy with the representation of a function of bounded variation on R
as the difference of two increasing functions (see Folland Section 3.5). Furthermore, we
define the total variation of v to be the measure |v| defined by

V| =v"+v.

Exercise 3.9: Folland Exercise 3.2.

If v is a signed measure,
E is v-null — |v|(E) = 0.
Also, if v and p are signed measures, then

vlipuy = |v|Llp = v Lpandv L pu.

Solution. Suppose F is v-null and X = P u N is a Hahn decomposition of X for v». Then
W(E)=w(EnX)=v"(EnP)+v (EnN).
If |v|[(E) > 0, either v*(E n P) > 0or v (En N)>0. Without loss of generality,
assume vt (E n P) > 0. Then
VIEAP)=v'(EnP)—v (EnPnN)=v"(EnP)>0.
However, E n P c E with FE is v-null, so we must have v(E n P) = 0, a contradiction.

Suppose |V|(E) = 0. Then |v|(A) = 0 for all measurable A < F since |v| is positive.
Hence,

0=1v|(A)=vT(A)+1v (A) <= v (A) =0=rv (A),
so that v(A) = v*(A) — v~ (A) = 0 for all measurable A ¢ E. Thus, E is v-null. The
second assertion is by definition:
v | i < there exists {P, N} such that P is g-null, N is v-null
| lpe=v" Lyand v~ L pu. O
We observe that if v omits the value oo then v*(X) = v(P) < o0, so that v* is a finite
positive measure and v is bounded above by v*(X); similarly if v omits the value —co. In
particular, if the range of v is contained in R, then v is bounded. We observe also that v
is of the form v(E) = {, f du, where pn = |v| and f = xp — xn, X = P U N being a Hahn
decomposition for v.
Integration with respect to a signed measure v is defined in the obvious way: We set

(v)=L'(*) n L' (v7),
dez/—ffdl/ dey (f e L'(v)).
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Definition 10. A finite signed measure (resp. o-finite signed measure) is a signed
measure v such that |v| is finite (resp. o-finite).

Exercise 3.11: Folland Exercise 3.1.

Prove Proposition 4.

Exercise 3.12: Folland Exercise 3.3.

Let v be a signed measure on (X, M).

(a) L'(v) = Li(|v]).

(b) If f e L*(v), then |§ fdv| < §|f|d|v].

(c) f EeM, |V| ) =sup{[§, fdv|||f] <1}

Solution.
(a) Let X = P U N be a Hahn decomposition of X for v, and let v = v* — v~ be the
corresponding Jordan decomposition of v. Since |v| =vt + v~ =2 vt — v~ = v, for
any nonnegative simple function ¢ = Z;‘:l a;Xg; we can write

[ odsl =3 alvl(B) = 3w (B) + 3 a (E)
= Z:Zl ajvT(E;) — Z:Zl ajv (E;) = Z:Zl a;v(E;) = fgbdu.

Taking the supremum of both sides over all simple functions ¢ satisfying 0 < ¢ < |f|,
we obtain {|f|dlv| = (|f|dv. Now f e L'(|v|) implies §|f|dv < §|f|d]v] < oo,
which in turn implies f € L'(v), so L*(|v|) = L'(v). On the other hand, suppose
fe L' (v),sothat §|f|dvt,§|f|dv™ < co. Then {|f|dlv| = §|fldvt +(|f|dv™ < o,
so f € L'(|v]). Hence L'(v) = L'(|v]). [Note that the equality §|f|dv| = {|f|dv" +
§|fldv— holds for simple functions as above and so by the monotone convergence

theorem it holds for | f].]
ffdw . deu

(b) Let f € L'(v). Then
< fm dv* + ﬁf\ dv~ = f\f\ dlv,

U fdv| = Jf dv* ff dv~
as desired.

(¢c) Let E € M. If [v|(E) = co then the equality |v|(E) = sup{[{, f dv| | |f| < 1} holds
as sup{‘SE fdl/‘ } If] < 1} = o (see inequality below which forces this). Thus we
may assume |V|(E) < . Let f be a measurable function with |f| < 1. Then
fxe € L' (v), since §|fxp|dv < §,1dv = v(E) < |v|(E) < o, so we can apply part
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(b) as follows:

B = [ xedvl = [ el bl 2 || fxs i) =| | rav

Taking the supremum of both sides over all such f, we obtain |v(E)| >

sup{, £ av||17] < 1}

Conversely (this does not assume |v|(E) finite),

v[(E) = JXE dlv| = fXE dvt + fxE dv™ = JXEmP dv — JXEmN dv
- [ o=y < |[ e = xya <sup{f fdv |f|<1}
E E E

where the last inequality is because xp — xn is a measurable function whose absolute
value is at most 1. This proves the reverse inequality, so we conclude

) = suf [ rarf |11 <1}, a

If v is a signed measure and A, u are positive measures such that v = A\ — y, then
Azviand p=>v.

Exercise 3.13: Folland Exercise 3.4.

Solution. Consider a Hahn decomposition X = P U N and notice for all £ € M,
vVI(E)=v(EnP)=XEnP)—ulEnP)<)\NEnP)<\E),
v (E)=—-v(EnN)==MEnNN)—uEnN))<uEnN)<pE). m

Exercise 3.14.

If 4 and v are signed measures and A\ = p + v, is it true that At = pt + 7

Solution. No, not in general unless (u* +v*) L (u~ + v~). For example, consider the

finite signed measures y = 6, — ¢, and v = 9, — ¢, where d, is the point mass at . Then
A =0, — 0, and

pt =108, vt=96, N =0#0+=p"+0v". O

Exercise 3.15: Folland Exercise 3.5.

If vy, 5 are signed measures that both omit the value +00 or —oo, then |11 + 15| <
|v1] + |v2|. (Use Folland Exercise 3.4.)

Solution. Consider the Jordan decomposition A = vy +vy = AT —=A" vy +vy = (v + 1)) —
(vi + vy ), noting that v + v and v + v; are positive measures. By Folland Exercise
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3.4,
v+ vy = AT and vy +vy =7,
S0
1 + vo| = AT + A7 < ] + |val. O

Exercise 3.16: Folland Exercise 3.6.

Suppose v(E) = { f du where y is a positive measure and f is an extended p-integrable
function. Describe the Hahn decompositions of v and the positive, negative, and total
variations of v in terms of f and pu.

Exercise 3.17: Folland Exercise 3.7.

Suppose that v is a signed measure on (X, M) and E € M.
(a) vT(E) =sup{v(F) | E€EM,F c E} and v~ (F) = —inf{v(F) | Fe M, F c E}.
(b) |V|(E) = sup{>[IV(E;)| | n € Zso, E1, ..., E, are disjoint, and | J| E; = E}.

3.2 The Lebesgue Decomposition and the Radon-Nikodym Derivative

Suppose that v is a signed measure and p is a positive measure on (X,M). We say
that v is absolutely continuous with respect to p and write v « p if v(E) = 0 for
every E € M for which p(E) = 0. It is easily verified that v « p if and only if |v| « p if
and only if v* « p and v~ « p (Folland Exercise 3.8).

Absolute continuity is in a sense the antithesis of mutual singularity. More precisely,
if v 1 pand v « pu, then v = 0, for if £ and F' are disjoint sets such that £ U F = X and
w(E) = |v|(F) = 0, then the fact that v « p implies that |v|(E) = 0, whence |v| = 0 and
v = 0. One can extend the notion of absolute continuity to the case where p is a signed
measure (namely, v « p if and only if v « |u|), but we shall have no need of this more
general definition.

The term “absolute continuity” is derived from real-variable theory; see Folland Section
3.5. For finite signed measures it is equivalent to another condition that is obviously a
form of continuity.

Theorem 3.18: 3.5.

Let v be a finite signed measure and p a positive measure on (X, M). Then v « p if
and only if for every £ > 0 there exists § > 0 such that |v(E)| < € whenever u(E) < 9.

Proof. Since v « p if and only if |v| « p and |v(E)| < |v|(E), it suffices to assume that
v = |v| is positive. Clearly the e-§ condition implies that ¥ « p. On the other hand,
if the e-6 condition is not satisfied, there exists ¢ > 0 such that for all n € Z~, we can
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find £, € M with u(E,) < 27" and v(E,) > e. Let Fy =, By, and F = F).. Then
w(Fy) < 027" =217k so u(F) = 0; but v(Fy) > ¢ for all k and hence, since v is finite,
v(F) = limv(Fy) = e. Thus it is false that v « p. O

If 11 is a measure and f is an extended p-integrable function, the signed measure v
defined by v(F) = SE f du is clearly absolutely continuous with respect to p; it is finite if
and only if f € L'(u). For any complex-valued f € L'(u), the preceding theorem can be
applied to Re f and Im f, and we obtain the following useful result:

Corollary 3.19: 3.6.

If f e L' (u), for every € > 0 there exists 6 > 0 such that ‘SEfdu| < ¢ whenever
u(E) <.

We shall use the following notation to express the relationship v(E) = {, f du:
dv = fdu.

Sometimes, by a slight abuse of language, we shall refer to the signed measure f du.
Given a measure, ji, one can construct a new (signed/complex) measure, v, by defining

| av=vE) = | fan

for p-measurable f. In other words, we can use a measure that we know about (the
reference measure p) to define a new measure (v) that acts by integration of a measurable
function with respect to the reference measure.

What about the opposite direction? That is, if you want to learn about a measure
that you do not know about, can you now write it as ’almost’ a measure you know about
in the sense of the above integration of a measurable function with respect to the known
reference measure? If we can do this, it would make using this measure much easier!

The Lebesgue-Radon-Nikodym Theorem answers how to do this by using the Lebesgue
decomposition of the o-finite signed measure v = g + . where pg L g and prq. < p for
i a o-finite positive measure (the reference measure we know about), with all measures
understood on the same measurable space (X, M).

In general, we only have the above decomposition and there will be a singular part, pus,
which will need to be contended with. However, since v = piq. + s with pg L g, prae < p,
if we further assume that v « p, then py, « p. But this implies that s = 0 (singular and
absolutely continuous), so the representation simply becomes dv = fdu. If this is the
case, we then call f the Radon-Nikodym derivative of v with respect to u and denote
it by dv/dp.

We now come to the main theorem of this section, which gives a complete picture of
the structure of a signed measure relative to a given positive measure. First, a technical
lemma.
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Lemma 3.20: 3.7.

Suppose that v and p are finite measures on (X, M). Either v L pu, or there exist
e >0 and F € M such that u(E) > 0 and v = ep on E (that is, E is a positive set for
v —Ep).

Proof. Let X = P, u N,, be a Hahn decomposition for v — n=1u, and let P = UC{O P, and
N = (N, = P°. Then N is a negative set for v — n~'y for all n, i.e.,, 0 < ¥(N) <
n~1u(N) for all n, so v(N) = 0. If u(P) = 0, then v L p. If u(P) > 0, then u(P,) > 0
for some n, and P, is a positive set for v —n=p. n

Theorem 3.21: 3.8: The Lebesgue-Radon-Nikodym Theorem.

Let v be a o-finite signed measure and p a o-finite positive measure on (X, M). There
exist unique o-finite signed measures vy, v,. on (X, M) such that

Vs Lty Vge K, and v = v + Vg

Moreover, there is an extended p-integrable function d"‘w : X — R, called the Radon-
Nikodym derivative of v,. with respect to u, such that for all £ € M,
Avge

Vac(E) = J;; d[,l, d,uu

and any two such functions are equal p-a.e.

Proof. For the proof we use Folland’s notation v, = p and v,. = .
Case I: Suppose that v and p are finite positive measures. Let

9={f:X—>[0,oo] fEfd,ugl/(E) forallEeM}.

F is nonempty since 0 € F. Also, if f,g € F, then h = max(f,g) € F, for if A =
{x | f(x) > g(x)}, for any E' € M we have

Jhduz fdquf gdu < v(EnA)+v(ENA) =v(E).
E EnA

E~A
Let a = sup{{ f du ! f € F}, noting that a < v(X) < o, and choose a sequence {fn} c %
such that { f,du — a. Let g, = max(fi,..., f,) and f = sup, f,. Then g, € F,g,
increases pointwise to f, and § g, du = { f, du. It follows that lim § g, dpu = a and hence,
by the MCT, that f € ¥ and { f du = a. (In particular, f < o a.e., so we may take f to
be real-valued everywhere.)

We claim that the measure dA = dv — f du (which is positive since f € H) is singular
with respect to p. If not, by Lemma 20 there exist £ € M and € > 0 such that u(E) > 0
and A = ey on E. But then expdy < d\ = dv — fdu, that is, (f + exg)dp < dv, so
f+expeF and {(f +exr)dp = a+ eu(E) > a, contradicting the definition of a.
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Thus the existence of A, f, and dp = fdu is proved. As for uniqueness, if also
dv = dN + f'du, we have d\ — d\N = (f' — f)du. But A — X L p (see Folland Exercise
3.9), while (f' — f)du <« dp; hence d\ — dXN = (f' — f)du = 0, so that A = X and (by
Proposition 39) f = f'u-a.e. Thus we are done in the case when p and v are finite
measures.

Case II: Suppose that p and v are o-finite measures. Then X is a countable disjoint
union of u-finite sets and a countable disjoint union of v-finite sets; by taking intersections
of these we obtain a disjoint sequence {A;} < M such that p(A;) and v(A;) are finite for all
jand X = [J” A4;. Define y;(E) = u(E n A;) and v;(E) = v(E n A;). By the reasoning
above, for each j we have dv; = d)\; + fjdu; where \; L p;. Since p;(A$) = v;(A5) = 0,
we have \;(A$) = v; élg SAC faluJ 0, and we may assume that f; = 0 on AS. Let
A= 7N and f =37 f;. Then dv = d\+ fdu,\ L p (see Folland Exercise 3. 9) and
d\ and f du are o-finite, as desired. Uniqueness follows as before.

The General Case: If v is a signed measure, we apply the preceding argument to v
and v~ and subtract the results. O

The decomposition v = XA + p where A | p and p « p is called the Lebesgue
decomposition of v with respect to p. In the case where v « p, Theorem 21 says that
dv = fdu for some f. This result is usually known as the Radon-Nikodym theorem,
and f is called the Radon-Nikodym derivative of v with respect to pu. We denote
it by dv/du:

dv
dv = dudﬂ'
(Strictly speaking, dv/du should be construed as the as the class of functions p-a.e. equal
to f.) The formulas suggested by the differential notation du/dv are generally correct.
For example, it is obvious that d(v + vo)/du = (dvy/dp) + (dve/dp), and we also have
the chain rule:

Proposition 3.22: 3.9.

Suppose that v is a o-finite signed measure and pu, A are o-finite measures on (X, M)
such that v « g and pu < .

(a) If g L'(v), then g - 92 € L'(p) and
d
fng=Jg—Vdu
dp

d
v dyd—ﬂ A-a.e.
X\ dp dA

(b) We have v « A, and

Proof. By considering v and v~ separately, we may assume that v > 0. The equation
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§gdv =\ g(dv/dp)dp is true when g = xg by definition of dv/du. It is therefore true for
simple functions by linearity, then for nonnegative measurable functions by the MCT,
and finally for functions in L'(v) by linearity again. Replacing v, u by u, A and setting
g = xe(dv/du), we obtain

dv dv dp
v(E) = | Zau- | &LX
E)= | =) aan
for all E'e M, whence (dv/d\) = (dv/du)(dp/dX\)M-a.e. by Proposition 39. O

Corollary 3.23: 3.10.

If p « Aand A < p, then (d\/dp)(dp/dX\) =1 a.e. (with respect to either A or p).

Example 24. Non-example: Let  be Lebesgue measure and v the point mass at 0 on
(R, Br). Clearly v L p. The nonexistent Radon-Nikodym derivative dv/du is popularly
known as the Dirac 0-function.

We conclude this section with a simple but important observation, whose proof is
straightforward:

Proposition 3.25: 3.11.

If pu1, ..., g, are measures on (X, M), there is a measure p such that p; « p for all
j—namely, = D7 ;.

Exercise 3.26: Folland Exercise 3.9.

Suppose {v;} is a sequence of positive measures. If v; L u for all j, then >, "v; L p;
and if v; « p for all j, then > v; « p.

Exercise 3.27: Folland Exercise 3.10.

Theorem 18 may fail when v is not finite. (Consider dv(z) = dz/x and du(z) = dz on
(0,1), or v is a counting measure and pu(E) = >, 527" on Zx.)

Example 28. If u L v and v L X, is it true that p L X? Of course not, since if jp = A
then this would mean p L p, and if p then this fails.

Example 29. Fven if u # X in Example 28, we still cannot say pu L X. Indeed, we can
Just take \ # 0 supported on any subset of the support of . Then v L A, but p and \ are
not mutually singular.

Remark 30. There is a connection to calculus: Thinking about this new notion of an
abstract derivative seems to be difficult at first, so let’s convince ourselves we have seen it
before without knowing so.
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e In single-variable calculus, the Radon-Nikodym derivative appears when performing a
change of variables since we ‘pay the price’ of a new function times the differential
when doing substitution: dx become g(u)du. This g is indeed the Radon-Nikodym
derivative telling us how the Lebesque measures rates of change compare in each
situation.

e If we consider multi-variable calculus change of variables, we see that the Radon-
Nikodym derivative is the Jacobian determinant! Hence, this derivative is an abstract
generalization of the change of variables from calculus.

Remark 31 (Connection to Probability Theory). The Radon-Nikodym derivative gives
the density, f, with respect to a reference measure i, associated to the random variable
X in the measurable space (X, X), defined by

P(X € A) = L fdpu.

In the continuous univariate setting, the reference measure for the probability density
function is taken as the Lebesque measure. For discrete random variables, the probability
mass function is the density with respect to the counting measure over the sample space
(usually Z, Z=q, or some subset).

Example 32.
In p = m (the Lebesque measure) and v is measure assigning twice the Lebesque

measure, then
dv

=2
dm

since

() L 2dm.

Example 33. If u = m + dp,v = m, then v < pu and

since we need to remove zero from being measured by pi:

1= V([O, 1]) = J[O, 1]X(071]d/ll #* J d/,L =1 + 1=2.
[0,1]

Exercise 3.34: Folland Exercise 3.11.

Let o be a positive measure. A collection of functions {f,},., < L'(u) is called
uniformly integrable if for every € > 0 there exists 0 > 0 such that }SE fa du} <e
for all @ € A whenever u(E) < 0.

(a) Any finite subset of L!(x) is uniformly integrable.
(b) If {f,} is a sequence in L'(u) that converges in the L' metric to f € L' (), then
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{f.} is uniformly integrable.

Solution.

(a) Let {fi,..., fa} be a finite subset of L'() and fix § > 0. Given j € {1,...,n}, by
absolute continuity of the integral we can choose ; > 0 such that |, f; du| < ¢;
whenever p(E) < §. Then choose € = min{eq, ..., &,}.

(b) Fix & > 0 and suppose f, — f in L'. Then for all sufficiently large n,

J|fn — fl <e.
Then there exists a finite subset {f,,,..., fu.} such that for all j € {1,... k},
[1f =115

Applying part (a) to the finite subset {|f,, — f[}¥_,, there exists § > 0 such that
$plfu; — fI < &1 whenever u(E) < §. Then

[t = r1<e

E

for each j € {1,...,k}. Since these were the only exceptions, we conclude any
L'-convergent sequence in L' is uniformly integrable. O

Exercise 3.35: Folland Exercise 3.12.

For j = 1,2, let pu;,v; be o-finite measures on (X;, M;) such that v; « p;. Then
Uy X Vg K 11 X g and
dVl

d(Vl X VQ) avy
dpiy

A % 13) (21)——(@2). (3.35.1)

(z1,22) =

Solution. As pi;,v; are o-finite for j € {1,2}, we know that 111 x p19, 14 X 1 are o-finite.
We first show 17 X vy & pi1 X pig. Suppose pg X io(E) = 0. Then xg € Lt (uy x o), so
by Tonelli’s Theorem,

0= xpz(E) = JXEd(Ml X flg) = JMl(Em)d/@-

Hence 1 (E*) = 0, po-a.e. Since v; < pj,j = 1,2, this implies v1(E*?) = 0 wp-a.e.
Therefore,

n Xp(E) = JXEd(Vl X Vy) = JVQ(E“)dVQ =0,

showing vy X vy € iy X pia.
To show Equation (3.35.1) holds, first note for j € {1,2} that dv;/dp; = 0 pj-a.e.,
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since if dv;/dp; < 0 on some F' with p;(F) > 0, then

(F)= | Sap; <o
V] ( ) d,uj H]
contradicting v; is a positive measure. Then by Folland Exercise 2.51(a), ngl (x1)- ZZZ (z2) €

Lt (My x My), so by Tonelli’s Theorem (applying the Radon-Nikodym Theorem twice),

d d
v x1y(E) = f d(v1 xvp) = J(J XEdVl)dV2 = J(J XEﬂd,lh) ﬂdug
E H1 dpiz

f xE%m)d”?( )  i2) = L D) P2 ) % )

dpiz ity
whenever E' € M; x M, Therefore,
d(11 X 119) dy vy
d(ﬂl % ,U2) (1'1, 1172) = dﬂl (Qfl)duQ (1132), (,Ul X #2)—& e

by Propositions 22 and 39 as the result holds for all ' € M; x M. O]

Exercise 3.36: Folland Exercise 3.13.

Let X = [0,1], M = B[g1], m = Lebesgue measure, and p = counting measure on M.

(a) m « p but dm # fdu for any f.
(b) p has no Lebesgue decomposition with respect to m.

Solution.
(a) If u(E) =0 then E = @, so m(E) = m(@) = 0. On the other hand, if dm = fdu
for some extended p-integrable function f: [0,1] — R, then

= m({z}) = { }f(t) dp(t) = f(z).
Thus f = 0. But then

1 = m([0,1]) = J 0dp = 0,
[0,1]

a contradiction.

(b) Suppose there exist signed measures g, fiq. such that ps, L m, p,. <« m, and
o= fis + fge. Since pg L m, there exists E € L£([0,1]) such that for all F < E,
m(F) = 0 and for all F' < E° u(F) = 0. But us « m, so us(F) = 0 too. Since
is the counting measure, any = € F' has m({z}) = 0, so us({z}) = 1, which means

F=g.
But then p = pi4., contradicting p({z}) = 1, since pu({x}) = pa.({z}) = 0 (because
fae < mand m({z}) =0 = p..({z}) =0). O
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Exercise 3.37: Folland Exercise 3.16.

Suppose that u, v are measures on (X, M) with v « p, and let A = p+v. If f = dv/d),
then 0 < f <1 prace. and dv/du = f/(1 — f).

Solution. f = dv/dX, then 0 < f < lu-a.e. and dv/du = f/(1—f). p,v positive measures,

because
sopu+rv=0=v=pu=0,s0r < A\ u<A Also A € u, because 1 = 0 X<y v =0,

which in turn implies A = p + v = 0. Hence dv/du, d\/dp, dv/dX, and d)\/dv exist.
Since A = u + v, by additivity and the chain rule we have

f_dV_dl/d[L_dl/<_dl/>
Cd\ dpd\  dp v
=f

so dv/du =1/(1 — f). Then 0 < f < 1 a.e., since if f > 1 on a positive measure set then
dv/dp is undefined on a positive measure set, contradicting Section 3.2, and if f <1 on a
positive measure set F, then
dp
O<V(E)=J —du < 0,
B dp
a contradiction. O

Exercise 3.38: Folland Exercise 3.17.

Let (X, M, i) be a o-finite measure space, N a o-finite o-subalgebra of M, and v = pu|x.
If f € L'(p), there exists g € L'(v) (thus g is N-measurable) such that §, fdu = §, g dv
for all E'e N if ¢’ is another such function then g = ¢’ v-a.e. (In probability theory, g
is called the conditional expectation of f on N.)

Solution. v = plx, so u < v. On the other hand, define \: N — [—o0, 0] by

ME) = f fdu.
E
Then A is finite since f € L'(p), so A is o-finite. And A « v, since

0
W(E) =0 — u(E) =0 — AE) = | fdu < ptEToup,es (@) = 0.
E
Thus the Radon-Nikodym derivative g := d\/dv exists v-a.e., so for all F € N,

Lfdu = \NE) = Lgdv,

as desired. And if ¢’ is another such function, then by the Radon-Nikodym Theorem
g =g v-ae. ]
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3.3 Differentiation Theory on Euclidean Space

The Radon-Nikodym theorem provides an abstract notion of the “derivative” of a
signed measure v with respect to a measure p. In this section we analyze more deeply
the special case where (X, M, i) is the Lebesgue measure space (R™, Bgn). Here one can
define a pointwise derivative of v with respect to m in the following way. Let B,.(x) be
the open ball of radius r» about x in R"; then one can consider the limit

_v(By(z))
AT
when it exists. One can also replace the balls B, (z) by other sets which, in a suitable
sense, shrink to = in a regular way; we shall examine this point later.)

Remark 39. Ifv < m, so that dv = f dm, then v(B,(x))/m(B,(x)) is simply the average
value of f on B,.(x).

By Note 39, one would hope that F' = f m-a.e. This turns out to be the case, provided
that v(B,(z)) < o for all r and x. From the point of view of the function f, this may be
regarded as a generalization of the fundamental theorem of calculus: The derivative of
the indefinite integral of f (namely, v) is f.

For the remainder of this section, terms such as “integrable” and “almost everywhere’
refer to the Lebesgue measure unless otherwise specified. We begin our analysis with a
technical lemma that is of interest in its own right.

9

Lemma 3.40: 3.15.

Let C be a collection of open balls in R”, and let U = | Jz.o B. If ¢ < m(U), there
exist disjoint By, ..., By € € such that Y m(B;) > 37"c.

Proof. If ¢ < m(U), by Theorem 82 there is a compact K < U with m(K) > ¢, and
finitely many of the balls in C—say, A;,..., A,,—cover K. Let By be the largest of the
A;s (that is, choose B; to have maximal radius), let By be the largest of the A;s that are
disjoint from B, let Bs be the largest of the A;s that are disjoint from B; and B, and
so on, until the list of A;s is exhausted. According to this construction, if A; is not one of
the B;s, there is some j such that A; n B; # &, and if j is the smallest integer with this
property, the radius of A; is at most that of B;. Hence A; = B}, where B;; is the ball

concentric with B; whose radius is three times that of B;. But then K < | J; B}, so
k k
c<m(K) <) m(By)=3"Y m(B). 0

Definition 41. A measurable function f: R™ — C is called locally integrable (with
respect to the Lebesgue measure) if {,. |f(x)|dx < oo for every bounded measurable
set K < R".
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We denote the space of locally integrable functions by Li_. If f € LL ., x € R", and
r >0, we define A, f(x) to be the average value of f on B,(x):
1

S =y ), @

Lemma 3.42: 3.16.
If feLi. A f(x) is jointly continuous in r and z(r > 0,z € R").

Proof. From the results in Folland Section 2.7, we know that m(B,(x)) = ¢r™ where ¢ =

m(B1(0)), and m(S(r,z)) = 0 where S(r,x) = {y | |y — z| =r}. Moreover, as r — rq

and & — o, XB,(z) = XB(roz0) POINtwise on R™ \ S(rg, o). Hence X5, (2) = XB(rozo) 2-€-,
1

and |XB )| < XBlro+1e0) if 7 < 79 + 3 and |z — x| < 3. By the DCT, it follows that

SBT dy is continuous in r and z, and hence so is A, f(z) = ¢ r™" SBT(@ fly)dy. O

Definition 43. If f € L., we define its Hardy-Littlewood maximal function H f by
Hf(x) = sup,.q A [ f|(z).

H f is measurable, for (Hf)~((a, %)) = J,-(A.|f]) " ((a,0)) is open for any a € R,
by Lemma 42.

Theorem 3.44: 3.17: The Maximal Theorem.

There exists a constant C' > 0 such that for all f € L' and all a > 0,

m({Hf > a}) < jrf )| d.

Proof. Let E, = {Hf > a}. For each z € E,, we can choose r, > 0 such that A, |f|(z) >
a. The balls B, (x) cover E,, so by Lemma 40, if ¢ < m(E,) there exist z1,...,x; € E,
such that the balls B; == B, (xj) are disjoint and Y% m (B) > 3 "e. But then

c<y Nym) < T | rwlay< T [ 1wl

Rn
Letting ¢ — m(E,), we obtain the desired result. O

With this tool in hand, we now present three successively sharper versions of the
fundamental differentiation theorem. In the proofs we shall use the notion of limit
superior for real-valued functions of a real variable,

lim Sup,_r ¢(T) - ll_l)r[l) SUDo<|r—R|<e ¢(T) = égg SUPo<|r—R|<e ¢(T)7
and the easily verified fact that
lir%¢(r) =c¢ <= limsup,_z|o(r) —c| =0.

(This is shown in disguise in Folland Exercise 2.23.)
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Theorem 3.45: 3.18.
If feLl,., then lim, oA, f(z) = f(x) for a.e. z € R™

Proof. It suffices to show that for N € Z~, A, f(x) — f(x) for a.e. z with |z| < N. But
for |z] < N and r < 1 the values A, f(x) depend only on the values f(y) for |y| < N + 1,
so by replacing f with fxgy,,(0) we may assume that f e L'.

Given € > 0, by Theorem 83 we can find a continuous integrable function g such that
§19(y) — f(y)| dy < e. Continuity of g implies that for every x € R™ and ¢ > 0 there exists
r > 0 such that |g(y) — g(x)| < 6 whenever |y — x| < r, and hence

1
(o)~ 9o = s | Tal) ~ gla)) dy) <
m(B,(x)) |5, @)
Therefore A,g(x) — g(z) as r — 0 for every z, so

limsup, 0| Ar f () = f(2)| = limsup, o|A:(f = 9)(x) + (Arg = 9)(x) + (9 — f)(2)|

< H(f - g)(@) + 0+ |f - gl(a)

Hence, if
Eo = {limsup, oA, f — f| > o} and F, ={[f—g|>a},
then
Eoc Fop u{H(f—-9) > a/2}.
But (o/2)m(Fp2) < SFQ/Q |f(z) — g(x)| dx < €, so by the maximal theorem,

2 2
m(E,) < =4 ﬁ
a a
Since ¢ is arbitrary, m(E,) = 0 for all « > 0. But lim, ,0 A, f(z) = f(z) for all
z ¢ |J” E1jn, so we are done. ]
This result can be rephrased as follows: If f e L],
1
lim —— J [F(y) — f(2)]dy = 0 for ae. . (3.45.1)
r=0m(B,(z)) Jp, )

Actually, something stronger is true: Equation (3.45.1) remains valid if one replaces
the integrand by its absolute value. That is, let us define the Lebesgue set L of f to be

1

l{%m JBT(@U(?J) = f(z)|dy = 0}-

Then the following theorem holds.

Lf:{JZEX

Theorem 3.46: 3.20.
If f € Li, then m((Ly)) = 0.

locy
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Proof. For each ¢ € C we can apply Theorem 45 to g.(x) = |f(z) — ¢| to conclude that,
except on a Lebesgue null set F,., we have
1
i s [ 15 = eldy = @) ~ .
r=0m(B.(z)) Jp, @)
Let D be a countable dense subset of C, and let £ = ., E.. Then m(E) = 0, and if
x ¢ E, for any € > 0 we can choose ¢ € D with |f(z) — ¢| < g, so that |f(y) — f(z)| <

|f(y) — c| + ¢, and it follows that

1
m(B, (@) Lm«) [f(y) = f(@)[dy < [f(x) — ] + & < 2e.

Since ¢ is arbitrary, the desired result follows. O

lim sup,._,,

Finally, we consider families of sets more general than balls.
Definition 47. A family {E.},_, of Borel subsets of R" is said to shrink nicely to
x e R™ if

o E.c B.(z) for each r;

o there exists a constant o > 0 such that m(E,) > am(B,(x)).

Remark 48. The sets E, in Definition 47 need not contain x itself. For example, if U
is any Borel subset of B1(0) such that m(U) > 0, and E, = {x +ry |y e U}, then {E,}
shrinks nicely to x.

Here, then, is the final version of the differentiation theorem.

Theorem 3.49: 3.21: The Lebesgue Differentiation Theorem (LDT).

Suppose f € Li_.. For every z in the Lebesgue set of f—in particular, for m-a.e.
x € R"—we have

o im ——
o (B JE Fly) = f@)ldy =0 and T e

for every family {E,}

L ) dy = F(2)

+~o that shrinks nicely to z.

Proof. For some o > 0 we have

s [ 1 sl < s W) = 1@y

1
< T fBrm () — F()] dy.

The first equality therefore follows from Theorem 46, and one sees immediately that it
implies the second one by writing the latter in the form Equation (3.45.1). [

We now return to the study of measures.

Definition 50. A Borel measure v on R™ will be called regular if
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(1) v(K) < o for every compact K ;

(11) v(E) = inf{v(U) | U open, E < U} for every E € Bgn.
Remark 51. Condition (ii) is actually implied by condition (i). For n =1 this follows
from Theorems 43 and 45, and the proof of this for arbitrary n can be found in Folland
Section 7.2. For the time being, we assume (ii) explicitly.

We observe that by (i), every regular measure is o-finite. A signed Borel measure v
will be called regular if |v| is regular.

Proposition 3.52.
If fe L*(R™), the measure

f dm is regular — feli. .

Proof. Indeed, the condition f € Li . is clearly equivalent to (i) in Definition 50. If
this holds, (ii) in Definition 50 may be verified directly as follows. Suppose that E is a
bounded Borel set. Given 6 > 0, by Theorem 82 there is a bounded open U > F such that
m(U) < m(E)+ 9§ and hence m(U \ E) < §. But then, given € > 0, by Corollary 19 there
is an open U D E such that SU\E fdm < ¢ and hence SU fdm < §, fdm + e. The case of
unbounded E follows easily by writing F = | J;” E; where E; is bounded and finding an
open Uj > Ej such that §, , fdm <e27. O

Theorem 3.53: 3.22.

Let v be a regular signed or complex Borel measure on R", and let dv = dv, + fdm
be its Lebesgue-Radon-Nikodym representation. Then for m-almost every x € R™.

im v(E;) = f(x
}’—>0 m(Er) f( )

that shrinks nicely to x.

for every family {E,}

r>0

Proof. 1t is easily verified that d|v| = d|vg| + |f|dm, so the regularity of v implies the
regularity of both v, and fdm (Folland Exercise 3.26). In particular, f € L} . by
Proposition 52, so in view of Theorem 49, it suffices to show that if v, is regular and
vs L m, then for m-almost every x, vs(E,)/m(E,) — 0 as r — 0 when E, shrinks nicely
to x. It also suffices to take E, = B,(z) and to assume that v, is positive, since for some

a > 0 we have

voBr) | _ sl (Br) sl (Br(w)) _ [vsl (Br(2)
m(E,)| ~ m(E) ~  m(E,) am(B;(z))
Assuming v, > 0, then, let A be a Borel set such that VS(A) m(A€) =0, and let

FkI{I’EA

. vs(Br(r)) 1
hmsupT_)O m(B, (1)) >k}
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We shall show that m(F) = 0 for all k, and this will complete the proof.

The argument is similar to the proof of the maximal theorem. By regularity of v,
given € > 0 there is an open U. o A such that vs(U.) < . Each x € Fj is the center
of a ball B, < U. such that vs(B;) > k~'m(B,). By Lemma 40, if V. = B, and
¢ < m(V;) there exist xy,...,x; such that B,,,..., B,, are disjoint and

J J
¢ <3y m(By,) <3k Y vi(Ba,) < 3"kwo(Vo) < 3"kww(Us) < 37ke.

We conclude that m(V.) < 3"ke, and since Fj, < V and ¢ is arbitrary, m(Fy) = 0. O

xeFy

Exercise 3.54: Folland Exercise 3.22.

If fe LY (R"),f # 0, there exist C; R > 0 such that Hf(z) > C|z|™ for |z| > R.
Hence m({H f > a}) = C'/a when « is small, so the estimate in the maximal theorem
is essentially sharp. ¢

“Hint: estimate (Azjq|f])(z).

Solution. Since f # 0, there exists R > 1 such that

| iy == >0
BR(O)

for some €. Then for all |z| > R,

] "

Thus Hf(z) = Clz|™" for |z| > R.

This shows the estimate in the maximal theorem is essentially sharp, because for

sufficiently small positive o we have
c\'"" ¢
m{Hf>a}=m{zreR"|Clz|™ >a} = m{x eR" | |z| < (—) } = —m(B1(0)).
e a
m

Exercise 3.55: Folland Exercise 3.23.

A useful variant of the Hardy-Littlewood maximal function is

H*f(x) = sup{ﬁﬁg |f(y)| dy ‘ Bis aball and x € B}.
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Show that Hf < H*f <2"Hf.

Solution. Fix x € R", let S be the collection of open balls containing z, let let T" be the

collection of open balls centered at z, and for all Lebesgue measurable subsets E of R"
define

1
A = — .
Then T < S, so then

Hf(x) = supper Aplf] < suppes Anlf| = H* f ().

For the other inequality, let B, be any ball containing x, say of radius r. Then B < By, (),
SO

L m(By(r)) 1 .
m(B,) LT FW)ldy < m(B,) m(Ba(z)) L%(@ |f(y)|dy < 2"H f ()

Since B was any ball containing x, taking the supremum over all such balls shows that
H*f(x) <2"H f(z). O

Exercise 3.56: Folland Exercise 3.24.

If fe Li.and f is continuous at z, then z is in the Lebesgue set of f.

Solution. Let e > 0. Since f is continuous, we can choose 6 > 0 such that | f(z) — f(y)| <
e whenever |z —y| < 4. Then for all y € Bs(x),

b J em(B,(z))
1f(y) = fo)|dy < —=—=5 =€
m(B,(x)) Jp, @) m(B,(x))
Since € was arbitrary, ——=— fy) = f(z)|dy — 0 as r \, 0. Hence z is in the
m(Br(x)) IBr(x)
Lebesgue set of f. 0

Exercise 3.57: Folland Exercise 3.25.

If E is a Borel set in R™, the density Dg(x) of E at x is defined as

_ lim m(E M Br@j))
Dp(z) = lim m(B,(x))

whenever the limit exists.

(a) Show that Dg(x) =1 for a.e. x € E and Dg(x) =0 for a.e. x € E°.
(b) Find examples of F and x such that Dg(x) is a given number a € (0, 1), or such
that Dg(x) does not exist.

Solution. We only solve (a) and leave (b) as an exercise. Since E' € Bgn, x g is measurable,
so Xg € Li.. (Indeed, if K is any compact set of R" then {, xgpdm = m(K n E) <
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m(K) < ). Then by the LDT, we have for a.e. x € R" that

0 ifxek”
lim A, = = ’
g Arxe(@) = xe(o) {1 ifze B,
so since the left-hand side is just the definition of Dg, we are done. O]

3.4 Functions of Bounded Variation

All functions in this section are to be assumed Lebesgue measurable unless otherwise
stated. The theorems of the preceding section apply in particular on the real line, where,
because of the correspondence between regular Borel measures and increasing functions
that we established in Folland Section 1.5, they yield results about differentiation and
integration of functions. As in Folland Section 1.5, we adopt the notation that if I is
an increasing, right continuous function on R, ur is the Borel measure determined by
the relation pr((a,b]) = F(b) — F(a). Also, throughout this section the term “almost
everywhere” will always refer to the Lebesgue measure.

Our first result uses the Lebesgue differentiation theorem to prove the a.e. differentia-
bility of increasing functions.

Theorem 3.58: 3.23.

Let F': R — R be increasing, and let G(x) = F(z+).

(a) The set of points at which F' is discontinuous is countable.
(b) F and G are differentiable a.e., and F’' = G" a.e.

Proof. Since F is increasing, the intervals (F(z—), F(z+))(z € R) are disjoint, and for
|z| < N they lie in the interval (F(—N), F(N)). Hence
3 A ) = Fz=)] < F(N) ~ F(-N) < o0,
which implies that {z € (=N, N) | F(z+) # F(xz—)} is countable. As this is true for all
N, (a) is proved.
Next, we observe that G is increasing and right continuous, and G' = F' except perhaps
where F' is discontinuous. Moreover,
pe((z,x + hl) if h > 0,

G(x+h)—-G(z) = {—ua((if"‘ h,x]) if h <0,

and the families {(z — r, ]} and {(z,z + r]} shrink nicely to = as r = |h| — 0. Thus, an
application of Theorem 53 to the measure g (which is regular by Theorem 45) shows
that G'(z) exists for a.e. x. To complete the proof, it remains to show that if H = G — F,
then H’ exists and equals zero a.e.

Let {z;} be an enumeration of the points at which H # 0. Then H(x;) > 0, and as
above we have Z{j ||y | <N} H(z;) < oo for any N. Let §; be the point mass at z; and
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w=>, i H(z;)d;. Then y finite on compact sets by the preceding sentence, and hence p is
regular by Theorems 43 and 45; also, p L m sincem(E) = u(E¢) = 0 where E = {z;}]".
But then

H(z+h)—H(x)|  H(z+h)+ H(x) <4u((x—2\h|,x+2\h\))

h N |h| N 4|h) ’
which tends to zero as h — 0 for a.e. x, by Theorem 53. Thus H' = 0 a.e., and we are
done. 0

As positive measures on R are related to increasing functions, complex measures on R
are related to so-called functions of bounded variation. The definition of the latter concept
is a bit technical, so some motivation may be appropriate. Intuitively, if F'(¢) represents the
position of a particle moving along the real line at time ¢, the “total variation” of F' over the
interval [a, b] is the total distance traveled from time a to time b, as shown on an odometer.
If F' has a continuous derivative, this is just the integral of the “speed,” SZ|F’(t)|dt. To
define the total variation without any smoothness hypotheses on F' requires a different
approach; namely, one partitions [a, b] into subintervals [t;_1,%;] and approximates F' on
each subinterval by the linear function whose graph joins (¢;_1, F'(t;_1)) to (¢;, F'(¢;)), and
then passes to a limit.

In making this precise, we begin with a slightly different point of view, taking a = —o0
and considering the total variation as a function of b.

Definition 59. If f: R — R and x € R, we define the total varition function of F by
Tp(x) = sup{ZﬁF(xj) — F(xj_4)| ‘ NE L, —0 <o < -+ < Ty = a:}
Define the collection of functions of bounded variation on R by
BV = {set functions F': R — C ‘ xlgrolo Tr(z) < oo}.
If a < b, we call the quantity Tr(a) — Tp(b) the total variation of F on |a,b], that is,
Tp(b) — Tr(a) = sup{Z:II\F(xj) — F(z;_1)| ‘ nelsp,a==xy<-<T,= b}.

It depends only on the values of F' on [a,b], so we may define BV([a,b]) to be the set
of all functions on [a,b] whose total variation on [a,b] is finite.

If F' e BV, the restriction of F to [a,b] is in BV([a,b]) for all a, b; indeed, its total
variation on [a, b] is nothing but Tr(b) — Tr(a). Conversely, if F' € BV([a,b]) and we set
F(z) = F(a) for z < a and F(x) = F(b) for x > b, then F' € BV. By this device the
results that we shall prove for BV can also be applied to BV([a, b]).

Example 60 (3.25).
(a) If F: R — R is bounded and increasing, then F € BV (in fact, Tp(x) = F(z) —
F(—)).
(b) If F,G € BV and a,b e C, then aF + bG € BV.
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(¢) If F is differentiable on R and F' is bounded, then F' € BV([a,b]) for —0 <a <b <
w0 (by the mean value theorem).

The verification of these examples is left as an exercise (Folland Exercise 3.27).

Exercise 3.61.
If F(z) =sinx, then F' € BV([a,b]) for —0 < a < b < o0, but F ¢ BV.

Solution. F € BV([a,b]) by the mean value theorem and Exercise 61, since F'(z) = cosz
is bounded. To see F ¢ BV, let x,, = 7(2n+1)/2,n € Z=g to see Y1 1\sm Tpi1 — Sina,| =
2N. Hence, Tp(x) = 2N for all x € R, N € Z, showing that lim, ., Tr(z) = 0. O

Exercise 3.62: Folland Exercise 3.27.

Verify the assertions in Example 60.

Solution. Suppose F' is continuous on [a, b] and F” is bounded on [a, b]. Then there exists
M such that |F| < M on [a,b]. By the mean value theorem, for all [z, y] < [a, b], there
exists ¢ € (a, b) such that

F(z) - F(y)
r—y
Thus F(x) — F(y) < M|z — y|. Then any partition of the real line has
SUNF(y) = Faj0)| < M| Y |2y — 5] = [M|(b— a),
Taking the supremum of both sides over all partitions of (a,b), we conclude Tp <
M(b—a) < o0, so FF e BV. The rest of the verifications are left as exercises. O]

M= F'(c) =

Lemma 3.63: 3.26.
If F € BV is real-valued, then T + F and Tr — F' are increasing.

Proof. If ¢ <y and € > 0, choose o < --- < x,, = x such that

Do |F () = Flaj)| > Te(x)
Then Y |F(x;) — F(z;-1)| + \F( ) — F(x)| is an approximating sum for Tx(y), and
F(y) = [F(y) = F(x)] + F(z), s

n

To(y) + P > (Y 1P () + F(o:j_1>|) +F() ~ P@) + [Fly) - Fla)] + Fla)
>Tp(z) — e+ F(x).
Since ¢ is arbitrary, Tr(y) + F(y) = Tr(x) + F(x), as desired. O
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Theorem 3.64: 3.27.

(a) F e BV if and only if Re ' € BV and Im F' € BV.

(b) If f: R — R, then F' € BV if and only if F is the difference of two bounded
increasing functions; for F' € BV these functions may be taken to be (Tr + F)
and 3 (Tp — F).

(c) If F e BV, then F(xz+) = lim,, F(y) and F(z—) = lim, », F'(y) exist for all
reR, as do F(+00) = lim, o F(y).

(d) If F' € BV, the set of points at which F is discontinuous is countable. In particular,
any F' € BV is Lebesgue integrable.

(e) If F e BV and G(z) = F(xz+), then I’ and G’ exist and are equal a.e.

Proof. (a) is obvious. For (b), the “if” implication is easy (see Example 60(a,b)). To prove
“only if,” observe that by Lemma 63, the equation F' = $(Tp + F)— $(Tp — F) expresses
F' as the difference of two increasing functions. Also, the inequalities
Tr(y) £ Fly) = Tp(x) £ F(z) (y > )
imply that
[F(y) — F(2)| < Tr(y) — Tr(z) < Tr(0) = Tp(—x) < o0,

so that F', and hence Tr + F', is bounded. Finally, (c), (d), and (e) follow from (a), (b),
and Theorem 58. O

The representation ' = (T + F) — 2(Tp — F) of a real-valued F € BV is called the
Jordan decomposition of F, and 1(Tr + F) and (Tr — F) are called the positive
variation of F' and the negative variation of F', respectively. Since x* = max(z,0) =
+(Jz] + z) and 2~ = max(—z,0) = 3(|z| — z) for z € R, we have

%(TF + F)(z) = sup{zn[F(xj) — Fz )]* o< <, = x} + %F(—oo),

so Theorem 64(a,b) leads to the connection between BC and the space of complex Borel
measures on R. To that end, we need the following definition:

Definition 65. Define the collection of normalized functions of bounded variation
on R by
NBV = {F: R — C | F € BV, F is right continuous, and lim F(x) = 0}.
T——00

Remark 66. If ' € BV, then the function G defined by G(x) = F(z+) — F(—) is in
NBV and G' = F' a.e. (That G € BV follows easily from Theorem 6/ (a,b): if F is real
and F = Fy — Fy where Fy, Fy are increasing, then G(x) = Fi(x+)— [Fa(x+) + F(—0)],
which is again the difference of two increasing functions.)
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Lemma 3.67: 3.28.
If Fe BV, then Tp(—w0) = 0. If F' is also right continuous, then so is T.

Proof. If e > 0 and x € R, choose zy < --- <z, = x so that
Yo IF () = F(aa)| = Te(x) —e.
From 77 we see that Tr(x) — Tr(x0) = Tr(z) — €, and hence Tr(y) < € for y < xy. Thus
Now suppose that F'is right continuous. Given z € R and ¢ > 0, let = Tp(z+) —

Tp(z), and choose § > 0 so that |F(x + h) — F(x)| < ¢ and Tp(z + h)— Tr(z+) < €
whenever 0 < h < §. For any such h, by 7?7 there exist zo < -+ < x, =  + h such that

SR () = Fag )| 2 SUTe(e + ) = Te@)] > Sa,

and hence
n 3 3
S E ()~ Flay)| > 20— [Flen) — Flao) > S0 - =
Likewise, there exist © =ty < -+ < t,, = @y such that }/|F(t;) — F(t;—1)| > 2a, and
hence

a+e>Tp(x+h)—Tr(x)
> Y 1P () = Fton)| + Y| F ) = Fla)|
3

= - — &
2

Thus a < 4e, and since ¢ is arbitrary, a = 0. O

Theorem 3.68: 3.29.

There is a bijective correspondence between real- (resp. complex-)valued functions in
NBV and signed- (resp. complex-)Borel measures on (R, Bgr) given by
complex }

NBV > {me&iures on

,Br
Fi(z) +iFy(x) = F(z) — pr = (uf, — pp,) + ik, — 1),
ul(—e0,a]) = Fy(w) — p.
Moreover, |ur| = pry-

Proof. 1f p is a complex measure, we have u = pf — py + i(ug — pg )where the u;-iare
finite measures. If Fi*(z) = p;((—o0,z]), then Fifis increasing and right continuous,
Fif (=) = 0, and Fj*(0) = p; (R) < 0. By Theorem 64(a,b) the function F = Fj" —
F +i(F; — Fy )is in NBV. Conversely, by Theorem 64 and Lemma 67, any F' € NBV can
be written in this form with the F' ji“ increasing and in NBV. Each Fjir gives rise to a measure
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piaccording to Theorem 43, so F(z) = pp((—o0,z]) where pup = pif — py + i(us — pz).
The proof that |up| = ur. is outlined in Folland Exercise 3.28. O

The next obvious question is: Which functions in NBV correspond to measures p such
that © L m or p « m? One answer is the following:

Proposition 3.69: 3.30.
If F e NBV, then F’ € L'(m), and

purp Lm <= F'=0ae,
and

pp <m << F(r)= Jfb‘ F'(t) dt.

—00

Proof. We have merely to observe that F'(x) = lim, o upr(E,)/m(E,) where E, = (z,z +
r) or (x — r,z] and apply Theorem 53. (The measure pp is automatically regular by
Theorem 45.) O

The condition pur « m can also be expressed directly in terms of F', as follows.

Definition 70. A function f: R — R is called absolutely continuous, denoted f € AC,
if for every e > 0 there exists 6 > 0 such that for any finite set of disjoint intervals

(a1,b1), ..., (an,byn),
Db —a) <8 = D17 IF(b) = Flay)] <e. (3.70.1)

More generally, F is said to be absolutely continuous on [a,b|, denoted f € AC([a,b]),
if this condition is satisfied whenever the intervals (aj, b;) all lie in [a,b].

Remark 71. Clearly, if F' is absolutely continuous, then F is uniformly continuous (take
N =1 in Equation (3.70.1)). On the other hand, if F is everywhere differentiable and F'
is bounded, then F' is absolutely continuous, for |F(b;) — F(a;)| < (max|F'|)(b; — a;) by
the mean value theorem.
Example 72. Consider
0, rz =0,
filz) = { zFsin(1/x), = #0,
on [a,b] witha <0 <b ora<0<b. Then, fo, f1 ¢ BV([a,b]), hence, fo, f1 ¢ AC([a,b]),
but fo € BV([a,b]). (Look at the graphs to analyze the difference in behaviors here.)

k=0,1,2,

Proposition 3.73: 3.32.
If Fe NBV, then

FeAC < pup<m.

Version of April 30, 2024 at 11pm EST Page 129 of 368


https://www.greysonwesley.com/home

Greyson C. Wesley §3.4: Functions of Bounded Variation

Proof. If up « m, the absolute continuity of F' follows by applying Theorem 18 to the sets
E = Uf[(aj, b;). To prove the converse, suppose that E is a Borel set such that m(£) = 0.
If £ and ¢ are as in the definition of absolute continuity of F', by Theorem 45 we can find
open sets Uy © Uy © -+ D E such that m(U;) < ¢ (and thus p(U;) < d for all j) and

pr(U;) — pp(E). Each Uj is a disjoint union of open intervals (a¥,b%), and

N N
S el Bl < S IR - Flab)] <
for all N. Letting N — o0, we obtain |up(U;)| < € and hence |up(E)| < €. Since ¢ is
arbitrary, pup(FE) = 0, which-shows that purp « m. O

Corollary 3.74: 3.33.
There is a bijective correspondence between L'(m) and AC n NBV, given by
L'(m) «— AC A NBYV,
fla) — F@) = [ pwya
Fla) e Flo).

Proof. This follows immediately from Propositions 69 and 73 O

If we consider functions on bounded intervals, this result can be refined a bit.

Lemma 3.75: 3.34.
AC([a,b]) = BV([a,b]).

Proof. Let F': R — C be absolutely continuous on [a, b]. Let § be as in the definition of
absolute continuity, corresponding to € # 1, and let NV be the greatest integer less than
Y b—a)+1. Ifa=mx9<-- <z, = b, by inserting more subdivision points if necessary,
we can collect the intervals (z;_1, ;) into at most N groups of consecutive intervals such
that the sum of the lengths in each group is less than 6. The sum ) |F(z;) — F(z;_1)]
over each group is at most 1, and hence the total variation of F' on [a, b] is at most N. [

Theorem 3.76: 3.35: The Fundamental Theorem of Calculus for Lebesgue
Integrals.

If —0o<a<b<ooand F: [a,b] — C, the following are equivalent:

(a) F e AC([a,b]).

(b) F(x)— F(a) = § f(t)dt for some f € L*([a,b],m).

(¢) F is differentiable a.e. on [a,b], F' € L'([a,b],m), and F(x) — F(a) = § F'(t) dt.
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Proof. To prove that (a) implies (c¢), we may assume by subtracting a constant from F
that F'(a) = 0. If we set F(x) =0 for x < a and F(z) = F(b) for x > b, then F' € NBV
by Lemma 75, so (¢) follows from Corollary 74. That (c) implies (b) is trivial. Finally, (b)
implies (a) by setting f(t) = 0 for ¢ ¢ [a,b] and applying Corollary 74. O

The short form of the above theorem is the following:

Corollary 3.77.
If [a, b] is a compact interval and F': [a,b] — C, then
F e AC([a, b)) — F' exists a.e. on [a,b] and J F'(t)dt = F(z) — F(a).

a

The following decomposition of Borel measures on R™ is sometimes important. A
complex Borel measure p on R™ is called discrete if there is a countable set {z;} < R"
and complex numbers ¢; such that »;|c;| < oo and p = }]¢;6,,, where §, is the point
mass at . On the other hand, u is called continuous if p({z}) = 0 for all € R". Any
complex measure ;1 can be written uniquely as p = pg + p. where py is discrete and g,
is continuous. Indeed, let E = {z | u({z}) # 0}. For any countable subset F' of E the
series >, u({x}) converges absolutely to p(F)), so {x € E | |u({x})| > k~'} is finite for
all k, and it follows that E itself is countable. Hence p4(A) = (A n E) is discrete and
te(A) = p(A N\ E) is continuous.

Obviously, if p is discrete, then g 1 m; and if g « m, then p is continuous. Thus, by
Theorem 53, any (regular) complex Borel measure on R” can be written uniquely as

M= Hd + Hac + Msc

where g is discrete, ji,. is absolutely continuous with respect to m, and ps. is a “singular
continuous” measure, that is, ug. is continuous but us. L m.

The existence of nonzero singular continuous measures in R” is evident enough when
n > 1; the surface measure on the unit sphere discussed in Folland Section 2.7 is one
example. Their existence when n = 1 is not quite so obvious; they correspond via
Theorem 68 to nonconstant functions F' € NBV such that F' is continuous but F’ = 0 a.e.
One such function is the Cantor function constructed in Folland Section 1.5 (extended to
R by setting F'(x) = 0 for x < 0 and F(z) = 1 for x > 1). More surprisingly, there exist
strictly increasing continuous functions F' such that F’ = 0 a.e.; see Folland Exercise 3.40.

Notation 78. If F' € NBV, it is customary to denote the integral of a function g with
respect to the measure pp by §gdF or § g(x)dF(z); that is,

Integrals of these form are called Lebesgue-Stieltjes integrals.
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We conclude by presenting an integration-by-parts formula for Lebesgue-Stieltjes
integrals; other variants of this result can be found in Folland Exercise 3.34,Folland
Exercise 3.35.

Theorem 3.79: 3.36.

If " and G are in NBV and at least one of them is continuous, then for all —0 < a <
b < o0,

f FdG + J G dF — FB)G(b) — F(a)Cla).
(a,b]

(a,b]

Proof. F and G are linear combinations of increasing functions in NBV by Theorem 64(a,b),
so a simple calculation shows that it suffices to assume F' and G increasing. Suppose for
the sake of definiteness that G is continuous, and let Q = {(z,y) | a < z < y < b}. We
use Fubini’s theorem to compute pp x ug(€2) in two ways:

el — | f mmwmm:j [F(y) - F(a)]dC/(y)
(Eavb] (a,y] (a,b]
= FdG — F(a)[G(b) — G(a)]

J(a,b]

[

and since G(z) = G(x—),
i) = | J ﬂmmmmzf (G(b) - G(x)]dF (z)
[z,b]

(a,b] (a,b]
=G(b)[F(b) — F(a)] — J GdF
(a,b]
Subtracting these two equations, we obtain the desired result. O

(&

Exercise 3.80: Folland Exercise 3.28.

If F e NBV, let G(z) = |ur|((—o0,x]). Prove that |up| = pr, by showing that G = Tp
via the following steps.
(a) From the definition of T, T < G.

(b) |ur(E)| < prppy when E is an interval, and hence when E is a Borel set. c.
\pr| < pry, and hence G < Tr. (Use Folland Exercise 3.21.)

Exercise 3.81: Folland Exercise 3.29.

If F e NBV is real-valued, then p} = pup and pz = px where P and N are the positive
and negative variations of F. (Use Lemma 67.)
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Exercise 3.82: Folland Exercise 3.30.

Construct an increasing function on R whose set of discontinuities is R.

Exercise 3.83: Folland Exercise 3.31.

Let F(z) = z*sin(z™!) and G(z) = z%sin(z2) for z # 0, and F(0) = G(0) = 0.
(a) F and G are differentiable everywhere (including z = 0).
(b) F'e BV([-1,1]), but G ¢ BV([—1,1]).

Exercise 3.84: Folland Exercise 3.32.
If Fi,Fy, ..., F e NBV and F; — F pointwise, then Tp < liminf T, .

Exercise 3.85: Folland Exercise 3.33.

If F: R — C is increasing, then
b
F(b) — F(a) = f F'(t)dt.

a

Solution. By a previous Folland Exercise F' increasing on R = F measurable and
bounded on [a,b]. By Theorem 58, F” exists m-a.e. By Theorem 58, the increasing right
continuous function G(x) = F(z+) is also differentiable a.e. and bounded on [a, b], and
F' = G a.e., so it suffices to show F(b) — F(a) = SZ G'(t) dt.

As (G is an increasing right continuous function R — R, by Theorem 43 there exists
a unique Borel measure ug on R such that ue((z,y]) = G(x) — G(y) for all x,y € R. In
particular, this shows pug « m.

As (R, Bg, ) and (R, Bg,m) are o-finite, by the Radon-Nikodym theorem there
exists a unique m-measurable function g = dug/dm. By a corollary to the LDT, g(z) =
lim,_,, % — lim,_,, %f(y) = G'(z). Hence

gdm — LbG’(t) dt — JbF’(t) dt. O

a

F() - Fla) > GO) - Gla) > nal(a.b]) = |

(a,b]

Exercise 3.86: Folland Exercise 3.34.

Suppose F,G € NBV and —o0 <a < b < .
(a) By adapting the proof of Theorem 79, show that

f F(z)+ F(x_)dG(x) N f G(z) + G(x_)dF(:c)
[a,b] [a,0] 2
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(b) If there are no points in [a, b] where F' and G are both discontinuous, then

f FdG+ | GdF = Fh)G(b) — Fla—)G(a—).
[a,b] [a,b]

Exercise 3.87: Folland Exercise 3.35.
If F,G e AC([a,b]), then so is FG, and

‘FGG+GFNWM=F@G@—FMWM)

a

Exercise 3.88: Folland Exercise 3.36.

Let G be a continuous increasing function on [a, b].

(a) If E < [c,d] is a Borel set, then m(F) = pug(G~'(F)). (First consider the case
where F is an interval.)
(b) If f is a Borel measurable and integrable function on [c, d], then

G(b) b
f(y)dy = f £(G(2)) dG(2).

G(a)
In particular, if G is absolutely continuous, then

el0) b
f fly)dy = J f(G(x)G (x) da.
Gla) a

(c) The validity of (b) may fail if G is merely right continuous rather than continuous.

Exercise 3.89: Folland Exercise 3.37.

Suppose f: R — R. There is a constant M such that |F(z) — F(y)| < M|z — y| for all
x,y € R (that is, F' is Lipschitz continuous) if and only if F' is absolutely continuous
and |F'| < M a.e.

Solution.
(=) Suppose |F(z) — F(y)| < M|z —y| for all z,y € R and € > 0. Then

SUIF (@) = Flog)l < M(Y e = w5
so we can choose § = ¢/M. Then Y [|x; —xj_1| < = Y [|F(z;) — F(z;-1)| <e,
so F' is absolutely continuous. Also,
w=y |z =yl ==y [ —y|
(<) Suppose F is absolutely continuous and |F’| < M a.e. Then by the mean value

M.
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theorem, for all (z,y) < [a, b], there exists ¢ € (z,y) such that
F(x) - F
M > [F(o) = E8) = FW)

[z =y
so |F(x) — F(y)| < M|z — y|. Hence F' is Lipschitz. O

9

Exercise 3.90: Folland Exercise 3.38.

If f: [a,b] — R, consider the graph of f as a subset of R, namely, {t + if(t) | t €
[a,b]}. The length L of this graph is by definition the supremum of the lengths of all
inscribed polygons. (An “inscribed polygon” is the union of the line segments joining
tin+if(tjoq) tot; +if(t;),1 <j<n,wherea=ty<---<t,=0)

(a) Let F(t) =t +if(t); then L is the total variation of F' on [a, b].

(b) If f is absolutely continuous, L = SZ[l + f(1)2]dt.

Exercise 3.91: Folland Exercise 3.39.

If {F;} is a sequence of nonnegative increasing functions on [a, b] such that F(x) =
SF Fj(z) < oo for all @ € [a,b], then F'(x) = >} Fi(x) for a.e. x € [a,b]. (It suffices

J
to assume F; € NBV. Consider the measures jip;.)

Solution. Without loss of generality Fj is right continuous, since otherwise consider
Gj(x) = Fj(xz+). Also we may assume Fj;(z) — 0 as x — —o0 since we only care about
F; on [a,b], so we may assume F; € NBV. Then pup, satisfies

pr; (=00, 2]) = Fj(z) — Fj(=o0) = F; € NBV,

\\f/

-0
which then implies F'(xz) € NBV, so

F(r) = Zl Fj(x) = 21 pr; (=00, x])
C
-3 o
= f_oo Zjo Fj/ (by MCT for series since F; € L*(m))

On the other hand, since F'is also right continuous and increasing,
pr((a,b]) = F(b) — F(a) hasb—a =0 = F(x) —MQJ F'(t) dt
—0

so by uniqueness of the Radon-Nikodym derivative we conclude > ;" Fi=F O]
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Exercise 3.92: Folland Exercise 3.40.

Let F' denote the Cantor function on [0, 1] (see ¥1.5), and set F'(z) = 0 for x < 0 and
F(z) = 1for z > 1. Let {[an, b,]} be an enumeration of the closed subintervals of [0, 1]
with rational endpoints, and let F,,(z) = F((z — a,,)/(b, — ay)). Then G = " 27"F,
is continuous and strictly increasing on [0, 1], and G’ = 0 a.e. (Use Folland Exercise
3.39.)

Exercise 3.93: Folland Exercise 3.41.

Let A < [0, 1] be a Borel set such that 0 < m(A n I) < m(I) for every subinterval [
of [0,1] (Folland Exercise 1.33).

(a) Let F(x) = m([0,2] n A). Then F is absolutely continuous and strictly increasing
on [0, 1], but F’ = 0 on a set of positive measure.

(b) Let G(x) = m([0,2] n A) — m([0,2] ~ A). Then G is absolutely continuous on
[0,1], but G is not monotone on any subinterval of [0, 1].

Exercise 3.94: Folland Exercise 3.42.

A function F': (a,b) > R (—o0 < a < b < ) is called convex if
FAs+ (L =MNt) S AF(s) + (1 = NF(t)
for all s,t € (a,b) and A € (0,1). (Geometrically, this says that the graph of F' over
the interval from s to ¢ lies underneath the line segment joining (s, F'(s)) to (¢, F'(t)).)
(a) F is convex if and only if for all s,¢,s',¢ € (a,b) such that s < s < ¢’ and
s<t<t.
F(t)—F(s) _ F(t) - F(s)
t—s  t—s
(b) F'is convex if and only if F' is absolutely continuous on every compact subinterval
of (a,b) and F” is increasing (on the set where it is defined).
(¢c) If F is convex and tg € (a, b), there exists 8 € R such that F(t)— F(ty) = B(t — to)
for all ¢ € (a,b).
(d) (Jensen’s Inequality) If (X, M, i) is a measure space with u(X) =1, g: X — (a,b)
is in L'(u), and F is convex on (a,b), then

([ain) < [ Fonis

(Let to = {gdp and t = g(z) in (c), and integrate.)
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4 Point-Set Topology

4.1 Topological Spaces

The concepts of limit, convergence, and continuity are central to all of analysis, and
it is useful to have a general framework for studying them that includes the classical
manifestations as special cases. One such framework, which has the advantage of not
requiring many ideas beyond those occurring in analysis on Euclidean space, is that of
metric spaces. However, metric spaces are not sufficiently general to describe even some
very classical modes of convergence, for example, pointwise convergence of functions on R.
A more flexible theory can be built by taking the open sets, rather than a metric, as the
primitive data, and it is this theory that we shall explore in the present chapter.

Let X be a nonempty set.

Definition 1. A topology on X is a family T of subsets of X that contains @ and
X and is closed under arbitrary unions and finite intersections (i.e., if {Uy}t,eq < T
then J,eaUa € F, and if Uy,... U, € T then ([ U; € F). The pair (X,9) is called a
topological space. If J is understood, we shall simply refer to the topological space X .

Example 2. Let us examine a few examples:

(1) If X is any nonempty set, P(X) and {&, X} are topologies on X. They are called
the discrete topology and the trivial (or indiscrete) topology, respectively.

(2) If X is an infinite set, {U < X | U = @ or U is finite} is a topology on X, called
the cofinite topology.

(3) If X is a metric space, the collection of all open sets with respect to the metric is a
topology on X.

(4) If (X,9) is a topological space andY < X, then Ty = {U nY | U € T} is a topology
on 'Y, called the relative topology induced by I .

We now present the basic terminology concerning topological spaces. Most of these
concepts are already familiar in the context of metric spaces. Until further notice, (X, J)
will be a fixed topological space.

The members of I are called open sets, and their complements are called closed
sets. If Y < X, the open (resp. closed) subsets of Y in the relative topology are called
relatively open (resp. relatively closed). We observe that, by DeMorgan’s laws, the
family of closed sets is closed under arbitrary intersections and finite unions.

If A < X, the union of all open sets contained in A is called the interior of A, and
the intersection of all closed sets containing A is called the closure of A. We denote the
interior and closure of A by A° and A, respectively. Observe that A° is the largest open
set contained in A and A is the smallest closed set containing A, and we have (A°)° = A¢
and (A)¢ = (A°)°. The difference A\A° = A n A is called the boundary of A and is
denoted by 0A. If A= X, A is called dense in X. On the other hand, if (4)° = @, A is
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called nowhere dense. (This name comes from the fact that if (A)° were some nonempty
subset E of X, then in the subspace E the set A is dense, hence A dense “somewhere”. If
E were empty, then E is dense “nowhere”.)

If 2 € X (resp. E < X), a neighborhood of z (resp. of F) is a set A < X such
that x € A° (or F < A°). Thus, a set A is open if and only if it is a neighborhood of
itself. (Some authors require neighborhoods to be open sets; Folland does not, and to
be precise we will sometimes opt for the more common term “open neighborhood” to
mean a neighborhood that is open, where neighborhood here is as in Folland’s definition
above.) A point x is called an accumulation point of A if A n (U\{z}) # & for every
neighborhood U of x. (Other terms sometimes used for the same concept are “cluster
point” and “limit point.” We shall use “cluster point” to mean something a bit different
below.)

Proposition 4.3: 4.1.

If Ac X, let Acc(A) be the set of accumulation points of A. Then A = A U Acc(A),
and A is closed if and only if Acc(A) < A.

Proof. If x ¢ A, then A° is a neighborhood of x that does not intersect A, so z ¢ Acc(A);
thus A U Acc(A) < A. If x ¢ A U Acc(A), there is an open U containing x such that
UnA=@a,sothat Ac U¢and x ¢ A. Thus A € AU Acc(A). Finally, A is closed if and
only if A = A, and this happens if and only if Acc(A4) = A. m

If J; and 9, are topologies on X such that J; < 95, we say that 9 is weaker (or
coarser) than J,, or that 9, is stronger (or finer) than J;.

Clearly the trivial topology is the weakest topology on X, while the discrete topology
is the strongest. If € ¢ £(X), there is a unique weakest topology J (&) on X that contains
€, namely the intersection of all topologies on X containing €. It is called the topology
generated by £, and € is sometimes called a subbase for J(E).

Definition 4. IfJ is a topology on X, a neighborhood base for J at x € X is a family
N c T such that

e xeV forallVeN;
o ifrelU €T, there exists V € N such that x eV < U.

A base for J is a family B < J that contains a neighborhood base for I at each x € X.
(So, a neighborhood base really is a base for any neighborhood of U.)

. For example, if X is a metric space, the collection of open balls centered at z is a
neighborhood base for the metric topology at x, and the collection of all open balls in X
is a base.
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Proposition 4.5: 4.2.

If (X,9) is a topological space and & ¢ 9, then & is a base for I if and only if every
nonempty set U € J is the union of elements of €.

Proof. Suppose € is a base for J. Then for x € U, there exists V, € & such that
xeV,cU. Then |J,.; Vo = U. Conversely, suppose U = | Ji,. V. Then {ve & |z eV}
is a neighborhood base for x, so € is a base. ]

Proposition 4.6: 4.3.

If € ¢ (X)), in order for € to be a base for a topology on X it is necessary and
sufficient that the following two conditions be satisfied:

(a) each x € X is contained in some V € &;
(b) if U,V € & and x € U NV, there exists W e € withx e W < (U V).

Proof. The necessity is clear, since if U,V are open, then so is U n V. To prove the
sufficiency, let

J ={U < X | for every z € U, there exists V € € with z e V < U}.

Then X € J by condition (a) and @ € I trivially, and F is obviously closed under unions.
If Uj,Uy € J and x € Uy n Us, there exist V4, V5 € € with x € V; < Uy and x € V5 < Uy,
and by condition (b) there exists W € € with x € W < (V4 n V). Thus Uy n Uy € F, so
by induction I is closed under finite intersections. Therefore I is a topology, and € is
clearly a base for 7. O

Proposition 4.7: 4.4.

If &€ c E(X), the topology T (&) generated by &€ consists of @, X, and all unions of
finite intersections of members of €.

Proof. The family of finite intersections of sets in &, together with X, satisfies the
conditions of Proposition 6, so by Proposition 5 the family of all unions of such sets,
together with @, is a topology. It is obviously contained in F(€), hence equal to F(€). O

Note how the simplicity of this proposition contrasts with the corresponding result for
o-algebras (Proposition 60). What makes life easier here is that only finite intersections
are involved.

The concept of topological space is general enough to include a great profusion of
interesting examples, but—by the same token—too general to yield many interesting
theorems. To build a reasonable theory one must usually restrict the class of spaces under
consideration. The remainder of this section is devoted to a discussion of two types of
restrictions that are commonly made, the so-called countability and separation axioms.
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Definition 8. A topological space (X,T) satisfies the first axiom of countability, or
is first countable, if there is a countable neighborhood base for J at every point of X.

Definition 9. The space (X,7F) satisfies the second axiom of countability, or is
second countable, if 5 has a countable base.

Definition 10. The space (X,9) is separable if X has a countable dense subset.

It is useful to observe that if X is first countable, then for every x € X there is a
neighborhood base {U;}}” at = such that U; > Uj;; for all j. Indeed, if {V;}{" is any
countable neighborhood base at z, we can take U; = ﬂjl Vi.

Every metric space is first countable (the balls of rational radius about x are a
neighborhood base at ), and a metric space is second countable if and only if it is
separable (Folland Exercise 4.5). The latter fact can be partly generalized:

Proposition 4.11: 4.5.

Every second countable space is separable, but not conversely (see Folland Exercise
4.6).

Proof. Let X be a second countable space and {Un}nEZZl be a countable base for the
topology. For each U,, pick any element z, € U,, discarding any empty U,. Then we
need only show that A = {x,, | x, € U,} is dense in X:

Take any nonempty open set E. Then U, < E for some n, hence, x, € E for some n.
But x, € A, so En A # ¢ for all £, so A is dense. 0

Note that the above proof relies on the Axiom of Countable Choice, and in fact, the
previous proposition can be shown to be equivalent to the Axiom of Countable Choice.

Definition 12. A sequence {x;} in a topological space X converges to x € X (in symbols:
x; — x) if for every neighborhood U of x there exists J € Zso such that x; € U for all
7> J.

First countable spaces have the pleasant property that such things as closure and
continuity can be characterized in terms of sequential convergence—which is not the case
in more general spaces, as we shall see. For example, see the following proposition.

Proposition 4.13: 4.6.

If X is first countable and A = X, then z € A if and only if there is a sequence {z;} in
A that converges to x.

Equivalent characterization of denseness is that any open set intersects it nontrivially.

Proof. Let {U;} be a countable neighborhood base at z with U; = Uy, for all j. If
x € A, then Uy n A # @ for all j. Pick z; € U; n A; since U, < U, for k > j and every
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neighborhood of = contains some Uy, it is clear that 2; — . On the other hand, if x ¢ A
and {z,} is any sequence in A, then (A)¢ is a neighborhood of z containing no x;, so
T; > T. [l

Lastly, we discuss the separation axioms. These are properties of a topological
space, labeled Ty, ..., Ty, that guarantee the existence of open sets that separate points
or closed sets from each other. If X has the property 7T}, we say that X is a T} space or
that the topology on X is Tj.

Axiom Definition
T(] (KOImOgOFOV) If © # y, there exists an open set containing = but not y or an open set containing y but not «.
T1 (Fl"échet) If © # y, there is an open set containing y but not z.
T2 (HaUSdOTff) If © # y, there are disjoint open sets U, V with x € U and y € V.
T3 (Regular) X is T1 and for any closed A ¢ X and any = € A® there are disjoint open sets U,V with z € U and A c V.
T4 (Normal) X is T1 and for any disjoint closed A, B in X there are disjoint open sets U,V with Ac U and Bc V.

There is also an additional useful separation condition, intermediate between T3 and T},
that we will discuss in Folland Section 4.2.

Warning 4.14.

Note that some authors do not require regular and normal spaces to be Tj.

The following characterization of T} spaces is useful. It shows in particular that every
normal space is regular and that every regular space is Hausdorff.

Proposition 4.15: 4.7.

X is a T space if and only if {z} is closed for every z € X.

Proof. 1t X is T} and z € X, for each y # x there is an open U, containing y but not z;
thus {z}° =J,., Uy is open and {z} is closed. Conversely, if {z} is closed, then {z}° is
an open set containing every y # x. O

The vast majority of topological space that arise in practice are Hausdorff, or become
Hausdorff after simple modifications. (This last phrase refers to spaces such as the space
of integrable functions on a measure space, which becomes a Hausdorff space with the
L' metric when we identify two functions that are equal a.e.) However, two classes of
usually non-Hausdorff topologies are of sufficient importance to warrant special mention:
the quotient topology on a space of equivalence classes, discussed in Folland Exercise
4.28 Folland Exercise 4.29, and the Zariski topology on an algebraic variety. Without
attempting to give the definition of an algebraic variety, we now describe the Zariski
topology on a vector space.
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Example 16 (Zariski Topology on a Vector Space). Let k be a field, and let k[ X1, ..., X,]
be the ring of polynomials in n variables over x. Each P € k|X3,...,X,]| determines a
polynomial map p: k™ — k by substituting elements of k for the formal indeterminates
X1,...,X,. The correspondence P — p is one-to-one precisely when k is infinite. The
collection of all sets p~*({0}) in k™, as p ranges over all polynomial maps, is closed
under finite unions, since p~*({0}) U ¢ 1({0}) = (pq)~({0}), and it contains k" itself
(take p = 0). Hence, by Propositions 5 and 6, the collection of all sets of the form
Naea Pat({0}) (pa being a polynomial map for each o) is the collection of closed sets for a
topology on k™, called the Zariski topology. The Zariski topology is T} by Proposition 15,
forifa=(ay,... a,) € k" then {a} = ] p; ' ({0}) where p;(Xy,...,X,) = X; —a;. If
k is finite the Zariski topology is discrete, but if k is infinite the Zariski topology is not
Hausdorff; in fact, any two nonempty open sets have nonempty intersection. This is just
a restatement of the fact that k[ X7, ..., X,] is an integral domain, that is, if P and Q are
nonzero polynomials, then PQ is nonzero. (For n =1, the Zariski topology is the cofinite

topology.)

Exercise 4.17: Folland Exercise 4.1.

If card(X) = 2, then there exists a topology on X that is Ty but not 73.

Exercise 4.18: Folland Exercise 4.2.

If X is an infinite set, the cofinite topology on X is 77 but not 75, and is first countable
if and only if X is countable.

Exercise 4.19: Folland Exercise 4.3.

Every metric space is normal. (If A, B are closed sets in the metric space (X, p),
consider the sets of points x where p(z, A) < p(x, B) or p(x, A) > p(z, B).)

Solution. Let X = (X, p) be a metric space and x # y in X.

e X is Ti: If x # y then there exists an open subset contaiinng y but not x, namely
Uy, ={z€ X | p(x,z) > 0}. This is open in X because for all z € U, p(x,z) = r > 0,
the open ball B,(x) < U,: indeed, if 2’ € B,(x), then p(z',x) + p(z,2') = p(x, z) = r,
so p(2',2) = p(x,z) — p(z,2") > 0 by the triangle inequality, so 2’ € U,.

=r <r
e Now suppose A, B are disjoint closed neighborhoods of = and y, respectively. Then
let

Uy, ={2€ X |p(z,A) <p(z,B)} and V, = {z € X | p(z, A) > p(z, B)}.

Then U,,V, are disjoint because if z € U, then p(z, A) < p(z, B), hence p(z, B) is
not greater then p(z, A); and U,, V,, are operation because if z € U, then p(z, A) —
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p(z,B) = r > 0, so again by the triangle inequality we conclude B,.(z) < U,.
Showing V}, is open is similar. O

Exercise 4.20: Folland Exercise 4.4.

Let X =R, and let F be the family of all subsets of R of the form U u (V nR) where
U,V are open in the usual sense. Then J is a topology that is Hausdorff but not
regular. (In view of Folland Exercise 4.3, this shows that a topology stronger than a
normal topology need not be normal or even regular.)

Exercise 4.21: Folland Exercise 4.5.

Every separable metric space is second countable.

Solution. Let (X, p) be separable metric spaces, say with countable dense subset ). Then
take the countable base to be & = {B,(q)},cq_, 4eo- This is a base: If U # @ is open in X,
then for all g € U there exists r, € Q¢ such that B, (q) € U; we claim U = | ;.o Br,(9)-
Indeed, if = € U then for all 7, € Q¢ (where ry is the guaranteed positive rational numbers
such that B,, < U), there exists ¢ € Q) such that ¢ € B, »(x)or equivalently, z € B, 2(q),
which is true in the union. O

The previous proposition proves the forward direction. On the other hand, let A be
countable and dense in the separable metric space X. Consider the collection B of balls
B(z,1/n),z € A,n € Z=;. Take any open set E and consider y € E. Then B(y,1/m) c E
for some m. As A is dense, A n B(y,(2m)™') # &, so we can choose an x € A with
d(z,y) < (2m)~t. Thus,

ye Ble,(2m)™") < Bly.m™) < E,
so E is the union of elements of B that it contains. Thus B is a base for X (as E was
arbitrary) and B is countable since A and Zs; are.

Exercise 4.22: Folland Exercise 4.6.

Let € = {(a,b] | —0 < a <b < w©}.
(a) € is a base for a topology I on R in which the members of € are both open and
closed.
(b) F is first countable but not second countable. (If x € R, every neighborhood base
at x contains a set whose supremum is x.)
(c) Q is dense in Q with respect to I. (Thus the converse of Proposition 11 is false.)
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Exercise 4.23: Folland Exercise 4.7.

If X is a topological space, a point x € X is called a cluster point of the sequence {z;}
if for every neighborhood U of x,x; € U for infinitely many j. If X is first countable,
x is a cluster point of {xz;} if and only if some subsequence of {x;} converges to .

Solution. Let {x;}72, be a sequence in a first countable space X, and fix z € X. Since X is
first countable, there exists a countable neighborhood base {V;}52, at x. Let U; = (;_, Vi
Then {U;} is an countable neighborhood base for z, and moreover Uy > Uy o - - .

Given a sequence {z,}*_,, if a subsequence {z,, }~, converges to x, then for any
neighborhood U of z, there exists N € Z~, such that z,, € U whenever k > N. Hence x
is a cluster point of {x,}%_;.

Conversely, if x is a cluster point of {x,}*_, in a first countable space X, there exists
a countable nested neighborhood base {U,}?_; at z. Inductively choose nj > ng_; such
that z,, € Uy. For any neighborhood U of x, Uy < U for some N, ensuring xz,, € U for
all k > N. Thus, the subsequence (x,, )7, converges to . O

Exercise 4.24: Folland Exercise 4.8.

If X is an infinite set with the cofinite topology and {z;} is a sequence of distinct
points in X, then z; — x for every z € X.

Solution. Let U be an open neighborhood of x € X. Then U¢ must finite, hence U
is infinite. Since {x;}72, is an infinite collection of distinct points, there must be some
J € Zz such that x; € U whenever j > J. Since U was arbitrary, we conclude z; — z. [

Exercise 4.25: Folland Exercise 4.9.

If X is a linearly ordered set, the topology J generated by the sets {z | z < a} and
{z | x > a} ranging over each a € X is called the order topology.
(a) If a,b e X and a < b, there exist U,V € F with a € U,b e V, and = < y for all
x € U and y € V. The order topology is the weakest topology with this property.
(b) If Y < X, the order topology on Y is never stronger than, but may be weaker
than, the relative topology on Y induced by the order topology on X.
(c) The order topology on R is the usual topology.

Exercise 4.26: Folland Exercise 4.10.

A topological space X is called disconnected if there exist nonempty open sets U,V
such that U n'V = @ and U UV = X; otherwise X is connected. When we speak of
connected or disconnected subsets of X, we refer to the relative topology on them.

(a) X is connected if and only if @ and X are the only subsets of X that are both
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open and closed.

(b) If {E,},c4 is a collection of connected subsets of X such that (), _, Eo # @, then
U,ea Eo is connected.

(c) If A< X is connected, then A is connected.

(d) Every point z € X is contained in a unique maximal connected subset of X, and
this subset is closed. (It is called the connected component of z.)

Solution. (a) (= ) Suppose there exists a clopen F < X. The obvious choice is £ = U
and F° = V; since F is clopen we have E, E° are nonempty disjoint open sets that union
to X, hence X is disconnected. ( <= ) Suppose X is disconnected. We want some clopen
E < X. Since X is disconnected, there exist nonempty disjoint open U,V < X such that
U uV = X. The obvious choice here is £ = U; indeed, U is open and U¢ =V is open,
hence V¢ = U is closed, so U is clopen.

(b) Define E = | J .4 Fo. For non-empty open sets U,V < E covering E, choose
z € (\yen Pa with 2 € U, and y € V such that y € E, for some a € A. Then, U n E,, and
V n E, are non-empty open sets in E, covering it. Since F, is connected, U NV # @,
proving F is connected.

(c¢) For disjoint open sets U,V < A covering A, write U = U' n Aand V = V' n A for
open sets U', V' < X. Then U' n A and V' n A are disjoint open sets in A covering A.
If A is connected, U’ n A = @. This implies U’ n Acc(A) = &, leading to U' n A = @.
Thus, A is connected.

(d) Let z € X and define € := {A < X | A is connected and x € A}. Then, C = JC
is connected by part (b). If A € X is connected with C' € A, then = € A implies A € C,
leading to A < C'. Thus, C' is maximal. For any maximal connected set C’ € X containing
z, C' € Cimplies C’ < C, and maximality of C’ gives C' = C. Hence, C' is unique. Since C'
is connected (by part (c)) and contains C, it follows that C' = C, showing C is closed. [

Exercise 4.27: Folland Exercise 4.11.

If By, ..., E, are subsets of a topological space, the closure of | J{ E; is | J] E;.

Exercise 4.28: Folland Exercise 4.12.

Let X be a set. A Kuratowski closure operator on X is a map A — A* from
P(X) to itself satisfying (i) @* = @, (ii) A = A* for all A, (iii) (4%)* = A* for all A,
and (iv) (A u B)* = A* U B* for all A, B.
(a) If X is a topological space, the map A — A is a Kuratowski closure operator.
(Use Folland Exercise 4.11.)
(b) Conversely, given a Kuratowski closure operator, let ¥ = {A c X | A = A*} and
J ={Uc X |U°eF}. Then J is a topology, and for any set A < X, A* is its
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closure with respect to 7.

Exercise 4.29: Folland Exercise 4.13.

If X is a topological space, U is open in X, and A is dense in X, then U = U n A.

Solution. We use the fact that in any topological space X, for any subset F of X, a point
x € X has z € E if and only if every open neighborhood intersects E.

Un AcUsince Un A c U, so suffices to show U < U n A. If x € U then every open
neighborhood of z intersects U. But z € A = X too, so every open neighborhood of z also
intersects A. Hence every open neighborhood of x intersects U n A, so x € U n A. m

4.2 Continuous Maps

Topological spaces are the natural setting for the concept of continuity, which can be
described in either global or local terms as follows.

Definition 30. Let X and Y be topological spaces and f a map from X to Y.

Then f is called continuous if f~1(V') is open in X for every open VY. (Since
YA = [fYA)]°, an equivalent condition is that f~'(A) is closed in X for every
closed AcY.)

If x € X, f is called continuous at x if for every neighborhood V' of f(x) there is a
neighborhood U of x such that f(U) =V, or equivalently, if f~1(V') is a neighborhood of
x for every neighborhood V' of f(x).

Exercise 4.31.

Show the equivalence of the above two definitions of continuity at a point.

Clearly, if f: X - Y and ¢g: Y — Z are continuous (or f is continuous at x and g is
continuous at f(z)), then g o f is continuous (at z).

Notation 32. We shall denote the set of continuous maps from X toY by C(X,Y).
Proposition 4.33: 4.8.

The map f: X — Y is continuous if and only if f is continuous at every x € X.

Proof. Tf f is continuous and V is a neighborhood of f(z), f~!(V°) is an open set containing
x, so f is continuous at x. Conversely, suppose that f is continuous at each x € X. If
V < Y is open, V is a neighborhood of each of its points, so f~1(V) is a neighborhood of
each of its points. Thus f~!(V) is open, so f is continuous. ]
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Proposition 4.34: 4.9.

If the topology on Y is generated by a family of sets €, then f: X — Y is continuous
if and only if f~1(V) is open in X for every V € €.

Proof. This is clear from Proposition 7 and the fact that the set mapping f~! commutes
with unions and intersections. O

Definition 35. If f: X — Y is bijective and f and f~! are both continuous, f is called
a homeomorphism, and X and Y are said to be homeomorphic.

In the case f: X — Y is homeomorphism, the set mapping f~! is a bijection from the
open sets in Y to the open sets in X, so X and Y may be considered identical as far as
their topological properties go.

The following provides an example of a homeomorphism between familiar spaces,
which can also show how some properties are easily recognized as not being topological of
nature.

Example 36. The tangent function is a homeomorphism between (—m/2,7/2) and R (with
the usual topologies) and thus preserves topological structures. Properties like boundedness
then are not topological in nature.

Definition 37. If f: X — Y is injective but not surjective, and f: X — f(X) is a
homeomorphism when f(X) c Y is given the relative topology, f is called an embedding.

Definition 38. If X is any set and {fo: X — Yo} o4 15 a family of maps from X into
some topological spaces Y, there is a unique weakest topology I on X that makes all the
fo continuous; it is called the weak topology generated by {fu},.4, or the initial
topology generated by {fa},.a- Namely, T is the topology generated by sets of the
form f71(U,) where a € A and U, is open in Y,

Thus the initial topology generated by {fuo}ocq i T{fa ' (Us) | v € A}).

Example 39 (Cartesian Product). The most important example of this construction is the
Cartesian product of topological spaces. If {X} o4 i any family of topological spaces, the
product topology on X = ], Xa is the weak topology generated by the coordinate maps
To: X — X, When we consider a Cartesian product of topological spaces, we always
endow it with the product topology unless we specify otherwise. By Proposition 7, a base for
the product topology is given by the sets of the form ()} ’ﬂ';jl(Uaj) where n € Zxq and Uy,
is open in X, for 1 < j < n. These sets can also be written as [ 1,ca Ua where U, = X,
if a # aq,...,q,. Notice, in particular, that if A is infinite, a product of nonempty open
sets | [ ea Ua is open in [ [ o4 Xa if and only if Uy, = X, for all but finitely many a.

Proposition 4.40: 4.10.
If X, is Hausdorff for each a € A, then X =[], .4 X, is Hausdorff.
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Proof. 1f x and y are distinct points of X, we must have 7, (z) # 7,(y) for some «. Let
U and V be disjoint neighborhoods of 7,(z) and 7,(y) in X,. Then 7 }(U) and 71 (V)
are disjoint neighborhoods of x and y in X. m

Proposition 4.41: 4.11.

If {X,}aea and Y are topological spaces and X = [[,.4 Xa, then f: Y — X is

continuous if and only if 7, o f is continuous for each «.

acA

Proof. 1f 7, o f is continuous for each «, then f~!(7,(U,)) is open in Y for each open
U, in X,. By Proposition 34, f is continuous. The converse is obvious. O

If the spaces X, are all equal to some fixed space X, the product [] ., Xo is just
the set X4 of mappings from A to X, and the product topology is just the topology of
pointwise convergence. More precisely:

Proposition 4.42: 4.12.

If X is a topological space, A is a nonempty set, and {f,} is a sequence in X4, then
fn — f in the product topology if and only if f,, — f pointwise.

Proof. The sets
k
N(U, ..., Uy) =[], 7} (U;) = {g € X* | glay) € Uj for 1 < j < k},

where k € Zs and U, is a neighborhood of f(a;) in X for each j, form a neighborhood
base for the product topology at f. If f, — f pointwise, then f,(c;) € U; for n > N;
and hence f, € N(Uy,...,Uy) for n = max(Ny, ..., Ng); therefore f, — f in the product
topology. Conversely, if f,, — f in the product topology, a € A, and U is a neighborhood
of f(a), then f, € N(U) = 7' (U) for large n; hence f,(a) € U for large n, and so
fula) = f(a). O

We shall be particularly interested in real- and complex-valued functions on topological
spaces. If X is any set, we denote by B(X,R) (resp. B(X,R)) the space of all bounded

real- (resp. complex-)valued functions on X. If X is a topological space, we also have the
spaces C'(X,R) and C(X,R) of continuous functions on X, and we define

BC(X,F) = B(X,F)nC(X,F) (F=RorR).

Notation 43. In speaking of complex-valued functions we shall usually omit the C and
simply write B(X),C(X), and BC(X).

Since addition and multiplication are continuous from Cx C to C,C'(X) and BC(X)
are complex vector spaces.
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Definition 44. If f € B(X), we define the uniform norm of f to be
[flla = sup{|f(z)| | # € X}.

The function p(f, g) = | f — g/l is easily seen to be a metric on B(X), and convergence
with respect to this metric is simply uniform convergence on X.B(X) is obviously complete
in the uniform metric: If {f,} is uniformly Cauchy, then {f,(x)} is Cauchy for each z,
and if we set f(z) = lim,, f,(z), it is easily verified that | f, — f|, — 0.

Proposition 4.45: 4.13.

If X is a topological space, BC(X) is a closed subspace of B(X) in the uniform metric;
in particular, BC(X) is complete.

Proof. Suppose {f,} € BC(X) and | f, — f], — 0. Given € > 0, choose N so large that
|fo — fl, <e/3 forn> N. Given n > N and x € X, since f, is continuous at x there is
a neighborhood U of x such that |f,(y) — f.(x)| < ¢&/3 for y € U. But then

[f () = F@)] < [f W) = fa)] + [fn(y) = ful@)] + [fulx) = f2)| <&,

so f is continuous at x. By Proposition 33, f is continuous. [

For a given topological space X it may happen that C'(X) consists only of constant
functions. This is obviously the case, for example, if X has the trivial topology, but it can
happen even when X is regular. Normal spaces, however, always have plenty of continuous
functions, as the following fundamental theorems show.

Lemma 4.46: 4.14.

Suppose that A and B are disjoint closed subsets of the normal space X, and let
A ={k27" | n € Z=1,0 < k < 2"} be the set of dyadic rational numbers in (0, 1). There
is a family {U, | r € A} of open sets in X such that A < U, < B for all r € A and
U, c U, forr < s.

Proof. By normality, there exist disjoint open sets V, W such that Ac V, Bc W. Let
Ui = V. Then since W€ is closed,

Ac U1/2 (e Ul/g C WC c B°.

We now select U, for r = k27" by induction on n. Suppose that we have chosen U, for
r=k2"when 0 <k <2"andn < N—1. To find U, for r = (25 +1)27" (0 < j < 2V-1),
observe that Ujpi-~ and (Ugj41y21-v) are disjoint closed sets (where we set Ug = A and
Uf = B), so as above we can choose an open U, with

Ac Ujgl—N cU. cU,c UGj41)21-~ < B
These U,s have the desired properties. O
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Theorem 4.47: 4.15: Urysohn’s Lemma.

Let X be a normal space. If A and B are disjoint closed sets in X, there exists
feC(X,[0,1]) such that f =0on A and f =1 on B.

Proof. Let U, be as in Lemma 46 for » € A, and set U; = X. For z € X, define
f(z) = inf{r |z € U,}. Since A < U, < B for 0 < r < 1, we clearly have f(z) = 0 for
rzeAand f(x) =1for v e B, and 0 < f(z) <1 for all x € X. It remains to show that f
is continuous. To this end, observe that f(x) < « if and only if z € U, for some r < «a if
and only if x € | J,_, Uy, so f1((—0,@)) = ,_, Ur is open. Also f(z) > « if and only
if z ¢ U, for some r > « if and only if z ¢ U, for some s > « (since U, < U, for s < r) if
and only if x € |, , (US)C, so [7((a,0)) = U=y, (Us)c is open. Since the open half-lines
generate the topology on R, f is continuous by Proposition 34. O]

The proof of Urysohn’s lemma may seem somewhat opaque at first, but there is a
simple geometric intuition behind it. If one pictures X as the plane R? and the sets U, as
regions bounded by curves, the curves 0U, form a “topographic map” of the function f:

Theorem 4.48: 4.16: The Tietze Extension Theorem.

Let X be a normal space. If A is a closed subset of X and f € C(A, [a,b]), there exists
F e C(X,[a,b]) such that F|, = f.

Proof. Replacing f by (f —a)/(b — a), we may assume that [a,b] = [0,1]. We claim
that there is a sequence {g,} of continuous functions on X such that 0 < g, < 2"~!/3"
on X and 0 < f—>7g; < (2/3)" on A. To begin with, let B = f~1([0,1/3]) and
C = f71([2/3,1]). These are closed subsets of A, and since A itself is closed, they are
closed in X. By Urysohn’s Lemma there is a continuous g;: X — [0,1/3] with ¢y = 0 on
B and ¢; = 1/3 on C} it follows that 0 < f — ¢g; < 2/3 on A. Having found g1, ..., gn—1,
by the same reasoning we can find g,: X — [0,2"7!/3"] such that g, = 0 on the set
where f — 377" g; < 271/3" and g, = 2"7!/3" on the set where f — Y17 g; = (2/3)".
Let F = >\ gn. Since |g,[, < 2"7!/3", the partial sums of this series converge uniformly,
so F'is continuous by Proposition 45. Moreover, on A we have 0 < f — ' < (2/3)" for all
n, whence F' = f on A. m

Corollary 4.49: 4.17.

If X is normal, A ¢ X is closed, and f € C(A), there exists F' € C'(X) such that
Fla=f.

Proof. By considering real and imaginary parts separately, it suffices to assume that f is
real-valued. Let g = f/(1+|f]). Then g € C(A, (—1,1)), so there exists G € C'(X,[—1,1])
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with G|4 = g. Let B = G7'({-1,1}). By Urysohn’s lemma there exists h € C(X, [0, 1])
with h = 1 on A,h = 0 on B. Then hG = G on A and |hG| < 1 everywhere, so
F = hG/(1 — |hG|) does the job. O

Definition 50. A topological space X is called completely regular if X is T7 and for
each closed A < X and each x ¢ A there exists f € C(X,[0,1]) such that f(z) =1 and
f =0 on A. Completely reqular spaces are also called Tychonoff or Ts1..

The latter terminology is justified, for every completely regular space is T3 (if A, z, f
are as above, then f~ (( , )) and f‘l((—oo l)) are disjoint neighborhoods of x and

2
A), and Urysohn’s lemma shows that every Ty space is completely regular.

Exercise 4.51: Folland Exercise 4.14.

If X and Y are topological spaces, f: X — Y is continuous if and only if f(A) = f(A)
for all A < X if and only if f~1(B) < f~'(B) forall Bc Y.

Solution. Proof. Suppose f is continuous and consider any A = X. Then f~!(f(A)) is a
closed set in X. Since A = f~(f(A)) = f~*(f(A)), one concludes that A = f~1(f(A))
as the latter is a closed set and the former is the smallest closed set containing A. Finally,
this allows one to see that for every A < X,

F(A) < g7 (7)) | = 7CA).

(Note that the inclusions used regarding images and preimages are in general strict unless
more assumptions are made on the map f.)

Next, suppose f(A) = f(A) for all A c X. Given B c Y, f~}(B) ¢ X and one can
write

7(F7(B)) < F(F(B)) = B.
Taking the inverse image on both sides and using the fact that f~1(B) <

(@) v .
I

FiBy < (T
For the final implication, suppose f~1(B) < f~}(B) for all B = Y. Given a closed set

D c Y one can then write

7D) < f'(D) = /(D) = T1(D),
so that f~}(D) = f~1(D), that is, f~*(D) is closed in X for every closed set D < Y.
Therefore f is continuous. O
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Exercise 4.52: Folland Exercise 4.15.

If X is a topological space, A < X is closed, and g € C(A) satisfies g = 0 on A, then
the extension of g to X defined by g(x) = 0 for x € A® is continuous.

Solution. Let § = 0 on A° and g on A. Let U be open in R. Since g € C(A), we may
assume OvU since otherwise §~1({0}) = A, hence §1({0}) = ¢1({0}), hence closed by
continuity of ¢ (and the fact {0} is closed in C since C is T7). So assume 0 € U. Then

~_1 ¢ -1 . . ~ . .
g ({0}) = A°UIJA ug ({0}), which is closed. Hence g is continuous. O
=(A°)°=closed IWI

Exercise 4.53: Folland Exercise 4.16.

Let X be a topological space, Y a Hausdorff space, and f, g continuous maps from X
toY.

(a) {z| f(x) = g(x)} is closed.
(b) If f = g on a dense subset of X, then f = g on all of X.

Exercise 4.54: Folland Exercise 4.17.

If X is a set, F a collection of real-valued functions on X, and J the weak topology
generated by F, then I is Hausdorff if and only if for every x,y € X with x # y there
exists f € F with f(z) # f(y).

Exercise 4.55: Folland Exercise 4.18.

If X and Y are topological spaces and yo € Y, then X is homeomorphic to X x {yo}
where the latter has the relative topology as a subset of X xY.

Exercise 4.56: Folland Exercise 4.19.

If {X,} is a family of topological spaces, X =[], X, (with the product topology) is
uniquely determined up to homeomorphism by the following property: There exist
continuous maps 7, : X — X, such that if Y is any topological space and f,, € C(Y, X,,)
for each a, there is a unique F' € C(Y, X) such that f, = 7, o F. (Thus X is the
category-theoretic product of the X,s in the category of topological spaces.)

Exercise 4.57: Folland Exercise 4.20.

If A is a countable set and X, is a first (resp. second) countable space for each « € A,
then [[,.4 Xa is first (resp. second) countable.
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Exercise 4.58: Folland Exercise 4.21.

If X is an infinite set with the cofinite topology, then every f e C(X) is constant.

Solution. Proof. First, we will show that if X is any infinite set equipped with the
cofinite topology, then no two nonempty open sets are disjoint (this property is called
hyperconnected). To see this, consider two open sets U and U’ which can be written
as U = F° and U’ = (F")° for some finite sets F, F” in this topology. As F'u F’ is also a
finite set, the set (F' U F') is an open set, and any point in this set is also in both U and
U', that is, U n U’ # (.

Now, suppose that f is continuous but not constant. Then it takes on at least two
distinct values, say p,q € C. Hence we can find € > 0 such that B.(p) n B-(q) = &. As
these sets are disjoint nonempty open sets in C, the preimage of the sets would be disjoint
nonempty open sets in X which cannot happen by the previous paragraph. Thus f must
be constant. O]

Exercise 4.59: Folland Exercise 4.22.

Let X be a topological space, (Y, p) a complete metric space, and {f,} a sequence in
Y such that sup,cy p(fn(2), fm(z)) — 0 as m,n — oo. There exists a unique f € Y*
such that sup,.y p(fn(x), f(z)) — 0 as n — . If each f, is continuous, so is f.

Exercise 4.60: Folland Exercise 4.23.

Give an elementary proof of the Tietze extension theorem for the case X = R.

Exercise 4.61: Folland Exercise 4.24.

A Hausdorff space X is normal if and only if X satisfies the conclusion of Urysohn’s
lemma if and only if X satisfies the conclusion of the Tietze extension theorem.

Exercise 4.62: Folland Exercise 4.25.

If (X,9) is completely regular, then J is the weak topology generated by C'(X).

Exercise 4.63: Folland Exercise 4.26.

Let X and Y be topological spaces.

(a) If X is connected (see Folland Exercise 4.10) and f € C(X,Y), then f(X) is
connected.

(b) X is called arcwise connected if for all g, x; € X there exists f € C([0,1], X)
with f(0) = 29 and f(1) = x;. Every arcwise connected space is connected.
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(c) Let X = {(0,0)} u {(s,t) e R? | t = sin(1/s)}, with the relative topology induced
from R%. Then X is connected but not arcwise connected.

Exercise 4.64: Folland Exercise 4.27.

If X, is connected for each a € A (see Folland Exercise 4.10), then X = [ .4 Xa is
connected. (Fix z € X and let Y be the connected component of  in X. Show that
Y includes {y € X | m,(y) = 7, (z) for all but finitely many a} and that the latter set
is dense in X. Use Folland Exercise 4.10,Folland Exercise 4.18.)

Exercise 4.65: Folland Exercise 4.28.

Let X be a topological space equipped with an equivalence relation, X the set of
equivalence classes, m: X — X the map taking each x € X to its equivalence class,

and J = {U c X ‘ 7~ Y(U) is open in X}.
(a) I is a topology on X. (It is called the quotient topology.)
(b) If Y is a topological space, f: X — Y is continuous if and only if f o7 is
continuous.
(c) X is T} if and only if every equivalence class is closed.

Exercise 4.66: Folland Exercise 4.29.

If X is a topological space and G is a group of homeomorphisms from X to itself, G
induces an equivalence relation on X, namely, z ~ y if and only if y = g(x) for some
g€ G. Let X = R?; describe the quotient space X and the quotient topology on it (as
in Folland Exercise 4.28) for each of the following groups of invertible linear maps. In
particular, show that in (a) the quotient space is homeomorphic to [0,o0); in (b) it is
T but not Hausdorff; in (c) it is Tp but not 77, and in (d) it is not Tp. (In fact, in (d)
X is uncountable, but there are only six open sets and there are points p € X such
that {p} = X.)

cosf@ —sinf
(a) {(sin@ cosf )‘QGR}

(b) {(é ‘ aeR}
() {<8 ?) a>0,beR}
(d) {<g 2) a,beQ\{O}}.
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4.3 Nets

As we have hinted above, sequential convergence does not play the same central
role in general topological spaces as it does in metric spaces. The reasons for this may
be illustrated by the following example. Consider the space C® of all complex-valued
functions on C, with the product topology (i.e., the topology of pointwise convergence),
and its subspace C'(C). On the one hand, by Corollary 11, if {f,} < C(C) and f, — f
pointwise, then f is Borel measurable, so the set of limits of convergent sequences in C(C)
is a proper subset of C®. Nonetheless, C(C) is dense in C®. Indeed, if f € C®, the sets

{g€ C®||g(x;) — f(x;)] <eforj=1,...,n} where n € Zsg,21,...,2, € C,e > 0,

form a neighborhood base at f, and each of these sets clearly contains continuous functions.

There is, however, a generalization of the notion of sequence that works well in arbitrary
topological spaces; the key idea is to use index sets more general than Z-,. The precise
definitions are as follows.

Definition 67. A directed set is a set A equipped with a binary relation < such that
e o<« forall e A;
o ifa < and B <y then a <y
e for any «, € A there exists v € A such that o < v and 5 < 7.

If a < B, we shall also write 5 = «.

Definition 68. A net in a set X is a mapping o — x,, from a directed set A into X. We

shall usually denote such a mapping by {x.) or just by {(x.) if A is understood, and
we say that {x,) is indexed by A.

acA’

Example 69. Here are some examples of directed sets:
(1) The set of positive integers Z=q, with j < k if and only if j < k.
(11) The set R\ {a}(a € R), with x < y if and only if |x — a| = |y — al.
1) The set of all partitions {x;}. of the interval [a,b] (i.e., a =2y < -+ < x, =b), with
350
{z;}e < {urto if and only if max(x; — x;_1) = max(y, — Ye—1).
(iv) The set N of all neighborhoods of a point x in a topological space X, with U <V if
and only if U > V. (We say that N is directed by reverse inclusion.)
(v) The Cartesian product Ax B of two directed sets, with (o, ) < (¢, 8) if and only if
asda and B <P (This is always the way we make Ax B into a directed set.)

Ezamples (1)-(iii) occur in elementary analysis: A net indexed by Z=o is just a sequence,
and the nets indexed by the sets in (ii) and (iii) occur in defining limits of real variables
and Riemann integrals. Example (iv) is of fundamental importance in topology, and we
shall see several uses of the construction in (v).

Definition 70. Let X be a topological space and E a subset of X.

A net (xo),. 4 15 eventually in E if there exists ag € A such that x, € E for all
a 2 g, and {(z,) is frequently in E if for every o € A there exists f 2 « such that
Tg € FE.
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A point x € X is a limit of (x,) (or {x,) converges to x, or x, — x) if for every
neighborhood U of x,{xs) is eventually in U, and = is a cluster point of {(x,) if for
every neighborhood U of x, {x,) is frequently in U.

The next three propositions show that nets are a good substitute for sequences.

Proposition 4.71: 4.18.

If X is a topological space, F < X, and x € X, then the following hold.
x € Acc(FE) — there exists a net in ' ~\ {z} that converges to .

rel — there exists a net in £ that converges to x.

Proof. If x is an accumulation point of | let N be the set of neighborhoods of z, directed
by reverse inclusion. For each U € N, pick 2y € (U \ {z}) n E. Then zyy — x. Conversely,
if xo € £\ {z} and z, — z, then every punctured neighborhood of x contains some z,
so « is an accumulation point of E. Likewise, if 2, — « where z, € E, then z € E, and
the converse follows from Proposition 3. n

Proposition 4.72: 4.19.

If X and Y are topological spaces, f: X —» Y, and z € X, then

f is continuous at x <= for every net (z, ) converging to x,{f(z,)) converges to f(a).

Proof. If f is continuous at z and V is a neighborhood of f(x), then f~*(V) is a neighbor-
hood of z. Hence, if 2, — z then {(z,) is eventually in f~'(V), so (f(x,)) is eventually in
V, and thus f(z,) — f(x). On the other hand, if f is not continuous at x, there is a neigh-
borhood V of f(x) such that f~!(V) is not a neighborhood of x, that is, = ¢ (f~*(V))°,

or equivalently, z € f~1(V¢). By Proposition 71, there is a net (x,) in f~}(V¢) that
converges to x. But then f(z,) ¢ V, so f(z,) - f(z). O

Definition 73. A subnet of a net (xa),c, is a net {ys)z.p together with a map 8 — oz
from B to A satisfying the following properties.

o For every ag € A there exists By € B such that ag = ag whenever 5 2 .
® Y = Ty,

Clearly if (x,) converges to a point z, then so does any subnet (xq).

Warning 4.74.

The name “subnet” is used because subnets perform much the same functions as
subsequences, but it should not be taken too literally, as the mapping 8 — as need
not be injective. In particular, the index set B may well have larger cardinality than
the index set A, and a subnet of a sequence need not be a subsequence.
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The following example demonstrates how different subnets can be from subsequences.

Example 75. Consider {xn}n€Z>1,xn = n. Then (1,1,2,2,3,3,...) is a subnet of
{Tn}nez., (but not a subsequence) defined by {s4n)} where ¢(n) = [(n +1)/2].

Proposition 4.76: 4.20.

If (xa),c4 is & net in a topological space X and x € X, then

x is a cluster point of (x,) <= {(x,) has a subnet converging to x.

Proof. If (yg) = (xa,) is a subnet converging to x and U is a neighborhood of z, choose
B1 € B such that yg € U for 8 2 1. Also, given a € A, choose 3 € B such that ag 2 o
for B = B>. Then there exists 8 € B with 8 2 8, and 8 X 3, and we have ag = a and
Ty = yp € U. Thus (x,) is frequently in U, so x is a cluster point of (z,). Conversely, if
x is a cluster point of (z,), let N be the set of neighborhoods of x and make N x A into
a directed set by declaring that (U, «) < (U’,«’) if and only if U > U’ and o < . For
each (U, v) € Nx A we can choose oy, € A such that oy, 2 7 and 4,,, € U. Then if
(U',9) 2 (U,7) we have a7y 2 v 2 v and 2oy, € U’ < U, whence it follows that
(Taq.,) 18 a subnet of (x,) that converges to . O

Exercise 4.77: Folland Exercise 4.30.

If A is a directed set, a subset B of A is called cofinal in A if for each a € A there
exists § € B such that a < 5.

(a) If B is cofinal in A and (x4, is a net, the inclusion map B — A makes (z5) 5.
a subnet of (z4), 4

(b) If (xa),c4 is & net in a topological space, then (x,) converges to z if and only if
for every cofinal B — A there is a cofinal C' < B such that (z,) . converges to
.

Exercise 4.78: Folland Exercise 4.31.

Let (x,)
(a) If k — ny is a map from Zg to itself, then (z,, ),,_ is a subnet of (z,,) if and
only if n; — 0 as k — o0, and it is a subsequence (as defined in Folland Section
0.1) if and only if ny is strictly increasing in k.
(b) There is a natural one-to-one correspondence between the subsequences of {x,,)
and the subnets of (x,,) defined by cofinal sets as in Folland Exercise 4.30.

€0 be a sequence.
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Exercise 4.79: Folland Exercise 4.32.

A topological space X is Hausdorff if and only if every net in X converges to at most
one point. (If X is not Hausdorff, let x and y be distinct points with no disjoint
neighborhoods, and consider the directed set N, x N,, where N, N, are the families of
neighborhoods of z,y.)

Exercise 4.80: Folland Exercise 4.33.

Let (za),c4 be a net in a topological space, and for each a € A let E, = {z5 | B 2 .
Then z is a cluster point of (x,) if and only if z € (.4 Ea-

Exercise 4.81: Folland Exercise 4.34.

If X has the weak topology generated by a family & of functions, then (x,) converges
to x € X if and only if {f(z,)) converges to f(z) for all f € F. (In particular, if
X = [Lie; Xi, then z, — « if and only if m;(z,) — mi(x) for all i € 1.)

Exercise 4.82: Folland Exercise 4.35.

Let X be a set and A the collection of all finite subsets of X, directed by inclusion.
Let f: X — R be an arbitrary function, and for A e A, let z4 = >, _, f(x). Then the

net (z4) converges in R if and only if {z | f(z) # 0} is a countable set {z,},.,  and
YU 1f ()] < o0, in which case z4 — Y, f(z,). (Cf. Folland Proposition 21.)

Exercise 4.83: Folland Exercise 4.36.

Let X be the set of Lebesgue measurable complex-valued functions on [0, 1]. There is
no topology J on X such that a sequence {f,,) converges to f with respect to J if and
only if f,, — f a.e. (Use 7?7 and Folland Exercise 2.30,Folland Exercise 2.31(b).)

Remark 84. The theory of nets is sometimes called the Moore-Smith theory of convergence,
after its originators. Another general theory of convergence, invented by H. Cartan and
publicized by Bourbaki, is based on the notion of filters. A filter in a set X is a family
F < F(X) with the following properties:

If X is a topological space, a filter F in X converges to x € X if every neighborhood
of x belongs to F. Filters and nets are related as follows. If (xo) .4 s a net in X, its
derived filter is the collection of all E < X such that {(x,) is eventually in E. On the
other hand, if F is a filter, then F is a directed set under reverse inclusion, and a net
(xp)pey indezed by F is said to be associated to F if xp € F for all F € F. It is then easy
to verify that a net {x,) converges to x if and only if its derived filter converges to x, and
a filter & converges to x if and only if all of its associated nets converge to x.
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4.4 Compact Spaces

In Folland Section 0.6 there are three equivalent characterizations of compactness
for metric spaces: the Heine-Borel property, the Bolzano-Weierstrass property, and
completeness plus total boundedness. Only the first two of these make sense for general
topological spaces, and it is the first one that turns out to be the most useful.

Definition 85. We call a topological space X compact if whenever {U,}, _, is an open
cover of X —that is, a collection of open sets such that X = |, .4 Us—there ezists a
finite subset B of A such that X = |J,c5 Ua.

A subset'Y of a topological space X 1is called compact if it is compact in the relative
topology; thus Y < X is compact if and only if whenever {Us} .4 is a collection of open
subsets of X withY < |J,cq Ua, there is a finite B < A withY < | .5 Us. Furthermore,

Y is called precompact if its closure is compact.

To be brief (although somewhat sylleptic, since the adjectives “open” and “finite” refer
to different things), we say “X is compact if every open cover of X has a finite subcover.”

DeMorgan’s laws lead to the following characterization of compactness in terms of
closed sets.

Definition 86. A family {Fy,} .4 of subsets of X is said to have the finite intersection
property if (.5 Fo # @ for all finite B < A.

Proposition 4.87: 4.21.

A topological space X is compact if and only if for every family {F,} ., of closed sets
with the finite intersection property, (.4 Fo # .

acA

Proof. Let U, = (F,)°. Then U, is open, (\,c4 Fao # @ if and only if | J .4 Us # X, and
{F,} has the finite intersection property if and only if no finite subfamily of {U,} covers
X. The result follows. ]

We now list several basic facts about compact spaces.

Proposition 4.88: 4.22.

A closed subset of a compact space is compact.
Proof. If X is compact, F' < X is closed, and {U,},., is a family of open sets in X with
F < UaealU,, then {U,}, 4 U {F°} is an open cover of X. It has a finite subcover, so by

discarding F*° from the latter if necessary, we obtain a finite subcollection of {U,}., that
covers F'. [l
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Proposition 4.89: 4.23.

If F' is a compact subset of a Hausdorff space X and x ¢ F, there are disjoint open
sets U,V such that r e U and F c V.

Proof. For each y € F', choose disjoint open U, and V, with x € U, and y € V,,. {Vy}yeF is
an open cover of F, so it has a finite subcover {V, }7. Then U = (/' U,, and V = (] V},
have the desired properties. O]

Proposition 4.90: 4.24.

Every compact subset of a Hausdorff space is closed.

Proof. According to Proposition 89, if F' is compact then F© is a neighborhood of each of
its points,and hence is open. O]

Warning 4.91.

In a non-Hausdorff space, compact sets need not be closed (for example, every subset
of a space with the trivial topology is compact), and the intersection of compact sets
need not be compact; see Folland Exercise 4.37.

Remark 92. Despite Warning 91, in a Hausdorff space the intersection of any family of
compact sets is compact by Propositions 88 and 90. Moreover, in an arbitrary topological
space a finite union of compact sets is always compact. (If Ky,... K, are compact and
{Ua} is an open cover of | J| K;, choose a finite subcover of each K; and combine them.)

Proposition 4.93: 4.25.

Every compact Hausdorff space is normal.

Proof. Suppose that X is compact Hausdorff and E, F' are disjoint closed subsets of X.
By Proposition 89, for each x € E there exist disjoint open sets U,, V, with z € U,, F < V.
By Proposition 88, E is compact, and {U,} . is an open cover of E, so there is a finite
subcover {Uy,}7. Let U = | J] Uy, and V = ()] V,,. Then U and V" are disjoint open sets
with Ec U and Fc V. O

Proposition 4.94: 4.26.

If X is compact and f: X — Y is continuous, then f(X) is compact.

Proof. Let {V,} be an open cover of f(X) in Y. Then {f~'(V,)} is an open cover of X,
so it has a finite subcover {f~1(V,,)}, and {V,,,} is then a finite subcover of f(X). O
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Corollary 4.95: 4.27.
If X is compact, then C(X) = BC(X).

Proposition 4.96: 4.28.

If X is compact and Y is Hausdorff, then any continuous bijection f: X — Y is a
homeomorphism.

Proof. If E < X is closed, then E is compact, hence f(F) is compact, hence f(F) is
closed, by Propositions 88, 90 and 94. This means that f~! is continuous, so f is a
homeomorphism. O

We now show that a version of the Bolzano-Weierstrass property holds for compact
topological spaces. As one might suspect, it is merely necessary to replace sequences by
nets.

Theorem 4.97: 4.29.

If X is a topological space, the following are equivalent.

(a) X is compact.
(b) Every net in X has a cluster point.
(c) Every net in X has a convergent subnet.

Proof. The equivalence of (b) and (c) follows from Proposition 76. If X is compact and
(xq) is a net in X, let E, = {z3| B 2 a}. Since for any a, € A there exists 7 € A
with 7 2 @ and v 2 f, the family {E,} ., has the finite intersection property, so by
Proposition 87, (\,cy Ea # @. If x € (o4 Eo and U is a neighborhood of z, then U
intersects each E,, which means that (z,) is frequently in U, so x is a cluster point of
(). On the other hand, if X is not compact, let {Us} g p be an open cover of X with no
finite subcover. Let A be the collection of finite subsets of B, directed by inclusion, and
for each A € A let x4 be a point in (| gy Us)®. Then (wa) ., is a net with no cluster
point. Indeed, if x € X, choose f € B with z € Us. If A€ A and A 2 {5} then x4 ¢ Up,
so x is not a cluster point of (x4). O

We conclude by mentioning two other useful concepts related to compactness.

Definition 98. Let X be a topological space.
e We call X countably compact if every countable open cover of X has a finite
subcover.
e We call X sequentially compact if every sequence in X has a convergent subse-
quence.
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Of course, every compact space is countably compact, and for metric spaces com-
pactness and sequential compactness are equivalent. However, in general there is no
relation between compactness and sequential compactness. See Exercises Folland Exercise
4.39,Folland Exercise 4.40,Folland Exercise 4.41,Folland Exercise 4.42,Folland Exercise
4.43 for further results and examples.

Exercise 4.99: Folland Exercise 4.37.

Let 0/ denote a point that is is not an element of (—1,1), and let X = (—1,1)u {0'}.
Let F be the topology on X generated by the sets (—1,a), (a,1), [(=1,b)~ {0}] U {0},
and [(¢,1) ~ {0}] U {0’} where —1 <a <1,0<b< 1, and —1 < ¢ < 0. (One should
picture X as (—1,1) with the point 0 split in two.)
(a) Define f,g: (=1,1) > X by f(z) = x for all z, g(x) = z for z # 0, and ¢(0) = 0.
Then f and g are homeomorphisms onto their ranges.
(b) X is T} but not Hausdorff, although each point of X has a neighborhood that is
homeomorphic to (—1,1) (and hence is Hausdorff).
(c) The sets [—3, 1] and ([—3, 3] ~ {0}) U {0’} are compact but not closed in X, and

T 202 202
their intersection is not compact.

Exercise 4.100: Folland Exercise 4.38.

Suppose that (X,9) is a compact Hausdorff space and J’ is another topology on X.
If 7 is strictly stronger than J, then (X,J’) is Hausdorff but not compact. If 9’ is
strictly weaker than 7, then (X,9J’) is compact but not Hausdorff.

Solution. If J is strictly stronger than 9 but is compact then (X,J") — (X,9) via
x +— x is a continuous bijection of a compact space onto a Hausdorff space, hence is
a homeomorphism. But then f is a bijection of 9 onto J’, a contradiction. But I’ is
Hausdorff, since the same separating sets from I < J” are available for use.

If 97 is strictly weaker then I, then (X,J) — (X,J’) via © — =z is a continuous
bijection of a compact space onto a Hausdorff space, hence is a homeomorphism, so we
reach the same contradiction as above. But (X, 9’) is compact, since any open cover of X
in I’ is an open cover of X in J, which by compactness of (X,J) means there exists a
finite subcover. O]

Exercise 4.101: Folland Exercise 4.39.

Every sequentially compact space is countably compact.

Solution. Suppose for a contradiction X is sequentially compact but not countably
compact, so there exists a countable open cover {U;}72, of X without a finite subcover.

Version of April 30, 2024 at 11pm EST Page 162 of 368


https://www.greysonwesley.com/home

Greyson C. Wesley §4.4: Compact Spaces

For all j, pick

rj€ X N\ (U]: Ur).

Since X is sequentially compact, there exists a subsequence {z;,}7; converging to some
xr € X. But then z is not in any of the Uy, since if x € Uy for some £ then so are z;, for all
k > 0 (by definition of convergence), contradicting z;, ., € X ~ ((J*]' U,) < U (since
then x;, € U and z;, € Uy). O

Exercise 4.102: Folland Exercise 4.40.

If X is countably compact, then every sequence in X has a cluster point. If X is also
first countable, then X is sequentially compact.

Exercise 4.103: Folland Exercise 4.41.

A T space X is countably compact if and only if every infinite subset of X has an
accumulation point.

Exercise 4.104: Folland Exercise 4.42.

The set of countable ordinals (see Folland Section 0.4) with the order topology (Propo-
sition 34) is sequentially compact and first countable but not compact. (To prove
sequential compactness, use Folland Proposition 20.)

Exercise 4.105: Folland Exercise 4.43.

For z € [0,1), let >.” a,(2)27™", where a,(z) € {0,1} be the base-2 decimal expansion
of z. (If x is a dyadic rational, choose the expansion such that a,(x) = 0 for n large.)
Then the sequence {a,,) in {0, 1}[%V has no pointwise convergent subsequence. Hence
{0,1}1%Y with the product topology arising from the discrete topology on {0, 1}, is
not sequentially compact. (It is, however, compact, as we shall show in next section.)

Exercise 4.106: Folland Exercise 4.44.

If X is countably compact and f: X — Y is continuous, then f(X) is countably
compact.

Solution. Note that the proof of this result is the same as the classical result for compact
spaces, after replacing “open cover” with “countable open cover.” But for the sake of
completeness, we give the proof here. Consider any countable open cover, {Un}n€Z>1, of
f(X). Since f is continuous, f~'(U,) is open for each n € Zx; so that {f~"(Un)},cs.,
is a countable open cover of X. But since X is countably compact, there exists a finite
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subcover {f~1(U,, )}, such that

X c U:;l 1 (U) = f_1<UZ=1 U”k>'

This implies that

Fx) e (U o)) = U, U
hence, the finite collection {U,, },-, also covers f(X), finishing the proof. O

Exercise 4.107: Folland Exercise 4.45.

If X is normal, then X is countably compact if and only if C'(X) = BC(X). (Use
Folland Exercise 4.40 and Folland Exercise 4.44. If (x,,) is a sequence in X with no
cluster point, then {x, | n € Z¢} is closed, and Corollary 49 applies.)

45 Locally Compact Hausdorff Spaces

Definition 108.
A topological space is called locally compact if every point has a compact neighbor-
hood.

We shall be mainly concerned with locally compact Hausdorff spaces, which we call
LCH spaces.

Proposition 4.109: 4.30.

If X is an LCH space, U < X is open, and = € U, there is a compact neighborhood N
of x such that N c U.

Proof. We may assume U is compact; otherwise, replace U by U n F° where F is a
compact neighborhood of x. By Proposition 89, there are disjoint relatively open sets
V,W in U with z € V and 0U < W. Then V is open in X since V < U, and V is a closed
and hence compact subset of U ~. W. Thus we may take N = V. O

Proposition 4.110: 4.31.

If X is an LCH space and K < U ¢ X where K is compact and U is open, there exists
a precompact open V such that K cV <V c U.

Proof. By Proposition 109, for each z € K we can choose a compact neighborhood N, of
x with N, < U Then {No}xeK is an open cover of K, so there is a finite subcover {N; }7.
Let V = J] Ny ; then K < V and V = J N,, is compact and contained in U. O
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Lemma 4.111: 4.32: Urysohn’s Lemma—Locally Compact Version.

If X is an LCH space and K < U < X where K is compact and U is open, there exists
feC(X,[0,1]) such that f =1 on K and f = 0 outside a compact subset of U.

Proof. Let V be as in Proposition 110. Then V is normal by Proposition 93, so by

Urysohn’s lemma (Theorem 47) there exists f € C(V, [0, 1]) such that f =1 on K and
f =0on dV. We extend f to X by setting f = 0 on V'. Suppose that E < [0,1]
is closed. If 0 ¢ E we have f~Y(E) = (f|y) ' (E), and if 0 € F we have f~}(E) =
(fl7) " (E) V= (fly)""(E) u V¢ since (fly) " (E) o V. In either case, f~1(E) is

closed, so f is continuous. n

Corollary 4.112: 4.33.

Every LCH space is completely regular.

Theorem 4.113: 4.34: Tietze Extension Theorem—Locally Compact Version.

Suppose that X is an LCH space and K < X is compact. If f € C'(K), there exists
F e C(X) such that F|x = f. Moreover, ' may be taken to vanish outside a compact
set.

The proof is similar to that of Lemma 111; details are left to the reader (Folland
Exercise 4.46).

The preceding results show that LCH spaces have a rich supply of continuous functions
that vanish outside compact sets. Let us introduce some terminology:

Definition 114. If X is a topological space and f € C(X), the support of f, denoted
by supp(f), is the smallest closed set outside of which f vanishes, that is, the closure of
{xe X | f(x) # 0}. Ifsupp(f) is compact, we say that f is compactly supported, and
we define

Co(X)={feC(X)| f is compactly supported}.

Definition 115. If f € C(X), we say that f vanishes at infinity if for every ¢ > 0 the
set {x € X | |f(z)| = €} is compact, and we define

Co(X) ={f € C(X) | f vanishes at infinity}.

Clearly C.(X) < Cy(X). Moreover, Cy(X) < BC(X), because for f € Cy(X) the
image of the set {z | |f(x)| = £} is compact, and |f| < € on its complement.

Proposition 4.116: 4.35.

If X is an LCH space, Cy(X) is the closure of C.(X) in the uniform metric.
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Proof. 1f {f,} is a sequence in C.(X) that converges uniformly to f € C(X), for each
e > 0 there exists n € Zs( such that | f, — f|, <e. Then |f(z)| < ¢ if = ¢ supp(f,), so
f € Cy(X). Conversely, if f e Cy(X), for n € Zzo let K, = {z | |f(x)| =n~'}. Then K,
is compact, so by Lemma 111 there exists g, € C.(X) with 0 < g, <1 and g, = 1 on K.
Let f, = gnf. Then f, € C.(X) and | f, — f], <n”!, so f,, — f uniformly. O

If X is a noncompact LCH space, it is possible to make X into a compact space by
adding a single point “at infinity” in such a way that the functions in Cy(X) are precisely
those continuous functions f such that f(z) — 0 as x approaches the point at infinity.
More precisely, let oo denote a point that is not an element of X, let X* = X U {oo}, and
let F be the collection of all subsets of X* such that either (i) U is an open subset of X,
or (ii) oo € U and U* is a compact subset of X.

Proposition 4.117: 4.36.

If X, X* and J are as above, then (X* J) is a compact Hausdorff space, and the
inclusion map i: X — X* is an embedding. Moreover, if f € C'(X), then f extends
continuously to X* if and only if f = g + ¢ where g € Cy(X) and c is a constant, in
which case the continuous extension is given by f(w0) = c.

The proof is straightforward and is left to the reader (Folland Exercise 4.47).

Definition 118. The space X* is called the one-point compactification or Alexan-
droff compactification of X .

If X is a topological space, the space C* of all complex-valued functions on X can
be topologized in various ways. One way, of course, is the product topology, that is, the
topology of pointwise convergence. Another is the topology of uniform convergence, which
is generated by the sets

{g€ CF [ sup,ex lg(z) — f(x)| <n™'}  (n€Zsg, f e CY).
The proof of Proposition 45 shows that C(X) is a closed subspace of CX in the
topology of uniform convergence. Intermediate between these two topologies is the
following topology.

Definition 119. If X is a topological space, then the topology of uniform convergence
on compact sets on CX is the topology generated by the sets

{ge CX | sup,cx |9(z) — f(z)] < 1/n,n € Zso, f € C*, K < X compact}

We shall now examine this topology in the case where X is an LCH space.

Lemma 4.120: 4.37.

If X is an LCH space and F < X, then F is closed if and only if E n K is closed for
every compact K < X.
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Proof. 1f I is closed, then E n K is closed by Propositions 88 and 90. If E' is not closed,
pick x € E ~ E and let K be a compact neighborhood of . Then x is an accumulation
point of £ n K but is not in £ n K, so by Proposition 3 E n K is not closed. O

Proposition 4.121: 4.38.

If X is an LCH space, C(X) is a closed subspace of C* in the topology of uniform
convergence on compact sets.

Proof. 1t f is in the closure of C(X), then f is a uniform limit of continuous functions
on each compact K < X, so f | K is continuous. If £ < C is closed, f7'(E) n K = (f |
K)7Y(E) is thus closed for each compact K, so by Lemma 120 f~'(E) is closed, whence
f is continuous. O

A topological space X is called o-compact if it is a countable union of compact sets.
To appreciate the significance of the next two propositions, see Folland Exercise 4.54.

Proposition 4.122: 4.39.

If X is a o-compact LCH space, there is a sequence {U, } of precompact open sets such
that U,, = U,y for all n and X = | J{" U,.

Proof. Suppose X = | J;” K,, where each K, is compact. Every compact subset of X
has a precompact open neighborhood by Proposition 110. Thus we may take U; to be a
precompact open neighborhood of K7, and then, proceeding inductively, take U, to be a
precompact open neighborhood of U,,_; U K,,. O

Proposition 4.123: 4.40.

If X is a o-compact LCH space and {U,,} is as in Proposition 122, then for each f € CX
the sets

{g€C¥ |sup|g(x) — f(x)] <1/m} (m,n € Zs)
form a neighborhood base for f in the topology of uniform convergence on compact

sets. Hence this topology is first countable, and f; — f uniformly on compact sets if
and only if f; — f uniformly on each U,.

Proof. These assertions follow easily from the observation that if K" < X is compact, then
{U,}{ is an open cover of K and hence K = U, for some n. Details are left to the reader.
(Folland Exercise 4.48). O

We close this section with a construction that is useful in a number of situations.
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Definition 124. If X is a topological space and E — X, a partition of unity on E is a
collection {ha},.4 of functions in C(X,[0,1]) such that

e cach x € X has a neighborhood on which only finitely many hys are nonzero, and

¢ dcahalx) =1 forzekE.
A partition of unity {h,} is subordinate to an open cover U of E if for each « there
exists U € U with supp(h,) < U.

Proposition 4.125: 4.41.

Let X be an LCH space, K a compact subset of X, and {U,}] an open cover of
K. There is a partition of unity on K subordinate to {U;}] consisting of compactly
supported functions.

Proof. By Proposition 109, each € K has a compact neighborhood N, such that N, < U;
for some j. Since {Ng} is an open cover of K, there exist 1, . . ., ,, such that K < | J{" Ny,
Let Fj be the union of those N, s that are subsets of U;. Then Fj is a compact subset
of U;, so by Urysohn’s lemma there exist g1, ..., g, € C.(X, [0,1]) with g; = 1 on F; and
supp(g;) < U;. Since the Fjs cover K we have Y} g, = 1 on K, so by Urysohn again
there exists f € C.(X,[0,1]) with f = 1 on K and supp(f) < {z | >} gx(x) > 0}. Let
gns1 = 1 — [, so that Z?H gr > 0 everywhere, and for j = 1,...,n let h; = gj/Z;LH Jk-
Then supp(h;) = supp(g;) < U; and D7 h; =1 on K. O

A generalization of this result may be found in Folland Exercise 4.57.

Exercise 4.126: Folland Exercise 4.46.
Prove Theorem 113.

Exercise 4.127: Folland Exercise 4.47.

Prove Proposition 117. Also, show that if X is Hausdorff but not locally compact,
Proposition 117 remains valid except that X* is not Hausdorff.

Exercise 4.128: Folland Exercise 4.48.

Complete the proof of Proposition 123.

Exercise 4.129: Folland Exercise 4.49.

Let X be a compact Hausdorff space and F < X.

(a) If E is open, then E is locally compact in the relative topology.
(b) If F is dense in X and locally compact in the relative topology, then E is open.
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(Use Folland Exercise 4.13.)
(c) FE is locally compact in the relative topology if and only if F is relatively open in
E.

Solution. (a) Let 2 € X. Since X is an LCH space and E is open in X, by Proposition 109
x has a compact neighborhood K in E. Since a compact subspace is compact in the whole
space, K is compact in X, so F is locally compact.

(b) Let € E. Since F is locally compact in the subspace topology, there exists a
compact neighborhood K of x in E. Then K is compact in X (again since a compact
subspace is compact in the whole space). Note z € K° and K° is open in the subspace
topology F, so there exists an open set U in X such that K° = U n E. K is a compact
subset of a Hausdorff space X, hence is closed in X. Then by the density of E and

reK=K =UnEZ2T,

so x € U c E, hence U is open.

(c) If E is a locally compact subspace then E is dense in E by definition, so by part
(b) E is open in E. Conversely, if E is open in E, then since E is a CH space, by part (a)
FE is a locally compact subspace. O

Exercise 4.130: Folland Exercise 4.50.

Let U be an open subset of a compact Hausdorff space X and U* its one-point
compactification (see Folland Exercise 4.49(a)). If ¢: X — U* is defined by ¢(z) = =
if x € U and ¢(z) = oo if x € U€, then ¢ is continuous.

Exercise 4.131: Folland Exercise 4.51.

If X and Y are topological spaces, ¢ € C'(X,Y) is called proper if ¢~ (K) is compact
in X for every compact K < Y. Suppose that X and Y are LCH spaces and X* and
Y* are their one-point compactifications. If ¢ € C(X,Y), then ¢ is proper if and only
if ¢ extends continuously to a map from X* to Y* by setting ¢(c0x) = ooy

Exercise 4.132: Folland Exercise 4.52.

The one-point compactification of R" is homeomorphic to the n-sphere {z € R"*! |
|z = 1}.

Exercise 4.133: Folland Exercise 4.53.

Lemma 120 remains true if the assumption that X is locally compact is replaced by
the assumption that X is first countable.
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Exercise 4.134: Folland Exercise 4.54.

Let Q have the relative topology induced from Q.

(a) Q is not locally compact,

(b) Q is o-compact (it is a countable union of singleton sets), but uniform convergence
on singletons (i.e pointwise convergence) does not imply uniform convergence on
compact subsets of Q.

Exercise 4.135: Folland Exercise 4.55.

Every open set in a second countable LCH space is o-compact.

Exercise 4.136: Folland Exercise 4.56.

Define ®: [0,00] — [0,1] by ®(¢) =t/(t + 1) for t € [0,0) and $(w0) = 1.
(a) @ is strictly increasing and ®(t + s) < ®(t) + P(s).
(b) If (Y, p) is a metric space, then ® o p is a bounded metric on Y that defines the
same topology as p.
(c) If X is a topological space, the function p(f,g) = ®(sup,.x |f(z) — g(x)]) is a
metric on CX whose associated topology is the topology of uniform convergence.
(d) If X is a o-compact LCH space and {U,} " is as in Proposition 122, the function

D H—n
p(fr9) =, 2" 0(sup,ep, | f(x) — g(w)])
is a metric on C* whose associated topology is the topology of uniform convergence
on compact sets.

Exercise 4.137: Folland Exercise 4.57.

An open cover U of a topological space X is called locally finite if each x € X has a
neighborhood that intersects only finitely many members of U. If U, v are open covers
of X,V is a refinement of U if for each V € V there exists U € U with V < U. A
topological space X is called paracompact if every open cover of X has a locally
finite refinement.

(a) If X is a o-compact LCH space, then X is paracompact. In fact, every open
cover U has locally finite refinements {V,}, {W,} such that V, is compact
and W, < V, for all a. (Let {U,}; be as in Proposition 122. For each n,
{E N (Un+2 ~ Un_l) } Ec U} is an open cover of Un+1 ~ U,,. Choose a finite
subcover to obtain {V,} and mimic the beginning of the proof of Proposition 71
to obtain {W,}.)

(b) If X is a o-compact LCH space, for any open cover U of X there is a partition of
unity on X subordinate to U and consisting of compactly supported functions.
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4.6 Two Compactness Theorems

The geometric objects on which one does analysis (Euclidean spaces, manifolds, and
so on) tend to be compact or locally compact. However, in infinite-dimensional spaces
such as spaces of functions, compactness is a rather rare phenomenon and is to be greatly
prized when it is available. Almost all compactness results in such situations are obtained
via two basic theorems, Tychonoff’s theorem and the Arzela-Ascoli theorem, which we
present in this section.

Tychonoft’s theorem has to do with compactness of Cartesian products. To prepare
for it, we introduce some notation. Recall that an element z of X =[], _, X, Is, strictly
speaking, a mapping from A into | J,. 4 Xo; namely, z(a) € X, is the ath coordinate of x,
which we generally denote by 7, (z). If B < A, there is a natural map 75: X — [[,c5 Xo;
namely, 7g(z) is the restriction of the map = to B. (In particular, 7, is essentially
identical to m,, and we shall not distinguish between them.) If p € [] .z X. and
q € [ [cc Xa, we shall say that ¢ is an extension of p if ¢ extends p as a mapping, that is,
if B < C and p(a) = q(a) for a € B.

Theorem 4.138: 4.42: Tychonoff’s Theorem.

If {X,},c4 is any family of compact topological spaces, then X =[] 4 X (with the
product topology) is compact.

Proof. By Theorem 97, it is enough to show that any net (x;),.; in X has a cluster point.
We shall do this by examining cluster points of the nets (75 (z;)) in the subproducts of X.
To wit, let

P = UBCA{]? el Xa | pis a cluster point of <7TB(jS)>}

P is nonempty, because each X, is compact and so (mp(x;)) has cluster points when
B = {a}. Moreover, P is partially ordered by extension; that is, p < ¢ if ¢ is an extension
of p as defined above.

Suppose that {p; | | € L} is a linearly ordered subset of P, where p; € [, 5 Xa. Let
B* = J,e; Bi, and let p* be the unique element of [ [z« X, that extends every p;. We
claim that p* € P. Indeed, from the definition of the product topology, any neighborhood
of p* contains a set of the form [ [ gz« Uy where each U, is open in X, and U, = X, for all
but finitely many o, say aq,. .., a,. Each of these ;s belongs to some B;, so by linearity
of the ordering they all belong to a single B;. But then [ . 5, Ua 1s a neighborhood of p,
so (g, (2;)) is frequently in [ .5 Ua; hence {mpx(z;)) is frequently in [ [ .z« Ua, so p*
is a cluster point of (mp+(z;)). Therefore p* is an upper bound for {p;} in P.

By Zorn’s lemma, then, P has a maximal element p € [ [, .5 Xo. We claim that B = A.
If not, pick v € A\ B. By Proposition 76 there is a subnet (75(zi(;)));es of (75 (x;)) that
converges to p, and since X, is compact, there is a subnet (7, (2;(j))) kex of (T4 (xi()))
that converges to some p, € X,,. Let ¢ be the unique element of [ [ .5, ) X, that extends
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both p and p,; then the net (750} (Ti(j(x))) kex converges to ¢ and hence ¢ is a cluster
point of (g, (x;)), contradicting the maximality of p. Therefore p is a cluster point of
{x;), and we are done. O

We now turn to the Arzela-Ascoli theorem, which has to do with compactness in
spaces of continuous mappings. There are several variants of this result; the theorems
below are two of the most useful ones. See also Folland Exercise 4.61.

Definition 139. If X is a topological space, x € X, and let F be any subset of C'(X).

e % is called equicontinuous at x if for every ¢ > 0 there is a neighborhood U
of x such that |f(y) — f(z)| < € for ally € U and all f € F, and F is called
equicontinuous if it is equicontinuous at each v € X.

e F is said to be pointwise bounded if {f(z) | f € F} is a bounded subset of C for
each v € X.

Theorem 4.140: 4.43: Arzela-Ascoli Theorem 1.

Let X be a compact Hausdorff space. If F is an equicontinuous, pointwise bounded
subset of C'(X), then F is totally bounded in the uniform metric, and the closure of &
in C(X) (with respect to the uniform metric) is compact.

Proof. Suppose ¢ > 0. Since F is equicontinuous, for each x € X there is an open
neighborhood U, of x such that |f(y) — f(x)| < &/4 for all y € U, and all f € F. Since
X is compact, we can choose z1,...,z, € X such that | J] U,, = X. Then by pointwise
boundedness, {f(z;) | f € F,1 < j < n}is abounded subset of C, so there is a finite set
{z1,..., 2n} < C that is €/4-dense in it—that is, each f(z,) is at a distance less than /4
from some z. Let A = {z1,...,2,} and B = {z1, ..., 2,,}; then the set B* of functions
from A to B is finite. For each ¢ € B4, let

Fy = {f € F | [f(x;) - dlay)| <</ for 1 < j <nb.
Then clearly | J sepr Fo = F, and we claim that each %4 has diameter at most ¢, so we
obtain a finite e-dense subset of & by picking one f from each nonempty %,. To prove the
claim, suppose f, g € Fy4. Since |f —¢| < /4 and |g—¢| < ¢/4 on A, we have |f —g| < /2
on A. If z € X, we have x € U,, for some j, and then

[f(2) = g(@)] < [f () = fl)| + | f(z) — g(z)] + lg(z;) —g(2)] <e.
This shows that & is totally bounded. Since the closure of a totally bounded set is totally
bounded and C'(X) is complete, the theorem is proved. O

Theorem 4.141: 4.44: Arzela-Ascoli Theorem II.

Let X be a o-compact LCH space. If {f,} is an equicontinuous, pointwise bounded
sequence in C(X), there exist f € C'(X) and a subsequence of {f,} that converges to
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f uniformly on compact sets.

Proof. By Proposition 122 there is a sequence {U.} of precompact open sets such that
Uy © Upyq and X = Uy Uk. By Theorem 140 there is a subsequence { fnj} _, of {fn}
that is uniformly Cauchy on U;; we denote it by { f } Proceeding mductlvely, for
k € Z~o we obtain a subsequence { fk} 2 of {ff 1} that is uniformly Cauchy on Uy.
Let g, = fF; then {g;} is a subsequence of {f.} Wthh 1s (except for the first & — 1 terms)
a subsequence of { fjk } and hence is uniformly Cauchy on each Uj. Let f = lim g;. Then
feC(X) and gy — f uniformly on compact sets by Propositions 121 and 123. O

Exercise 4.142: Folland Exercise 4.58.

If {Xo},c4 is a family of topological spaces of which infinitely many are noncompact,
then every closed compact subset of | [ ., X is nowhere dense.

Exercise 4.143: Folland Exercise 4.59.

The product of finitely many locally compact spaces is locally compact.

Exercise 4.144: Folland Exercise 4.60.

The product of countably many sequentially compact spaces is sequentially compact.
(Use the “diagonal trick” as in the proof of Theorem 141.)

Exercise 4.145: Folland Exercise 4.61.

Theorem 140 remains valid for maps from a compact Hausdorff space X into a
complete metric space Y provided the hypothesis of pointwise boundedness is replaced
by pointwise total boundedness. (Make this statement precise and then prove it.)

Exercise 4.146: Folland Exercise 4.62.

Rephrase Theorem 141 in a form similar to Theorem 140 by using the metric in Folland
Exercise 4.56(d).

Exercise 4.147: Folland Exercise 4.63.

Let K € C([0,1] x [0,1]). For f e C([0,1]), let Tf(x S (y)dy. Then
TfeC(0,1]), and {Tf | | f]. < 1} is precompact in C([ 1]).

Solution. If f = 0 then Tf =0¢e C([0,1]). For f # 0, let ¢ > 0 and choose d > 0 such
that | K (z1) — K(22)| < i forall 21,25 € [0, 1]? with |21 — 25| < §. Then, for zy, x5 € [0, 1]

Version of April 30, 2024 at 11pm EST Page 173 of 368


https://www.greysonwesley.com/home

Greyson C. Wesley §4.6: Two Compactness Theorems

satisfying |21 — xo| < 0,

TF (1) — T (w2)| < f K (21,y) — K(@2,9)|f ()| dy < f e\l dy =

showing T'f € C([0,1]). For ¢ > 0, choose 6 > 0 such that |K(z1) — K(22)| < ¢ for
|21 — 23| < 0. Then, for f e C([0,1]) with 0 < ||f]l. <1,

sl < [ Kl < [ 1K)l

implying {T'f | | f]. < 1} is pointwise bounded. Hence, by the Arzela-Ascoli theorem, it
is precompact. 0

Exercise 4.148: Folland Exercise 4.64.

Let (X, p) be a metric space. A function f € C(X) is called Hélder continuous of
exponent o« > 0) if the quantity
|f(x) = f(W)l

Na f = Supq;
) o play)
is finite. If X is compact, {f € C(X) | [|f]l. <1 and N,(f) < 1} is compact in C(X).

Solution. We will use the Arzela-Ascoli theorem. Let « > 0 and F =
{feCX)fl, <1, Na(f) <1}
e F is pointwise bounded: This is immediate because | f|, < 1 for all f € F
e F is equicontinuous: Let ¢ > 0. We want § > 0 such that for all f € &,
|f(z) — f(y)| < € whenever p(x,xy) <. For all z # xy and all f € F, we have

P =TRON < Nuf) <1 = 1$(0) = fla)] < sl
so choosing § = £"/* works.
Hence by Arzela-Ascoli F is precompact in C'(X) with respect to the uniform norm, so it
suffices (since (C'(X),|—|,) is a metric space) to show any uniform limit of elements of F
is in %F.

To that end suppose {f,}.—_, © F and f, — f uniformly. Now f € C'(X) as a uniform
limit of continuous functions, so we need to show |f|,, No(f) < 1. Let € > 0. For all
n>0|fl, <|ful, +e=1+e by the triangle inequality, hence | f, <1

It remains to show N, (f) < 1. For all sufficiently large n, by the triangle inequality
we have for all x # y that

[f(@) = fW)l < [f(@) = ful@)] + [ fu@) = fu)] + | fuy) = F ()]
<2+ [ful@) = fuW) + /2 = [fu(x) = fu(y)] + & < pla, 20)" + ¢,

so |f(z) — f(y)|/p(x,z9)* < 1. Taking the supremum over all x # y, we conclude
No(f) <1, hence f € F. F is closed with respect to the uniform norm, so since F is
precompact we conclude F is compact. O
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Exercise 4.149: Folland Exercise 4.65.

Let U be an open subset of C, and let {f,} be a sequence of holomorphic functions
on U. If {f,} is uniformly bounded on compact subsets of U, there is a subsequence
that converges uniformly to a holomorphic function on compact subsets of U. (Use
the Cauchy integral formula to obtain equicontinuity.)

4.7 The Stone-Weierstrass Theorem

In this section we prove a far-reaching generalization of the well-known theorem of
Weierstrass to the effect that any continuous function on a compact interval [a, b] is the
uniform limit of polynomials on [a, b]. Throughout this section, X will denote a compact
Hausdorff space, and we equip the space C(X) with the uniform metric.

Definition 150. A subset A of C(X,R) or C(X) is said to separate points if for every
x,y € X with x # y there exists f € A such that f(x) # f(y).

A is called an algebra if it is a real (resp. complex) vector subspace of C'(X,R) (resp.
C(X)) such that fg e A whenever f,g € A.

If A c C(X,R), A is called a lattice if max(f,g) and min(f, g) are in A whenever

f,ge A.

Since the algebra and lattice operations are continuous, one easily sees that if A is an
algebra or a lattice, so is its closure A in the uniform metric.

Theorem 4.151: 4.45: The Stone-Weierstrass Theorem.

Let X be a compact Hausdorff space. If A is a closed subalgebra of C'(X,R) that
separates points, then either A = C(X,R) or A = {f € C(X,R) | f(zo) = 0} for some

xo € X. The first alternative holds if and only if A contains the constant functions.

Before proving Theorem 151, it will be helpful to demonstrate some of its applications.

Exercise 4.152.

If f is a continuous function on [0, 1] such that

1
J 2" f(z)dr =0, n=0,1,...,
0

then f(z) =0 for all z € [0, 1].

Solution. Note first that for any polynomial, p,, that converges uniformly to f (Stone-
Weierstrass), we have that {p,f} converges to f? and by the DCT,

[ s = i [ st =0
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by our assumption. Hence we can conclude that f(x) = 0 for all x € [0, 1].
We can prove a similar result for bounded, continuous functions on [1,00) with

Q0
f " f(x)de =0, n=234,...
1
using the change of variables x = u™*. O

Note that the form of Stone-Weierstrass presented as Corollary 161 below is useful for
certain applications.

Exercise 4.153.
The algebra generated by [1, %] is dense in C([0, 1]).

Solution. This follows from Stone-Weierstrass since the algebra contains the constant
functions and z? separates points in [0, 1]. O

Remark 154. This is not true if we replace [0, 1] with [—1,1] as the algebra no longer
separates points.

Exercise 4.155.

Let X be a compact subset of R. Show that C'(X) is a separable metric space.

Solution. The polynomials with rational coefficients form a countable set that is dense in
the real coefficient polynomials, hence C'(X). O

You can generalize this problem as follows:

Exercise 4.156.

If (X, p) is a compact metric space, then C'(X) is a separable metric space.

Solution. Since (X, p) is a compact metric space, it is a separable metric space. Fix a
countable dense subset {z,}, .,  of X and for each n € Z31, define f,(t) = p(t, x,) for
every t € X. To complete the proof, consider the following;:

(i) Show f,(t) separates points.

(ii)) Then the algebra generated by {1, fi(t), fa(t), ...} is dense by Stone-Weierstrass.
(iii) Now approximate using rational coefficients instead of real coefficients. m

The proof of Stone-Weierstrass (Theorem 151) will require several lemmas. The first
one, in effect, proves the theorem when X consists of two points, and the second one is
a special case of the classical Weierstrass theorem for X = [—1,1]. After these two we
return to the general case.
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Lemma 4.157: 4.46.

Consider R? as an algebra under coordinate-wise addition and multiplication. Then
the only subalgebras of R? are R? {(0,0)}, and the linear spans of (1,0), (0,1), and

(1,1).

Proof. The subspaces of R? listed above are evidently subalgebras. If A < R? is a nonzero
algebra and (0,0) # (a,b) € A, then (a?,*) € A. Ifa # 0,b # 0, and a # b, then (a, b) and
(a?,b?) are linearly independent, so A = R?. The other possibilities—a # 0 = b,a = 0 # b,
and a = b # 0 for all nonzero (a,b) € A—give the other three subalgebras. ]

Lemma 4.158: 4.47.

For any € > 0 there is a polynomial P on R such that P(0) = 0 and ||| — P(z)| < ¢
for x e [-1,1].

Proof. Consider the Taylor series for (1 —¢)"/? about the point t = 0:

-pe-14Y" <_%> (%) (2”2— 3)2_’: Ny

where ¢, > 0. By the ratio test, this series converges for |t| < 1; a proof that its sum
is actually (1 —¢)'/2 is outlined in Folland Exercise 4.66. Moreover, by the monotone
convergence theorem (applied to counting measure on Z),

*© : © L n ~ 1/2
21 Cn, 21%21 et = 1—11/11111(1—t) 2=1.
It follows from the finiteness of }\” ¢, that the series 1 — >} ¢,t" converges absolutely
and uniformly on [—1,1], and its sum is (1 — ¢)"/? there. Therefore, given ¢ > 0,
by taking a suitable partial sum of this series we obtain a polynomial ) such that
(1 —1)"2 —Q(t)| < e/2 for t € [~1,1]. Setting t = 1 — 22 and R(z) = Q(1 — 2?), we
obtain a polynomial R such that ||z| — R(z)| < ¢/2 for all x € [-1,1]. In particular,
|R(0)| < ¢/2, so if we set P(x) = R(x) — R(0), then P is a polynomial such that P(0) =0
and ||z| — P(z)| < e for z € [-1,1]. O

Lemma 4.159: 4.48.
If A is a closed subalgebra of C'(X,R), then |f| € A whenever f € A, and A is a lattice.

Proof. It f e A and f # 0, let h = f/|f].. Then h maps X into [—1,1], so if ¢ > 0 and
P is as in Lemma 158, we have |||h| — P o hl|, < e. Since P(0) = 0, P has no constant
term, so P oh € A since A is an algebra. Since A is closed and ¢ is arbitrary, we have
|h| € A and hence |f| = | f].|h| € A. This proves the first assertion, and the second one
follows because

max(f,9) = 5(f + 9+ 1f ~gl), min(f,0)=3(/ +gIf g 0
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Lemma 4.160: 4.49.

Suppose A is a closed lattice in C'(X,R) and f € C(X,R). If for every =,y € X there
exists g,, € A such that g,,(z) = f(z) and g,,(y) = f(y), then f € A.

Proof. Given ¢ > 0, for each z,y € X let U,y = {z€ X | f(2) < guy(2) + €} and

Vg = {#€ X | f(2) > guy(2) —€}. These sets are open and contain z and V,, =
{ze X | f(2) > gsy(2) —e}. These sets are open and contain z and y. Fix y; then
{Usy | © € X} covers X, so there is a finite subcover {Uy,}}". Let g, = max(gaz,y, - - -, Gany):

then f < g, +eon X and f > g, —e on V,, = (] V,,,, which is open and contains
y. Thus {V,},cx is another open cover of X, so there is a finite subcover {V,, }{". Let
g =min(gy,,...,Gy,); then | f—g[., <e. Since A is a lattice, g € A, and since A is closed
and ¢ is arbitrary, f € A. O

Proof of 151. Given = # y € X, let Ay, = {(f(x), f(y)) | f € A}. Then A,, is a subalge-
bra of R? as in Lemma 157 because f — (f(x), f(y)) is an algebra homomorphism. If
Ay = R? for all z,y, then Lemmas 159 and 160 imply that A = C'(X,R). Otherwise,
there exist x,y for which A,, is a proper subalgebra of R It cannot be {(0,0)} or the
linear span of (1, 1) because A separates points, so by Lemma 157 A,,, is the linear span
of (1,0) or (0,1). In either case there exists zo € X such that f(zo) = 0 for all f € A.
There is only one such z since A separates points, so if neither x nor y is zy, we have
Ay = R% Lemmas 159 and 160 now imply that A = {f € C(X,R) | f(z0) = 0}. Finally,
if A contains constant functions, there is no z such that f(z¢) =0 for all f € A, so A
must equal C'(X,R). O

We have stated the Stone-Weierstrass theorem in the form that is most natural for the
proof. However, in applications one is typically dealing with a subalgebra B of C'(X,R)
that is not closed, and one applies the theorem to B = B. The resulting restatement of
the theorem is as follows:

Corollary 4.161: 4.50.

Suppose B is a subalgebra of C'(X, R) that separates points. If there exists 25 € X such
that f(zg) = 0 for all f € B, then B is dense in {f € C(X,R) | f(xg) = 0}. Otherwise,
B is dense in C(X,R).

The classical Weierstrass approximation theorem is the special case of this corollary
where X is a compact subset of R” and B is the algebra of polynomials on R™ (restricted
to X); here B contains the constant functions, so the conclusion is that it is dense in
C(X,R).
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Warning 4.162.

The Stone-Weierstrass theorem, as it stands, is false for complex-valued functions, as
the following example shows.

Example 163. The algebra of polynomials in one complex variable is not dense in C(K)
for most compact subsets K of C. (In particular, if K° # &, any uniform limit of
polynomials on K must be holomorphic on K°.) Here we shall give a simple proof that
the function f(z) = Z cannot be approximated uniformly by polynomials on the unit circle
{e" | te|0,2n]}. If P(z) = X,y a;z, then

2m 2m

feMP(e™)dt = 20 ajf eUttdr — 0.

0 0

Thus, abbreviating f(e) and P(e") by f and P, since |f| = 1 on the unit circle we

have
27r_
J det‘
0

2 =

L " ffdt‘ <

0

fﬂ(f — P)?dt‘ +

~|[ T piFa] < [ C1r - Pl < 2als -

0
Therefore, |f — P|l, = 1 for any polynomial P.

There is, however, a complex version of the Stone-Weierstrass theorem.

Theorem 4.164: 4.51: The Complex Stone-Weierstrass Theorem.

Let X be a compact Hausdorff space. If A is a closed subalgebra of C'(X) that
separates points and is closed under complex conjugation, then either A = C(X) or
A={feC(X)| f(xg) = 0} for some zy € X.

Proof. Since Re f = (f + f)/2 and Im f = (f — f)/2i, the set Ag of real and imaginary
parts of functions in A is a subalgebra of C'(X,R) to which the StoneWeierstrass theorem

applies. Since A = {f + ig | f, g € Ar}, the desired result follows. O

There is also a version of the Stone-Weierstrass theorem for noncompact LCH spaces.
We state this result for real functions; the corresponding analogue of Theorem 164 for
complex functions is an immediate consequence.

Theorem 4.165: 4.52.

Let X be a noncompact LCH space. If A is a closed subalgebra of
Co(X,R)(= Cp(X) n C(X,R)) that separates points, then either A = Cy(X,R) or
A ={feCy(X,R)| f(zo) = 0} for some z( € X.
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The proof is outlined in Folland Exercise 4.67.

Exercise 4.166.

Let 1 — Y. ¢,t" be the Maclaurin series for (1 —¢)¥2.

(a) The series converges absolutely and uniformly on compact subsets of (—1, 1), as
does the termwise differentiated series — Y.1° ne,t" 1. Thus, if f(t) = 1— Y7 e, t™,
then f/(t) = — > ne,t" .

(b) By explicit calculation, f(t) = —2(1 —t)f'(t), from which it follows that (1 —
t)~Y2f(t) is constant. Since f(0) = 1, f(t) = (1 —t)¥2

Exercise 4.167: Folland Exercise 4.67.

Prove Theorem 165. (If there exists xg € X such that f(xg) = 0 for all f € A, let
Y be the one-point compactification of X \ {x¢}; otherwise let Y be the one-point

compactification of X. Apply Proposition 117 and the Stone-Weierstrass theorem on
Y.)

Exercise 4.168: Folland Exercise 4.68.

Let X and Y be compact Hausdorff spaces. The algebra generated by functions of the
form f(z,y) = g(x)h(y), where g e C(X) and he C(Y), is dense in C(X xY).

Solution. Let XY be CH spaces and let A be the given algebra. We want to apply
Stone-Weierstrass to A.
e A (hence A) contains constant functions, as we can set g(z) = z, h(y) = 1 for any
ze Ctoget f(z,y) = 2.
e A (hence A) separates points: if (x,y) # (2/,7') then without loss of generality
x # x', so because CH spaces are normal we can apply Urysohn’s lemma to get a
continuous g € C'(X) such that g(z) # g(z/). Then set f(z,y) = g(x) -1 (so h(y)
here is the constant function 1), in which case

flz,y) = g(z) # g(a’) = f(2',y),
so A separates points.

e A is closed under complex conjugation: Because (C'(X xY),|—],) is a metric space,
any f € A takes form f = lim, o D g 0 2j0n,jhn;. Since complex conjugation is
continuous,

f - 711—1}30 Zﬁnite ngn,jhn,j - r}l—I»rolo Zﬁnite ngn,jhn,j € A7
hence A is closed under complex conjugation.
Therefore, by Stone-Weierstrass, A = C(X xY), so A is dense in C(X xY). O
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Exercise 4.169: Folland Exercise 4.69.

Let A be a nonempty set, and let X = [0, 1]4. The algebra generated by the coordinate
maps 7m,: X — [0,1] (o € A) and the constant function 1 is dense in C(X).

Solution. Let A be the algebra generated by the coordinate maps m,: X — [0,1] (o € A)
and the constant function 1. Note X is compact by Tychonoff (agd Hausdorff as a product
of Hausdorff spaces), so we aim to apply Stone-Weierstrass to A.

e A contains constant functions because z -1 € A for all z € C.

e A separates points: If £ = {24}, and y = {ya}a are distinct, then z,, # yq, for
some ag. Hence 7oy (%) = Tay = Yag = Tay(Y), S0 since m,, € A = A we know A
separates points.

o A is closed under complex conjugation: Because (C(X),[—|,) is a metric space, the
general form of an element f € A is a limit of some {f,},_,[*] < A, and each f,
finite linear combination of the form Z | #Zn.j fn,j Where each fn j is in the generatmg
set (the map 1 together with the coordlnate maps m,), S0 f = lim,_, ZJ L Znj [

Thus
€A
F_T T _ 1 b T 1
f - nl—r}olo Zj=1 Z'n,,jfn,j o n1—I>rolO Zj=l [@Ii@l7
eA €A
so f e A.
Hence by Stone-Weierstrass, A = C(X), hence A is dense in C(X). O

Exercise 4.170: Folland Exercise 4.70.

Let X be a compact Hausdorff space. An ideal in C'(X,R) is a subalgebra J of C'(X,R)
such that if f € J and g € C(X,R) then fg e J.
(a) If J is an ideal in C'(X,R), let h(J) = {x € X | f(x) =0 for all f € J}. Then h(J)
is a closed subset of X, called the hull of J.
(b) If £ < X, let k(E) = {fe C(X,R) | f(x) =0 for all z € E}. Then k(F) is a
closed ideal in C(X,R), called the kernel of E.
(c) If E < X, then h(k(E)) = E.
(d) If J is an ideal in C'(X,R), then k(h(J)) = 3. °
(e) The closed subsets of X are in one-to-one correspondence with the closed ideals

of C(X,R).

“Hint: k(h(J)) may be identified with a subalgebra of Co(U,R) where U = X \ h(J).
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Exercise 4.171: Folland Exercise 4.71.

(This is a variation on the theme of Folland Exercise 4.70; it does not use the Stone-
Weierstrass theorem.) Let X be a compact Hausdorff space, and let M be the set of all
nonzero algebra homomorphisms from C(X,R) to R. Each x € X defines an element
zof M by zZ(f) = f(x).

(a) If ¢ € M, then {f € C(X,R) | ¢(f) = 0} is a maximal proper ideal in C'(X,R).

(b) If g is a proper ideal in C(X,R), there exists xyg € X such that f(xy) = 0 for all
f € 3. (Suppose not; construct an f € J with f > 0 everywhere and conclude
that 1 € J. This requires no deep theorems.)

(c) The map z — 7 is a bijection from X to M.

(d) If M is equipped with the topology of pointwise convergence, then the map x — 7
is a homeomorphism from X to M. (Since M is defined purely algebraically,
it follows that the topological structure of X is completely determined by the
algebraic structure of C(X,R).)

5 Elements of Functional Analysis

Functional analysis is the traditional name for the study of infinite-dimensional
vector spaces over R or R and the linear maps between them. What distinguishes this from
mere linear algebra is the importance of topological considerations. On finite-dimensional
vector spaces there is only one reasonable topology, and linear maps are automatically
continuous, but in infinite dimensions things are not so simple. (As we have already
observed, if {f,} is a sequence of functions on R, there are many things one can mean by
the statement “f,, — f.”) As our aim in this chapter is only to give a brief introduction
to the subject, we shall restrict attention—except in §5.4—to topologies defined by norms
on vector spaces.

5.1 Normed Vector Spaces

Let K denote either R or C, and let X be a vector space over K.

Notation 1. We denote the zero element of X simply by 0, relying on context to distinguish
it from the scalar 0 € K. In this section we will always write subspace to mean a vector
subspace. If v € X, we denote by Kx the one-dimensional subspace spanned by x. Also, if
M and N are subspaces of x, M + N denotes the subspace {x +y | x € M,y € N} of X.

Definition 2. A seminorm on X is a function x — |z| from X to [0,90) such that

(i) |z +y| < |z|| + |y| for all x,y € X (the triangle inequality),
(11) |Mx| = |A||z| for allz € X and X € K.
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The second property implies that ||0] = 0. A seminorm such that |z| = 0 only when x =0
1s called a norm, and a vector space equipped with a norm is called a normed vector
space (or normed linear space).

Example 3. If X is a normed vector space, the function p(x,y) = |z —y| is a metric on
X, since

|z —z| <o —yl+ly -z, lz—yl=I1=D-y)|=ly—=|
The topology it induces is called the norm topology on X.

Definition 4. Two norms | - |1 and | - |2 on X are called equivalent if there exist
C1,Cy > 0 such that for all x € X,

Cilzfy < fz]2 < Cofz]s.

Equivalent norms define equivalent metrics and hence the same topology and the same
Cauchy sequences.

Definition 5. A normed vector space that is complete with respect to the norm metric is
called a Banach space.

Remark 6. Every normed vector space can be embedded in a Banach space as a dense
subspace. One way to do this is to mimic the construction of R from R wvia Cauchy
sequences; a simpler way is presented in Folland Section 5.2.

Definition 7. If {z,} is a sequence in x, the series Y,,” x, is said to converge to x if
Ziv T, — x as N — oo, and it is called absolutely convergent if > |x,| < o.

The following is a useful criterion for completeness of a normed vector space.

Theorem 5.8: 5.1.

A normed vector space X is complete if and only if every absolutely convergent series
in X converges.

Proof. If X is complete and 3.7 |z,| < o0, let Sy = 31V x,,. Then for N > M we have
N
|8y = Sull < D, Izl — 0as M,N — o,

so the sequence {Sy} is Cauchy and hence convergent. Conversely, suppose that every
absolutely convergent series converges, and let {z,,} be a Cauchy sequence. We can choose
ny < ng < --- such that ||z, — x,,| <277 form,n > n;. Let y; = z,,, and y; = zp, — Ty, _,
for j > 1. Then Zlfy] = Tp,, and
o0 0
Syl <l + 2727 = gl +1 < o0

so limx,, = Y. y; exists. But since {z,,} is Cauchy, it is easily verified that {x,} converges
to the same limit as {x,, }. O

Example 9. We have already seen some examples of Banach spaces:
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(1) First, if X is a topological space, B(X) and BC(X) are Banach spaces with the
uniform norm |, = sup,ex [ f(2)].

(2) Second, if (X, M, 1) is a measure space, L'(11) is a Banach space with the L' norm
Iflx = §|fldu. (Observe that || - || is only a seminorm if we think of L'(u) as
consisting of individual functions, but it becomes a norm if we identify functions that
are equal a.e.) That L*(u) is complete follows from the MCT for series (Theorem /8)
and Theorem 8. Indeed, if .| fu.]|, < 0, MCT for series shows that f = > fn

exists a.e., and
N o0
Jlf_zl fndﬂ<2N+1J‘fn‘du—’o as N — oo.

More examples will be found in Folland Ezercise 5.8,Folland Exercise 5.9,Folland Exercise
5.10,Folland Fxercise 5.11 and in subsequent sections.

Example 10. If X and Y are normed vector spaces, x xy becomes a normed vector space
when equipped with the product norm

|G, 9 = max([[z], [y])-
(Here, of course, ||x|| refers to the norm on x while |y| refers to the norm on y.) Some-
times other norms equivalent to this one, such as ||(z,y)| = |z| + |yl or |(z,y)|| =
(Iz]2 + |y|»)"?, are used instead.

Definition 11. If M is a vector subspace of the vector space X, it defines an equivalence
relation on X as

r~y < x—yeM
The equivalence class of x € X 1s denoted by X + M, and the set of equivalence classes,
or quotient space, is denoted by X /M. X /M is a vector space with vector operations

(x+M)+ (y+M) = (z+y) +M and ANz + M) = (A\z) + M. If X is a normed vector
space and M is closed, X /M inherits a norm from X called the quotient norm, namely

|z + M| = inf |z + y|
yeM
See Folland Ezxercise 5.12 for a more detailed discussion.

Definition 12. A linear map T: X — Y between two normed vector spaces is called
bounded if there exists C' = 0 such that

|Tz| < C|z| for all z € X.

Warning 5.13.

This is different from the notion of boundedness for functions on a set, according to
which 7" would be bounded if [Tz < C for all x. Clearly no nonzero linear map can
satisfy the latter condition, since T'(Ax) = ATz for all scalars A\. The present definition
means that 7" is bounded on bounded subsets of X.
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Proposition 5.14: 5.2.

If X and Y are normed vector spaces and T': X — Y is a linear map, the following
are equivalent:
(a) T is continuous.

(b) T is continuous at 0.
(c¢) T is bounded.

Proof. That (a) implies (b) is trivial. If 7" is continuous at 0 € X, there is a neighborhood U
of 0 such that T(U) < {y € Y | |y| < 1}, and U must contain a ball B = {z € X | |z| < §}
about 0 ; thus |Tz| < 1 when |z| < §. Since T' commutes with scalar multiplication,
it follows that ||Tz| < ad~! whenever |z| < a, that is, [Tx| < §7!|z|. This shows that
(b) implies (c). Finally, if |TZ| < C|z| for all z, then [Tz — Txy| = |T(z1 — z2)| < ¢
whenever |21 — x5 < C'e, so that T is continuous. O
Notation 15. If X and Y are normed vector spaces, we denote the space of all bounded
linear maps from X toY by L(X,Y).
It is easily verified that L(X,Y") is a vector space and that the function T +— |T
defined by
|7 = sup{|Tz| | |«] = 1}
{22
= sup
|z
= inf{C | |[Tz| < C|z| for all x}

is a norm on L(X,Y), called the operator norm Folland Exercise 5.2. We always assume
L(X,Y) to be equipped with this norm unless we specify otherwise.

an#o} (5.15.1)

Proposition 5.16: 5.4.
If Y is complete, so is L(X,Y).

Proof. Let {T,} be a Cauchy sequence in L(X,Y). If x € X, then {T,z} is Cauchy in Y
because |T,x — T,x| < |1, — Tonl||z|. Define T: X — Y by Tx = imT,,z. We leave it
to the reader (Folland Exercise 5.3) to verify that T e L(X,Y") (in fact, |T| = lim|T,|)
and that |T,, — T'|| — 0. O

Example 17. Another useful property of the operator norm is the following. If T €
L(X,T) and S € L(Y, Z), then for each x € X

|STx| < IS[ITl < ISTIT]],

so that ST € L(X, Z) and |ST|| < |S||T|. In particular, L(X, X) is an algebra. If X is
complete, L(X, X) is in fact « Banach algebra, which is defined as a Banach space that
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s also an algebra, such that the norm of a product is at most the product of the norms.
(Another example of a Banach algebra is BC(X), where X is a topological space, with
pointwise multiplication and the uniform norm.)

Definition 18. If T € L(X,Y),T is said to be invertible, or an isomorphism, if T is
bijective and T~ is bounded (in other words, |Tz| = C|z| for some C' > 0). T is called
an isometry if |[Tz| = ||x|| for all x € X.

Warning 5.19.

An isometry is injective but not necessarily surjective; it is, however, an isomorphism
onto its range.

Exercise 5.20: Folland Exercise 5.1.

If X is a normed vector space over K (= R or R), then addition and scalar multiplication
are continuous from X x X and K x X to X. Moreover, the norm is continuous from
X to [0,0); in fact, |[|z| — |y|| < |z — y| for each z,y € X.

Exercise 5.21: Folland Exercise 5.2.

L(X,Y) is a vector space and the function | - | defined by Equation (5.15.1) is a norm
on it. In particular, the three expressions on the right of Equation (5.15.1) are always
equal.

Exercise 5.22: Folland Exercise 5.3.

Complete the proof of Proposition 16.

Exercise 5.23: Folland Exercise 5.4.

If X,Y are normed vector spaces, the map (7', ) — Tz is continuous from L(X,Y)xX
to Y. (That is, if 7,, — T and x,, — x then T,x,, — Tx.)

Exercise 5.24: Folland Exercise 5.5.

If X is a normed vector space, the closure of any subspace of X is a subspace.

Exercise 5.25: Folland Exercise 5.6.

Suppose that X is a finite-dimensional vector space. Let eq,..., e, be a basis for X,
and define |Y}} aje;|, = > a;l.

(a) |- ]1is a norm on X.
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(b) The map (a1, ...,a,) — >} aje; is continuous from K™ with the usual Euclidean
topology to X with the topology defined by || - |;.

(¢) {x e X | |z|1 =1} is compact in the topology defined by | - ||;.

(d) All norms on X are equivalent. (Compare any norm to || - [.)

Solution. Let x,y e X.

(1) We have |z|; = 0 < each |z;] = 0 < each z; = 0. For A € K, we have that
(Aol = 2 Awiles = DS[Awilei = [A X failes = [Alaly; finally, |2+ yl = 2|z +
yile: < X lmiles + X lyiles = |zl + [ly]s-

(2) Let § = ¢/n. Then maxi<i<p |a;—b;] < [(a1—b1,...,a,—by)| < e&/n,s0 Y] |a;—b;| <
dYie/n=e.
(3) (X, | -l1) is a normed space, so since we’ve shown for normed spaces that a closed

and bounded subset is compact if and only if the space is finite-dimensional, it
suffices to show that U, = oloneq{x € X | |z|, = 1} is closed and bounded in X; U,
is obviously bounded, so it suffices to show that it is closed. Let y € X be in Uj.
Then we have that |y|; # 1, so there’s some € > 0 for which |y — ¢/[|; > € for each
y' € Up. Therefore, there’s an open neighborhood of y also contained in U (since any
re X has B.(y) = |y —z|1 <e - x ¢ U, > x e Uf). It follows that Uf is open, so
its complement U, is closed in X, which gives the result per our initial remarks.

(4) Any constant makes the claimed inequality work for x = 0, so we will only work
with nonzero x € X henceforth. Let | - [2: X — [0,c0) be an arbitrary norm
on X. Notice that o> = | 33 7ye;] < 3 [7se;] < 3 [aylles] < Coll, where
Cy = maxi<i<n{llei|}. We now need C) for which Cy|z|; < |z|2 for all z € X. Any
arbitrary norm | - |2 on X is continuous on X. Indeed, this is clear from settings
d = ¢/Cy and following the logical progression in (b) to establish continuity of | - |,
which works because we have established that ||- |2 since | -||2 < Cy|+||2. We now define
F: X — [0,00) by F(z) = ||z|2, which is continuous by the above argument. We then
observe that F'|y, is a continuous function on a compact set, so since Uy, is compact by
part (c), we have that F'|y, has and achieves its extrema. It follows that there exists
some point g € U, for which |q[ls < |u]s for any u € Uy,. Now, fix some arbitrary norm
| - |l and nonzero x € X. Here we will argue that ||(z/|z|,)|, = 1. This warrants
justification: observe that |[(z/|z[.)|n = [(1/|z|a)l|€]n = (1/z]n)[2]n = 1, as ],
is positive (since x # 0 < |z|, > 0) and so its reciprocal is positive, warranting
the penultimate equality here. We can therefore conclude that for any =z € X,
|(z/||z]1)]1 = 1, and thus z/|z|; € Uy. We now put everything together. For all
u € Uy, we now have two things: (i) |¢[1 = |lu]1 = 1, and (ii) |¢|2 < [Ju]s. It follows
from (ii) that |uli]lgllz < (1)|jul2 = ||Jul2, so since for each z € X we have by the
above argument that x/||x|; € Uy, we conclude that |(z/|z|1)1]ql2 < |(z/]z]1)]2-
But we can multiply both sides by |z|; > 0, giving the result |z[,C} < ||z, where
C = oloneq||ql|z-
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This completes the proof. n

Exercise 5.26: Folland Exercise 5.7.

Let X be a Banach space.

(a) If T e L(X,X) and |I — T| < 1 where [ is the identity operator, then T is
invertible; in fact, the series >, (I — T)" converges in L(X, X) to T~

(b) If T € L(X, X) is invertible and ||S — 7| < [T~ ", then S is invertible. Thus
the set of invertible operators is open in L(X, X).

Solution.
(1) X is a Banach space, so L(X, X) is also a Banach space. Y., (I —T)" is absolutely

convergent because
© k © k
ST - < T

is a geometric series with ratio |I — T'|,, < 1 as given. Therefore Y,” (I — T)F
converges to some S € L(X, X). Fix € > 0. Then for sufficiently large n we have
IS =Y o(I = T)*| < e, and

IS—1=SU-T)| = 8= (=T + 3 (=T} = S =)
<5 =S T =+ | (=T = T) = S(T=T)

k=0 k=1
N
<et |, =T =S =T)|op
<etelll —T|op < 2¢
It follows that |S — 1 —S(I —T)| =0,s0 S—1=S(I—T)=S— ST and hence
ST = I. Similarly, |S — I — (I —T)S| =0,s0 TS = I, giving T~! = S, S as above,
as claimed.
(2) We have

|1 =TS = |T7'S — 1| = |T7'S =TT
<|T7HIS =T < |T7HIT7H ™ =1,
so it follows from part (a) that 71 is invertible, and in particular that S is invertible,
and tracing back we find where W is the inverse of 7715 that S~! = WT~!. Hence
operators in Byp-1(T) are also invertible for all 7" € L(X,X). Thus the set of
invertible 7" e L(X, X) is open.
O

Exercise 5.27: Folland Exercise 5.8.

Let (X, M) be a measurable space, and let M (X) be the space of complex measures
on (X,M). Then ||| = |p[(X) is a norm on M (X) that makes M (X) into a Banach
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space. (Use Theorem 8.)

Exercise 5.28: Folland Exercise 5.9.

Let C*([0, 1]) be the space of functions on [0, 1] possessing continuous derivatives up
to order k on [0, 1], including one-sided derivatives at the endpoints.

(a) If f e C([0,1]), then f € C*([0,1]) if and only if f is k times continuously
differentiable on (0, 1) and lim, o f¥)(z) and lim, ~ fU)(x) exist for j < k. (The
mean value theorem is useful.)

(b) ] = 228 £9],, is a norm on C*([0, 1]) that makes C*([0, 1]) into a Banach space.
(Use induction on k. The essential point is that if {f,} < CY([0,1]), f, — f
uniformly, and f) — ¢ uniformly, then f € Cl([() 1]) and f' = g. The easy way
to prove this is to show that f(z = {5 al

Exercise 5.29: Folland Exercise 5.10.

Let Li([0,1]) be the space of all f € C*1([0,1]) such that f*~Y is absolutely
contmuous on [0,1] (and hence f® exists a.e. and is in L'([0,1])). Then |f|| =
S| f9)(2)|da is a norm on LE([0,1]) that makes L}([0,1]) into a Banach space.
(See Folland Exercise 5.9 and its hint.)

Exercise 5.30: Folland Exercise 5.11.

If 0 <a<1,let Ay([0,1]) be the space of Holder continuous functions of exponent «
on [0, 1]. That is, f e Ay([0,1]) if and only if ||f|s, < o, where

f(z) — f(y)
1 fllae = [£(O)] + Sup, yefo.1),02y |m——y|0"
(a) || - |a, is a norm that makes A, ([0, 1]) into a Banach space.
(b) Let An([0, 1]) be the set of all f e A,([0,1]) such that
w—»()asx—»y, for all y € [0, 1].
r—y|®

If @ < 1,A,([0,1]) is an infinite-dimensional closed subspace of A,([0,1]). If
a = 1,A,([0,1]) contains only constant functions.

Exercise 5.31: Folland Exercise 5.12.

Let X be a normed vector space and M a proper closed subspace of X.

(a) ||o +M|| = inf{||z + y|| | y € M} is a norm on X /M.
(b) For any € > 0 there exists x € X such that |z| =1 and ||z + M| > 1 —e.

Version of April 30, 2024 at 11pm EST Page 189 of 368


https://www.greysonwesley.com/home

Greyson C. Wesley §5.1: Normed Vector Spaces

(¢) The projection map m(x) = z + M from X to X/M has norm 1.

(d) If = is complete, so is /M. (Use Theorem 8.)

(e) The topology defined by the quotient norm is the quotient topology as defined in
Folland Exercise 4.28.

Exercise 5.32: Folland Exercise 5.13.

If || - | is a seminorm on the vector space X, let M = {z € X | |z| = 0}. Then M is a
subspace, and the map = + M — |z|| is a norm on X /M.

Exercise 5.33: Folland Exercise 5.14.

If X is a normed vector space and M is a non-closed subspace, then |z + M|, as defined
in Folland Exercise 5.12; is a seminorm on X /M. If one divides by its nullspace as in
Folland Exercise 5.13, the resulting quotient space is isometrically isomorphic to x/ﬁ
(See Folland Exercise 5.5.)

Exercise 5.34: Folland Exercise 5.15.

Suppose that X and Y are normed vector spaces and 7' € L(X,Y). Let N(T) =
{re X | Tz =0}
(a) N(T') is a closed subspace of X.
(b) There is a unique S € L(X/N(T),y) such that T = S o where 7: X — X /M is
the projection (see Folland Exercise 5.12). Moreover, S| = |T.

Exercise 5.35: Folland Exercise 5.16.

The purpose of this exercise is to develop a theory of integration for functions with
values in a separable Banach space. The integral we will develop is called the Bochner
integral. Let (X, M, 1) be a measure space, Y a separable Banach space, and Ly
the space of all (M, By )-measurable maps from X to Y and Fy the set of maps
f: X — Y of the form f(z) = >} xg,(v)y; where n € Zzy, y; € Y, E; € M, and
pu(E;) < oo. If fe Ly, since y — |y|| is continuous Folland Exercise 5.1, x — || f(z)|
is (M, Bz, )-measurable, and we define |f[|; = (| f(z)|du(z). Finally, let Lj =

{felyl|fl<eo}

(a) Ly is a vector space, Fy and Lj. are subspaces of it, Fy < Lj, and | - ||; is a
seminorm on L3 that becomes a norm if we identify two functions that are equal
a.e.

(b) Let {y,};" be a countable dense set in Y. Given ¢ > 0, let B =
{yeY ||y —ynl <elyal}. Then Uy By =Y ~ {0}
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(¢) If f € Ly, there is a sequence {h,} = Fy with h, — f a.e. and |h, — f]|, — 0.
(With notation as in (b), let A,; = BY7 ~ | J'_, BY7 and E,; = f~1(A,;), and
consider g; = >, YnXE,,-)

(d) There is a unique linear map {: L}, — Y such that {yxp = u(E)y for y € Y and
E e M(u(E) < ), and |§ f]| <[ f].

(e) The dominated convergence theorem: If {f,} is a sequence in L3 such that f,, — f
a.e., and there exists g € L' such that | f,(z)| < g(z) for all n and a.e. z, then
§fo =81

(f) If Z is a separable Banach space, T'€ L(y,Z), and f € L}, then T o f € L! and

§Tof=1T(ff)

5.2 Linear Functionals

Let X be a vector space over K, where K = R or R. A linear map from X to K
is called a linear functional on X. If X is a normed vector space, the space L(X, K)
of bounded linear functionals on X is called the dual space of X and is denoted by X*.
According to Proposition 16,, X* is a Banach space with the operator norm.

If X is a vector space over C, it is also a vector space over C, and we can consider
both real and complex linear functionals on X, that is, maps f: X — C that are linear
over C and maps f: X — C that are linear over C. The relationship between the two is
as follows:

Proposition 5.36: 5.5.

Let X be a vector space over C. If f is a complex linear functional on X and u = Re f,
then w is a real linear functional, and f(x) = u(x) — iu(iz) for all x € X. Conversely,
if u is a real linear functional on X and f: X — C is defined by f(z) = u(z) — iu(iz),
then f is complex linear. In this case, if X is normed, we have |jul| = || f|.

Proof. 1f f is complex linear and v = Re f,u is clearly real linear and Im f(z) =
—Relif(z)] = —u(iz), so f(x) = wu(r) — iu(iz). On the other hand, if u is real
linear and f(z) = wu(x) — iu(iz), then f is clearly linear over R, and f(iz) =
u(iz) — wu(—z) = u(iz) + iu(x) = if(x), so f is also linear over R. Finally, if z is
normed, since |u(z)| = |Re f(z)| < |f(z)| we have [|u| < |f||. On the other hand, if
f(z) # 0, let & =sgn f(x). Then |f(z)| = af(x) = f(ax) = u(az) (since f(ax) is real),
so |f(x)] < Jullex] = full|z], whence [[f] < [lul. O

It is not obvious that there are any nonzero bounded linear functionals on an arbitrary
normed vector space. The fact that such functionals exist in great abundance is one of
the fundamental theorems of functional analysis. We shall now present this result in a
more general form that has other important applications.
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Definition 37. If X is a real vector space, a sublinear functional on X is a map
p: X — R such that for all z,y € X and all X = 0,

e p(x+y) < p(z)+ply) and
e p(Az) = Ap(z).

For example, every seminorm is a sublinear functional.

Theorem 5.38: 5.6: The Hahn-Banach Theorem.

Let X be a real vector space, p a sublinear functional on X, M a subspace of X, and
f alinear functional on M such that f(z) < p(x) for all x € M. Then there exists a
linear functional F' on X such that F(z) < p(z) for all x € X and Fy = f.

Proof. We prove the theorem by induction. Pick z € X ~ M.

e Step 1: Extend f from M to a linear functional on g: M @ Rx — R: We have for all
Y1,Y2 € M that

fly) + f(y2) = flyr +12) < o1 + v2) < p(y1 — 2) + p(T + 12).
Note that there’s some « such that

supyen {f(y) —ply — )} < a < inf{p(x +y) = f(y)}-

Then let g: M @ Rz — R by g(y + A\z) == oloneqf(y) + Aa. Clearly g is linear and
extends f.

e Step 2: Show that g preserves the bound: For any A\ > 0 and y € M we have
gy + Ax) = Af(y/N) + Mp(z +y/A) — f(y/N) (since A # 0), and then multiply
through, cancel, and use positive homogeneity to get that this is = p(y + Az), and
hence p(y + A\z) < g(y + Az) for all positive \.

Similarly, for each A < 0 and y € M we have g(y + A\x) = |\ f(y/|\]) —
A (f(y/|A]) — p(z +y/|A])), and as we multiply through and cancel to get this is
= p(y + Azx), so g(y + A\x) < p(y + Az) for negative A as well. Therefore, for all
y € M @ Rx, we have g(y) < p(y).

e Step 3: Invoke Zorn’s lemma to get F' € X* preserving the bound on all of X: Let
F be the family of all linear extensions F' of f such that F' < p on the domain of
f. Then equip % with the partial ordering < such that F; < F5 if and only if f5
extends Fi. Observe that every linearly ordered subset Fq < F is bounded above by
just taking F* with domain | g, (domain of F), and F*(z) := oloneqF'(x) for all
x in the domain of F' (where F' € ). We are then done by Kuratowski-Zorn. [

If p is a seminorm and f: X — R is linear, the inequality f < p is equivalent to the
inequality |f| < p, because |f(z)| = £f(z) = f(+x) and p(—z) = p(x). In this situation
the Hahn-Banach theorem also applies to complex linear functionals:
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Theorem 5.39: 5.7: The Complex Hahn-Banach Theorem.

Let x be a complex vector space, p a seminorm on X, M a subspace of X, and f a
complex linear functional on M such that |f(z)| < p(x) for x € M. Then there exists a
complex linear functional F' on z such that |F(z)| < p(x) for all x € X and F|y = f.

Proof. Let uw = Re f. By 7?7 there is a real linear extension U of u to X such that
|U(z)| < p(z) for all x € X. Let F(x) = U(x) —iU(ix) as in Proposition 36. Then F is a
complex linear extension of f, and as in the proof of Proposition 36, if o = sgn F'(z), we
have |F(x)| = aF (z) = F(az) = U(az) < plaz) = p(x). O

Warning 5.40.

From now on until Folland Section 5.5, all of our results apply equally to real or
complex vector spaces, but for the sake of definiteness we shall assume that the scalar

field is C.

The principal applications of the Hahn-Banach theorem to normed vector spaces are
summarized in the following theorem.

Theorem 5.41: 5.8.

Let X be a normed vector space.

(a) If M is a closed subspace of X and x € X ~\ M, there exists f € X* such that
f(x) # 0 and fir = 0. In fact, if 6 = inf ey ||z — y|, f can be taken to satisfy
|f] =1 and f(x) = 6.

(b) If z # 0 € X, there exists f € X* such that ||f| =1 and f(x) = |z]|.

(c) The bounded linear functionals on X separate points.

(d) If z € X, define z: X* — C by Z(f) = f(z). Then the map = — 7 is a linear
isometry from X into X** (the dual of X*).

Proof. To prove (a), define f on M + Cx by f(y + Az) = M(y € M, A € C). Then
f(x) =0, fu=0,and for A # 0, |f(y + Ax)| = |A|d < |[M|A 'y + x| = ||y + Az||. Thus the
Hahn-Banach theorem can be applied, with p(z) = ||z|| and M replaced by M + Cz. (b)
is the special case of (a) with M = {0}, and (c) follows immediately: if = # y, there exists
feX* with f(zr —y) #0, ie., f(x) # f(y). As for (d), obviously Z is a linear functional
on X* and the map x — 7 is linear. Moreover, |Z(f)| = |f(x)] < |f]||z], so |Z] < ||
On the other hand, (b) implies that |z = |z|. O

With notation as in Theorem 41(d), let X = {Z | z € X}. Since X** is always complete,

the closure 7 of Z in X** is a Banach space, and the map x — 7 embeds x into X as a
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dense subspace. Z is called the completion of X. In particular, if X is itself a Banach

A~

space then X = X. R

If X is finite-dimensional, then of course X = X** since these spaces have the
same dimension. For infinite-dimensional Banach spaces it may or may not happen that
X = X**; if it does, x is called reflexive. The examples of Banach spaces we have examined
so far are not reflexive except in trivial cases where they turn out to be finite-dimensional.
We shall prove some cases of this assertion and present examples of reflexive Banach
spaces in later sections.

Notation 42. Usually we shall identify X with X and thus regard X** as a superspace
of X; reflexivity then means that X** = X.

Exercise 5.43: Folland Exercise 5.17.

A linear functional f on a normed vector space X is bounded if and only if f~1({0}) is
closed. (Use Folland Exercise 5.12(b).)

Solution.

= A linear function f on a normed F-vector space is bounded if and only if it is
continuous, so f is continuous. Hence, f~1({0}) is closed since {0} is closed (since
the topological space F is T}).

< Conversely, let f~1({0}) be closed. M = {0} is a closed subspace of X, so by Folland’s
Theorem 41, we have that for any x ¢ M (i.e., x # 0), there’s an f, € X* such that
f(z) # 0 and fly =0 (i.e., f(0) =0). In fact, if 6 = inf ep/ |z — y| (Le., 0 = [|z]x),
then f, can be taken to satisfy ||f.| = 1 and f,(x) = 0. By 12(b), there’s an z € X
with unit norm and |z + f~*({0})| =1 — 3 = . Then for any z € X/f~'({0}) and
any y € X/(f71({0}) ® Cz), we have

_ I ( _ ) 1oy = 1
y= Tk (y-F02) e ot 00N - S (O) O,
so X = f71({0}) ® Cz. But for any x € X, we already know there’s y € f~1({0})
with

[fQaty)l = (AIf(@)] < 20Mz+f{ODIf ()] < 2\ |z+y/All f ()] = 21f (@)[|[Az+y],
forcing the boundedness of f as desired.

[]

Exercise 5.44: Folland Exercise 5.18.

Let X be a normed vector space.

(a) If M is a closed subspace and z € X ~\ M then M + Cz is closed. (Use Folland
Exercise 5.8(a).)
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(b) Every finite-dimensional subspace of X is closed.

Exercise 5.45: Folland Exercise 5.19.

Let X be an infinite-dimensional normed vector space.

(a) There is a sequence {z;} in X such that |z;]| = 1 for all j and |z; — 2| > }
for j # k. (Construct x; inductively, using Folland Exercise 5.12(b) and Folland
Exercise 5.18.)

(b) X is not locally compact.

Exercise 5.46: Folland Exercise 5.20.

If M is a finite-dimensional subspace of a normed vector space X, there is a closed

subspace N such that M n N = {0} and M + N = X

Exercise 5.47: Folland Exercise 5.21.

If X and Y are normed vector spaces, define av: X*xY™* — (zxy)* by a(f, 9)(z,y) =
f(z)+g(y). Then « is an isomorphism which is isometric if we use the norm |(z,y)| =
max(|z], |y[|) on x x y, the corresponding operator norm on (z x y)*, and the norm

[(F )| = 1F1 + lgl on X*x Y.

Exercise 5.48: Folland Exercise 5.22.

Suppose that X and Y are normed vector spaces and T € L(X,Y).

(a) Define T': Y* — X* by T'f = foT. Then T' € L(Y*, X*) and |T'| = |T|.T
is called the adjoint or transpose of T'.

(b) Applying the construction in (a) twice, one obtains T € L(X** y**). If z and y
are identified with their natural images 7 and ¢ in X** and y**, then T'T | z = T.

(c) TT is injective if and only if the range of T is dense in y.

(d) If the range of T is dense in X*, then T is injective; the converse is true if X is
reflexive.

Exercise 5.49: Folland Exercise 5.23.

Suppose that X is a Banach space. If M is a closed subspace of X and N is a closed sub-
space of X* let M® = {f e X*| fsx =0} and N* = {z € X | f(z) =0 for all fe N}.
(Thus, if we identify x with its image in X** N+ =N X.)

(a) M and Nt are closed subspaces of X* and X, respectively.

(b) (MO = M and (N4)° > N. If X is reflexive, (N+)? = N.
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(c¢) Let m: X — X/M be the natural projection, and define a:: (X/M)* — X* by
a(f) = fonm. Then « is an isometric isomorphism from (X /M)* onto M°, where
X /M has the quotient norm.

(d) Define B: X* — M* by B(f) = fa; then 8 induces a map 3: X*/M° — M* as

in Folland Exercise 5.15, and f is an isometric isomorphism.

Solution. (a) M° and N+ are closed subspaces of X* and X, respectively. MY is a subspace
since 0|y = 0 and if f|pr,g|s = 0 then for any a € C (af + g)(M) = af(M) + g(M) = 0.
Now take a Cauchy sequence {f,} = M°. Since C is Banach, so is X* by Proposition 16.
Then {f,} — f € X*. Then f|y = lim, o0 fn|sr =0s0 fe M°.

N* is a subspace since 0 € ker f for any f € X* and if 2,y € N* then for any
aeC,feN, flax +y) = af(x) + f(y) = 0 by linearity of f and definition of N*. Now
take Cauchy {z,} = N+, {z,} — 2 € X since X is Banach. Now since any f e N < X*
is linear f(limx,) = lim f(x,) =0so x € N*.

(b) First we show (M°)* < M. Suppose x € M. Then x € njepoker(f). If
y € X ~ M then there is some g € X* s.t. gy = 0 and f(y) = 1 since M is closed
using Theorem 41(a). But then y ¢ N epo ker(f), so x € M. Now we show M < (M°)*.
Suppose x € M. Then € N ey ker(f) = MO

We can see by expanding the definition that clearly N < N0 =
{v e X|zenienker(f)}°={ge X*|g(x) =0V zs.t.xz € nsey ker(f)} since for any f €
N, f(x) =0 for every z in its kernel. Now suppose X is reflexive and we work to show
N+t% = N. Fix g e N*. For the sake of contradiction suppose g € X* ~. N. Then since
N is closed, by Theorem 41(a) there is some 7 € (X*)* = X (by reflexivity) such that
Z|y = 0 but Z(g) # 0. Then by the natural isomorphism between X, X**, f(z) = 0 for
every f e N but g(x) # 0, therefore g ¢ N*°.

(c) We first check that this defines an isomorphism. Given g € im f there is some
fe(X/M)*st. g= fomand so g|ly = 0 since 7|y = 0 and so g € M°. Given f e M°,
flx + M) = f(z) + f(M) = f(x) by linearity and definition of M° so f € im « by taking
the the map in (X/M)* agreeing with f on z.

To show isometry, we show that ||a(f)|| = || f|| for every f e (X/M)*. First note that
Il = 1
lm@)I _ o e+l _ 2]l

|l venr|[a]]
Where we used the definition of the quotient norm and the triangle inequality. By definition

—1

=[] <

of quotient norm if z ¢ M then ||7(2)|| = ||2|| since z is linearly independent from M,
thus ||7|| = 1 since 1 is attained in the supremum of the operator norm.
Now [la(H)|] = |If o=|| < [|=||[|f|| = ||f]| by sublinearity of the operator norm. If

f e (X/M)* then for any T =2z + M € X, x € X/M, we have
1f @) = [[f @I < |1f o x| [[Z]]
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by the sublinearity of operator norm. This inequality holds taking the infimum over M in
7 and so by the definition of the quotient norm and «, ||f(z)|| < ||a(f)]| ||z||- Rearranging
we have ||f]| = W& < Jja(f)|| and thus equality. O

[l

Exercise 5.50: Folland Exercise 5.24.

Suppose that X is a Banach space.
(a) Let Z,(X*) be the natural images of x, X* in X** z*** and let 72° =
{F e X***| F|g = 0}. Then (X*) 2% = {0} and (X*)* + 20 = z***.
(b) z is reflexive if and only if X* is reflexive.

Exercise 5.51: Folland Exercise 5.25.

If X is a Banach space and X* is separable, then X is separable. (Let {f,}]” be
a countable dense subset of X*. For each n choose z,, € X with |z,| = 1 and
|fa(zn)| = %[ fa]. Then the linear combinations of {z,},” are dense in X.) Note:
Separability of X does not imply separability of X*.

Exercise 5.52: Folland Exercise 5.26.

Let X be a real vector space and let P be a subset of x such that (i) if z,y € P, then
r+ye P, (i) if € P and A > 0, then \x € P, (iii) if z € P and —x € P, then z = 0.
(Example: If X is a space of real-valued functions, P can be the set of nonnegative
functions in x.)

(a) The relation < defined by = < y if and only if y — x € P is a partial ordering on
X.

(b) (The Klein Extension Theorem) Suppose that M is a subspace of X such that
for each x € X there exists y € M with x < y. If f is a linear functional on M
such that f(z) = 0 for x € M n P, there is a linear functional F' on x such that
F(z) =0 for x € P and Fy = f. (Consider p(z) = inf{f(y) | y e M and = < y}.)

5.3 The Baire Category Theorem and its Consequences

In this section we present an important theorem about complete metric spaces and
use it to obtain some fundamental results concerning linear maps between Banach spaces.

If X is a topological space, a set £ < X is of the first category, or meager, if E is
a countable union of nowhere dense sets (equivalently, a countable intersection of open
dense sets); otherwise FE is of the second category. The complement of a meager set is
called generic or residual. It is useful to think of generic sets as corresponding to the
situation of a typical set, and to think of meager sets as the exceptional situation.

Note 53.
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(1) E is closed and nowhere dense if and only if E¢ is open and dense.

(2) The countable union of meager sets is a meager set, and the countable intersection
of generic sets is generic.

(3) Any dense open set is generic (for example, interiors) (by (1)).

(4) Thus, the notions of “big” and “small” captured by the Lebesgue measure does not
transfer to meager or generic sets: there are meager (exceptional) subsets of [0, 1]
with Lebesque measure 1, and in particular uncountable subsets of [0, 1], and there
exist generic subsets of [0,1] of Lebesque measure 0, as the following example shows.

Let {xy}i, be an enumeration of the rationals in [0,1], and consider

0 0 1 1
FE = ﬂkzl Uk:l (Tk — %, rL + %) .

open and dense, hence generic
Then E is a countable intersection of generic sense, and hence is generic. In addition,
E has Lebesgue measure 0.

The Baire category theorem is often used to prove existence results: One shows that
objects having a certain property exist by showing that the set of objects (within a suitable
complete metric space) is generic. For example, one can prove the existence of nowhere
differentiable continuous functions in this way; see Folland Exercise 5.42.

Theorem 5.54: 5.9: The Baire Category Theorem (BCT).

Let X be a complete metric space.
(a) If {U,}" is a sequence of open dense subsets of X, then (,” U, is dense in X.
(b) X is not a countable union of nowhere dense sets, that is, X is of the second
category in itself.

Proof. For part (a), we must show that if W is a nonempty open set in X, then W
intersects ﬂio Up. Since Uy n W is open and nonempty, it contains a ball B(rg, x¢), and we
can assume that 0 < g < 1. For n > 0, we choose x,, € X and r, € (0,00) inductively as
follows: Having chosen z; and r; for j < n, we observe that U, N B(r,_1, ©,—1) is open and
nonempty, so we can choose x,,, r,, so that 0 < r, < 27" and B(r,, x,) < U,nB(r,_1, Zn_1).
Then if n,m > N, we see that z,, x,, € B(ry,zy), and since r, — 0, the sequence {z,}
is Cauchy. As X is complete, x = lim x,, exists. Since =, € B(ry,xy) for n = N we have

r€ B(ry,xny) € Uy n B(ri,x1) c Uy n W

for all V, and the proof is complete. As for (b), if {E,} is a sequence of nowhere dense
sets in X, then {(En)c} is a sequence of open dense sets. Since m(En)C # J, we have

UE, < UE. # X. 0O

Note 55 (Strengthenings of Baire Category Theorem).
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e We remark that since the conclusions of the Baire category theorem are purely
topological, it suffices for X to be homeomorphic to a complete metric space. For
example, the theorem applies to X = (0,1), which is not complete with the usual
metric but is homeomorphic to R.

e The Buaire category theorem is also true for LCH spaces. (This is Folland Exercise
5.28.) Note that there exist complete metric spaces that are not LCH spaces and
vice versa, so one is not a special case of the other. The proof is almost the same
but part (a) has a slight modification as follows: Let By be a nonempty open set in
X, and choose nonempty open sets B, inductively so that B, < U, N B,_1. If X is
LCH, then we can take B, to be compact, and by compactness we have K = (| B, is
nonempty. Since K < U, n B, for alln, (Byn(\U,) # @.

5.3.1 First Applications of the Baire Category Theorem

Corollary 5.56.

In a complete metric space, generic sets are dense.

Proof. Suppose E is a generic subset that is not dense. Then there exists a closed ball
B < E¢ = J_, F,, where each F, is nowhere dense. But then B = | J"_,(F,, n B) is a
countable union of nowhere dense sets, contradicting the Baire category theorem (applied
to B). O

Theorem 5.57.

If X is a complete metric space and {f,: X — C} a sequence of continuous functions
such that lim,, o f,(z) = f(z) for all z € X, then the set F of points in X where f is
continuous is a generic set.

Proof. First, we observe that F is a Gs-set (a countable intersection of open sets). Fix
x € X and define the oscillation of f at z as

oscy(z) = 11\% Supy,zeBr(x)|f(y) — f(2)].

This is well-defined, as the limit exists—indeed, sup, .cp ()| f(y) — f(2)| is nonnegative
(hence bounded below by 0) and decreasing as r decreases.

Note that oscs(x) = 0 if and only if z € E. Moreover, for every ¢ > 0,
{r e X |oscp(z) < e} is open. Indeed, if oscp(x) < e, then there exists r > 0 such
that |f(y) — f(2)] < e for all y,z € B.(z), so by the triangle inequality B(x,r/2) c
{r e X |oscp(z) <e}. Then E = (_ {xr e X |oscp(z) < 1/n} is a Gs-set, as claimed.

Version of April 30, 2024 at 11pm EST Page 199 of 368


https://www.greysonwesley.com/home

Greyson C. Wesley §5.3: The Baire Category Theorem and its Consequences

Now E° = |J”_ {zr € X |oscp(x) = 1/n} = |J_, F,. Note that each F, is closed

—F,
(their complements are open). We now show that each F,, has empty interior, so that E°

is meager.

Lemma 5.58.

For every open ball B © X and € > 0, there exists an open ball By € B and some
m € Zs1 such that | f(z) — f(z)| < e for all x € B.

Proof. Take a closed ball Y = B and let Ey = {z € Y | sup; ;| fj(z) — fu(2)| < €}. Then
Y = ,2, B, since {fx(z)} converges for every z. Since Y is closed it is a complete metric
space, so by the Baire category theorem F,, is not nowhere dense. Thus there exists an open
ball By c E,, = E,,, where closure is by continuity of the fis. Thus |f;(z) — fu(z)| < e
for all x € B whenever j,k > m. Letting k — oo yields |f;(z) — f(z)| < e for all z € B,
7 = m. This proves the lemma. n

Finally, we show each F,, above has empty interior. Suppose that some F;, does not
have empty interior, and take an open ball B c F,,. Apply the lemma with € = 1/4n to
obtain an oen ball By € B and an integer m > 1 such that |f(x) — f.(x)| < 1/4n for all
x € By. By continuity, there exists a ball B}, € By such that |f,(y) — fm(2)| < 1/4n for
all y, z € B (since f,, is continuous). Therefore, if y, z € B}, then

1f @) = FEI < [fW) = fm@] + 1 fn(y) = ()] + | (2) = f(2)]
111 31
T4n  4n 4n 4n n
Thus osc¢(z’) < 1/n, where 2’ is the center of B. This means 2’ ¢ F),, a contradiction
since ' € By < Byc Bc F, O

Example 59. Does there exist a function on R that is

(a) continuous precisely at the irrationals?

(b) continuous precisely at the rationals?
For (a) the answer is yes, and and an example of such a function is the stars over
babylon function, (also called the Thomae function, or the popcorn function),
which is given by

{— if x = p/q is rational in lowest terms (with ¢ >0) ,
flz) = .
0 otherwise.

For (b) the answer is no: There does not exist a function on R that is continuous precisely
at the rationals, since Q is not a Gs-set. Indeed, suppose to the contrary that Q = ﬂle U,
for open sets U,,. Since each U, contains Q (which is dense), each U, is dense; thus by
assumption Q = ﬂle s an intersection of dense open sets U,. Then UfS is closed and
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does not contain any rationals, so US is nowhere dense. Let {x,} be an enumeration of
the rationals. Then R = |J7_, (U U {z,}) is a countable union of nowhere dense sets.

The Baire category theorem can also be used to show that the typical element of
C([0,1]) is nowhere differentiable, in the sense that the set of all such functions is generic:

Theorem 5.60: Banach.

The set of nowhere differentiable functions in C([0,1]) is generic.

Proof. 1t suffices to show the set
D :={feC([0,1]) | f" exists somewhere}

is meager. Define
there exists z€[0,1—1/n] such that }

Cy = {f e C([0,1]) | LA =1 | < for all he(0,1/n)

First we show D c U;O C,: Indeed, if this weren’t the case, then there exists some
f ey C¢ such that f exists somewhere. But then for each n > 2 and all z € [0,1—1/n],
there is some h € (0,1/n) for which the difference quotient is larger than n, meaning no
real number could be the limit of the difference quotient as h — 0, i.e. f’ doesn’t exist.
This contradicts the definition of D, so D must be contained in the union Ugo Ch.

We now show that C,, is closed for each n. Indeed, fix n € N and pick some {f;},_, < C,
and some f € C), such that limy_,4 fx = f. with respect to the uniform norm | - |,. Now,
because fp < C,, for each k, there’s some subsequence of points {xk}zozl c [0, 1] such that

fi(@e +h) — fr(xg)
h

~

whenever h € (0,1/n).

Now, {zx},_, is a sequence of real numbers that are bounded (they’re in the interval
[0,1]), so there is some convergent subsequence, say {x, }-_,, that converges to, say
xo € [0,1]. Moreover, note that becausef, — f in the uniform norm, we have that
fr,, — [ in the uniform norm as well.

We now claim that |f(zo + h) — f(xo)| < hn for any h € (0,1/n): Fix ¢ > 0 and
h € (0,1/n). Choose m sufficiently large such that

| few = flloe < €h/4,
| (@,,,) = f(o)| < eh/4,
\f(zk,, + h) — f(xo+ h)| <eh/4.
Then we have that
|f(zo + h) = f(@o)| < |f(zo +h) = fan, + W)+ |f(@h, + 1) = fo, (@, +h)|
+ [ fion @k T 1) = fron @) + o (@) = f (@00
+ | f (k) = f (o)l
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<eh/4+¢ech/4+ ch/4+ ch/4+ nh
= h(n +¢),
which goes to nh as € \, 0.

Finally, we claim that C, has empty interior for each n. Fix n € N. Suppose for a
contradiction it wasn’t empty—then there’s some f € C,, and an £ > 0 such that

Bll=(f) < Cy.

By Stone-Weierstrass, there’ a polynomial p with |[f — p|, > 0 such that Bs(p) <
B).(f) < C,, for some 6 > 0. Now we construct a continuous function ¢ so that |¢], < 0
and for which ¢, (z), the right-hand derivative of ¢ at z, exists for each z € [0,1)
and is such that ¢/, (z)] > n + [ f'|. Then ¢ + p € Bs(p), and for all z € [0,1) we
have [(¢ + p)',(@)] = |¢,(z) + (@) > ¢, ()] — [pllo > n, which implies ¢ + p ¢ C,
contradicting that ¢ + p € Bs(p)(c C,,). Hence the interior or C,, must be empty for each
n.

From this it follows that D <  J;” C,, is a countable union of nowhere dense sets, so it
is nowhere dense by the Baire category theorem, meaning its complement is generic. [J

5.3.2 Applications of Baire Category Theorem to Linear Maps

We turn to the applications of the Baire category theorem in the theory of linear maps.

Some terminology:

If X and Y are topological spaces, a map f: X — Y is called open if f(U) is open in
Y whenever U is open in X.

If X and Y are metric spaces, amounts to requiring that if B is a ball centered at
x € X, then f(B) contains a ball centered at f(z).

If X and Y are in particular normed vector spaces and f is linear, then f commutes
with translations and dilations; it follows that f is open if and only if f(B) contains a
ball centered at 0 in Y when B is the ball of radius 1 about 0 in X.

Theorem 5.61: 5.10: The Open Mapping Theorem.

If X and Y are Banach spaces, then surjective bounded maps T € L(X,Y") are open.

Proof. Let B, denote the (open) ball of radius r about 0 in X. By the preceding remarks,
it will suffice to show that 7'(B;) contains a ball about 0 in Y. Since X = J;” B, and
T is surjective, we have Y = | J"T(B,). But Y is complete and the map y — ny is a
homeomorphism of Y that maps T'(B;) to T(B,,), so by Baire’s category theorem T'(B;)
cannot be nowhere dense (since complete metric spaces are non-meager—that is, not of
the first category—in themselves). That is, there exist yo € y and r > 0 such that the ball
B(4r,yy) is contained in T'(By). Pick yy = Tz € T(By)

y=Tri+ (y—y)eT(x1+ B1) c T(Ba).
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Dividing both sides by 2, we conclude that there exists r > 0 such that if |y| < r then
y € T(By). If we could replace T'(B;) by T(B;), perhaps shrinking r at the same time,
the proof would be complete; we now proceed to accomplish this.

Since T' commutes with dilations, it follows that if |y|| < 727", then y € and proceeding
inductively, we can find x,, € By-» such that |y — > T'z;| < 727", Since X is complete,
by Theorem 8 the series Y " z,, converges, say to z. But then |z| < >"2™" =1 and

y = Tx. In other words, T'(B;) contains all y with |y| < /2, so we are done. O

Corollary 5.62: 5.11: The (Bounded) Inverse Mapping Theorem.

If X and Y are Banach spaces and T' € L(X,Y) is bijective, then T" is an isomorphism;
that is, T~! e L(Y, X).

Proof. If T is bijective, continuity of T~ is equivalent to the openness of T. O]

For the next results we need some more terminology. If X and Y are normed vector
spaces and T is a linear map from X to Y, we define the graph of T to be

(T) = {(z,y) e X XY |y = Tu}
which is a subspace of X xY. (From a strict set-theoretic point of view, of course, T" and
['(T) are identical; the distinction is a psychological one.) We say that T is closed if
['(T) is a closed subspace of X x Y.

Clearly, if T is continuous, then T is closed, and if X and Y are complete the converse
is also true:

Theorem 5.63: 5.12: The Closed Graph Theorem.

If X and Y are Banach spaces and T: X — Y is a closed linear map, then 7T is
bounded.

Note 64. Energy is not bounded, but wants to be symmetric, hence not everywhere defined
by uncertainty principle. Unbdd symmetric operators cannot be everywhere defined. Thus
you need unbounded operators such that the domain is not the enetire space but a dense
subspace. And we are kind of forced into that by this theorem.

here. The proof is to write T as a composition of two bounded operators. Let m; and
79 be the projections of I'(T") onto X and Y, that is, my(z, Tz) = x and my(z, Tz) = Tx.
Obviously m € L(I'(T), z) and my € L(I'(T'), y). Since X and Y are complete, so is X x Y,
and hence so is I'(T') since T is closed. The map ; is a bijection from I'(T") to X, so by
Corollary 62, 7! is bounded. But then T' = 7y o 7! is bounded. O

Remark 65. Continuity of a linear map T: X — Y means that if v, — x then Tx,, — Tx,
whereas closedness means that if x,, — x and Tz, — Y theny = Tx. Thus the significance
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of the closed graph theorem is that in verifying that Tx, — Tx when x, — x, we may
assume that T'x, converges to something, and we need only to show that the limit is the
right thing. This frequently saves a lot of trouble.

The completeness of x and y was used in a crucial way in proving the open mapping
theorem and hence also in proving the closed graph theorem. In fact, the conclusions of
both of these theorems may fail if either x or y is incomplete; see Folland Exercise 5.29,
Folland Exercise 5.30, and Folland Exercise 5.31.

Our final result in this section is a theorem of almost magical power that allows one
to deduce uniform estimates from pointwise estimates in certain situations.

Theorem 5.66: 5.13: The Uniform Boundedness Principle.

Suppose that X and Y are normed vector spaces and A is a subset of L(X,Y).
(a) If suppey |[Tz| < oo for all x in some nonmeager subset of X, then supp.4 |7 = .
0.
(b) If X is a Banach space and supy, ||Tz| < oo for all x € X, then supy., |T]| = o0.

Proof. Let
E, =f{reX |supgeq [Tx| <n}p=[),_{ze X ||Tz| <n}.

Then the E,s are closed, so under the hypothesis of (a) some E,, must contain a nontrivial

closed ball B(r,zq). But then E», o B(r,0), for if |z| < r, then x — xy € E,, and hence
[T < [T(x = @) + [To| < 2n.

In other words, |Tz| < 2n whenever T € A and |z| < 7, so suppey |7 < 2n/r. This
proves (a), and (b) follows by the Baire category theorem. O

Corollary 5.67.

Let X and Y be Banach spaces and {T,,}*_; < L(X,Y’) such that lim,,_,., T,z exists
for all z € X. Then define T: X — Y by

Tx = lim T,x.

n—0o0

Then T e L(X,Y).

Proof. The hypothesis of the UBP are satisfied, so there exist M > 0 (independent
of n such that [T,z < M|X]|) for all x € X. Then Tz < [Tz —Tyx| + |Thz| <
|Tz — Toz| + M|z|. Letting n — oo, we obtain |Tx|| < M|z| for all z € X. O

Exercise 5.68: Folland Exercise 5.27.

There exist meager subsets of R whose complements have Lebesgue measure zero.
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Exercise 5.69: Folland Exercise 5.28.

The Baire category theorem remains true if X is assumed to be an LCH space rather
than a complete metric space. (The proof is similar; the substitute for completeness is
Proposition 87.)

Solution. |here| See Note 55. O

Exercise 5.70: Folland Exercise 5.29.

Let Y = L'u) where pu is counting measure on Zs;, and let x =
{feY | X7 n|f(n)] < o}, equipped with the L' norm.

(a) X is a proper dense subspace of Y; hence X is not complete.

(b) Define T: X — Y by T'f(n) =nf(n). Then T is closed but not bounded.
(c) Let S=T7'. Then S: Y — X is bounded and surjective but not open.

Solution. Let K denote R or C. As p is the counting measure on Z-;, we can make the
identifications

Y = {{an} ‘ a, € K and Zio|an| < OO}
and
X = {{an} ‘ a, € K and Zjo nla,| < oo}.

(a)  — X is properly contained in Y: First note X is contained in Y, since if >}" n|a,| <
 then Y, ” nla,| < o. The containment is proper, since the sequence a,, = 1/n?
has {a,}o; €Y N X. Hence X ¢ Y.
— X is a linear subspace of Y: Let {a,},{b,} € X and A € K. Then for any
N € Zz,

N N N N
21 nla, + Ab,| < 21 (n)an| + nlby,|) +21 n|a,| + 21 n|by).
Sending n — o0, we obtain

o0 0 0
Zl nla, + Ab,| < Zl nla,| + Zl n|b,| < oo,

where the last inequality is because {a,}, {b,} € X. Hence {\a, + b,} € X, so
X is a linear subspace.

— X is dense in Y Since simple functions are dense in Y = L!(y), it suffices to
show X contains all simple functions in L'(x). So let g = {b,} € L'(1) be a
simple function, that is, g = Zjlv zjXp, for finitely many F; € P(Z>1). Note
that there exist at most finitely many n € Z~, such that b, # 0: indeed, if there
exists k € {1,..., N} such that both z; # 0 and Ej is an infinite set, then

0 0
= Ze:1 cep(Er) < ZH co(Er) = Jg dp,
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contradicting g € L'(u). Thus {g = X" n|b,| is a finite sum, and hence is
finite. It follows that g € Y, so Y is dense in X.
(b)  — T is not bounded: Fix an arbitrary m € Z>; and define f,,(n) = 1if m =n
and f,,(n) = 0 otherwise. Then } n|fn.(n)] = n < o, so f,, € X. But
ITfol = S 0T ()] = 5,12 fn(m)| = 2 = m ful, 50 [Ty < . But m
was an arbitrary nonnegative integer, so |T|,, = c. Hence T' is not bounded.
— T is closed: Suppose f(n) — fin X and T'f(n) — g in Y. We claim Tf = g.
First fix ¢ > 0. By our assumption, for all sufficiently large N we have
Sl )| < e/4, X2y gl < e/d, g — Tholl < e/a, and |f — full < &
Then for all sufficiently large m and N, we have

S T ) =T fa) =Y nf(n) nfm |+2 |nf Tfm<n>,
<N 0) = )+ /4 Y (T ) - |+Z ol <e.

soTf, — TfinL'. Since Tf(n) — g by assumption, we conclude by uniqueness
of limits in a normed (hence Hausdorff) vector space (namely, L'(u)) that

Tf=g.
(c) Fix f €Y. Then Sf(n) = n~!f(n) for any n € Z~1, so

ISFI =37 7t rml <>, 1)l = |1,

Thus [|S]ep < 1, s0 S is bounded. And S is surjective, since any {a,} € X is the image
under S of the sequence {2} (since if Y} n|a,| < oo then in particular )] L|a,| < oo,
meaning {?»} € Y'). Lastly, if S were open, then T' = S~—1 is continuous, which
contradicts part (b). Thus S is not an open map, as claimed. ]

Exercise 5.71: Folland Exercise 5.30.

Let Y = C(]0,1]) and X = C'([0,1]), both equipped with the uniform norm.

(a) x is not complete.
(b) The map (d/dx): X — Y is closed (see Folland Exercise 5.9) but not bounded.

Exercise 5.72: Folland Exercise 5.31.

Let X,y be Banach spaces and let S: X — Y be an unbounded linear map (for the
existence of which, see Folland Section 5.6). Let I'(S) be the graph of S, a subspace of
xXy.

(a) T'(9) is not complete.

(b) Define T': X — I'(S) by Tx = (z, Sz). Then T is closed but not bounded.

(c) T7': T'(S) — X is bounded and surjective but not open.
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Exercise 5.73: Folland Exercise 5.32.

Let | - |1 and | - |2 be norms on the vector space X such that |- |, < |- [2. If X is
complete with respect to both norms, then the norms are equivalent.

Exercise 5.74: Folland Exercise 5.33.

There is no slowest rate of decay of the terms of an absolutely convergent series; that
is, there is no sequence {a,} of positive numbers such that } a,|c,| < oo if and only
if {¢,} is bounded. (The set of bounded sequences is the space B(Zsx1) of bounded
functions on Z-;, and the set of absolutely summable sequences is L'(x) where p is
counting measure on Zs,. If such an {a,} exists, consider T': B(Zs,) — L'(u1) defined
by Tf(n) = a,f(n). The set of f such that f(n) = 0 for all but finitely many n is
dense in L'(u) but not in B(Zs,).)

Solution. The linear operator T': (X, |—|,) — (X, |—|,) defined by T'z := x is bounded,
since by hypothesis |Tz|, = |z|, < |z, for all z € X. Since T is a bijection of sets,
Tt e L((X,|-],),(X,]|—],)) by the bounded inverse mapping theorem. Hence there
exists Cy > 0 such that ||z, = |T'z|, < C|z|,. Thus

Izl < [ly < Cllz]y

for all x € X, so |—|, and |—||, are equivalent. O

Exercise 5.75: Folland Exercise 5.34.

With reference to Folland Exercise 5.9 and Folland Exercise 5.10, show that the
inclusion map of Li([0,1]) into C*71([0,1]) is continuous (a) by using the closed graph
theorem, and (b) by direct calculation. (This is to illustrate the use of the closed graph
theorem as a labor-saving device.)

Exercise 5.76: Folland Exercise 5.35.

Let X and Y be Banach spaces, T € L(X,Y),N(T) = {x | Tz = 0}, and M = range
(T"). Then X /N(T') is isomorphic to M if and only if M is closed. (See Folland Exercise
5.15.)

Exercise 5.77: Folland Exercise 5.36.

Let X be a separable Banach space and let ;1 be counting measure on Z=;. Suppose
that {z,}, is a countable dense subset of the unit ball of X, and define T: L'(x) —

X by Tf=>)f(n)z,.
(a) T is bounded.
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(b) T is surjective.
(c) X is isomorphic to a quotient space of L'(u). (Use Folland Exercise 5.35.)

Exercise 5.78: Folland Exercise 5.37.

Let X and Y be Banach spaces. If T: X — Y is a linear map such that foT e X*
for every f e Y* then T is bounded.

Solution. Suppose z,, — = and Tz, — y. We claim y = Tz. On one hand, by continuity
of f we have

lim foT(x,) = f(lim T$n> = f(y).
n—0oo n—0oo
On the other hand, f oT € X* by hypothesis, so in particular f o T is continuous; hence
lim foT(a,) = foT(lim xn) — foT(x).
n—00 n—0
Thus
fly)=foT(x) forallye Y*. (5.78.1)

It follows that y = Tz, since otherwise there exists f € Y* such that f(y) # f(Tx)
(since by a corollary to the Hahn-Banach theorem X* separates points), contradicting
Equation (5.78.1). It then follows that the graph of T is closed, so by the closed graph
theorem 7' is bounded. O

Exercise 5.79: Folland Exercise 5.38.

Let X and Y be Banach spaces, and let {T,,} be a sequence in L(X,Y) such that
lim T,z exists for every x € X. Let Tx = lim T,,x; then T e L(X,Y).

Exercise 5.80: Folland Exercise 5.39.

Let x,y, 2z be Banach spaces and let B: z xy — z be a separately continuous bilinear
map; that is, B(z,-) € L(y, z) for each x € X and B(-,y) € L(X,Z) for each y € Y.
Then B is jointly continuous, that is, continuous from x xy to z. (Reduce the problem
to proving that || B(x,y)| < C|z||y| for some C > 0.)

Exercise 5.81: Folland Exercise 5.40: The Principle of Condensation of
Singularities.

Let X and Y be Banach spaces and {Tjj | j,k € Z>1} < L(X,Y). Suppose that for
each k there exists z € X such that sup{|7j,z| | j € N} = co. Then there is an z
(indeed, a residual set of xs) such that sup{||Tjxx| | j € Z>1} = oo for all k.
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Exercise 5.82: Folland Exercise 5.41.

Let X be a vector space of countably infinite dimension (that is, every element is a
finite linear combination of members of a countably infinite linearly independent set).
There is no norm on X with respect to which X is complete. (Given a norm on X,
apply Folland Exercise 5.18(b) and the Baire category theorem.)

Exercise 5.83: Folland Exercise 5.42.

Let E, be the set of all f € C([0,1]) for which there exists z¢ € [0, 1] (depending on
f) such that |f(x) — f(z0)| < n|z — x| for all z € [0, 1].

(a) E, is nowhere dense in C([0,1]). (Any real f € C([0,1]) can be uniformly
approximated by a piecewise linear function ¢ whose linear pieces, finite in
number, have slope +2n. If |h — g/, is sufficiently small, then h ¢ E,,.)

(b) The set of nowhere differentiable functions is residual in C([0, 1]).

Exercise 5.84.

Assume that T is a bounded linear map on L?([0,1]) with the property that Tf is
continuous on [0, 1] whenever f is continuous on [0, 1]. Prove that the restriction of 7'
to C([0,1]) is a bounded operator on C([0,1]), where as usual C([0,1]) is equipped
with the uniform norm.

Solution. We will use the closed graph theorem. Suppose both f, — f and T'f, — ¢
uniformly. We claim T'f = g. We first state and prove a useful lemma:

Lemma 5.85.
For all f € C([0,1]) and all real numbers p € [1,0), | f|,;» < | f[,, where |—|, is the
sup-norm.

Proof. Since f e C([0,1]), | f|l, is finite. Thus

1 1
I = | 1 ay < [ 1z ay =151
Taking the pth root of both sides, we obtain the desired inequality || f],, < | f]l,- O

Since T € L(L*([0,1]), L*([0,1])), there exists C' > 0 such that

1Tfn =T fll2 < Clfa = fll < Clfa = fla

where the final inequality is by Lemma 85. Since f,, — f uniformly, it follows that T'f,, —
Tf in L?([0,1]). But also T'f,, — g uniformly by assumption, so in particular 7'f,, — g in
LA([0,1]). And L?([0,1]) is Hausdorff as a normed vector space, so by uniqueness of limits
Tf = g. Thus, by the closed graph theorem, we conclude T € L(C([0,1]),C([0,1])). O
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5.4 Topological Vector Spaces

It is frequently useful to consider topologies on vector spaces other than those defined
by norms, the only crucial requirement being that the topology should be well behaved
with respect to the vector operations. Precisely, a topological vector space is a vector
space X over the field K (= R or R) which is endowed with a topology such that the maps
(x,y) —» x +y and (\,z) — Az are continuous from z x z and K xz to z. A topological
vector space is called locally convex if there is a base for the topology consisting of convex
sets (that is, sets A such that if 2,y € A then tz + (1 —t)y € A for 0 <t < 1). Most
topological vector spaces that arise in practice are locally convex and Hausdorff.

The most common way of defining locally convex topologies on vector spaces is in
terms of seminorms. Namely, if we are given a family of seminorms on X, the “balls” that
they define can be used to generate a topology in the same way that the balls defined by
a norm generate the topology on a normed vector space. The precise result is as follows:

Theorem 5.86: 5.14.

Let {pa},c4 be a family of seminorms on the vector space X. If x € X,a € A, and
e >0, let

Umas = {Z/ e X ‘ pa(y - l’) < 5}7
and let T be the topology generated by the sets U,qe.

(a) For each x € X, the finite intersections of the sets U,qn.(a € A,e > 0) form a
neighborhood base at z.

(b) If {x;),.; is a net in X, then z; — z if and only if p,(x; —z) — 0 for all a € A.

(¢) (X,7) is a locally convex topological vector space.

Proof. (a) If x € ﬂ]f Uszjaze; let 65 = €5 — po(z — ;). By the triangle inequality, we have
T € ﬂlf Usays; ﬂ’f Us,a,e;- Thus the assertion follows from Proposition 7.

(b) In view of (a), it suffices to observe that p,(z; —z) — 0 if and only if {(x;) is
eventually in U,,. for every ¢ > 0.

(c) The continuity of the vector operations follows easily from Proposition 72 and part
(b). Indeed, if x; — = and y; — Y, then

pa((zi +yi) — (x +y)) < pal@i — ) + palyi —y) — 0,
so x; + y; — x +y. If also A; — A, then eventually |\;| < C = |A\| + 1, so
pa()‘i'ri - )\LU) < pa(/\i(xi - x)) +pa(<>‘i - A)'T) < Cpa@ji - I) + |)‘2 - /\|pa('r>7
and it follows that \;x; — Ax. Moreover, the sets U, are convex, for if y, 2 € U,qe, then
Pz — [ty + (1 —1)2]) < pa(tz —ty) + po((1 —t)z + (1 —1)2) < te + (1 —t)e = .0

The local convexity of the topology therefore follows from (a).

In this context there is an analogue of Proposition 14:
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Proposition 5.87: 5.15.

Suppose X and y are vector spaces with topologies defined, respectively, by the
families {pa},c4 and {gs}4cp of seminorms, and 7: X — Y is a linear map. Then T
is continuous if and only if for each g € B there exist aq,...,a; € A and C > 0 such

that gg(Tz) < C Y% Pa,; (7).

Proof. 1f the latter condition holds and (x;) is a net converging to x € X, by Theorem 86(b)
we have p,(z; — ) — 0 for all «, hence ¢3(Tz; — Txz) — 0 for all 8, hence Tx; — Tx. By
Proposition 72, T' is continuous. Conversely, if 1" is continuous, for every 5 € B there
is a neighborhood U of 0 in X such that ¢3(Tx) < 1 for x € U. By Theorem 86(a) w

may assume that U = ()} U, zaje;- Let € = min(ey, ..., ex); then gp(Tx) < 1 Whenever
Pa;(x) < € for all j. Now, given x € X, there are two p0851b1ht1es If po,(z) > 0 for some

g, let y = ex/ SN Pa,; (). Then ]0,;Y (y) < e for all j, so

0(Ta) = Y e 7po, (0)gs(Ty) <= Y pu (o
On the other hand, if p,, (x) = 0 for all j, then p,, (r:r) = 0 for all j and all » > 0, hence
rqs(Tx) = qg(T(rx)) < 1 for all » > 0, hence qﬁ(Tx) = 0. Thus gs(Tz) < e '3 Pa; ()
in this case too, and we are done. O

The proof of the following proposition is left to the reader (Folland Exercise 5.43).

Proposition 5.88: 5.16.

Let x be a vector space equipped with the topology defined by a family {p,},.4 of
seminorms.

(a) X is Hausdorff if and only if for each x # 0 there exists a € A such that p,(z) # 0.
(b) If X is Hausdorff and A is countable, then X is metrizable with a translation-
invariant metric (i.e., p(z,y) = p(z + z,y + z) for all z,y,z € X).

If X has the topology defined by the seminorms {p,} ., by Proposition 87 a linear
functional f on X is continuous if and only if |f(x)| < C Y]] pa,(x) for some C' > 0 and
ai,...,ap € A. Since a finite sum of seminorms is again a seminorm, the HahnBanach
theorem guarantees the existence of lots of continuous linear functionals on x—enough to
separate points, if X is Hausdorff. The set of all such functionals is denoted, as before,
by X*. There are various ways of making X™* into a topological vector space, but we
shall not consider this question systematically. The simplest way is to impose the weakest
topology that makes all the evaluation maps f — f(x) (x € X) continuous, an idea that
we shall discuss further below.

In a topological vector space X the notion of Cauchy sequence or Cauchy net makes
sense. Namely, a net (z;),.; in X is called Cauchy if the net (z; — x;); ;e ,; converges
to zero. (Here I x I is directed in the usual way: (i,j) < (¢/,7') if and only if ¢ < ¢ and

Version of April 30, 2024 at 11pm EST Page 211 of 368


https://www.greysonwesley.com/home

Greyson C. Wesley §5.4: Topological Vector Spaces

Jj < j’.) Naturally, X is called complete if every Cauchy net converges. Completeness is
of most interest when X is first countable, in which case it is equivalent to the condition
that every Cauchy sequence converges (Folland Exercise 5.44). More particularly, if X
is Hausdorff and its topology is defined by a countable family of seminorms, then this
topology is first countable by Theorem 86(a); indeed, it is given by a translation-invariant
metric p by Proposition 838(b), and a sequence is Cauchy according to the definition just
given if and only if it is Cauchy with respect to p. A complete Hausdorff topological
vector space whose topology is defined by a countable family of seminorms is called a
Fréchet space.

Let us now consider some interesting examples of topological vector spaces whose
topologies are defined by families of seminorms rather than by single norms. We have
already seen some:

e Let X be an LCH space. On C¥, the topology of uniform convergence on compact
sets is defined by the seminorms pg(f) = sup,cx |f(z)| as K ranges over compact
subsets of X. If X is o-compact and {U,} are as in Propositions 122 and 123, this
topology is defined by the seminorms p,(f) = sup,y, |f(z)]. In this case, C* is
easily seen to be complete, so it is a Fréchet space; by Proposition 121, so is C'(X).

e The space L] (R"), defined in Folland Section 3.4, is a Fréchet space with the
topology defined by the seminorms py(f) = Sm < | f(@)|dz. (Completeness follows
easily from the completeness of L'.) An obvious generalization of this construction
yields a locally convex topological vector space Li. (X, 1) where X is any LCH space

and p is a Borel measure on X that is finite on compact sets.

Another class of topological vector spaces arises naturally in connection with the theory
of differential equations. One often wishes to study the operator d/dz, or more complicated
operators constructed from it, acting on various spaces of functions. Unfortunately, it is
virtually impossible to define norms on most infinite-dimensional functions spaces so that
d/dx becomes a bounded operator. Here is one precise result along these lines: There is
no norm on the space C*([0,1]) of infinitely differentiable functions on [0, 1] with respect
to which d/dx is bounded. Indeed, if fy(x) = €, then (d/dx)f\ = \fx, so |d/dx| = |)|
for all A no matter what norm is used on C*([0, 1]).

In view of this difficulty, three courses of action are available. First, one can consider
differentiation as an unbounded operator from x to y where y is a suitable Banach space
and x is a dense subspace of y, as in Folland Exercise 5.30. Second, one can consider
differentiation as a bounded linear map from one Banach space X to a different one y, such
as ¢ = C*([0,1]) and y = C*71(]0,1]) in Folland Exercise 5.9. Finally, one can consider
differentiation as a continuous operator on a locally convex space X whose topology is
not given by a norm. All of these points of view have their uses, but it is the last one
that concerns us here. It is easy to construct families of seminorms on spaces of smooth
functions such that differentiation becomes continuous almost by definition. For example,
the seminorms py(f) = supg_,1|f® (z)|(k = 0,1,2,...) make C*([0, 1]) into a Fréchet
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space (the completeness is proved as in Folland Exercise 5.9), and d/dz is continuous on
this space by Proposition 87 since pi(f’) = pr+1(f). Other examples are considered in
Folland Folland Exercise 5.45 and in Folland Chapter 9.

One of the most useful procedures for constructing topologies on vector spaces is
by requiring the continuity of certain linear maps. Namely, suppose that X is a vector
space, y is a normed linear space, and {74}, is a collection of linear maps from x to y.
Then the weak topology T generated by {7, } makes X into a locally convex topological
vector space. Indeed, T is just the topology T’ defined by the seminorms p,(x) = |T,z|
according to Theorem 86. (T is generated by sets of the form {x | |[T,x — ol < €} with
yo € Y, whereas T’ is generated by sets of the form {z | [|Toz — Tz < €} with o € X.
If the T,,’s are surjective, these are obviously the same; the general case is left as Folland
Exercise 5.46.) The topology on C*([0,1]) in the preceding paragraph is an example of
this construction, with y = C([0,1]) and T}.f = f*). We now present some more.

First, let X be a normed vector space. The weak topology generated by X* is known
simply as the weak topology on X, and convergence with respect to this topology is
known as weak convergence. Thus, if (x,) is a net in X, z, — = weakly if and only if
f(zo) = f(x) for all fe X*. When X is infinite-dimensional, the weak topology is always
weaker than the norm topology; see Folland Exercise 5.49

Next, let X be a normed vector space, X« its dual space. The weak topology on X* as
defined above is the topology generated by X**; of more interest is the topology generated
by X (considered as a subspace of X**), which is called the weak* topology (read
“weak star topology”) on X*. X* is a space of functions on X, and the weak™® topology
is simply the topology of pointwise convergence: f, — f if and only if f,(z) — f(x) for
all z € X. The weak* topology is even weaker than the weak topology on X*; the two
coincide precisely when X is reflexive.

Finally, Let X and Y be Banach spaces. The topology on L(X,Y') generated by the
evaluation maps T — Tz(xz € X) is called the strong operator topology on L(X,Y), and
the topology generated by the linear functionals T — f(Tx)(z € X, f € Y*) is called the
weak operator topology on L(X,Y’). Again, these topologies are best understood in terms
of convergence: T,, — T strongly if and only if T,,x — Tz in the norm topology of y for
each x € X, whereas T,, — T weakly if and only if T,,x — Tz in the weak topology of y
for each x € X. Thus the strong operator topology is stronger than the weak operator
topology but weaker than the norm topology on L(X,Y).

The following result concerning strong convergence is almost trivial but extremely
useful:

Proposition 5.89: 5.17.

Suppose {T,,}7 < L(X,Y), sup,|T,| < w0, and T € L(X,Y). If |T,,x — Tx| — 0 for
all z in a dense subset D of X, then T,, — T strongly.
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Proof. Let C = sup{||T|, |1} |, |T%],...}. Given z € X and € > 0, choose 2z’ € D such
that || — 2’| < ¢/3C. If n is large enough so that ||T,,2" — T'z'|| < /3, we have

T — Tx|| < ||Thx — T2 + |Thx’ — Ta'| + |[T2" — Tx|
1
<2C|z — 2| + 3¢ <&
so that T, x — Tx. O

Our final result in this section is a compactness theorem that is one of the main reasons
for the usefulness of the weak* topology on a dual space.

Theorem 5.90: 5.18: Alaoglu’s Theorem.

If X is a normed vector space, the closed unit ball B* = {f € X* | ||f|| < 1} in X* is
compact in the weak k* topology.

Proof. For each x € X let D, = {ze C| |z| <|z|}, and let D = [[,cx Dz. Then D is
compact by Tychonoff’s theorem. The elements of D are precisely those complex-valued
functions ¢ on X such that |¢(z)| < |z| for all z € X, and B* consists of those elements
of D that are linear. Moreover, the relative topologies that B* inherits from the product
topology on D and the weak™ topology on X* both coincide with the topology of pointwise
convergence, so it suffices to see that B* is closed in D. But this is easy: If (f,) is a net
in B* that converges to f € D, for any x,y € X and a,b e C we have

flaz +by) = lim fo(az + by) = lim[afa(z) + bfa(y)] = af(z) + bf(y),
so that f € B*. n

Warning 5.91.

Alaoglu’s theorem does not imply that X = is locally compact in the weak* topology;
see Folland Exercise 5.49(Db).

Exercise 5.92: Folland Exercise 5.43.

Prove Proposition 88. (For part (b), proceed as in Folland Exercise 4.56(d).)

Exercise 5.93: Folland Exercise 5.44.

If X is a first countable topological vector space and every Cauchy sequence in X
converges, then every Cauchy net in X converges.
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Exercise 5.94: Folland Exercise 5.45.

The space C*(R) of all infinitely differentiable functions on R has a Fréchet space
topology with respect to which f,, — f if and only if f*) — f*) uniformly on compact
sets for all k£ > 0.

Exercise 5.95: Folland Exercise 5.46.

If X is a vector space, y a normed linear space, T the weak topology on X generated by
a family of linear maps {T,, | X — Y}, and T’ the topology defined by the seminorms
{x — |Tyz|}, then T = T".

Exercise 5.96: Folland Exercise 5.47.

Suppose that X and y are Banach spaces.
(a) If {T,,}) = L(X,Y) and T, — T weakly (or strongly), then sup, |T,| < .
(b) Every weakly convergent sequence in z, and every weak*-convergent sequence in
X*, is bounded (with respect to the norm).

Exercise 5.97: Folland Exercise 5.48.

Suppose that X is a Banach space.

(a) The norm-closed unit ball B = {z € X | |z < 1} is also weakly closed. (Use
Theorem 41(d).)

(b) If E < X is bounded (with respect to the norm), so is its weak closure.

(c¢) If F < X* is bounded (with respect to the norm), so is its weak™ closure.

(d) Every weak*-Cauchy sequence in X* converges. (Use Folland Exercise 5.38.)

Exercise 5.98: Folland Exercise 5.49.

Suppose that X is an infinite-dimensional Banach space.

(a) Every nonempty weakly open set in X, and every nonempty weak*-open set in
X*, is unbounded (with respect to the norm).

(b) Every bounded subset of z is nowhere dense in the weak topology, and every
bounded subset of zx is nowhere dense in the weak™ topology. (Use Folland
Exercise 4.48(b,c). )

(c) X is meager in itself with respect to the weak topology, and X = is meager in itself
with respect to the weak* topology.

(d) The weak™ topology on x+ is not defined by any translation-invariant metric. (Use
Folland Exercise 5.48(d).)
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Exercise 5.99: Folland Exercise 5.50.

If z is a separable normed linear space, the weak™ topology on the closed unit ball in
X* is second countable and hence metrizable. (But see Folland Exercise 5.49(d).)

Exercise 5.100: Folland Exercise 5.51.

A vector subspace of a normed vector space X is norm-closed if and only if it is weakly
closed. (However, a norm-closed subspace of X* need not be weak*-closed unless x is
reflexive; see Folland Exercise 5.52(d).)

Exercise 5.101: Folland Exercise 5.52.

Let X be a Banach space and let f,..., f, be linearly independent elements of X*.

(a) Define T: X — C" by Tx = (fi(x),..., fu(x)). N = {x | Tz =0} and M is
the linear span of fi,..., fn, then M = N in the notation of Folland Exercise
5.23 and hence M* is isomorphic to (X /N)*.

(b) If FF e X**, for any ¢ > 0 there exists x € X such that F(f;) = f;(x) for
j=1,...,nand |z|] < (1+¢)|F|. (Fx can be identified with an element of
(X /N)** and hence with an element of X /N since the latter is finite-dimensional.)

(c) If X is considered as a subspace of X = =, the relative topology on X induced by
the weak™ topology on X** is the weak topology on z.

(d) In the weak™ topology on X** X is dense in X** and the closed unit ball in z is
dense in the closed unit ball in X**.

(e) z is reflexive if and only if its closed unit ball is weakly compact.

Exercise 5.102: Folland Exercise 5.53.

Suppose that X is a Banach space and {7}, {S,} are sequences in L(X, X) such that
T, — T strongly and S,, — S strongly.
(a) If {z,,} < X and ||z, — 2| — 0, then |T,,xz, — Tz| — 0. (Use Folland Exercise
5.47(a).)
(b) TS, — TS strongly.

5.5 Hilbert Spaces

The most important Banach spaces, and the ones on which the most refined analysis
can be done, are the Hilbert spaces, which are a direct generalization of finite-dimensional
Euclidean spaces. Before defining them, we need to introduce a few concepts.

Definition 103. Let H be a complex vector space. An inner product (or scalar
product) on 3 is a map (z,y) — {x|y) from X x X — C such that:
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(1) {ax + by|z) = alx|z) + bly|z) for all z,y,z € H and a,be C.

(11) {ylx)y = {x|y) for all x,y € H.
(111) {x|x) € (0,00) for all nonzero x € X.

We observe that (i) and (ii) imply that
(z|ay + b2) = alz|y) + b(z|z) for all z,y,z € H and a,b e C.

(One can also define inner products on real vector spaces: {z|y) is then real, a and b are
assumed real in (i), and (ii) becomes (y|z) = (x|y).)

Definition 104. A complex vector space equipped with an inner product is called a
pre-Hilbert space. If H is a pre-Hilbert space, for x € H we define

|z = ~/<zl).

Theorem 5.105: 5.19: The Schwarz Inequality.

[Kx|yy| < |z||ly| for all z,y € H, with equality if and only if z and y are linearly
dependent.

Proof. If {(x|y) = 0, the result is obvious. If (z|y) # 0 (and in particular y # 0), let
a = sgn{x|y) and z = ay, so that (z|z) = (z|z) = [(z|y)| and |z|| = ||y|. Then for t € R
we have
0 < (o —tzlo — tz) = [a|* — 2t[¢zly)| + £[y]*.

The expression on the right is a quadratic function of ¢ whose absolute minimum

occurs at t = |y|7%[(xz|y)|. Setting ¢ equal to this value, we obtain
0 < o —tz]* = ) =y ~*|Cxly)l?

with equality if and only if 2 —tz = x — aty = 0, from which the desired result is
immediate. u

Proposition 5.106: 5.20.

The function x + |z| is a norm on .

Proof. That |z|| = 0 if and only if # = 0 and that |Az| = |\||x| are obvious from the
definition. As for the triangle inequality, we have

|z +y* = <z + ylo +y) = |2]* + 2ReCzly) + |ly[?,
so by the Schwarz inequality,
lz +y|* < al* + 2]yl + [y1* = (] + [y])?,

as desired. A pre-Hilbert space that is complete with respect to the norm |z|| = +/{z|z) is
called a Hilbert space. (One can also consider real Hilbert spaces with real inner products.
However, Hilbert spaces are usually assumed to be complex unless otherwise specified.)
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Example: Let (X, M, i) be a measure space, and let L?(11) be the set of all measurable
functions f: X — C such that {|f|?du < oo (where, as usual, we identify two functions
that are equal a.e.). From the inequality ab < %(a2 + b%), valid for all a,b > 0, we see
that if f,g € L*(u) then |fg| < 3(|f]|* + |g]*), so that fge L*(n). It follows easily that
the formula

(flg) = f f7du

defines an inner product on L?(u). In fact, L?*(u) is a Hilbert space for any measure pu.
(For a proof of completeness, see Folland Theorem 8; for the present we shall take this
result for granted.)

An important special case of this construction is obtained by taking u to be counting
measure on (A, P(A)), where A is any nonempty set; in this situation L?(u) is usually
denoted by ¢*(A). Thus, ¢*(A) is the set of functions f: A — C such that the sum
iuea lf(@)]? (as defined in Folland Section 0.5) is finite. The completeness of (?(A) is
rather easy to prove directly (Folland Exercise 5.54). For the remainder of this section, 3
will denote a Hilbert space.

Proposition 5.107: 5.21.

If x, —» z and y, — Y, then (x,|y,) — {z|y).

Proof. By the Schwarz inequality,

[Cenlyn) = C2ly)l = [Con = xlyn) + (2lyn — )
< lzn = @yl + I ]llym — vl
which tends to zero since |y, | — |y||- O

Proposition 5.108: 5.22: The Parallelogram Law.

For all x,y € I,

le +yl* + |z — yl* = 2(=]* + [y]*).
(“The sum of the squares of the diagonals of a parallelogram is the sum of the squares
of the four sides.”)

Proof. Add the two formulas |z + y|* = |z||* £ 2Re{z|y) + |y|*. If z,y € X, we say that
x is orthogonal to y and write x L y if (x|y) = 0. If E < H, we define

Et ={zxed|{zly)=0forall y e E}.
0

It is immediate from Proposition 107 and the linearity of the inner product in its first
argument that E* is a closed subspace of H.
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Theorem 5.109: 5.23: The Pythagorean Theorem.

If x1,...,2, € H and z; L x;, for j # k,
n 2 n
D IEDWEN
Proof. | z;]* = xj2|2 zj) = > 1 xj]zy). The terms with k # j are all zero, leaving
only > (wjlx;) = Xl O
Theorem 5.110: 5.24.

If M is a closed subspace of H, then 3 = M @ M*; that is, each z € H can be
expressed uniquely as © = y + 2z where y € M and z € M L. Moreover, y and z are the
unique elements of M and M+ whose distance to z is minimal.

Proof. Given x € H, let 0 = inf{|z — y| | y € M}, and let {y,} be a sequence in M such
that |z — y,| — J. By the paralellogram law,
2 2 2 2
2(lyn = =7 + ym = 2[7) = [y = ym[™ + lyn + ym = 227,

s0 since (Y + ym) € M,
2

1
2 2 2
=l = 2 = 2l + 2 =l = 4] 30+ 1)

< 2y — @[ + 2[ym — x| - 46%.
As m,n — oo this last quantity tends to zero, so {y,} is a Cauchy sequence. Let y = limy,
and z = x —y. Then y € M since M is closed, and |z — y| = 4.
We claim that z € M*. Indeed, if u € M, after multiplying « by a nonzero scalar we
may assume that (z|u) is real. Then the function

F@&) = |z + tul® = |2]* + 22wy + £ ]u?
is real for ¢ € R, and is has a minimum (namely, §?) at ¢t = 0 because z + tu = z — (y — tu)
and y — tu € M. Thus 2{z|u) = f'(0) = 0, so z € M*. Moreover, if 2’ is another element
of M*, by the Pythagorean theorem (since z — z = y € M) we have

le = 2" = o = 2 + |z = 2" > |z — 2|,
with equality if and only if z = 2z’. The same reasoning shows that y is the unique element
of M closest to x.

Finally, if x = 3/ + 2/ with ¢/ € M and 2’ € M+, then y — 9/ = 2/ — 2z € M n MM*, so

y —y' and 2’ — z are orthogonal to themselves and hence are zero. ]

If y € H, the Schwarz inequality shows that the formula f,(z) = (z|y) defines a bounded
linear functional on H such that | f,| = |y||. Thus, the map y — f, is a conjugate-linear
isometry of H into K*. It is a fundamental fact that this map is surjective:
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Theorem 5.111: 5.25.
If f e 3*, there is a unique y € H such that f(z) = (z|y) for all x € X.

Proof. Uniqueness is easy: If (x|y) = (x|y’) for all z, by taking z = y — ¢’ we conclude
that |y — /> = 0 and hence y = ¢/. If f is the zero functional, then obviously y = 0.
Otherwise, let M = {x € H | f(x) = 0}. Then M is a proper closed subspace of X, so
M+ # {0} by Theorem 110. Pick z € M+ with |[2]| = 1. If u = f(z)z — f(2)x then u e M,

0 = Culz) = F@)2I = f(2)el2) = f(@) = (af )z ).
Hence f(z) = (x|y) where y = f(2)z. O

Thus, Hilbert spaces are reflexive in a very strong sense: Not only is H naturally
isomorphic to H**, it is naturally isomorphic (via a conjugate-linear map) to H*.

A subset {uq},. 4 of I is called orthonormal if |ju,| = 1 for all & and u, L uz whenever
a# [ If {gvn}({O is a linearly independent sequence in H, there is a standard inductive
procedure, called the Gram-Schmidt process, for converting {z,} into an orthonormal
sequence {u,} such that the linear span of {z,}} coincides with the linear span of {u,}\

for all N. Namely, the first step is to set u; = x1/|z1|. Having defined uy, ..., uy_1, we
N-1 . . . .

set vy =y — 2 {&n|un)u,. Then vy is nonzero because zy is not in the linear span

of x1,...,2x_1 and hence of uy, ..., un_1, and (vy|um) = Ty |tm) — (Tn|um) = 0 for all

m < N. We can therefore take uy = vy /|vn].

Theorem 5.112: 5.26: Bessel’s Inequality.

If {ta}, 4 is an orthonormal set in I, then for any x € H

2
S alua)f < |l

In particular, {a | (x|u,) # 0} is countable.

Proof. Tt suffices to show that 3 _.[(z|us)*> < || for any finite F < A. But
2
0< H:v - ZQGF@IUQMQ
= ||lz|*> - 2Re<x’2aeF<x\ua>ua> + H2%F<x\ua>ua
ol =23 [aludP+ Y Kl
ol =S Kool

where the Pythagorean theorem was used in the third line. O

2
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Theorem 5.113: 5.27.

If {ta}, 4 15 an orthonormal set in JH, the following are equivalent:

(a) (Completeness) If (x|u,) = 0 for all «, then = = 0.

(b) (Parseval’s Identity) ||z[?> = 3. 4|¢z|ua)|* for all z € 3.

(c) Foreachxz e 3,z = > _,{x|uq)tqs, where the sum on the right has only countably
many nonzero terms and converges in the norm topology no matter how these
terms are ordered.

Proof. (a) implies (c): If x € 3, let ay, s, ... be any enumeration of the as for which
(x|uqay # 0. By Bessel’s inequality the series Z|<x|u%>|2 converges, so by the Pythagorean
theorem,

2
= an|<:c]uaj>|2 — 0 as m,n — .

2 oo, e

The series ) (z|uq, uq therefore converges since H is complete. If y = x— > (z|uq,; o,
then clearly (y|u,) = 0 for all a, so by (a), y = 0.
(c) implies (b): With notation as above, as in the proof of Bessel’s inequality we have

J2? = 3 Kaluardl = |2 = Y altta, Yt

Finally, that (b) implies (a) is obvious. O

— (0 as n — oo.

An orthonormal set having the properties (a — ¢) in Theorem 113 is called an or-
thonormal basis for H. For example, let H = (?(A). For each o € A, define e, € (*(A)
by eo(8) = 1if = a,e,(B) = 0 otherwise. The set {4}, is clearly orthonormal, and
for any f € ¢*(A) we have (f|e,) = f(«), from which it follows that {e,} is an orthonormal
basis.

Proposition 5.114: 5.28.

Every Hilbert space has an orthonormal basis.

Proof. A routine application of Zorn’s lemma shows that the collection of orthonormal sets,
ordered by inclusion, has a maximal element; and maximality is equivalent to property
(a) in Theorem 113. O

Proposition 5.115: 5.29.

A Hilbert space H is separable if and only if it has a countable orthonormal basis, in
which case every orthonormal basis for H is countable.

Proof. 1f {x,} is a countable dense set in H, by discarding recursively any z,, that is in the
linear span of z1,...,x, 1 we obtain a linearly independent sequence {y,} whose linear
span is dense in H. Application of the Gram-Schmidt process to {y,} yields an orthonormal
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sequence {u,} whose linear span is dense in H and which is therefore a basis. Conversely,
if {u,} is a countable orthonormal basis, the finite linear combinations of the u,s with
coefficients in a countable dense subset of C form a countable dense set in . Moreover,
if {va},c4 is another orthonormal basis, for each n the set A, = {a € A | (u,|va) # 0} is
countable. By completeness of {u,}, A = J;” A, so A is countable. O

Most Hilbert spaces that arise in practice are separable. We discuss some examples in
Folland Exercise 5.60,Folland Exercise 5.61,Folland Exercise 5.62.

Definition 116. If 3, and H, are Hilbert spaces with inner products {-|); and {-|),, a
unitary map from H; to Hs is an invertible linear map U: Hy — Hy that preserves
nner products:

Uz|\Uy), = {x|y), for all x,y € K;.

By taking y = z, we see that every unitary map is an isometry: |Uz|, = |z];.
Conversely, every surjective isometry is unitary (Folland Exercise 5.55). Unitary maps
are the true “isomorphisms” in the category of Hilbert spaces; they preserve not only the
linear structure and the topology but also the norm and the inner product. From the
point of view of this abstract structure, every Hilbert space looks like an ¢? space:

Proposition 5.117: 5.30.

Let {es} .4 be an orthonormal basis for . Then the correspondence = — 7 defined
by Z(a) = {x|us) is a unitary map from H to 2(A).

Proof. The map x +— 7 is clearly linear, and it is an isometry from H to ¢*(A) by the
Parietal identity |z|? = > |Z(a)[®. If f € £>(A) then > |f(a)|* < o0, so the Pythagorean
theorem shows that the partial sums of the series )] f(a)u, (of which only countably
many terms are nonzero) are Cauchy; hence = = > f(a)u, exists in H and z = f. By
Folland Exercise 5.55, b,z — Z is unitary. O

Exercise 5.118: Folland Exercise 5.54.

For any nonempty set A, ¢*(A) is complete.

Exercise 5.119: Folland Exercise 5.55.

Let H be a Hilbert space.
(a) (The polarization identity) For any =,y € H,

1 . . . .
Celyy = 7w+ yl* + |z =y +ile +iy|* =iz —iy[*).

(Completeness is not needed here.)
(b) If H' is another Hilbert space, a linear map from H to H’ is unitary if and only
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if it is isometric and surjective.

Solution. For (a), we have:

1 : . : .

2z + yl? + e = yl* + o + iy [* — ifle —iy[?)
1 { . .

= 7 (Kaly) + 20y|w)) + 4 (Aaliy) + 2ylz))

_ %(<x|y> + (zly)) + %(<x\iy> + (xliy))

= Re((zly)) + ilm({zly)) = (xly).

For (b), let U: H — H' be unitary. Then U is surjective, and for each x € H, we have
|Uz|* = (Uz|Ux) = (z|z) = ||z|? meaning U is an isometry. Then we have by (a):

1 . : : :
Wz|Uy) = 1 (|Uz + Uy|* = Uz — Uy|* + i| Uz +iUy|* — iUz — iUy]*)

= 2 Caly) + ) + 5 (Calig) + Talig))

= Re((z[y)) + 1 Im((z[y)) = (zly),
completing the proof. O

Exercise 5.120: Folland Exercise 5.56.

If F is a subset of a Hilbert space I, (El)l is the smallest closed subspace of H
containing F.

Exercise 5.121: Folland Exercise 5.57.

Suppose that H is a Hilbert space and T € L(H, H).

(a) There is a unique T* € L(H,H), called the adjoint of T, such that (Tz|y) =
{x|T*y) for all x,y € H. (See Folland Exercise 5.22). We have T* = V-ITTV
where V' is the conjugate-linear isomorphism from H to X* in Theorem 111,
(Vy)(x) = (z[y).) _

() | T = |IT|, | T*T| = |T|? (aS+0bT)* = aS* +bT*, (ST)* = T*S*, and T** = T.

(c) Let R and N denote range and nullspace; then R(T)*+ = N(T*) and N(T)* =
R(T*).

(d) T is unitary if and only if T is invertible and T~ = T*.

Solution.
(a) Define T*: H* — H* by T* == oloneqoloneqV ' o T' oV where V: H — H* sends
ye Hto{—|yye H* and T": H* — H* sends f to foT. And V € L(H, H*) (since
for all || = 1, [V, (@)] = [¢zly)] < J=]ly] = Jy| by the Cauchy-Schwarz inequality.
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Thus ||[V| < 1, hence V is bounded. And V' is invertible by Theorem 111 (and
Folland’s subsequent remark), and 7" is bounded by Folland Exercise 5.22(a) so the
composition T* = V=1 o TT o V is bounded. Moreover,

Ty =V="'oT*oV(y) =V o T'((~|y)) = V'({~ly o T) = V(T (-)ly)).
By definition of V=1 V=1((T(—)|y)) is the element z € H such that {z|z) = (Tz|y)
for all x € H. Hence, for all x € H, we have

@|T*y) = (x[z) = (T'zly),
as claimed.
To see T* is unique, note that if we also had some S such that

(x|Sy) = (Txly) = (x[Sy)
for all z,y € H, then (z|(T* — S)y) = 0 for all x,y € H. Since V! is an isomorphism
then we have |[(T* — S)y|| = 0 for all y € H, so by passing to the supremum we
conclude ||[T* — S| = 0. Since the operator norm is a norm, we conclude 7% — S = 0,
that is, T* = S. Thus T* is unique.
(b) Since for any x,y € H we have

(Izly) = WYlT*x) = (Tylx) = (x[Ty),
so by uniqueness from part (a) we obtain 7" = T**. Again by uniqueness and the fact
(ST)* =V=Y(ST)'V = VTSV = T* 5%,

we conclude (ST)* = T*S5*.

For any z € H,

|Tx|* = {T2|Tw) = @|T*Tx) < |2 |T*Tx| < ||| T[T,

which implies ||Tz| < |T*||z|. Since |Tz| = inf{C | |Tz| < C|z| for all z € X}, it
follows that |T| < ||7*||. This reasoning is symmetric in 7" and 7%, so we similarly
obtain | 7% < [T = |T. Thus [T%] = |T].

Next, to see |[T*T| = |T|?, note that |T*T|| < | T*||T| = |T||>, and conversely
we have |Tz|* = (T'x[Tx) = {x|T*Tx) < [T*T|x|, so [T*T| = |T?*.

Lastly, for a,be C and S,T € L(H, H), observe that

(aS +bT)* = V~HaS +bT)'V =V (aST + b7V
= aV 'SV + oV TITV = aS* + 0T,

(c) Note that x € H satisfies (y|x) = 0 for all y € R(T) if and only if (T'y|z) = 0 for all
y € H if and only if (y|T*z) = 0 for all y € H if and only if 7%z = 0. Therefore,
R(T)r = {zxeH|lz)y=0forallye H} = {xre H|T*x =0} = N(T*). From
this, we deduce that N(T)* = N(T*)t = (R(T*)*)! is the smallest (closed)
linear subspace of H containing R(T™), which means R(T*) < N(T)*, forcing

R(T*) = N(T)* as R(T*) is itself a subspace.
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(d) Let T be unitary. Then for any =,y € H, we have

(Tzlyy = (T2|TT y) = (|T™My),
so by uniqueness of T* from part (a) T~! = T*. Conversely, if T~! = T*, then for
any r,y € H,

(Tx|Ty) = (x| T*Ty) = (=T Ty) = (zly),
so T' is unitary. O

Exercise 5.122: Folland Exercise 5.58.

Let M be a closed subspace of the Hilbert space H, and for = € H let Px be the
element of M such that z — Pz € M* as in Theorem 110.

(a) Pe L(H,H), and in the notation of Folland Exercise 5.57 we have P* = P, P? =
P, R(P) =M, and N(P) = M*.P is called the orthogonal projection onto M.

(b) Conversely, suppose that P € L(H,H) satisfies P? = P* = P. Then R(P) is
closed and P is the orthogonal projection onto R(P).

(c) If {us} is an orthonormal basis for M, then Px = > {(x|uq yuq.

Exercise 5.123: Folland Exercise 5.59.

Every closed convex set K in a Hilbert space has a unique element of minimal norm.
(If 0 € K, the result is trivial; otherwise, adapt the proof of Theorem 110.)

Solution. Set ¢ = infycx |y||. Pick a sequence {y,} < K such that ||y,| — 0 as n — .
We want to show that the limit is in K and is the unique element with norm ¢. For all
n, m, we can use the parallelogram law to write:

20yn — 21 + 2lym — =* = [y + Y — 22 + [y — vl

Note that 3 (yn + ym) € K Slnce K is convex and 3 (Y, + Ym) = tyn + (1 — )y, for t = 3
It follows that H ntym xH is the square of the dlstance from x to something in y, and

since 9 is the mﬁmum over all such distances, we conclude that this is |y, + ym — 22[? =
4| tntem — x” > 46°. Tt follows that

Hyn - ymH2 < zHyn - xH2 + 2Hym - IH2 ———46* >0

as m,n — oo. Thus, {y,} is Cauchy, so since K is a complete vector space (as it is a closed
subspace of the complete vector space H), we have that y, converges to some y, € K.
Then, by the continuity of the norm, it follows that:

Jyoll = | Tim g | = Tim g = 5,
n—0o0 n—o0

where the last equality follows from the definition of 4.
We now have that the limit yo is in K and that |yo| = J. It remains to show that any
element in K with norm ¢ is identical to yy.

Version of April 30, 2024 at 11pm EST Page 225 of 368


https://www.greysonwesley.com/home

Greyson C. Wesley §5.5: Hilbert Spaces

Let 6 = |z| = |ly|, z,y € K. Since K is convex, sz + %y € K. Then, observe that:

1 1
-z + —y} (since ¢ is the minimum distance)

0 <
2 2

1 1
< inH + §Hy|] (triangle inequality and scaling)

1.1
= 30+ 50=36.

so all the inequalities are equalities. Then, |z + y| = ||=| + ||y| = 2J. Using this, we have,
by the parallelogram law, that:
40 + ||z — y|* = 26% + 262,

so | —y| = 0, forcing = y since | — | is a norm. O

Exercise 5.124: Folland Exercise 5.60.

Let (X, M, 1) be a measure space. If E € M, we identify L?(E, u) with the subspace of
L*(X, i) consisting of functions that vanish outside E. If {E,} is a disjoint sequence in
M with X = J" E,, then {L?(E,, u)} is a sequence of mutually orthogonal subspaces
of L?(X, p), and every f € L?(X, p) can be written uniquely as f = >\ f, (the series
converging in norm) where f, € L*(E,, u). If L*(E,, 1) is separable for every n, so is
LA(X, ).

Exercise 5.125: Folland Exercise 5.61.

Let (X, M, ) and (Y,N,v) be o-finite measure spaces such that L?*(u) and L?(v)
are separable. If {f,} and {g,} are orthonormal bases for L?(;) and L?*(v) and
P (2,y) = frn(2)gn(y), then {h,.,} is an orthonormal basis for L?(ux v).

Exercise 5.126: Folland Exercise 5.62.

In this exercise the measure defining the L? spaces is Lebesgue measure.

(a) C([0,1]) is dense in L*([0,1]). (Adapt the proof of Theorem 49.)
(b) The set of polynomials is dense in L?([0, 1]).

(c) L?*([0,1]) is separable.

(d) L3(R) is separable. (Use Folland Exercise 5.60.)
(e) L*(R™) is separable. (Use Folland Exercise 5.60.)

e

Solution.
(a) Fix f e L*([0,1]). Let {¢,} be simple functions such that |¢,,| < |¢,| < f for m < n,
and ¢,, / f pointwise. We have |¢,, — f|*> < (2|f])? = 4|f|* € L*([0,1]). Then by
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the dominated convergence theoremm
lim f|¢n = f lim |6y — fI < e2m([0,1]) < +o0
n—aoo n—aoo

for large enough n, so {|¢, — f|* = [¢n — f|3 < € for sufficiently large n.

If I, = (a,b), then we can approximate x;, in the L'([0,1]) metric by continuous
functions that vanish outside (a, ). Indeed, given € > 0, take g to be the continuous
function with g =0 on [-1,a) U [b,1] and g = 1 on [a — £,b + €], and is linear on
[a,a + €] and [b— ¢,b].

(b) Fix f e L'([0,1]). By part (a), there exists g € C([0,1]) with |f — g| < 1/2/2.

By the classical Stone-Weierstrass theorem, polynomials are dense in C([0, 1]).
Therefore, pick a polynomial p € C([0,1]) such that |¢g — p| < +/¢/2. Then, |f — p| <
[f —gl+1lg—pl <Ve2+e/2 = /e

Thus, ||f — I3 = §;1)|f — pI* dm < (ve)*m([0,1]) = ¢, as desired.

(c) The set of polynomials in [0, 1] with rational coefficients is countable (by the proof of
the classical Stone-Weierstrass where such polynomials are used), so let the countable
dense subset Z be the set of all rational valued polynomials on [0, 1].

(d) Let (X,u) be a measure space, and for any p-measurable F, we identify L*(E, ) as
the subspace of L?(X) consisting of functions that vanish outside of E.

From Folland Exercise 5.60, we know that if X = | [ | E, and L*(E,, p) is
separable for each n, then so is L?(X, p1). Taking (X, u) = (R,m) and E, = [n—1,n],
we obtain the desired result.

(e) The Hilbert space L?(R") with the inner product {f|g) = {;. fgdm has an orthonor-
mal basis. Thus, L?(R") is a direct sum of pairwise orthogonal spaces L?(R), each
of which is separable, and each is over a o-finite measure space.

It follows that the union of the countable dense subsets from each of these spaces
is itself a countable subset. We can decompose any f € L*(R") into its mutually
orthogonal components and choose the element ¢; < €/n from the corresponding
dense subset of the ith direct summand, invoking Folland Exercise 5.61. O]

Exercise 5.127: Folland Exercise 5.63.

Let H be an infinite-dimensional Hilbert space.

(a) Every orthonormal sequence in H converges weakly to 0.
(b) The unit sphere S = {z ||z =1} is weakly dense in the unit ball B =
{z | |z| < 1}. (In fact, every = € B is the weak limit of a sequence in S.)

Exercise 5.128: Folland Exercise 5.64.

(a) For ke N, define Ly, € L(H,H) by L3} anun) = > anty_r. Then Ly, — 0 in
the strong operator topology but not in the norm topology.
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(b) For k € Z1, define Ry € L(H, H) by Rip(X) anun) = X1 antinsr. Then Ry — 0
in the weak operator topology but not in the strong operator topology. c.
RiL; — 0 in the strong operator topology, but LyRy = I for all k. (Use
Folland Exercise 5.53(b).)

Exercise 5.129: Folland Exercise 5.65.
(*(A) is unitarily isomorphic to £%(B) if and only if card(A) = card(B).

Exercise 5.130: Folland Exercise 5.66.

Let M be a closed subspace of L?([0, 1], m) that is contained in C([0, 1]).

(a) There exists C' > 0 such that ||f|, < C|f]|z2 for all f e M. (Use the closed graph
theorem.)

(b) For each z € [0, 1] there exists g, € M such that f(x) = (fl|g,) for all f € M, and
19202 < C.

(c) The dimension of M is at most C?. (Hint: If {f;} is an orthonormal sequence in

M, S| f(x)]? < C? for all z € [0,1].)

Exercise 5.131: Folland Exercise 5.67: The Mean Ergodic Theorem.

Let U be a unitary operator on the Hilbert space H,M = {z | Uz = z}, P the orthog-
onal projection onto M (Folland Exercise 5.58), and S, = n~' 30~" U7, Then S, — P
in the strong operator topology. (If x € M, then S,z = z; if z = y — Uy for some
y, then S,z — 0. By Folland Exercise 5.57(d), M = {z | U*z = z}. Apply Folland
Exercise 5.57(c) with T'=1 - U.)

6 LP Spaces

LP spaces are a class of Banach spaces of functions whose norms are defined in terms
of integrals and which generalize the L' spaces discussed in Chapter 2. They furnish
interesting examples of the general theory of Chapter 5 and play a central role in modern
analysis.

In this chapter we shall be working on a fixed measure space (X, M, p).
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6.1 Basic Theory of LP Spaces

Definition 1. If f is a measurable function on X and 0 < p < o0, we define

1/p
171 = < | Ifl”du) |

allowing the possibility that | f|, = ©, and we set
LP(X, M, pu) = {f: X - C| f is measurable and | f|, < oo}

We abbreviate LP (X, M, ) by LP(n), L*(X), or simply LP when this will cause no confusion.
As we have done with L', we consider two functions to define the same element of LP
when they are equal almost everywhere. We sometimes denote by L°(X, M, i) the set of
equivalence classes of M-measurable functions that are equal a.e., and this may also be
denoted by L°(u) or even L°.

Notation 2. If A is any nonempty set, we define (P(A) to be LP(u) where p is counting
measure on (A, P(A)), and we denote (P(Z=,) simply by (.
Lemma 6.3.

LP is a vector space for any p € (0, 0).

Proof. 1f f,g € LP, then

|f + g < [2max(|f], [g)]" < 2°([f” + [g/”)
so that f + g e LP. [

Our notation suggests |—|., is a norm on L”. Indeed, it is obvious that | f], = 0 if and
only if f =0 a.e. and |cf], = ||| f],, so the only question is the triangle inequality. It
turns out that the latter is valid precisely when p > 1, so our attention will be focused
almost exclusively on this case.

Warning 6.4.

Before proceeding further, however, let us see why the triangle inequality fails for p < 1.
Suppose a > 0,b > 0, and 0 < p < 1. For t > 0 we have t*~! > (a + ), and by
integrating from 0 to b we obtain a? + b* > (a + b)?. Thus, if E and F are disjoint sets
of positive finite measure in X and we set a = p(E)YP and b = u(F)'/?, we see that

Ixe + xrl, = (@ + )" > a+b=|xel, + x|,

The cornerstone of the theory of L” spaces is Holder’s inequality, which we now derive.
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Lemma 6.5: 6.1.

Ifa>0,b>0,and 0 < XA <1, then
A’ < Aa+ (1—A\)b
with equality if and only if a = b.

Proof. The result is obvious if b = 0; otherwise, dividing both sides by b and setting
t = a/b, we are reduced to showing that t* < M + (1 — \) with equality if and only if
t = 1. But by elementary calculus, t* — Mt is strictly increasing for ¢ < 1 and strictly
decreasing for ¢t > 1, so its maximum value, namely 1 — A, occurs at ¢t = 1. O

Theorem 6.6: 6.2: Holder’s Inequality.

Suppose 1 < p < o0 and p~! + ¢! = 1 (that is, ¢ = p/(p — 1)). If f and g are
measurable functions on X, then

[£glx < 1£1lplglq (6.6.1)

In particular, if f € L? and g € L9, then fg € L', and in this case equality holds in
Equation (6.6.1) if and only if o f|P = 5|g|? a.e. for some constants «, 5 with a5 # 0.

Proof. The result is trivial if |[f|, = 0 or |g|, = O (since then f = 0 or g = 0 a.e.),
or if | f|, = o or |g||;, = 0. Moreover, we observe that if Equation (6.6.1) holds for a
particular f and g, then it also holds for all scalar multiples of f and g, for if f and ¢
are replaced by af and bg, both sides of Equation (6.6.1) change by a factor of |ab|. It
therefore suffices to prove that Equation (6.6.1) holds when | f|, = |g], = 1 with equality
if and only if | f|P = |g|? a.e. To this end, we apply Lemma 5 with a = |f(z)|P,b = |g(x)|9,
and A\ = p~! to obtain

[f(@)g(@)] < p~' [ f(@) + g g(x)|”
Integration of both sides yields

gl < o7 [157 407 [lol =p7 + a7 = 1= | £lblol,

Equality holds here if and only if it holds a.e. in (6.4), and by Lemma 5 this happens

precisely when |f[? = |g|? a.c. O
The condition p~! + ¢~! = 1 occurring in Holder’s inequality turns up frequently in
LP theory. If 1 < p < o0, the number ¢ = p/(p — 1) such that p~' + ¢! = 1 is called the
conjugate exponent to p.
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Theorem 6.7: 6.5: Minkowski’s Inequality.

If1<p<ooand f,ge LP, then
1f+ gl < [flp + gl

Proof. The result is obvious if p = 1 or if f + g = 0 a.e. Otherwise, we observe that

[f +gl” < (Lf1+ lgDIf + gl

and apply Hoélder’s inequality, noting that (p — 1)g = p when ¢ is the conjugate exponent
to p:

f\f + gl < IFIIF + 9P, + lglllf + g,
1/q
=<mp+wn(fu+mﬁ |

Therefore,

1=(1/q)
e |[lrear| <1+ 1ol 0

This result shows that, for p > 1, L” is a normed vector space. The following theorem
shows that even more is true.

Theorem 6.8: 6.6.

For 1 < p < o0, L? is a Banach space.

Proof. We use Theorem 8. Suppose {fr} < L? and Zionka = B < . Let G, = >}/ fx]
and G = 3| fi|- Then |G, |, < 237[ fil, < B for all n, so by the monotone convergence
theorem, {G? = lim { G < BP. Hence G € LP, and in particular G(z) < « a.e., which
implies that the series > ° fi converges a.e. Denoting its sum by F', we have |F| < G and
hence F € LP; moreover, |F — > fi]’ < (2G)? € L', so by the dominated convergence

theorem,
lP-Siaf - [|F-3 5

Thus the series >\ fi converges in the L? norm. ]

P
— 0

Proposition 6.9: 6.7.

For 1 < p < oo, the set of simple functions f = >} a;xg,, where u(FE;) < oo for all j,
is dense in LP.

Proof. Clearly such functions are in LP. If f € LP, choose a sequence {f,} of simple
functions such that f, — f a.e. and |f,| < |f]|, according to Theorem 18. Then f, € L?

Version of April 30, 2024 at 11pm EST Page 231 of 368


https://www.greysonwesley.com/home

Greyson C. Wesley §6.1: Basic Theory of LP Spaces

and [f, — f[” < 2?|f[? € L', so by the dominated convergence theorem, ||f, — f[, — 0.
Moreover, if f, = > a;xg, where the E; are disjoint and the a; are nonzero, we must have
u(E;) < o since Yo, Pu(E) = §If,l” < 0. =

To complete the picture of LP spaces, we introduce a space corresponding to the
limiting value p = 0.

Definition 10. If f is a measurable function on X, we define

[flloo = inf{a =0 p({x [ [f(x)] > a}) = 0}

with the convention that inf @ = . ||f|« is called the essential supremum of |f| and
1s sometimes written

[ flloo = esssup,ex [f()].
We now define

LP(X, M, u) ={f: X —> C| f is measurable and | f], < o0}

with the same notational conventions of LP and the usual convention that functions that
are equal a.e. define the same element of L*. define

Note 11. We observe that the infimum in Definition 10 is actually attained, for

0 —
| 1f@)]>a) = Az [1f@@)]>a+n")
and if the sets on the right are null, so is the one on the left.

Thus f € L” if and only if there is a bounded measurable function ¢ such that f =g
a.c.; we can take g = fxg where E = {z | |f(2)| < ||f]lx}-

Two remarks: First, for fixed X and M, L*(X,M, ) depends on p only insofar as
determines which sets have measure zero; if © and v are mutually absolutely continuous,
then L®(u) = L*(v). Second, if u is not semifinite, for some purposes it is appropriate to
adopt a slightly different definition of L®™. This point will be explored in Folland Exercise
6.23, Folland Exercise 6.24, and Folland Exercise 6.25.

The results we have proved for 1 < p < o extend easily to the case p = oo, as follows:

Theorem 6.12: 6.8.

(a) If f and g are measurable functions on X, then ||fg|, < |f]i]g]e. If f € L
and ge L*, ||fgli = | flillg]e if and only if |g(z)| = ||g| a.e. on the set where
f(x) #0.

(b) ||+ e is & norm on L*.

(¢) ||fa — fl., — 0 if and only if there exists £ € M such that u(£°) = 0 and f,, — f
uniformly on F.

(d) L* is a Banach space.

(e) The simple functions are dense in L*.

The proof is left to the reader (Folland Exercise 6.2).
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Convention 6.13.

In view of Theorem 12(a) and the formal equality 17! + oo=! = 1, it is natural to

regard 1 and oo as conjugate exponents of each other, and we do so henceforth.

Theorem 12(c) shows that || - | is closely related to, but usually not identical with,
the uniform norm | - |,. However, if we are dealing with Lebesgue measure, or more
generally any Borel measure that assigns positive values to all open sets, then || f| = || f].
whenever f is continuous, since {x | |f(z)| > a} is open. In this situation we may use
the notations | f||, and | f]. interchangeably, and we may regard the space of bounded
continuous functions as a (closed!) subspace of L®.

Note 14 (Very Important Note). In general we have LP & L9 for all p # q; to see what is
at issue, it is instructive to consider the following simple examples on (0,00) with Lebesgue
measure. Let f,(x) = 2%, where a > 0. Elementary calculus shows that f,xo1) € LP if
and only if p < a™*, and fox,w) € LP if and only if p > a™*. Thus we see two reasons
why a function f may fail to be in LP: either |f|P blows up too rapidly near some point,
or it fails to decay sufficiently rapidly at infinity. In the first situation the behavior of |f|P
becomes worse as p increases, while in the second it becomes better. In other words, if
p < q, functions in LP can be locally more singular than functions in L9, whereas functions
i L9 can be globally more spread out than functions in LP. These somewhat imprecisely
expressed ideas are actually a rather accurate guide to the general situation, concerning
which we now give four precise results. The last two show that inclusions LP < LY can
be obtained under conditions on the measure space that disallow one of the types of bad
behavior described above; for a more general result, see Folland FExercise 6.5.

Proposition 6.15: 6.9.

If0<p<qg<r<oo, then LY c LP+ L". That is, each f € L9 is the sum of a function
in I” and a function in L".

Proof. It f € L% let E = {z||f(z)| > 1} and set ¢ = fxp and h = fyge. Then
9" = [fIPxe < [f|"XE, so g € L, and |h|" = | f["xge < [f|?Xpe, so h e L". (For r = o,
obviously ||hll, < 1.) O

Proposition 6.16: 6.10.

If0<p<gq<r<oo, then L n L" < L? and | f|, < [ f|)|f]}~*, where X € (0,1) is
defined by

L

¢l =Xp 7 +(1—Nr! thatis, A = o
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Proof. If r = o0, we have |f|? < | f|£?|f|P and A = p/q, so
1£lg < IFIENf1 @2 = 1FIR1F15

If r < oo, we use Holder’s inequality, taking the pair of conjugate exponents to be p/Ag
and r/(1 — \)g:

f\f\q = j\f\”\f\“‘”" < P g LAY 0 2ayg

Ag/p (I=X)q/r
=[fmﬂ [fu@ AR,

Taking gth roots, we are done. O

Proposition 6.17: 6.11.
If Aisany set and 0 < p < ¢ < o0, then #(A) < (9(A) and || fl, < | f],-

Proof. Obviously [f[, = sup, |f(a)" < 2, |f(a)l, so that |[f|e < [f],- The case
q < o then follows from Proposition 16: if A = p/q,

1 le < IFIR1F15 < £ -

Proposition 6.18: 6.12.

If pu(X) < 0 and 0 < p < g < o0, then L¥() = L9(u) and | fl, < | f]pe(X) 2000,

Proof. 1f ¢ = oo, this is obvious:

g = 1P <11z [ 1= 1100)
If ¢ < o0, we use Holder’s inequality with the conjugate exponents ¢/p and ¢q/(q — p):

= [ 1P 1< AP = 1530 P -

We conclude this section with a few remarks about the significance of the LP spaces.
The three most obviously important ones are L', L?, and L*. With L' we are already
familiar; L? is special because it is a Hilbert space; and the topology on L® is closely
related to the topology of uniform convergence. Unfortunately, L' and L* are pathological
in many respects, and it is more fruitful to deal with the intermediate LP spaces. One
manifestation of this is the duality theory in Folland Section 6.2; another is the fact that
many operators of interest in Fourier analysis and differential equations are bounded on
LP for 1 < p < o0 but not on L' or L*. (Some examples are mentioned in Folland Section
9.4.)
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Exercise 6.19: Folland Exercise 6.1.

When does equality hold in Minkowski’s inequality? (The answer is different for p = 1
and for 1 < p < co. What about p = o0?)

Exercise 6.20: Folland Exercise 6.2.

Prove Theorem 12.

Exercise 6.21: Folland Exercise 6.3.

If 1 <p<r<w LPnL" is a Banach space with norm |f|| = | f[, + |f], and if
p < q < r, the inclusion map LP n L" — L7 is continuous.

Exercise 6.22: Folland Exercise 6.4.

If 1 < p < r < oLP + L" is a Banach space with norm |[f|| =
inf{|g|, + |hll- | f =g+ h}, and if p < ¢ < r, the inclusion map L9 — LP + L’
1s continuous.

Exercise 6.23: Folland Exercise 6.5.

Suppose 0 < p < ¢ < oo. Then LP ¢ L9 if and only if X contains sets of arbitrarily
small positive measure, and L? ¢ L? if and only if X contains sets of arbitrarily large
finite measure.

(For the "if" implication: In the first case there is a disjoint sequence {E,,} with
0 < u(E,) < 27", and in the second case there is a disjoint sequence {E,} with
1 < u(E,) < . Consider f = > a,xg, for suitable constants a,.) What about the
case ¢ = o0 ?

Exercise 6.24: Folland Exercise 6.6.

Suppose 0 < py < p; < 0. Find examples of functions f on (0,0) (with Lebesgue
measure), such that f e L? if and only if (a) po < p < p1, (b) po < p < p1, (¢) p = po.
(Consider functions of the form f(z) = 27 logz|*.)

Exercise 6.25: Folland Exercise 6.7.

If feLPn L” for some p < o0, so that f e L? for all ¢ > p, then | f], = lim,—o | ],

Solution. First suppose [ f[, = 0. Then 0 = |f|? = {|f|’, so [f| = 0 a.e. This means
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[ £l = 0 and [ f], = 0 for all ¢, so
[fle = 0= lim 0= lim | £],,

which affirms the claim.
Now suppose | f[, > 0. By Folland Proposition 6.10 with 7 = o0, for all ¢ > 0 and all
p € (1,q) we have

1—
L, < LFIef) e
Taking the limit at ¢ — o0, we obtain

_ _ 0y p1-0
Lim |l £, < LA £ = IR £ 1150 = oo,

where we used that the map ¢ — | [} is continuous as a function of ¢ € (0,0) (since | f,
is nonnegative).

To show the reverse inequality, it suffices to show liminf, o[ f[, < [ f],. We can
prove this as follows: Fix n € Z~; and let

En=A{xe X |[f[=[fle—1/n}.
Since p(E,) > 0 (by definition of |—| ), we have

]2 = f TS L TS L U1, = /)" = u(E(IS],. — 1/n)".
Taking the gth root of both sides, we obtain

1£lg = m(EDY (1] = 1/n). (6.25.1)
And p(E,) < oo, since otherwise o0 = pu(E,)Y(|f],, — 1/n) < | f]3; contradicting f € L9.
Also p(E,) > 0 (by definition of |—|_), so by taking ¢ — oo we have by Equation (6.25.1)
that

T | fl, = w(Ea) (1 fl, = 1/n) = |f e = 1/n-

Since n was arbitrary, we conclude limg | f|, = | f|,,, which completes the proof. [

Exercise 6.26: Folland Exercise 6.8.

Suppose (X) =1 and f € L for some p > 0, so that f € L? for 0 < ¢ < p.
(a) log| fly = §log|f|. (Use Exercise 42 d in Folland Section 3.5, with F(t) = e'.)

(b) (§1f17=1)/q = log| flg, and (§|£]? —1)/q — {log|f| as ¢ — 0.
(c) limg—o |fly = exp(§log |£])-

Solution.

(a) Here we use the convention log(0) = —o0 and log o = o0. We may assume {log|f]| #
—o0, since otherwise the desired inequality is

log|fI" = q j log|f| = o0 < log| ],
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(c)

which holds irregardless of the value of | f[,. The exponential is convex and u(X) = 1,
so by Jensen’s inequality (Folland Exercise 3.42(d)), we obtain

exp( | log!fq) [ exptiogtsin = [1s1"

Taking the logarithm of both sides, we deduce

q j log] /| = flogmq < 1ogf|f|q — log] |7 = qlog| /1,

By dividing through by ¢ > 0, we conclude {log|f| < log||f],
Since logz < x — 1 for all x € [0, 0], we have

alo|f1, = log [If1" < [ 17"~ 1.

Then divide through by ¢ > 0 to obtain the desired inequality. ,
It remains to show (§|f|* —1)/q — §log|f| as ¢ \, 0. We have xs>1} \flq—l

N

X{|f|=>1} 7 ‘ L e L', so by the dominated convergence theorem
- [f(@)]" -1
li = | L —_— = | .26.1
| X7z L{% N JX{|f>1} oglfl,  (6.26.1)

where for the second equality we used the limit definition of the logarithm on [0, co].
On the other hand, by the fundamental theorem of calculus, we have

=1 _ A -
X{| <1} =J X{f<1yt? =J X{ <yt
q 1 If]

which increases as g decreases. As everything here is measurable, by the monotone
convergence theorem

: fl*=1
lim X{\f|<1}‘ | = | Xtis1<1y log]f]. (6.26.2)
Now by Equations (6.26. 1) and (6.26.2), we conclude
|f|q . |f"1 -1
q\OJ N (Xtis1<y + Xtir=1) .

_ f i1 loglf] + j Xairis1 logl f] = f log] .

exp [106111) < explionl 1) < exo( 177~ 1)

where the first and second inequalities are by parts (a) and (b), respectively. By part
(b) and continuity of the exponential,

exp( [~ 1) g~ [ gl

as claimed.

We have
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as ¢ — 0. Now by the squeeze theorem for limits, we conclude

g1, = exp( [osls1). 0

Exercise 6.27: Folland Exercise 6.9.

Suppose 1 < p < oo0. If |f, — f||p — 0, then f, — f in measure, and hence some
subsequence converges to f a.e. On the other hand, if f, — f in measure and
| fal < g € LP for all n, then ||f, — f], — 0.

Exercise 6.28: Folland Exercise 6.10.

Suppose 1 <p <. If f,,, f € L? and f, — [ a.e., then ||f, — f|, — 0 if and only if
Ifnll, = Il fllp- (Use Folland Exercise 2.20.)

Solution. We also prove or disprove the assertion in the case p = co.

(=) Ife > 0and |f, — f[, — 0, then by the triangle inequality | f,|,— [ f[, < [fn — fl, <
¢ for all sufficiently large n € Z~, so the forward implication holds. Note that this
argument works for all p € [1, o0].

(<) Since [ful, — 1f],, we have [ful2 — |£I. Setting g, = 22 max{|ful", [f "}, g =
2°|fIP = 0, hy, = 2°|f, — f|’, and h = 0, we observe that

— h, — h a.e.,
— gn — g a.e.,
— gn € L' since f,,, f € L? implies | f,,|”, | f|" € L' (hence also max{|f,[", |f|'} € LP),
— hy, € L' since by the triangle inequality h,, < 2P max{|f[¥,|f|’} = g, € L' and
In;
= |hal = 1fo = 1" < (Ifal + /)" < 2max{|fu", [fI"} < 2P max{[fu|", [/} =
gn € L' (since f,, f € L?, hence |f,|",|f|’ € L'), and
— §g0 = 22 §max{|ful", £} = 22 [|f” = § g by hypothesis.
We can therefore apply the generalized dominated convergence theorem (Folland
Exercise 2.20) to obtain

2pJ|fn—f|p=Jhn—>Jh=J0=0.

By dividing through by 27 > 0, we obtain

|fo = fl5 =0,
which implies | f, — f[|, — 0.
The above argument fails in the case p = o0: if p = o0, then when the measure
space is (R, L, m), we have

|HX(—n,n)Hoo - ||X]R||OO| =0—0asn— w0,
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but
IX(=nn) = X&ll, =1 - 0asn — . O

Exercise 6.29: Folland Exercise 6.11.

If f is a measurable function on X, define the essential range Ry of f to be the set of
all z € C such that {x | |f(x) — z| < €} has positive measure for all € > 0.

(a) Ry is closed.

(b) If f e L*, then Ry is compact and | f|, = max{|z| | z € Ry}.

Exercise 6.30: Folland Exercise 6.12.

If p # 2, the LP norm does not arise from an inner product on L, except in trivial
cases when dim(L?) < 1. (Show that the parallelogram law fails.)

Solution. Let (X, M, ) be a measure space. Recall that since dim P > 2, there exist
disjoint sets A, B € M of positive finite measure. Then for all p € [1,00) \ {2},

X4 X5
s, A,

( f'“'p J'XBVD) + (L f|XA|p_LJ|XB|p)2/p

N N
(” XAl/p ﬂ X?/T;p) (ﬂ XAl/p ﬂp 2;/,,)
B S

_ XA XB XA  XB
Ar (B » A)Vr  pu(B)Yr )
Hence the parallelogram law fails. And if p = oo, then with A and B as above we have
2= lIxa +x8lo + Ixa = x8l, # 4 = 2lxal, + 2x5],
Thus for all p € [1, 0] \ {2}, ||, does not arise from an inner product. O

— 4 £ A4VP 44 = (14 1)+ (14 1)%"  (since p # 2)

Exercise 6.31: Folland Exercise 6.13.

LP(R"™,m) is separable for 1 < p < co. However, L*(R",m) is not separable. (There
is an uncountable set F < L* such that ||f — g[lx = 1 for all f,g € F with f # g.)

Exercise 6.32: Folland Exercise 6.14.

If g € L™, the operator T defined by T'f = fg is bounded on L? for 1 < p < . Its
operator norm is at most |g] s, with equality if x4 is semifinite.
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Exercise 6.33: Folland Exercise 6.15: The Vitali Convergence Theorem.

Suppose 1 < p < o and {f,}; = LP. In order for {f,} to be Cauchy in the L?
norm it is necessary and sufficient for the following three conditions to hold: (i) {f,}
is Cauchy in measure; (ii) the sequence {|f,["} is uniformly integrable (see Folland
Exercise 6.11 in Folland Section 3.2); and (iii) for every € > 0 there exists £ < X such
that p(F) < oo and §, |f,[” < e for all n. (To prove the sufficiency: Given e > 0, let
E be as in (iii), and let A,,, = {x € E | |fm(z) — fu(z)| = €}. Then the integrals of
|fn — fm|” over E N A, Ay, and E€ are small when m and n are large—for three
different reasons.)

Exercise 6.34: Folland Exercise 6.16.

If 0 < p < 1, the formula p(f,g) = {|f — g/ defines a metric on L? that makes L?
into a complete topological vector space. (The proof of Theorem 8 still works for
p < 1if | f||, is replaced by §|f|P, as it uses only the triangle inequality and not the
homogeneity of the norm.)

Exercise 6.35.

Determine precisely the set of triples (p, q,7) € R with 1 < < p,q < oo such that the
following holds: if f € LP(R") and g € L4(R"), then fg € LT(R”) and | fgl, < |flplglq-

(Here the underlying measure is Lebesgue measure.) Prove your answer.

Solution. We claim the set of triples for which this holds is given by
=3
R={(p.q,r) eR" [ 1/p+1/q=1/r}.

Proof. First suppose (p,q,r) € R, f € LP(R"), and g € LY(R").
e Case 1: 1 <r <p,q <. Then |f|" € LP/"(R") and |g|" € L¥"(R™), so by Holder’s
inequality |fg|" = |f|"|g|" € L*(R™), hence fg € L", and

gl < LA gl
By raising both sides to the power of 1/r, we obtain

r ryl/r ryl/r
gl I < A1 gl I, (6.35.1)

r 6.3 '1) r r r r
I £, = U!M) —|Zg| ! IHf\ Lo llal

(e (o= ) (o),
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e Case 2: 1<r<p<g=worl<r<gqg<p=o. (Without loss of generality take
1<r p < q = .) Then 1/r = 1/p, and since g € L*, there exists a bounded
function ¢’ such that ¢’ = g a.e.; thus |f¢'|” = |fg|” a.e., so

Ifgly =19l = Jlfg’lp <lg'l% flflp = 915115 < oo

Hence fg e L" (= L?), and by taking the pth root of both sides (and noting that the
right-hand side is just ||g||, [ f]} since g = ¢’ a.e.), we recover the desired inequality.
e Case 3: p=q =r = . Then the claim holds, since if £ € £L" is an arbitrary set of
positive measure then our assumptions imply |f|g|, |g|g| < o0, hence |f|g| - |g|g| =
|fg|lg| < 0, so fg is bounded on E. But E was an arbitrary set of positive measure,
so || fgll,, < o0. Thus fge L*. And the inequality holds, since for a.e. x we have

[F@)g(@)] < | Fllg(@)] < 1719l

so [ fgle < |flllgle .,
Now suppose (p,q,7) € R N R.

e Case 1: 1 <r<p,gq<oo. If1/r>1/p+ 1/q, but the desired conclusion fails, since
< H QXBl(O) 2XB1(0) _ 21/p . 21/(1’

otherwise 5 2
oo -|(Be Y| <2 2]

so 1/r < 1/p + 1/q, a contradiction. It fails similarly if 1/r < 1/p + 1/q, since
1 _ H X B1(0) X B1(0)

otherwise
1189
2 21(B1(0)) 21(B1(0)) |, 21(B1(0)) |,

so 2/ptl/a < 21/7" and hence 1/r = 1/p + 1/q, a contradlctlon
e Case 2: 1<r<p<g=worl<r<gqg<p=ow. (Without loss of generality take
Il<r<p<qg=w.) If 1/p < 1/r, then the desired conclusion fails, since otherwise

w(B1 )" = IxB ol < Ixsiolslxswl, =1 n(Bi(0)),

so 1/r < 1/p, a contradiction.
Similarly, if 1/p > 1/r, then the desired conclusion fails, since otherwise

oo - | (o B

so 1/p < 1/r, a contradiction.
e Case 3: p=q =r = . Then the desired conclusion fails, since otherwise

u(B1(0) = [(x5:)*], < X5l oXB: @] =11 =1,
which fails for all n € Zs;.

1 1

BT

XB1(0)

n(B(0)),

XB1(0)

M(Bl(o)) o0

r

We conclude R is precisely the set of triples such that the given statement is true. O
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6.2 The Dual of L?

Suppose that p and ¢ are conjugate exponents. Holder’s inequality shows that each
g € L7 defines a bounded linear functional ¢, on L” by

o) = | t9

and the operator norm of ¢, is at most ||g|,. (If p = 2 and we are thinking of L* as a
Hilbert space, it is more appropriate to define ¢,(f) = § fg. The same convention can be
used for p # 2 without changing the results below in an essential way.) In fact, the map
g — ¢, is almost always an isometry from L? into (LF)*.

Proposition 6.36: 6.13.

Suppose that p and ¢ are conjugate exponents and 1 < g < oo. If g € L9, then

mq=¢ﬂ=m{fm]wu=§

If p is semifinite, this result holds also for ¢ = oo.
Proof. Holder’s inequality says that |¢4] < |g]4, and equality is trivial if g = 0 (a.e.). If
g # 0 and ¢ < o0, let

o lg|""'sgng
lgllg~
Then
. S‘g‘(qfl)p B S’g‘q B
If1lp = = =
P gl §lgle
SO
|9l
60l > [ 19 = 2 = g
gl

(If ¢ = 1, then f = sgng,|fle = 1, and §fg = |g|h.) If ¢ = oo, for £ > 0 let
A={z|l|g(z)| > |lg|w —€}. Then u(A) > 0, so if u is semifinite there exists B < A with
0 < u(B) < . Let f = u(B) 'xpsgng; then ||f]; =1, so

1
6 = [ 79 = o | 1ol lole =
? n(B) Jp ”
Since ¢ is arbitrary, |¢,] = g/ - O

Conversely, if f — § fg is a bounded linear functional on L, then g € L in almost all
cases. In fact, we have the following stronger result.
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Theorem 6.37: 6.14.

Let p and ¢ be conjugate exponents. Suppose that g is a measurable function on X
such that fg e L' for all f in the space ¥ of simple functions that vanish outside a set
of finite measure, and the quantity

M) = sunf [ 16| | £ e ana 51, =1}

is finite. Also, suppose either that S, = {z | g(x) # 0} is o-finite or that 4 is semifinite.
Then g & L7 and My(g) = gl

Proof. First, we remark that if f is a bounded measurable function that vanishes
outside a set £ of finite measure and | f|, = 1, then |{ fg| < M,(g). Indeed, by Theorem 18
there is a sequence { f,,} of simple functions such that |f,| < |f| (in particular, f, vanishes
outside E) and f, — f a.e. Since |f.| < ||flloxz and xgg € L', by the dominated
convergence theorem we have [§ fg| = lim|{ f.g| < M,(g).

Now suppose that ¢ < . We may assume that S, is o-finite, as this condition
automatically holds when g is semifinite; see Folland Exercise 6.17. Let {E,} be an
increasing sequence of sets of finite measure such that S, = | J;” E,.. Let {¢,} be a sequence
of simple functions such that ¢,, — g pointwise and |¢,| < |g|, and let g, = ¢, xE,. Then
gn — g pointwise, |g,| < |g|, and g, vanishes outside F,,. Let

_ ‘gn’qilm
fo= =T
lgnll,
Then as in the proof of Proposition 36 we have | f,[|, = 1, and by Fatou’s lemma,

lglo < timintlg, |, = timint ||f,0]

< liminfffng| = liminfffng < M,(g)

(For the last estimate we used the remark at the beginning of the proof.) On the other
hand, Holder’s inequality gives M,(g) < g4, so the proof is complete for the case g < 0.

Now suppose ¢ = 0. Given ¢ > 0, let A = {z | [g(x)] = My(g) +¢}. If u(A) were
positive, we could choose B < A with 0 < p(B) < o (either because p is semifinite
or because A < S,). Setting f = u(B) 'xpsgng, we would then have |f|; = 1, and
§fg=n(B)" ;9] = My(g) + . But this is impossible by the remark at the beginning
of the proof. Hence |g| < My (g), and the reverse inequality is obvious.

The last and deepest part of the description of (L?)* is the fact that the map g — ¢,
is, in almost all cases, a surjection.
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Theorem 6.38: 6.15.

Let p and ¢ be conjugate exponents. If 1 < p < oo, for each ¢ € (LP)* there exists
g € L7 such that ¢(f) = { fg for all f e LP, and hence L is isometrically isomorphic
o (LP?)*. The same conclusion holds for p = 1 provided y is o-finite.

Proof. First let us suppose that p is finite, so that all simple functions are in LP. If
¢ € (LP)* and E is a measurable set, let v(F) = ¢(xg). For any disjoint sequence {E;}, if
E =J; E;j we have xg = >\ xg, where the series converges in the L norm:

_ © _ 0 I 1/p 0
N HZnJrl XEj P - 'M<Un+1 j> - asmn = &

(It is at this point that we need the assumption that p < c0.) Hence, since ¢ is linear and

continuous,
0 0
E) =) dx5) =), vE)

so that v is a complex measure. Also, if u(F) = 0, then xyg = 0 as an element of L?, so
v(FE) = 0; that is, v « p. By the Radon-Nikodym theorem there exists g € L'(u) such
that ¢(xg) = v(E) = §, gdp for all E and hence ¢(f) = § fgdu for all simple functions f.
Moreover, [§ fg| < ||| f|l,, so g € L? by Theorem 37. Once we know this, it follows from
Proposition 9 that ¢(f) = § fg for all f € L”.

Now suppose that p is o-finite. Let {E,} be an increasing sequence of sets such that
0 < u(E,) <o and X = J; E,, and let us agree to identify LP(E,) and L!(E,) with
the subspaces of LP(X) and L9(X) consisting of functions that vanish outside E,,. The
preceding argument shows that for each n there exists g, € LY(E,) such that ¢(f) = { fgn
for all f e LP(E,), and |g.[, = [¢|LP(E,)| < [|¢. The function g, is unique modulo
alterations on nullsets, so g, = g,, a.e. on E, for n < m, and we can define g a.e. on X
by setting g = g, on E,. By the monotone convergence theorem, [g|, = lim[g.[, < |4l
so g € L. Moreover, if f € L”, then by the dominated convergence theorem, fxg, — f in
the LP norm and hence ¢(f) = lim¢(fxg,) = lim SEn fa=1\7rg.

Finally, suppose that p is arbitrary and p > 1, so that ¢ < o©. As above, for each
o-finite set E < X there is an a.e-unique gp € LY(E) such that ¢(f) = { fgg for all
f e Lp( ) and |ggr|, < |¢[. If F'is o-finite and F' = E, then gr = gp a.e. on E, so
lgrll, = llgel,. Let M be the supremum of |gp|, as E ranges over all o-finite sets, noting
that M < ||¢H Choose a sequence {FE,} so that lgE. [, — M, and set F' = Uy E,. Then
F'is o-finite and |gr|, = |gE. |, for all n, whence HgFH = M. Now, if A is a o-finite set
containing F', we have

f gel” + f g’ — f lgal? < M7 — ﬁgﬂq

and thus g4 r = 0 and g4 = gr a.e. (Here we use the fact that ¢ < 00.) But if f € L?,
then A = F u {z| f(x) # 0} is o- ﬁmte, so ¢(f) = § fga = § fgr. Thus we may take
g = gr, and the proof is complete. O

HXE - 21 XE
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Corollary 6.39: 6.16.

If 1 <p < oo, LP is reflexive.

We conclude with some remarks on the exceptional cases p = 1 and p = c. For any
measure i, the correspondence g — ¢, maps L” into (L')*, but in general it is neither
injective nor surjective. Injectivity fails when g is not semifinite. Indeed, if £ < X is a
set of infinite measure that contains no subsets of positive finite measure, and f € L*,
then {z | f(x) # 0} is o-finite and hence intersects F in a null set. It follows that ¢,, =0
although xg # 0 in L®. This problem, however, can be remedied by redefining L*; see
Exercises 23-24. The failure of surjectivity is more subtle and is best illustrated by an
example; see also Folland Exercise 6.25.

Let X be an uncountable set, u = counting measure on (X, P(X)),P = the o algebra
of countable or co-countable sets, and o = the restriction of p to P. Every f € L'(u)
vanishes outside a countable set, and it follows that L'(u) = L'(p0). On the other hand,
L*(p) consists of all bounded functions on X, whereas L*(yq) consists of those bounded
functions that are constant except on a countable set. With this in mind, it is easy to see
that the dual of L*(pg) is L®(p) and not the smaller space L*(uq).

As for the case p = co: the map g — ¢, is always an isometric injection of L' into
(L*)* by Proposition 36, but it is almost never a surjection. We shall say more about
this in Folland Section 6.6; for the present, we give a specific example. (Another example
can be found in Folland Exercise 6.19.)

Let X = [0,1],4 = Lebesgue measure. The map f — f(0) is a bounded linear
functional on C'(X), which we regard as a subspace of L*. By the Hahn-Banach theorem
there exists ¢ € (L®)* such that ¢(f) = f(0) for all fe C(X). To see that ¢ cannot be
given by integration against an L' function, consider the functions f,, € C(X) defined by
fn(z) = max(1 — nx,0). Then ¢(f,) = f.(0) =1 for all n, but f,(x) — 0 for all x > 0,
so by the dominated convergence theorem, { f,g — 0 for all g € L'.

Exercise 6.40: Folland Exercise 6.17.

With notation as in Theorem 37, if 4 is semifinite, ¢ < oo, and M,(g) < o0, then
{z | |g(x)| > ¢} has finite measure for all € > 0 and hence S, is o-finite.

Exercise 6.41: Folland Exercise 6.18.

The self-duality of L? follows from Hilbert space theory (Theorem 111), and this fact
can be used to prove the Lebesgue-Radon-Nikodym theorem by the following argument
due to von Neumann. Suppose that p, v are positive finite measures on (X, M) (the
o-finite case follows easily as in §3.2), and let A = p + v.

(a) The map f — { fdv is a bounded linear functional on L*(\), so { fdv = { fgdX
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for some g € L?()\). Equivalently, { f(1 — g)dv = { fgdu for f € L*(N).

(b) 0 < g < 1)l-a.e., so we may assume 0 < g < 1 everywhere.

(c) Let A={x|g(z) <1},B ={z]|g(x) =1}, and set v,(E) = v(A N E), vs(E) =
v(B n E). Then v, | p and v, « y; in fact, dv, = g(1 — g) 'y adp.

Exercise 6.42: Folland Exercise 6.19.

Define ¢,, € (I°)* by ¢, (f) = n~* >} f(j). Then the sequence {¢,} has a weak* cluster
point ¢, and ¢ is an element of ({*)* that does not arise from an element of ¢!.

Exercise 6.43: Folland Exercise 6.20.

Suppose sup,, | fu[, < o0 and f,, — f a.e.

(a) If 1 < p < o, then f, — f weakly in LP. (Given g € L%, where ¢ is conjugate
to p, and € > 0, there exist (i) > 0 such that §, |g|? < e whenever u(E) < 4,
(ii) A < X such that u(A) < o and §, ,[g|? < ¢, and (iii) B ¢ A such that
(AN B) <§ and f, — f uniformly on B.)

(b) The result of (a) is false in general for p = 1. (Find counterexamples in L'(R,m)
and (.) Tt is, however, true for p = oo if u is o-finite and weak convergence is
replaced by weak™ convergence.

Exercise 6.44: Folland Exercise 6.21.

If1 <p<oo,f,— fweakly in (?(A) if and only if sup,[f.|, < o and f, — f
pointwise.

Solution. Let 1 < p < oo, let f € P(A) (we may assume this as mentioned on canvas),
and let ¢ = p.
e Suppose f, — f weakly in ¢” and ¢ = p’. Then in particular the £9 function x, has

EGEA fn(a)X{a} = fn(a) — f((l) as n — oo,

so f, — f pointwise. For each n, define fn(g) = {gfn. Since f,, — f weakly, the
sequence {z,}:°_; < C given by z, == {gf, converges, and hence is bounded in C.
Then for all g € ¢4,

Supn |fn(g>’ = Supn’Zn| < OO?
SO

sup, |fulp = sup, [f] < o,
where the final inequality is by the uniform boundedness theorem.

e Conversely, suppose that f, — f pointwise and sup,,| anp < . Fix g e (1 = ¢
and ¢ > 0. We claim [{g, f,) — (g, )| < e, where (—,*) == {|(—=) - (+)]. Let M =
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| f[l, +sup, [ ful,- Then M < co by hypothesis, and we may assume M > 0 (since
otherwise f,, and hence f are 0). Since [g[; = >, 4l9(a)’ < o0, we must have
g(a) = 0 for all but countably many a € A. Thus we may assume A = Z;.

For all k£ € {1,.. — 1}, there exists N € Z=; such that for all n > Ny,
\fu(k) — f(K)] < 5/( ( —1Dg(k)]). (If |g(k)] = 0, then we may ignore the
term |g(k)||f.(k) — f(k)| = 0 in the sum, so this is valid.) Thus, for all n >
max{Ny, ..., Ni},

Zﬁjmmwu@—ﬂW<§ﬁj%K%ﬁE%ﬂzg (6.441)

On the other hand, since |g|7 < o0, there exists K > 2 such that for all sufficiently

large n,
Ixagll=>. " lgk)* < ( €M>q
a k=K 2 '

Then, respectively, by Holder’s inequality and the triangle inequality, for all sufficiently

large n,
D I ® k) = FE < o= fl ergl, < Mg— == (6.44.2)
Thus
|@mf¢»=21m@mm>—<n
= Y 9B R~ FOI+ X JoBLga (k) — FR] <
I <e/2 by (6.44.1) <e/2 by (6.44.2) I
so f, — f weakly. m

Exercise 6.45: Folland Exercise 6.22.

Let X = [0, 1], with Lebesgue measure.
(a) Let f,(x) = cos2mnz. Then f, — 0 weakly in L? (see Folland Exercise 5.63), but
fn = 0 a.e. or in measure.
(b) Let fn(x) = nXx(,1/m). Then f, — 0 a.e. and in measure, but f, 0 weakly in L?
for any p.

Exercise 6.46: Folland Exercise 6.23.

Let (X, M, i) be a measure space. A set E € M is called locally null if u(E n F) =0

for every F'€ M such that u(F) < oo. If f: X — C is a measurable function, define
[fls« =inf{a | {z | |f(z)|] > a} is locally null}

and let £L* = L*(X, L, 1) be the space of all measurable f such that ||f|. < 0. We
consider f,g € £ to be identical if {z | f(z) # g(z)} is locally null.
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(a) If F is locally null, then u(FE) is either 0 or co. If p is semifinite, then every
locally null set is null.

(b) |-« is a norm on £% that makes £% into a Banach space. If u is semifinite, then
LP = L*.

Exercise 6.47: Folland Exercise 6.24.

If g € £ (see Folland Exercise 6.23), then |g|. = sup{[{ fg| | | |1 = 1}, so the map
g — ¢, is an isometry from £® into (L')*. Conversely, if M, (g) < o as in Theorem 37,
then g € £L* and My (g) = ||g]«.

Exercise 6.48: Folland Exercise 6.25.

Suppose p is decomposable (see Folland Exercise 3.15). Then every ¢ € (L')* is of the
form ¢(f) = { fg for some g € £, and hence (L')* = L* (see Exercises 46 and 47).
(If £ is a decomposition of 1 and f € L*, there exists {E;} < £ such that f = > fxg,
where the series converges in L'.)

6.3 Some Useful Inequalities

Estimates and inequalities lie at the heart of the applications of L? spaces in analysis.
The most basic of these are the Holder and Minkowski inequalities. In this section we
present a few additional important results in this area. The first one is almost a triviality,
but it is sufficiently useful to warrant special mention.

Theorem 6.49: 6.17: Chebyshev’s Inequality.

If feL?(0<p< ), then for any o > 0,
u(la | 1f(@)] > o)) < [@] |

Proof. Let E, = {z | |f(x)| > a}. Then
p_ P> Peaof | 1= aPu(E). u
g = [1r= | 1z 1-eu,)

The next result is a rather general theorem about boundedness of integral operators
on LP spaces.
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Theorem 6.50: 6.18: Schur’s Test (or Generalized Young’s Inequality).

Let (X,9, 1) and (Y, 91, v) be o-finite measure spaces, and let K (z,y) be a measurable
function on X x Y.

i) (K (z,y)|du(z) < C for ae. yeV,
(i) §y|K(z,y)|dv(y) < C for ae. z € X.

Then for all p € [1,0] and all f € LP, the integral

_ LK(x,y)f(y) dv(y)

converges absolutely for a.e. x € X, Tf € L?, and |Tf|, < C| f||, (and, in particular,
T is bounded).

Proof. Suppose that 1 < p < . Let g be the conjugate exponent to p. By applying
Holder’s inequality to the product

K (2,9) f(y)] = |K (2. 9) 11K (@, 9)["? | (y)])

we have

1wl < | [5Gl ] U|Kwyuf<>rpdu<>]l/p

<ol [ lrwpao)] "

for a.e. x € X. Hence, by Tonelli’s theorem,

f U K@ u)f w)ldvly >]pdu<w> < Cp/qf K (2, 9)||f () P () ()

< Cwan f F@)Pdv(y).

Since the last integral is finite, Fubini’s theorem implies that K (z,-)f € L'(v) for a.e. ,
so that T'f is well defined a.e., and

| rr@paut) < cooyp

Taking pth roots, we are done.

For p = 1 the proof is similar but easier and requires only the hypothesis
S|K(z,y)|du(x) < C; for p = oo the proof is trivial and requires only the hypothe-
sis § | K (z,y)|dv(y) < C. Details are left to the reader (Folland Exercise 6.26). O

Minkowski’s inequality states that the L” norm of a sum is at most the sum of the L”
norms. There is a generalization of this result in which sums are replaced by integrals:
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Theorem 6.51: 6.19: Minkowski’s Inequality for Integrals.

Suppose that (X, M, u) and (Y, M, v) are o-finite measure spaces, and let f be an
(M ® M)-measurable function on X x Y.

(a) If f>0and 1 < p < o0, then

([ ) ) < [[ [ steuranca)| “at

(b) If 1 < p < o, f(-,y) € LP(n) for a.e. y, and the function y — |f(-,y)[, is in
L*(v), then f(z,-) € L'(v) for a.e. z, the function z — § f(x,y)dv(y) is in LP(u),

and
‘ | rtvanty f 17 ) lpdy)

Proof. If p = 1, (a) is merely Tonelli’s theorem. If 1 < p < 0, let ¢ be the conjugate
exponent to p and suppose g € L9(u). Then by Tonelli’s theorem and Hélder’s inequality,

Jfode >]!g )dp(x foym ) dp(z)dv(y)

<laly [| [ 16 vraute >] avy).

Assertion (a) therefore follows from Theorem 37. When p < oo, (b) follows from (a) (with
f replaced by |f]) and Fubini’s theorem; when p = o0, it is a simple consequence of the
monotonicity of the integral. O]

Our final result is a theorem concerning integral operators on (0, 00) with Lebesgue
measure.

Theorem 6.52: 6.20.

Let K be a Lebesgue measurable function on (0, 0) x (0,0) such that K(A\z, A\y) =
A UK (z,y) for all A > 0 and {” |K(z,1)[z~"Pdz = C' < o0 for some p € [1,50], and let
q be the conjugate exponent to p. For f e LP and g € L9, let

- JOO K(z,y)f(x)dz, Sg(z)= F K(z,y)g(y)dy

Then T'f and Sg are defined a.e., and |Tf|, < C|f], and ||Sg[, < C|g|,-

Proof. Setting z = x/y, we have

[ @i = [ K601l = [5G DL

0 0

Version of April 30, 2024 at 11pm EST Page 250 of 368


https://www.greysonwesley.com/home

Greyson C. Wesley §6.3: Some Useful Inequalities

where f.(y) = f(yz); moreover,
0 1/p 0 1/p )

L = P = p—lyg = 5~ 1/p »

I, = | [ 1| = [ rpsta] g

Therefore, by Minkowski’s inequality for integrals, T f exists a.e. and

TSl < | KGO ds = £, | (1)1 = Ol

0
Finally, setting u = y~!, we have

o0 0
f |K(]_7 y)|y_1/qdy = J |K(y_1, 1)|y—1—(1/q)dy
0 0
= J 1K (u, 1) |u™Pdu = C
0
so the same reasoning shows that Sg is defined a.e. and that |Sg|, < C|gll,- O

Corollary 6.53: 6.21.

Let
i) = o | fa)de. Sglo) = | "y )y

T

Then for 1 <p <o and 1 < g < o0,

p
1Tl < El\f\lp, 1S9ls < dllglly

Proof. Let K(x,y) =y~ 'xg(z,y) where E = {(x,y) | # < y}. Then SSO K (2,1)|z~VPde =
Sé v~ VPdx = p/(p — 1) = q, where ¢ is the conjugate exponent to p, so Theorem 52 yields
the result. O

Corollary 53 is a special case of Hardy’s inequalities; the general result is in Folland
Exercise 6.29.

Exercise 6.54: Folland Exercise 6.26.

Complete the proof of Theorem 50 for the cases p = 1 and p = o0.

Exercise 6.55: Folland Exercise 6.27.

(Hilbert’s Inequality) The operator T f(z) = §; (z+y) ' f(y)dy satisfies |T f[, < C,| ],
for 1 < p < o0, where C, = §;” 2~ Y?(z + 1)~*dz. (For those who know about contour
integrals: Show that C, = 7 csc(n/p).)
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Exercise 6.56: Folland Exercise 6.28.

Let I, be the ath fractional integral operator as in Folland Exercise 2.61 and let
Jof(x) =27, f(x).
(a) J, is bounded on LP(0,0) for 1 < p < c0; more precisely,
r(1—p™)
Ja
ol < T 1Tt 1
(b) There exists f € L'(0,00) such that J; f ¢ L(0,0).

Exercise 6.57: Folland Exercise 6.29.

Suppose that 1 < p < oo, > 0, and h is a nonnegative measurable function on (0, ).

Then:
0 Xz p 0
f r ! [f h(y)dy] dr < (E)pj P h(z)Pda
0 0 r 0

LOO o U ) h(y)dyrd‘” <(7) L@O S

(Apply Theorem 52 with K (z,y) = 27"y Px(0.00)(y — @), f(z) = 27h(x), and g(z) =
2°h(x) for suitable 3,7,46.)

Exercise 6.58: Folland Exercise 6.30.

Suppose that K is a nonnegative measurable function on (0,00) such that
§o K(x)z*de = ¢(s) < o0 for 0 < s < 1.
(a) f 1 <p<oo,pt+ ¢! =1, and f,g are nonnegative measurable functions on
(0,0), then (with § = §)

f K (2y) f(2)g(y)dady < o(p —l)l f xp_2f(x)pdx]1/pl J g(x)qu]l/q.

(b) The operator Tf(z) = §; K y)dy is bounded on L?((0,00)) with norm
< ¢(3). (Interestlng special case: If K (x) = e~*, then T is the Laplace transform

and ¢(s) =T'(s).)

Solution.

(a) The integrand of the left-hand side is a nonnegative measurable function (since f, g,
and K are), so we can apply Tonelli’s theorem below

f J K(zy) f(z)g(y) dz dy =L L K(Z)Tg(y) dzdy (2 = zy, dz = dz/y)

_ f’ K(2) L"O f(z/y)
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(ke (y B f<zy/y>) N

f(z/y)
y

[

(00
< K(2)|y
0

B ;OO K) (f: (J;(/Z); Zu_j dw) N <LOO 9(y)? dy) " dz

(substituting w = z/y, dy = —z dw/w?)

- [ @ ([ e an) ” (] ot av) ",

Jo 0 0
Since " K(2)z/#=! = ¢(1/p) by definition, the desired inequality follows.

(b) Now consider p = ¢ = 2 and define T: L*((0,0)) — L*((0,0)) by f(z) —
§o K(zy)f(y)dy. Then T is linear, and T is bounded since for all f e L*((0,0)),

st = | rrw dy
- [|[ xens i

< [([ xew f(a:)|dx>2dy < gzs(%) [ - czﬁ(%)z!f\ﬁ-

where the last inequality is by part (a). Since f € L?((0,00)), this shows Tf €
L*((0,90)), so T is indeed a linear map L*((0,0)) — L?*((0,0)), and moreover that
T is bounded and [T'f[> < ¢(3)] f[2, which implies | T < ¢(1/2), as claimed. [

> —

[

lgll, dy d=
p

(-

2

dy

Exercise 6.59: Folland Exercise 6.31.

(A Generalized Holder Inequality) Suppose that 1 < p; < coand Y 7p;' =7 < 1.
If fje L¥ for j =1,...,n, then [ [} f; € L" and [ ]} f;l, < [[{[/;l,,- (First do the
case n = 2.)

Exercise 6.60: Folland Exercise 6.32.

Suppose that (X, M, i) and (Y, M, v) are o-finite measure spaces and K € L*(ju xv).
If f e L*(v), the integral Tf(z) = (K (z,y)f(y)dv(y) converges absolutely for a.e.
x € X; moreover, T'f € L*(p) and |T'fls < | K |2 f]2-

Exercise 6.61: Folland Exercise 6.33.

Given 1 < p < o0, let Tf(z) = 2~'/P Sg ft)dt. i p~t + ¢t =1, then T is a bounded
linear map from L?((0,0)) to Cy((0,0)).

Version of April 30, 2024 at 11pm EST Page 253 of 368


https://www.greysonwesley.com/home

Greyson C. Wesley §6.3: Some Useful Inequalities

Exercise 6.62: Folland Exercise 6.34.

If f is absolutely continuous on [g,1] for 0 < ¢ < 1 and Séa:|f’(:1c)|pdx < o0, then
lim, o f(x) exists (and is finite) if p > 2, |f(x)|/|logz|"? — 0 as x — 0 if p = 2, and
|f(z)| /2P - 0as 2z — 0if p< 2.

Exercise 6.63.

The “uncentered” maximal function M/ is defined by (]\7 ) =
SUD,cp ﬁ $51f(y)|dy where the supremum is taken over all balls containing
x (not only those balls centered at ). Here m denotes Lebesgue measure on R".

(a) Obviously (M f)(z) < (Mf)(z). Show that there exists a constant ¢ (depending
only on the dimension) such that (M f)(z) < c¢(M[f)(x).

(b) Determine explicitly the function M (X[0,1)-

(c) Tt will be shown in class that M and M are bounded operators on LP(R") for
1 < p < . Does there exist a pair (p,q) with 1 < p,q < o0 and p # ¢ such that

~

M or M is a bounded operator from LP(R™) to L¢(R™)?

Solution.

(a) Fix x € R, let S be the collection of open balls containing x, let T be the collection
of open balls centered at x, and for all Lebesgue measurable subsets E of R™ define

Aﬂﬁ=ﬁgﬁy@wy
Since T' < S,

M f(2) = supper Aplf] < suppeg Ag|f| = M f(2).

For the other inequality, let B, be any ball containing = of radius 7. Then B < By,.(z),
SO
1 J m(Ba,(x)) 1
—— | fWldy < |f(y)ldy < 2"M f(x)
m(B,) Jp, m(By)  m(Bay(x)) Jp,, @)
Since B was any ball containing x, by taking the supremum over all such balls of all
radii we obtain

Mf(z) < 2"Mf(x).
(b) If Be S, then B = (a,b) for some a,b € R such that a < x < b, so

) 1 if (a,b) < [0, 1],
Aon@) = 5 | xiony)dy = { 2B i (a,) 1 [0,1] % 2 and (a,) < [0,1],
G 0 if (a,b) A [0,1] = 2.

We now break into cases:
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— If 2 € (0,1) then we can choose a, b such that 0 < a <z <b <1, in which case
Mxpo(z) = 1.

— If z = 0 (resp. = 1) then by considering the sequence of open intervals
{En = (—1/7171) le (resp‘,\J{En = (071 + 1/”)}703:1% we see MX[O,l](x) =
lim,, o0 Ag, X[0,1](®) = 1, s0 Mx[01)(z) = 1if v € {0} U {1}.

— If x < 0, then for a fixed point ¢ € [0, 1] and the sequence {E,, = (x—1/n,q)}*_,,
we have

m((x —1/n,q) n|0,1
Moo ME =) 0 01) g
qg—z+1/n qg—z+1/n
which tends to ¢/(q¢ — x) as n — o0. As a function of ¢ € [0,1], ¢/(q — ) is
increasing to 1. Thus by taking ¢ = 1 and the open sets {E,, = (z — 1/n,q +
1/n)}, we conclude that when x < 0, Mxjo11(x) = limg 1 Ag, X[0,11(%) =
limg - g/ (a — ) = 1/(1 — o). N
— If > 1, then by arguing similarly we obtain Mx[o1j(x) = 1/x if z > 1.

We conclude

1 if0<z <1,
Mxp(r) =<1/(1—2z) ifz<0, O
1/x if x> 1.

(c) No. By part (a) M is bounded if and only if M is, so it suffices to prove M is not
bounded as a map LP(R") — L(R"™). Consider an arbitrary ¢ € (0,0) and consider
the open cube (0,¢)" < R™. For any = € R", we have

1
1M x (o, n!q=f | Mx o, n(l’)lqdfv=J sup, —f X, (y) dy
(0,¢) q .- (0,%) . >0 m(Br(x)) B.(x) (0,t)
_Ln

m(B,(x) 0 (0,1)") [ f

dzr = n(x)dr = t)"
A S e = o @) do = m(.0),
so [ Mxn ], = m((0, t)")/4 = ¢4, On the other hand, for an arbitrary constant
C,

q

dx

Sup;~q

Clxonnl, = Cm((0,8)")Vr = Cm/e,

If M were bounded as an operator LP(R"™) — L(R"™), then there exists a constant C'
such that for all ¢ € (0, «0), "1 < Ct"P | or equivalently, such that

1 1
T < C
But this cannot be true at all ¢ € (0, o0) since p, ¢, n are fixed; by choosing sufficiently

small ¢t when 1/p > 1/q or sufficiently large ¢ (when 1/p < 1/q), this fails. Thus M,
hence also M, is unbounded as an operator LP(R") — L(R").
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6.4 Distribution Functions and Weak [P

If f is a measurable function on (X, M, u), we define its distribution function
Ar: (0,00) — [0, 0] by

Ap(e) = p({[f] > a})
(This is closely related, but not identical, to the “distribution functions” discussed in
Folland Section 1.5 and Folland Section 10.1.) We compile the basic properties of s in a
proposition.

Proposition 6.64: 6.22.

(a) Ay is decreasing and right continuous.

(b) If | f| < |g], then A < A,.

(c) If |f,| increases to |f|, then Af, increases to A;.
)

(d) If f =g+ h, then Ap(a) < N\g(3a) + M (30).

Proof. Let E(c, f) = {z | |f(z)| > a}. The function A, is decreasing since E(«, f) D
EB, f) if a < [, and it is right continuous since E(a, f) is the increasing union of
{E(a+n~1 ) IE|fI < |gl, then E(a, f) = E(a, g), so A < A,. If | f| increases to |f],
then E(c, f) is the increasing union of {E(c, f,)}, so Ay, increases to A;. Finally, if f =
g+ h, then E(a, f) € E(3a,g) u E(3a, h), which implies that A¢(a) < Ag(3a) + M (30).

Suppose that A;(a) < oo for all & > 0. In view of Proposition 64a, A; defines a
negative Borel measure v on (0, ) such that v((a, b]) = Af(b) — As(a) whenever 0 < a < b.
(Our construction of Borel measures on R in Folland Section 1.5 works equally well on
(0,20).) We can therefore consider the Lebesgue-Stieltjes integrals §¢dA\; = §¢dv of
functions ¢ on (0, 00). The following result shows that the integrals of functions of | f| on
X can be reduced to such Lebesgue-Stieltjes integrals. O

Proposition 6.65: 6.23.

If Af(cr) < oo for all @ > 0 and ¢ is a nonnegative Borel measurable function on (0, ),
then

| ootfian-~[ " sla)drs(a)

Proof. If v is the negative measure determined by A;, we have

v((a,b]) = Ap(b) = Apla) = —u({z | a < |f(2)] < b}) = —p(|f1((a,0]))
It follows that v(E) = —pu(|f|~(E)) for all Borel sets E < (0,00), by the uniqueness of
extensions (Theorem 33). But this means that {, ¢ o |fldu = — SSO ¢(a)dAf(a) when ¢ is
the characteristic function of a Borel set, and hence when ¢ is simple. The general case
then follows by virtue of Theorem 18 and the monotone convergence theorem.
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The case of this result in which we are most interested is ¢(«) = o, which gives

[ 1=~ " ransa)

A more useful form of this equation is obtained by integrating the right side by parts
(Theorem 79) to obtain {|f[Pdu = p§; a?~'Aj(a)da. The validity of this calculation is
not clear unless we know that o?A;(a) — 0 as @ — 0 and o — 00; nonetheless, the
conclusion is correct.

Proposition 6.66: 6.24.

If 0 < p < o0, then
ee}
[P =p [ @@y
0
Proof. If Af(a) = o0 for some a > 0, then both integrals are infinite. If not, and

f is simple, then A; is bounded as o — 0 and vanishes for « sufficiently large, so the
integration by parts described above works. (It is also easy to verify the formula directly
in this case.) For the general case, let {g,} be a sequence of simple functions that increases
to |f|; then the desired result is true for g,, and it follows for f by Proposition 6.22¢ and
the monotone convergence theorem.

A variant of the LP spaces that turns up rather often is the following. If f is a
measurable function on X and 0 < p < o0, we define

[f1p = (supasg 0P s ()"
and we define weak L? to be the set of all f such that [f], < o. [], is not a norm; it is
easily checked that [cf], = |c|[f],, but the triangle inequality fails. However, weak L? is
a topological vector space; see Folland Exercise 6.35.
The relationship between LP and weak LP is as follows. On the one hand,

LP < weak LP, and [f], <|fl,

(This is just a restatement of Chebyshev’s inequality.) On the other hand, if we replace
Ar(a) by ([f]p/e)? in the integral p§~ a?~'A(a)da, which equals | f|2, we obtain a
constant times Xgo a~tdo, which is divergent at both 0 and co— but just barely. One needs
only slightly stronger estimates on Ay near 0 and o to obtain f € LP. (See also Folland
Exercise 6.36.) The standard example of a function that is in weak L? but not in LP is
f(z) = 277 on (0,0) (with Lebesgue measure).

Frequently it is convenient to express a function as the sum of a “small” part and
a “big” part. The following is a way of doing this that gives a simple formula for the
distribution functions.
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Proposition 6.67: 6.25.

If f is a measurable function and A > 0, let E(A) = {z | |f(z)| > A}, and set
ha = fxx<g +A@gn f)xemy, ga=[f—ha=(sgnf)([f] — A)xew)
Then
Mla) ifa<A
A(@) = Ap(a + A), A _
@) = At 4), () {07 o

The proof is left to the reader (Folland Exercise 6.37).

Exercise 6.68: Folland Exercise 6.35.

For any measurable f and g we have [cf], = |c[[f], and [f + g, < 2([f]} + [9]} )P,
hence weak LP is a vector space. Moreover, the "balls" {g | [¢ — f], <} (r >0,f€
weak LP) generate a topology on weak LP that makes weak L? into a topological vector
space.

Exercise 6.69: Folland Exercise 6.36.

If f e weak L? and pu({z | f(z) # 0}) < oo, then f € L9 for all ¢ < p. On the other
hand, if f € ( weak LP) n L®, then f € L? for all ¢ > p.

Solution. Suppose f € weak LP, 0 < g < p, and u({|f| # 0}) < oo. Define

L Jo<ifi<y if n — 0,
Tt << 2 ifneZs

Then [f] =2,_ oXEn|f| 50

1 £le = J|f|q J o 2'xe, "< JZ:O My (by the triangle inequality)
o 2" (Ey,) (by the monotone convergence theorem for series)
0) 2 2m\ (277 ) (since B, < {|f] > 27!} and isolating u(Ep))
EO) Z 2"\ (2"71)  (since [f]2 = 207DPA (2771 by definition of [f],)
E) + Y, 12’” CrPfL,

- i)+ (M) 57 e,

which is finite since Ey < {|f| # 0}—which by hypothesis has finite measure—and the
infinite sum is a geometric series with ratio 2977 € (—1,1) since ¢ < p, and thus converges.
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Now instead suppose f € (weak LP) n L* and p < ¢ < co. Since f is already L™, we
can assume ¢ < o0. Define

P {If] > 1} ifn=0,
" o < |fl < 5=} ifneZs.

Computing similarly to before, we have

J i< (T
= g u(E) + 3 2
<ufuw NV ”)
<UL YT 2

which again is finite for the same reasons as before. Thus fe Liforallp<g<o. 0O

Exercise 6.70: Folland Exercise 6.37.

Prove Proposition 67.

Exercise 6.71: Folland Exercise 6.38.
f e LP if and only if >,” 2P X;(2%) < c0.

Exercise 6.72: Folland Exercise 6.39.

If fe LP, then lim,_,0 a®Af(a) = limy_,oo P Af(a) = 0. (First suppose f is simple.)

Exercise 6.73: Folland Exercise 6.40.

If f is a measurable function on X, its decreasing rearrangement is the function
f*:(0,00) — [0, 0] defined by
f*(t) = inf{ar | A\f(a) <t} (where inf @ = )
(a) f* is decreasing. If f*(t) < oo then Af(f*(¢)) < t, and if A\¢(a) < oo then
(@) <o
(b) Ay = Apx, where A+ is defined with respect to Lebesgue measure on (0, ).
(c) If Af(a) < oo for all & > 0 and lim,_,o Af() = 0 (so that f*(t) < oo for all
t > 0), and ¢ is a nonnegative measurable function on (0,%0), then §, ¢ o |f|du =
So ¢ o f*(t)dt. In particular, | f], = [f*], for 0 <p < o0.
(d) TE0 <p <o, [f], = sup,ot"7f*(2).
(e) The name "rearrangement" for f* comes from the case where f is a nonnegative
function on (0,00). To see why it is appropriate, pick a step function on (0, o)

Version of April 30, 2024 at 11pm EST Page 259 of 368


https://www.greysonwesley.com/home

Greyson C. Wesley §6.5: Interpolation of LP Spaces

assuming four or five different values and draw the graphs of f and f*.

6.5 Interpolation of L” Spaces

Ifl1<p<qg<r<o,then (L»n L") « LY < (LP + L"), and it is natural to ask
whether a linear operator 7" on LP + L" that is bounded on both LP and L" is also bounded
on L9 The answer is affirmative, and this result can be generalized in various ways.
The two fundamental theorems on this question are the Riesz-Thorin and Marcinkiewicz
interpolation theorems, which we present in this section. We begin with the Riesz-Thorin
theorem, whose proof is based on the following result from complex function theory.

Lemma 6.74: 6.26: The Three Lines Lemma.

Let ¢ be a bounded continuous function on the strip 0 < Rez < 1 that is holomorphic
on the interior of the strip. If |¢(2)| < M, for Rez = 0 and |¢(z)| < M; for Rez =1,
then |¢(z)] < Mg ~*M! for Rez =¢, 0 <t < 1.

Proof. For e > 0let ¢.(2) = ¢(z)ME ' M7 exp(ez(z —1)). Then ¢, satisfies the hypothe-
ses of the lemma with M, and M replaced by 1, and also |¢.(2)| — 0 as |Im z| — oo.
Thus |¢-(2)| < 1 on the boundary of the rectangle 0 < Rez < 1, —A < Im z < A provided
that A is large, and the maximum modulus principle therefore implies that |¢.(z)| < 1 on
the strip 0 < Rez < 1. Letting ¢ — 0, we obtain the desired result:

lp(2)| MM = lim|¢e(2)| <1 for Rez = ¢. O

Theorem 6.75: 6.27: The Riesz-Thorin Interpolation Theorem.

Suppose that (X, M, u) and (Y, M, v) are measure spaces and po, p1, qo, ¢1 € [1,0]. If
qo = q1 = 00, suppose also that v is semifinite. For 0 <t < 1, define p; and ¢; by

1 1—-t t 1 1—t 1
- +

Dt Do ]9_1’ 4t do Z
If T is a linear map from LP°(p) + L' (p) into L®(v) + L% (v) such that |Tf],, <
Mol fllpy for f e LP(u) and |Tflg < M|flp for f e LP(n), then |Tf], <
My~ M| fllp, for f e LP(p),0 <t < 1.

Proof. To begin with, we observe that the case pg = p; follows from Proposition 16: If
p = po = p1, then

1T f e < ITfllgo WTfllg < Mo~ My £l
Thus we may assume that py # p;, and in particular that p; < oo for 0 <t < 1.

Let Xx (resp. Xy ) be the space of all simple functions on X (resp. Y') that vanish
outside sets of finite measure. Then Xy < LP(u) for all p and X x is dense in LP(u) for
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p < o, by Proposition 9; similarly for ¥y. The main part of the proof consists of showing
that |Tfll, < Ma~*M{|f|l,, for all f e Xx. However, by Theorem 37,

11 = s | [ (@ g | g 2 and 1gl =1}

where ¢; is the conjugate exponent to ¢;. (Note that T'f € L n L9 so {y | T'f(y) # 0}
must be o-finite unless ¢y = ¢; = o0; hence the hypotheses of Theorem 37 are satisfied.)
Moreover, we may assume that f # 0 and rescale f so that | f|,, = 1. We therefore wish
to establish the following claim: - If f € Xx and ||f],, = 1, then |§{(Tf)gdv| < M}~ M
for all g € 3y such that |g[ls = 1.

Let f = > ¢jxg, and g = D31 dixp, where the Ejs and the Fys are disjoint in X and Y’
and the ¢;s and dis are nonzero. Write ¢; and dj, in polar form: ¢; = |c;|e"%, dj, = |dy.|e™*.
Also, let

a(z) =(1=2)py" +2p ', Blz) =(1—2)g " +2q1"
thus a(t) = p; ! and B(t) = ¢; ' for 0 < t < 1. Fix t € (0, 1); we have assumed that p; < o0
and hence a(t) > 0, so we may define

Z |CJ| et Z6j>(1Ej

N

while if f(t) = 1 we define g, = ¢ for all z. (We henceforth assume that 5(¢) < 1 and
leave the easy modification for 5(t) = 1 to the reader.) Finally, we set

aazj@m%w

If 3(t) < 1, we define

'I‘hllS7
z : a(z)/a(t 1-58(z 1-5(t

where
Ajy, = e'Oitvn) J(TXEJ- )X, dv

so that ¢ is an entire holomorphic function of z that is bounded in the strip 0 < Rez < 1.
Since {(T'f)gdv = ¢(t), by the three lines lemma it will suffice to show that |$(z)| < Mo
for Rez = 0 and |¢(2)| < M; for Re z = 1. However, since

a(is) =py' +is(pr' —pp'), 1—PB0is) = (1—q ") —is(ey' —q0")
for s € R, we have
| fis] = | f|RelG @] = | fopo g, | = |g|RelE=BED/A=BON | gat/ab

Therefore, by Hélder’s inequality,
|0(08)| < T fisll o 935y, < Mol fis o llgis | = Mol fllp:l9ller = Mo
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A similar calculation shows that |¢(1 + is)| < M, so the claim is proved.

We have now shown that | T f||,, < Mg~ tM{|f|,, for f € Xx, so in view of Proposition 9,
T|Xx has a unique extension to LP* () satisfying the same estimate there. It remains to
show that this extension is T itself, that is, that 7" satisfies this estimate for all f € LPt(u).
Given such an f, choose a sequence {f,} in Xx such that |f,| <|f| and f, — f pointwise.
Also, let ' = {IL’ : ‘f(l’)’ > 1}79 = fxg, gn = fuxe,h = [ —g, and hy, = [, — gn.
Then if py < p; (which we may assume, by relabeling the ps), we have g € LP°(u), h €
LP1(p1), and by the dominated convergence theorem, |f, — f[,, — 0, g, — g, — 0, and
|hn — k[, — 0. Hence |Tg, —Tg|, — 0 and [Th, —Th|, — 0, so by passing to a
suitable subsequence we may assume that T'g, — T'g a.e. and Th,, — Th a.e. (Folland
Exercise 6.9). But then T'f,, — T'f a.e., so by Fatou’s lemma,

I7fllg < liminf|Tf],, <liminf My~ Mi[ful,, = My~ M{[ f]p,

and we are done. O

The conclusion of the Riesz-Thorin theorem can be restated in a slightly stronger
form. Let M(t) be the operator norm of 7" as a map from LP*(u) to L%(v). We have
shown that M(t) < Mi~*M{. Tt is possible for strict inequality to hold; however, if
0<s<t<wu<landt=(1-7)s+ Tu, the theorem may be applied again to show that
M(t) < M(s)*" "M (u)™. In short, the conclusion is that log M (t) is a convex function of
t.

We now turn to the Marcinkiewicz theorem, for which we need some more terminology.
Let T be a map from some vector space D of measurable functions on (X, D, i) to the space
of all measurable functions on (Y, D, v). T is called sublinear if |T(f + g)| < |Tf|+ |Ty|
and |T'(cf)| = c|Tf]| for all f,ge D and ¢ > 0. Now let p,q € [1, 0]

e A sublinear map 7T is strong type (p, q) if L?(u) < D and T maps LP(u) into LI(v),

and there exists C' > 0 such that |T'f], < C|f|, for all f e LP(u).

e A sublinear map T is weak type (p, q) if LP(u) € D, T maps LP(u) into weak L1(v),

and there exists C' > 0 such that [T'f], < C| f|, for all f e LP(u). Also, we shall say
that 7" is weak type (p, c0) if and only if 7" is strong type (p, ).

Theorem 6.76: 6.28: The Marcinkiewicz Interpolation Theorem.

Suppose that (X, M, ) and (Y, M, v) are measure spaces; po, p1, Go, ¢1 are elements of
[1, 0] such that py < qo, p1 < ¢1, and qo # ¢1; and

1 1—t t 1 1-1¢ t
+ — and — = +—, where0<t<1

p Po P1 4q do 0
If T is a sublinear map from LP°(u) + LP'(u) to the space of measurable functions on
Y that is weak types (po, qo) and (p1,¢q1), then T is strong type (p, q). More precisely,
if [T'flg, < Cjllflp, for j = 0,1, then |Tf|, < B, f|, where B, depends only on
Pj,q;, C; in addition to p; and for j = 0,1, By|p — p;| (resp. B,) remains bounded as
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| p — pj if p; < oo (resp. p; = ).

Proof. The case py = p; is easy and is left to the reader (Folland Exercise 6.42). Without
loss of generality we may therefore assume that py < p;, and for the time being we also
assume that ¢o < 00 and ¢; < o0 (whence also py < p; < ). Given f € LP(u) and A > 0,
let g4 and hy be as in Proposition 67. Then by Propositions 6.24 and 6.25,

f|gArp°du - ; 717, (8)dB = po fo B0 (8 + A)dB
[0

=po | (B—A)P N (B)df < po L BN (8)dB

JA

p1 _ " p1—1 — . p1—1
|hal™ dp = pr ) AP Ana (B)dB = pr ) B (B)dp

Likewise,

o0 o6}
J\Tf]qdy = qf a? \pp(a)da = 2qqf Ay (20)da. (6.30)
0 0

Since T is sublinear, by Proposition 64(d) we have
Ary(200) < Apg, (@) + Arny (@)
This is true for all « > 0 and A > 0, so we may take A to depend on o. We now make a
specific choice of A. Namely, it follows from the equations defining p and ¢ that
poloo—q) p ' —w") p ' —a")  pila—q)

wpo—p) ¢t -ppY) ¢t -pY)  alp - p)
we denote the common value of these quantities by o, and we take A = a?. Then by

(6.29), (6.30), (6.31), and the weak type estimates on T,
0
1T 13 < QqQL A" [(Collgallo /) + (Cilhal,, /)" |da

) 0 q0/Po
< 2qq08°p8°/”oj P [f /Bpo_l)\f(BMﬂ] dov

0 a

o0 o’ q1/p1
+ QqQCinpclu/pl f od—n-1 [J Bpl_l)\f(ﬁ)dﬁ] dov
0

0

L eI a5 /pj
:Zj:O 2qu§’Jp?J/pJL [L @-(a,ﬁ)dﬁ] do
where, denoting by yo and x; the characteristic functions of {(«, )| > o} and
{(a, B) | B < a7},

¢i(a, B) = x;(a, 5)a(qqu*1)pj/qjﬁprl)\f(5)
Since qo/po = 1 and ¢;/p1 = 1, we may apply Minkowski’s inequality for integrals to
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obtain

| i UOOO ezsj(a,ﬁ)dﬂ] " o

Let 7 = 1/o. If ¢ > qo, then ¢ — qo and o are positive and the inequality 5 > a7 is
equivalent to a < 37, so

LOO [L"O o, B)1/P da /o g3

NI

=(q— qo)—PO/qOJ 5p°_1+p°(q_q°)/q°"/\f(B)dﬁ

0

BT po/qo
f aq—qo—lda] ﬁpo_l)\f(ﬁ)dﬁ

0

— (g = go) ™ L 870 (8)dp

= lg— o " p £

where we have used (6.32) to simplify the exponent of 5. On the other hand, if ¢; < qo,
then ¢ — qo and o are negative and the inequality § > o is equivalent to a > 7, so as
above,

I stommman s = 1] J, o] " gn1r 3y

— (=0 | ()

= |g — qo| ™ p7!| £
A similar calculation shows that

O [ p1/q1
[ entammmaal ™ as = 1ol
o LJo
Combining these results with (6.33) and (6.34), we see that

1 _ e 111/
sup{|71lo | 1flp = 1} < By = 20713 Cowi/p)®la—a) ]

But since |T'(cf)| = ¢|T'f] for ¢ > 0, this implies that |T'f|, < B,| fll, for all f e LP(u),
and we are done. (The verification of the asserted properties of B, is left as an easy
exercise. )

It remains to show how to modify this argument to deal with the exceptional cases
qo = 0 or q; = 0. We distinguish three cases.

Case I: p1 = ¢1 = o0 (80 po < qo < ). Instead of taking A = o in the decomposition
of f, we take A = a/Cy. Then |Tha|, < Ci|hal, < @, so App,(a) = 0, and we obtain
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(6.33) with ¢; = 0 and o replaced by «/C} in the definition of ¢y. The same argument
as above then gives

ITfly < 2LaCCE ™ (po/p)*"™ la = aol 17 f],
Case II: py < p1 < 0,qy < q1 = 0. Again the idea is to choose A so that Arp,,(a) = 0,
and the proper choice is A = (a/d)? where d = C4 [pl||f|\g/p]l/p1 and o = p1/(p1 — p) (the

limiting value of the o defined by (6.32) as ¢ — o). Indeed, since p; > p, we have
A
Thall2 < CPIhally = C'pn | hs(ada

0

4 o)

< (OPip, APYP p=1y do = p1 P1 Plicw — om
SR a f(a)a—cl_g Hpr—oz.
0 p

As in Case I, then, we find that ¢; = 0 in (6.33) and the integral involving ¢q is majorized
by a constant B, when | f|, = 1, which yields the desired result.

Case III: pg < p1 < 0,q1 < qo = . The argument is essentially the same as in Case
I, except that we take A = (a/d)? with d chosen so that A, (a) = 0. O

The lengthy formulas in this proof may seem daunting, but the ideas are reasonably
simple. To elucidate them, we recommend the exercise of writing out the proof for
two special (but important) cases: (i) po = qo = 1,p1 = ¢ = 2, and (ii) po = ¢ = 1,
P1=q1 = ©.

Let us compare our two interpolation theorems. The Marcinkiewicz theorem requires
some restrictions on p; and ¢; that are not present in the Riesz-Thorin theorem; these
restrictions, however, are satisfied in all the interesting applications. Apart from this,
the hypotheses of the Marcinkiewicz theorem are weaker: T is allowed to be sublinear
rather than linear, and it needs only to satisfy weak-type estimates at the endpoints. The
conclusion in both cases is that 7" is bounded from LP(u) to L9(v), but the Riesz-Thorin
theorem produces a much sharper estimate for the operator norm of 7. Thus neither
theorem includes the other.

We conclude with two applications of the Marcinkiewicz theorem. The first one
concerns the Hardy-Littlewood maximal operator H discussed in Folland Section 3.4,

1 1 n
HJ (@) = 519, s LW) FWldy (f e LL(RY)

H is obviously sublinear and satisfies | H f||oo < | f|o for all f € L. Moreover, Theorem 44
says precisely that H is weak type (1,1). We conclude:

Corollary 6.77: 6.35.

There is a constant C' > 0 such that if 1 < p < o0 and f € LP(R™), then
p
[Hfl, < CpTleHp
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Our second application is a theorem on integral operators related to Theorem 50.

Theorem 6.78: 6.36.

Suppose (X, M, p) and (Y, M, v) are o-finite measure spaces, and 1 < ¢ < o0. Let K
be a measurable function on X xY such that, for some C' > 0, we have [K(z,-)], < C
for a.e. x € X and [K(-,y)], < C forae yeY. If1 <p <o and fe LP(v), the
integral

Tf(z) = f K (e, 9) f(4)du(y)

converges absolutely for a.e. x € X, and the operator T' thus defined is weak type (1, q)
and strong type (p,r) for all p,r such that 1 <p<r<owand p ' +¢ ' =r"1+1.
More precisely, there exist constants B, independent of K such that

[Tfle < BLCIflr, ITflr < BLCIfl, (p>1Lr " =p+q " —1>0)

Proof. Let p', ¢’ be the conjugate exponents to p, ¢; then

rl=p g - l=p () =g =)
sop < ¢ and g < p/. Suppose 0 # f € LP(1 <p < ¢'); by multiplying f and K by
constants, we may assume that | f|, = C' = 1. Given a positive number A whose value
will be fixed later, define

E—{(wy) | K@yl > A} K= (sen K)(K| — Ayp, K = K - Ky,
and let T, T; be the operators corresponding to K7, Ky. Then by Propositions 66 and 67,
since ¢ > 1 we have

ﬁKl(w,yndu(y) - f

0

Q0 0 Al—q
Ak (z,)(a + A)da < f a lda =
A q—1

and likewise
1—q

A
K d <
[ nte) < 2
Hence, by Theorem 50, the integral defining T} f(z) converges for a.e. x and

Al=a Al—a
T f| < flp = —
IT3fl, < S0l = =

1

Similarly, since g < p/,
A

[igateavin) = [ @ riefalda

A ! AP'—4
< P’f o " do = p/
0 P —q
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Therefore, by Holder’s inequality, the integral defining 75 f(z) converges for every x, and

—q /0 1/p'
- q]l H
Tof <l flo=1=| A"
IT2f1l.s V=g 1£1lp .

We have thus established that T'f = T1 f + T5f is well defined a.e.
Next, given a > 0, we wish to estimate Ars(a). But by Proposition 64(d),

1 1
)\Tf(Oé) < /\T1f <§Oé) + /\Tgf (éa)
and by (6.38), if we choose
alr/apgir/a’
=[5
1

we will have |T>f|, < ia, so that Az (2a) = 0. With this choice of A, then, by (6.37)
and Chebyshev’s inequality we obtain

Arg(@) < AmGa) < l%]p < lﬂ]p

2 o (¢—Da
_ 2P—(1—Q)PT/‘1 [g](lq)pT/qp/a—p-&-(l—q)pT/q =C |:Hf’P:|T
B — p
(¢—1p Lr «

because | f[, = 1 and
m_p:p(_j_Q _ T,
q q p

A simple homogeneity argument now yields the estimate Apf(a) < Cp(| f|p/c)" with no
restriction on | f|,, so we have shown that 7" is weak type (p,7), and in particular (for
p = 1) weak type (1, q).

Finally, given p € (1,¢), choose p € (p,¢') and define ¥ by 7! = p~! — (¢/)"". Then
T is weak types (1,¢) and (p,7), so it follows from the Marcinkiewicz theorem that 7T is
strong type (p, 7). ]

Exercise 6.79: Folland Exercise 6.41.

Suppose 1 < p < oo and p~! + ¢! = 1. If T is a bounded operator on LP such that
§(Tf)g =" f(Tg)forall f,ge LPn L9, then T extends uniquely to a bounded operator
on L" for all 7 in [p, ¢] (if p < q) or [¢,p] (if ¢ < p). If p = oo, further assume that p is
semifinite.

Solution. Let p e (1,00], let ¢ = (p—1)/p, let 3 be the set of simple functions that vanish
outside a set of finite measure, and let r lie in the closed interval between p and q.

Claim 80. T" maps L? n L1 into LY and is bounded as a map LP n LY — L9,

Proof. Let f € LP n L. Then Tf € L? by hypothesis. Thus if p < oo then |T'f|’ € L!
(since T'f € LP), so {|T f|P # 0} = {T'f +# 0} is o-finite by Folland Proposition 2.23(a). On
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the other hand, if p = oo then p is semifinite by hypothesis. In either case, it follows from
Folland Theorem 6.14 that

Ty, = sup{] [ st

so it suffices to show the right-hand side is finite. To that end, suppose g € ¥ and |g], = 1.
We have g € L? since g € 33, so in particular g € L n L?. Then

' [ors| - ‘ [5x)

' ge¥and g, = 1}, (6.80.1)

(by our hypothesis on T')

< [f],1Tql, (by Holder’s inequality)
< AT 2o g,
< T o o (since [g], = 1).

Our above estimate is independent of our choice of g, so by Equation (6.80.1)

ITflly < VT o roll £,
Thus 7' maps LP n L? into L? and is bounded as a map (L? n L%, || ) — (L9, [|—[,). O

Claim 81. The map
T: [P+ L7 — [P+ LY,
f+g=h—Tg:="Tf+ lim Tg,,
n—a0
where {g,}*_; < L’ n LY and g, — g in L%, is a well-defined bounded linear operator.

Proof.

o T is well-defined: Let g€ LP+ L9. Since LP n L4 is dense in LP + L7 (because LP N L4
contains ¥, which is a dense subset in both L? and L9), such an approximating
sequence {g,},_; as in the claim exists in LP n L9.

Next we show T is independent of the choice of sequence {g,} ", < LP n LA.
Since {g,}_; is Cauchy in L? and T is bounded as a map L n L? — L9 by the first
claim,

HTgn - Tgqu - HT<gn - gm)Hq < HT||LP—>Lqun - gqu —0
as n,m — o0. By uniqueness of the limit (as L? is a Banach space), we conclude fg
is independent of the choiceN of approximating sequence sequence.
e T is linear: We are given T is linear on L9, so it suffices to show linearity on LP.
Suppose g,¢' € LP n L1, € C, {gn}_1, {9}, < LP n L% and g, — ¢,g, — ¢ in

L4, Then e
T(ag+¢) = lim T(ag + ¢
= 7}1_1)130 (aTg, + Tq),) (by linearity of T')
= aJi_r)rOlo Tg, + nh_r)glo Tq., (by linearity of limits that exist)
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—alg+Tq (by definition of T').

Hence T is linear.
e T is bounded as a map LY — L% Let g € L9 and let {g,}>_ , < L? n L% such that
gn — ¢ in L9. Since g < oo by hypothesis, we can write

(Taly = [(Tol" = ||1im 7,

= f lim |[Tg,|* (by continuity of R 3 z +— |z|? € R)
n—o0

q

< liminf,, o || Tg, ] (by Fatou’s lemma)
< ||THqu_)Lq lim infn—mHgan
(since T is bounded as an operator L n L7 — L)
= T[4 50 limm g,
(since lim,, o[ gn ] exists, hence equals the liminf; see below)
= Iz Lallgllg:

The penultimate equality here follows from the fact g, — g in L9, since for all € > 0
and all sufficiently large n,

Igal, < llgl, + lgn — gll, < Tl +& < o0
taking the gth power, we obtain Hgan < (ngq +¢)7 < 0, 50 limn—mo”gnug _ HQHZ- B

Claim 82. T is the unique bounded operator on L" for all  in the interval [p,q] (ifp <q)
or [q,p] (if ¢ < p) that extends T.

Proof. Since T is strong type (p, p) and strong type (¢, q), by the Riesz—Thorin theorem
7:” is strong-type (r,r) for all  in the interval [p,q| (if p < q) or [q,p] (if ¢ < p). To see
T is the unique such extension, suppose S is another such extension of 7. We can write
each he L" asasum h = f + ¢ for some f e LP and g€ L", so

Sh=S(f+9)=Sf+Sg=Tf+Tg=Th

since because S is an extension we have Sf = T f for all f e LP and Sg = fg for all
ge L Thus S =T, so the extension is unique. O]

Exercise 6.83: Folland Exercise 6.42.

Prove the Marcinkiewicz theorem in the case py = p;. (Setting p = pg = p1, we have

Arp(@) < (Col fllp/a)® and App(a) < (Ch| flp/a)®. Use whichever estimate is better,
. . . o —1

depending on «, to majorize ¢ §; @~ App(a)dar.)

Proof. Suppose that (X, M, ) and (Y,N,v) are measure spaces; p,qo,¢1 € [1,0] and
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P < qo; 1, and qo # ¢1; and

lzl_t—ki, where 0 <t < 1.

q do 41
Let T: LP(u) — L°(v) be' a sublinear map of weak types (p,q) and (p,q1). We claim
T is strong type (p,q). More precisely, suppose [T'f],, < Cj| f|, for j = 0,1. We claim
ITfllqy < By fl, where B, depends only on p, g;, and C; in addition to p.

Then for a > 0 we have the estimates

Arp(a) < (Col flp/a)®  and  Apg(a) < (Chflp/a)™,
so we obtain the estimate

iy [Irs = | @ ulirs) > apda

0

171,
ij aq_lu{]Tf|>oz}da+qJ QA p{|Tf] > o} da
0 171,

111, q0 0 a
<o aq1<corf\2> o | aql(cluf,_,) -
0 [

171 ) 1y :
<qcplry [ e tda g2 [ artda

P 151
qd—a :|C“_|f|p p

9 a S
< g0 [—_ +qcp £ [—_ ] .
q—4qo0 |,—0 qg—q a=|/l,

_ <q08°\|f!Z°\qu_q°) B <q01q1 £ \fHZ_ql)
q—qo 9— ¢

qCQO q0q1
=< &, 1)f\|§-

q— 4o q1— (g

- : 0o, qcp\ M4
Thus T is strong type (p, q), as claimed, and moreover B, = (ﬁ + ﬁ) depends

only on ¢; and C} for j =0, 1. O

Exercise 6.84: Folland Exercise 6.43.

Let H be the Hardy-Littlewood maximal operator on R. Compute H x,1) explicitly.
Show that it is in L? for all p > 1 and in weak L! but not in L', and that its L? norm
tends to o like (p —1)~" as p — 1, although ||x (1|, = 1 for all p.

Exercise 6.85: Folland Exercise 6.44.

Let I, be the fractional integration operator of Folland Exercise 2.61. If 0 < a < 1,
l<p<al and r! =p! —aq, then I, is weak type (1,(1 — a)™!) and strong type
(p, ) with respect to Lebesgue measure on (0, o0).

'Here L°(v) is the space of measurable functions on Y.
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Exercise 6.86: Folland Exercise 6.45, Altered.

The following concerns Folland Exercise 6.45, which reads as follows:

If 0 < a < n, define an operator T, on functions on R" by

T.f(z) = j r— g () dy

Then T, is weak type (1,(n —a)™') and strong type (p,r) with respect
to Lebesgue measure on R", where 1 < p <na~!and r~! = p~t —an™L.
(The case n = 3, @ = 1 is of particular interest in physics: If f represents
the density of a mass or charge distribution, —(47)~'T} f represents the
induced gravitational or electrostatic potential.)

The following aims to correct this exercise.

(a) Use a scaling argument to show that the exercise is incorrect as stated.

(b) Replace the exponent —« in the definition of with —n + « in the question. Prove
that (this version of) T, is weak type (1,1(n — )™ !) and strong type (p,r) under
the conditions on «, p, and r as stated in the exercise. Hint: First show that T,
is of weak type (p,r).

Solution.

(a) Suppose for a contradiction T, is strong type (p,r), so that |1, ], ;- < o0. Now fix
e > 0. Since | Tal o, pr = sup{|Tafl, | [fl, = 1} < oo, there exists f € L” such that
| ], =1 and

ITafl, > A= Tal oo e (6.86.1)
For each b € R.( define g,: R" — C by
go(x) = [f(bx).
Then g,(z) € LP and for a fixed b € R-( be fixed. We have

1 1
oy = [l ao = oo 1@ d = oo
so [gsf, = 1/b". And for each z € R", we have
Togn(a) = [l — ol F(bw) dy
=p" f|x —y/b|" " f(y)dy (substitute by — y)

B s ay = v [l ) an

o
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SO
Tuanl; = v || 1o =170 a0 o
— prla—n) ﬂb—” f|x —y| “f(y)dy| dx (substitute bz — x)
- J [T f (2)[" dar = b2V T, .
Thus
0| Tafl, _ | Tagsl
b T s, = = =< Tal o
b l9ll, .

Therefore, since 0 < o < n and in particular a # n, we can choose f € LP and b > 0
sufficiently large such that the left-hand side is strictly larger than the right-hand
side (since otherwise Ty, is the zero operator, contrary to the given definition of 7,,),
which contradicts the assumed boundedness of T' on LP. It follows that Folland
Exercise 6.45 is incorrect as stated.
(b) Define K: R"xR" — C by

K(z,y) = |z —y|™"

Then K is m x m-measurable, and for each x € R" and § > 0 we have
Ak (B) =m{y e R" [ [z —y|™* > B})

=m({y e R" | |z —y| < 57V}

< m(Bsorie (@)
Since the measure of a ball of radius 7 in R” is a scalar multiple of the radius to the
power of n, there exists C' > 0 such that for all z € R™ and all 5 > 0,

m(Bg-v/a(z)) = C 57"
and thus
B Nk (B) < B m(Bg-va(x)) = 570 = C.

Thus, by taking the 1/(n/a)th power of both sides and taking the supremum over all
£ € R.g, we obtain for all x € R™ that

[K (z, _)]q = Supq>0(5q)\K(x,—)(ﬁ))1/q <cY.
Arguing identically (but replacing K (z, —) with K(—,y) and = with y), there exists
C'" > 0 such that [K(—,y)], < C'"7 for all y € R". Now replacing C' with the
maximum of CV4, C""/4 the result then follows immediately from Folland Theorem
6.36. O
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8 Elements of Fourier Analysis

It is easy to say that Fourier analysis, or harmonic analysis, originated in the work of
Euler, Fourier, and others on trigonometric series; it is much harder to describe succinctly
what the subject comprises today, for it is a meeting ground for ideas from many parts of
analysis and has applications in such diverse areas as partial differential equations and
algebraic number theory. Two of the central ingredients of harmonic analysis, however,
are convolution operators and the Fourier transform, which we study in this chapter.

8.1 Preliminaries

We begin by making some notational conventions. Throughout this chapter we shall
be working on R", and n will always refer to the dimension. In any measure-theoretic
considerations we always have Lebesgue measure in mind unless we specify otherwise.
Thus, if F is a measurable set in R", we shall denote LP(E, m) by LP(E). If U is open
in R® and k € R, we denote by C*(U) the space of all functions on U whose partial
derivatives of order < k all exist and are continuous, and we set C*(U) = [, C¥(U).
Furthermore, for any £ < R™ we denote by CP(FE) the space of all C* functions on R"
whose support is compact and contained in E. If F = R" or U = R", we shall usually
omit it in naming function spaces: thus, L? = LP(R"),C* = C*(R"),C* = C*(R"). If
r,y € R" we set

Toy=) Ty, |ol=veox

8.1.1 Multi-index notation

It will be convenient to have a compact notation for partial derivatives. We shall write

0
0j = =—
6$j
and for higher-order derivatives we use multi-index notation. A multi-index is an ordered
n-tuple of nonnegative integers. If & = (v, ..., ) is a multi-index, we set

n n N (’/3 aq a Qn
‘Oé‘ :Zl Oéj, Oé! an CYj!, 6 = (ax1> (a—xn)

and if z = (xq,...,2,) € R,
xt = | |nx‘?‘j
1 J

(The notation || = ) «v; is inconsistent with the notation |z| = (3] :rjz)l/ ? but the meaning
will always be clear from the context.) Thus, for example, Taylor’s formula for functions
f € C* reads

fle) = Za|<k(aaf)(x°)% + Ri(r),  lim @)l _

eowo |x — zo|"
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and the product rule for derivatives becomes

*(f9) =),

(see Folland Exercise 8.1).
We shall often avail ourselves of the sloppy but handy device of using the same notation

for a function and its value at a point. Thus, “2” may be used to denote the function
whose value at any point x is z.

al
Bty=a [y

(07 f)(0"g)

8.1.2 Existence of nonzero functions in C'

Two spaces of C* functions on R™ will be of particular importance for us. The first is
the space C° of C'° functions with compact support. The existence of nonzero functions
in C° is not quite obvious; the standard construction is based on the fact that the function
n(t) = e Y'x(0.0)(t) is C* even at the origin (Folland Exercise 8.3). If we set

¥(w) = (1~ [of?) = {SXPWII RN

it follows that ¢ € C*, and supp(v) is the closed unit ball. In the next section we shall use
this single function to manufacture elements of C'° in great profusion; see Proposition 19
and Theorem 20.

(8.0.1)

8.1.3 Schwartz space

The other space of C® functions we shall need is the Schwartz space § consisting of
those C'® functions which, together with all their derivatives, vanish at infinity faster than

any power of |x|. More precisely, for any nonnegative integer N and any multi-index o we
define

[l v.a) = SuPgepn (1 + |2])™]0% f(2))]
then
§={feC”||flna < oo forall N, o}

Examples of functions in 8§ are easy to find: for instance, f,(z) = 2%~ 11> where « is any
multi-index. Also, clearly C* < 8.

It is an important observation that if f € 8, then 0% f € L? for all o and all p € [1, o0].
Indeed, [0°f(z)] < Cn(1 + |z|)™" for all N, and (1 + |z|)™™ € L? for N > n/p by
Corollary 101.

Proposition 8.1: 8.2.

8 is a Fréchet space with the topology defined by the norms || - [|(y,q)-
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Proof. The only nontrivial point is completeness. If {fz} is a Cauchy sequence in 8, then
Ifj = fil(n o) — 0 for all N,a. In particular, for each a the sequence {0 f} converges
uniformly to a function g,. Denoting by e; the vector (0,...,1,...,0) with the 1 in the
jth position, we have

fr(x +te;) — fu(z) = L 0; fr(x + sej)ds

Letting k — oo, we obtain
t

go(x + te;) — go(x) = f Ge,; (T + sej)ds
0

The fundamental theorem of calculus implies that g., = J;go, and an induction on |«
then yields g, = 0%gp for all . It is then easy to check that | f — QOH(N o — 0 for all
a. [

Another useful characterization of 8 is the following.

Proposition 8.2: 8.3.

If feC®, then f e 8 if and only if 2°0%f is bounded for all multi-indices a, 3 if and
only if 0%(2? f) is bounded for all multi-indices «, 3.

Proof. Obviously |2?| < (1 + |z|)™ for [8] < N. On the other hand, Y7|z;|" is strictly
positive on the unit sphere |z| = 1, so it has a positive minimum 0 there. It follows that
SN = 6]z|N for all  since both sides are homogeneous of degree N, and hence

(1+ |z))N <2V + |2|V) < 2N[1 6y |x;.v|] < 2N5_12|5\<N|@“B|

This establishes the first equivalence. The second one follows from the fact that each
0%(2f) is a linear combination of terms of the form 270 f and vice versa, by the product
rule (Folland Exercise 8.1). O

We next investigate the continuity of translations on various function spaces. The
following notation for translations will be used throughout this chapter and the next one:
If f is a function on R™ and y € R",

7y f(x) =[x —y)
We observe that |7, f[, = [ f], for 1 < p < oo and that |7, f|, = | f]l.. A function f is
called uniformly continuous if |7, f — f||, — 0 as y — 0. (The reader should pause to
check that this is equivalent to the usual e-¢ definition of uniform continuity.)

Lemma 8.3: 8.4.
If f e C.(R"), then f is uniformly continuous.
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Proof. Givene > 0, for each z € supp(f) there exists d, > 0 such that | f(z—y)—f(z)| < 3¢

if |y| < d,. Since supp(f) is compact, there exist xq,...,zx such that the balls of radius
20, about z; coversupp(f). If § =  min{d,,}, then, one easily sees that |7, f — f[, <&
whenever |y| < 4. O

Proposition 8.4: 8.5.

If 1 < p < oo, translation is continuous in the LP norm; that is, if f € L and z € R",
then lim, o7,/ — 7.f1, = 0.

Proof. Since 7., = 7,7., by replacing f by 7.f it suffices to assume that z = 0. First,
if g € C¢, for |y| < 1 the functions 7,g are all supported in a common compact set K, so
by Lemma 3,

[ = ot < 1 = gltm(z) 0 a5 y — 0
Now suppose f € LP. If € > 0, by ?? there exists g € C.. with |g — f|, < &/3, so

2
I7o.f = fll, < 17 (f =9, + 799 = gll, + 19 = Fllo < 3¢ + 79 — 91,

and |79 — g, < /3 if y is sufficiently small.

Proposition 4 is false for p = o0, as one should expect since the L™ norm is closely
related to the uniform norm; see Folland Exercise 8.4.

Some of our results will concern multiply periodic functions in R", and for simplicity
we shall take the fundamental period in each variable to be 1. That is, we define a function
f on R™ to be periodic if f(z + k) = f(z) for all x € R™ and k € R". Every periodic
function is thus completely determined by its values on the unit cube

1 1\"
o= |-p3)

Periodic functions may be regarded as functions on the space R"/Z" =~ (R/Z)" of cosets
of R™, which we call the n-dimensional torus and denote by T™. (When n = 1 we write T
rather than T!.) T" is a compact Hausdorff space; it may be identified with the set of all
z = (2,...,2,) € C" such that |z;| = 1 for all j, via the map

(ZL‘l, Ce ,J}n) — (627ri:v1’ o 7627rixn>

On the other hand, for measure-theoretic purposes we identify T" with the unit cube @),
and when we speak of Lebesgue measure on T we mean the measure induced on T" by
Lebesgue measure on (). In particular, m(T") = 1. Functions on T" may be considered
as periodic functions on T or as functions on (); the point of view will be clear from the
context when it matters.
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Exercise 8.5: Folland Exercise 8.1.

Prove the product rule for partial derivatives as stated in the text. Deduce that
0“2 f) = 2P0 f + Z cmgx‘smf, 2P0 f = 0%(2" f) + Zc%@”(x‘sf)

for some constants c,5 and ¢/ 5 with ¢, = ¢/ 5 = 0 unless |y| < [a| and || < [f].

Exercise 8.6: Folland Exercise 8.2.

Observe that the binomial theorem can be written as follows:
k!
(1 + a2)* = Zm‘:k axa (x = (21, 22), a0 = (a1, 2))

Prove the following generalizations:

(a) The multinomial theorem: If z € R",

k!

k «
(xl + -+ xn) = g |k —!x
(b) The n-dimensional binomial theorem: If z,y € R™,

al

(x+y)* = Z — 2Py,

B+r=a Bl

Exercise 8.7: Folland Exercise 8.3.

Let n(t) = e Yt for t > 0,n(t) = 0 for t < 0.
(a) For k€ Z; and t > 0,n%)(¢t) = Py(1/t)e”"/t where Py is a polynomial of degree
2k.
(b) 7™ (0) exists and equals zero for all k € Z;.

Exercise 8.8: Folland Exercise 8.4.

If fe L* and |1,f — f|,, — 0asy — 0, then f agrees a.e. with a uniformly continuous
function. (Let A, f be as in Theorem 45. Then A, f is uniformly continuous for r > 0
and uniformly Cauchy as r — 0.)

Solution. The statement of Exercise 8 follows immediately from the following points:
(i) Aiynf(z) — f(x) ae. as n — oo.
(ii) For all n € Zz1, Aynf(z) is uniformly continuous as a function of x € R™.
(iii) The sequence {A;,f};_; is uniformly Cauchy.
(iv) If {f,: R — C}*_, is a uniformly Cauchy sequence of uniformly continuous functions,
then lim,,_,, f, is uniformly continuous.

Proof of (i). This is just Folland Theorem 3.18 since L functions are L; O

loc*
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Proof of (i). Let n € Zs,. Fix € > 0. It suffices to show |7, A, f — A, f||, = 0asy — 0.
For any x, we have

iy (@) — Avaf @) = gl | If@a= [ Il
SEvx 1| LG L IICR IS
(substitute z — z — y)
< BT by I SN
< BT b o~ Tl
(since |1, f(2) — f(2)] < |1y f — f], for a.e. z€R")

= 7y = flo-

Taking the supremum of both sides over all x € R", we obtain

HTyAl/nf - Al/nf“u < HTyf - fHoo
Since |7, f — f]., — 0 as y — 0 by hypothesis, we conclude A, f is uniformly continuous.
O

Proof of (ii). We claim || Ay, f — Aim f|, — 0 as m,n — co0. Fix € > 0. Since A;,, By
Folland Lemma 3.16, A, f is a continuous function of r € R.¢; thus Ay, f — Ay f is
continuous for all n,m € Z>1, so its supremum norm equals its infinity norm. Hence

1A ynf = Aymfll, = [Aynf = Aymflo < [Aynf = Flo + [Aymf = flo- (881
Where n € Z~1, we have

1 f‘
lAvnf = fll, = |z — m(Bin(@) JBl/n(m)|f(y)| dy — f(=) )
< T mw ( )|f(y)—f($)|dy
" (by the O’slriangle inequality)
1 (
< |T m(Bl/n(x)) .)Bl/n(o)’Tyf(x) - f(&?)| dy .
1
<E@;@;Lwﬁm~humwﬁumw@

1

< -

~ m(Bya(w))

where we used Minkowski’s inequality for integrals (Folland Theorem 6.19) since 7, f — f €
L* for a.e. ye R" and [y — |7, f — f| ] € L'

Thus both terms on the right-hand side of Equation (8.8.1) tend to 0 as m,n — o0, so

J |7y f — fl,dy,— 0 as n — o
B/ (0)
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{A1/nf}o_; is uniformly Cauchy. O

Proof of (iv). Fix ¢ > 0 and ¢ = lim,_» f,. Then for all sufficiently large n,
|fu(z) — g(z)] < /3. Since each f,, is uniformly continuous, there exists 6 > 0 such
that | f.(x) — fu(y)| < /3 whenever |x — y| < §. Thus, for any z,y such that |z —y| < ¢
and all sufficiently large n, we have

l9(x) = 9(y)| < |g(z) = ful@)] + |fulz) = fu(W)] + [fu(y) — 9(y)]
<e/3+¢/3+¢/3 =c¢,

so ¢ is uniformly continuous. O]

8.2 Convolutions

Definition 9 (Convoltuion). Define the convolution by the assignment »: LOxL° — LY
written (f, g) — f =g, where

frglx) = ff(y)g(fzj —y)dy.
for all  such that the integral exists.?

Proposition 8.10.

The convolution * is well-defined. That is, for any f,g€ L°, [y — f(y)g(z —y)] € L!
for a.e. z € R and f * ge LY.

Proof. We shall need the fact that if f is a measurable function on R", then the function
K(z,y) = f(x —y) is measurable on R" xR". We have K = f o s where s(x,y) = x — y;
since s is continuous, K is Borel measurable if f is Borel measurable. This can always be
assumed without affecting the definition of f =g, by Proposition 22. However, the Lebesgue
measurability of K also follows from the Lebesgue measurability of f; see Folland Exercise
8.5.

TODO. O

The elementary properties of convolutions are summarized in the following proposition.

Proposition 8.11: Properties of the convolution.

Let f,g,h € L°. Provided that the integrals in the following assertions exist, they are
true:

(a) frg=g=f.

2Various conditions can be imposed on f and g to guarantee that f * g is defined at least almost
everywhere. For example, if f is bounded and compactly supported, g can be any locally integrable
function; see also Theorem 12, Theorem 14, and Proposition 13.
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(b) If f*g(x), g=h(z), and f=g=*h(z) = (§flx—y—2)g9(y)h(z) dydz exist and
are finite for a.e. x € R™, then® (f * g) «h = fx*(g=h).
(c) For z e R", 7.(f »g) = (7)(f *g) = (7=f) * g = [ = (7)g-

(d) supp(f *g) = supp(f) + supp(g).

@Associativity of the convolution can fail without these extra hypotheses. For example, for

f = XBoo = XBoos 9 = X[0,1] — X[-1,0) and b = xg, We have frgla ) = g+ f(z) = max{0,2 — 2|z} and
g*h = h=g=0. However for every z € R, (f * g) * h(z) = § f* g(y)dy = {_ (2 —2Jy|)dy = 2, while

fe(g#h)(z) =f*0(x)=0,s0 (f*g)*h# [ (g*h)

Proof.
(a) Substituting z — x — y, we obtain

0) = [ fa - o) dy = [ Fdgla ~2)dz = g+ 5 (o)

(b) At any = € R"™ where f = g = h(zx) is defined, by Fubini’s theorem we can write
f=g=h(zx)as

jmadzfﬂx—z—wwwdysz*mx—@mwdz=u»gwh@>
= ff(:v —y)9(y — 2)h(z)dydz = ff(:v —y)dy fg(y —2)h(z) dz
e ngem @) dy = fe (g h)@).

J

In particular (f = g) = h and f = (g = h) are defined and equal to each other.
(c) We have

- jfx—z— >dy—fuf@—ymwwm=<uﬁ*mw,
and by (a),
T.(fxg) =19+ f) = (19) = f = [ = (1.9).

(d) If = ¢ supp(f) + supp(g), then for any y € supp(g) we have x — y ¢ supp(f); thus
fx—y)g(y) =0 for all y, so f = g(z) = 0. O

The following two propositions contain the basic facts about convolutions of L7
functions.

8.12 Young’s convolution inequality.

For any p € [1,00], if f € L' and g € LP, then f = g(x) exists for a.e. € R, fxge LP,
and

1= gl, < 1£1lgl,
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Proof. By Minkowski’s inequality for integrals,

If=gl, =z — Jf(y)g(:v —y)dy| < J!f(y)\Tngp dy = | fl]gl, O

Proposition 8.13.

For any p € [1,0], if ¢ = p/, f € LP, and g € L%, then f * g(z) exists for a.e. x € R",
f * ¢ is bounded and uniformly continuous, and

1= gl < 111,190,
If pe (1,0), then also f =g e Cy(R™).

Proof. By Holder’s inequality,

f e g(a)] = f FWale - v)dy < |£1,1all,

so by taking the supremum over all z € R" we obtain | f « g, < [f|,lgll,- And f g is
uniformly continuous by Propositions 4 and 11, since

|7y (f=9) = egl, =y f = )9l < 7 f = fl,llgl, = 0asy =0,
where if p = o0 we swap f and g. Finally, if p, ¢ € (1,0) then choose sequences {f,.}, {gn}
of compactly supported functions such that | f, — f,[.gn — g4] — 0. Then by the above
and Proposition 11(d), we obtain f,, * g, € C.. But
[ o gn = [ 29l < [ fa = FlNgnl + 1 £ g0 = gl, — 0,
so f =g e Cy by Proposition 116. m

Theorem 8.14.

Suppose p,q,r € [1,0] and 1/p+ 1/q = 1/r + 1.

(a) (Young’s convolution inequality—general form), if f € L? and g € L9, then

f#xge L" and
1f =gl < [£1,19l,-

(b) Suppose also p,q > 1 and r < co. If f € LP and g € weak(LP), then f g e L’

and there exists a constant Cp, > 0 independent of f and g such that
1 =gl < Call £, 19,

(c) Suppose p=1andr =gq > 0. If fe L' and g € weak(L?), then f * g € weak(L?)

and there exists a constant C, independent of f and g such that

[/ = gl < Coll Fli g,

Proof. To prove (a), let ¢ be fixed. The special cases p = 1,7r = qgand p = ¢/(¢—1),r =
are Theorem 12 and Proposition 13. The general case then follows from the Riesz-Thorin
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interpolation theorem. (See also Folland Exercise 8.6 for a direct proof.) (b) and (c) are
special cases of Theorem 78. O
8.2.1 Smoothness of convolutions

One of the most important properties of convolution is that, roughly speaking, f * g is
at least as smooth as either f or g, because formally we have

*(fxg)(x) = a‘”Jf(ﬂ: —y)g(y)dy = faaf(x —y)g(y)dy = (0°f) = g(z)

and similarly 0%(f = g) = f = (0%g). To make this precise, one needs only to impose
conditions on f and g so that differentiation under the integral sign is legitimate. One
such result is the following; see also Exercises 23 and 24.

Proposition 8.15: 8.10.
If fe L', ge C* and 0%g is bounded for |a| < k, then f * g e C* and for all |a| < k,
0*(fxg) = f=("9).
Proof. This is clear from Theorem 50. O]

Proposition 8.16: 8.11.
If f,ge 8, then f*geS.
Proof. First, f = ge C* by Proposition 15. Since

L+ |z <1+ |z—yl+ |y <A+ |z —y[)(1+]y]) (8.16.1)

we have

(1+ |z)™*(f = g) ()] < J(l +lz =y ™% f(z = y)|(1 + [y) ™9 (y)ldy

< vl gliovsnso | (L+1ol) ™y
which is finite by Corollary 101. .

Convolutions of functions on the torus T™ are defined just as for functions on R”. (If
one regards functions on T" as periodic functions on R", of course, the integration is to
be extended over the unit cube rather than T™.) All of the preceding results remain valid,
with the same proofs.

8.2.2 Approximate identities

The following theorem underlies many of the important applications of convolutions
on R". We introduce a bit of notation that will be used frequently hereafter: If ¢ is any
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function on R™ and t > 0, we set

1
4i) = (/)
We observe that if ¢ € L', then {¢; is independent of ¢ by Theorem 87, since

| o= [ote 0 e = oy = [ o

Moreover, the “mass” of ¢; becomes concentrated at the origin as ¢ — 0. (Draw a picture
if this isn’t clear.)

Theorem 8.17: 8.14.
Suppose p € [1,0), ¢ € L', and § ¢(z)dz = a.
(a) If pe [1,00) and f € LP, then
frod—afin LP ast N\, 0.
(b) If f is bounded and uniformly continuous, then
f = ¢y — af uniformly as ¢t N\ 0.

(c) If fe L™ and f is continuous on an open set U, then

f = ¢y — af uniformly on compact subsets of U as t — 0.

Proof. Setting y = tz, we have
fr ) = af(@) = [[fa =)~ F@)6)dy

= [Urte = 1) - f@Noe)dz = [[res (@)~ Fl@o(a)ds

Apply Minkowski’s inequality for integrals:

If + 60 afl, < [Imes = 11, Jo(c)ld

Now, |7, f — f], is bounded by 2| f|, and tends to 0 as ¢ — 0 for each z, by Proposition 4.
Assertion (a) therefore follows from the dominated convergence theorem.
The proof of (b) is exactly the same, with | - ||, replaced by | - ||,. The estimate for
|f = ¢ — af], is obvious, and |7, f — f], — 0 as t — 0 by the uniform continuity of f.
As for (c), given € > 0 let us choose a compact E c R™ such that {,. [¢| < e. Also, let
K be a compact subset of U. If ¢ is sufficiently small, then, we will have  —tz € U for all
r € K and z € E, so from the compactness of K it follows as in Lemma 3 that

SUDyek nep | f (T —t2) — f(z)| <€
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for small ¢. But then
sup.crl + ue) — af @) < s | [+ [ |1fto =02 = sl

<< [ Iol + 20flc=
from which (c) follows. O

If we impose slightly stronger conditions on ¢, we can also show that f * ¢, — af
almost everywhere for f € LP. The device in the following proof of breaking up an integral
into pieces corresponding to the dyadic intervals [2%,2%"!] and estimating each piece
separately is a standard trick of the trade in Fourier analysis.

Theorem 8.18: 8.15.

Suppose |¢(z)] < C(1 + |z])™° for some C,e > 0 (which implies that ¢ € L' by
Corollary 101), and {¢(z)dx = a. If f e LP(1 < p < ), then f = ¢i(x) — af(z) as
t — 0 for every z in the Lebesgue set of f—in particular, for almost every x, and for
every x at which f is continuous.

Proof. If z is in the Lebesgue set of f, for any § > 0 there exists > 0 such that
J |f(z —y) — f(z)|dy < 6r" for r <. (8.18.1)
ly|<r
Let us set

I :j f(x —y) — f(2)]|¢(y)|dy and IQ:JP [f(z —y) = f(@)l|o(y)ldy.

We claim that 7 is bounded by Ad for some A independent of ¢, whereas Iy — 0 as t — 0.
Since

|f* ¢u(w) —af(z)] < L + I,

we will have

lim sup,_o|f * ¢¢(x) — af(z)| < Af,
and since ¢ is arbitrary, this will complete the proof.
To estimate I, let K be the integer such that 25 < n/t < 28*ifp/t > 1, and K = 0 if
n/t < 1. We view the ball |y| < 1 as the union of the annuli 275 < |y| < 2! 7*n(1 < k < K)
and the ball |y| < 27%n. On the kth annulus we use the estimate

|y a2
P (y)| < Ct n < Ct {Tﬁ}
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and on the ball |y| < 2757 we use the estimate |¢;(y)| < Ct~™. Thus
K Y 2_k77 —n—e&
neyroc |20 £ —y) — f(@)ldy
27 n<yl<2!

+Of{[ @ —y) — f()ldy.
lyl<2=n

Therefore, by Equation (8.18.1) and the fact that 25 < n/t < 2K+1
K _ n,—n 2_k7] E —n/o— n

_on n € K ke 2_K77 "
_9 CaH Mo +05[T]
. n _52(K+1)E — 9¢ 2—Kn n
_9 C(S[t] S 08|

< 2"C[2°(2° — 1) + 1]6.

As for I, if p’ is the conjugate exponent to p and y is the characteristic function of
{v | |ly| = n}, by Holder’s inequality we have

L] () 5Dl
<11l + 1@l

so it suffices to show that for 1 < ¢ < o0, and in particular for ¢ = 1 and ¢ = p', |[x¢:[, — 0
as t — 0. If ¢ = oo, this is obvious:

X0l < CEP[L+ (/)] = CH (1 + )™ < Co™7F
If ¢ < oo, by Corollary 100 we have

m@w=jtmwawww=ﬂ“®f 6(2)|"dz
y|=n

» |z|=n/t
< Cltn(l—tJ) J

n/t
In either case, |x¢:|, is dominated by ¢°, so we are done. ]

n—(n+e)q
Tn_l_(n+6)qd7“ _ 0275”(1—11)[2} = C3t€q.

In most of the applications of the preceding two theorems one has a = 1, although
the case a = 0 is also useful. If a = 1,{¢:},., is called an approximate identity, as
it furnishes an approximation to the identity operator on L” by convolution operators.
This construction is useful for approximating LP functions by functions having specified
regularity properties. For example, we have the following two important results:

Proposition 8.19: 8.17.

If pe[1,00), then CF (and hence also 8) is dense in L? and in Cj.
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Proof. Given f € L? and € > 0, there exists g € C, with ||f — g, < 5{2, by ?7. Let ¢
be a function in C such that {¢ = 1—for example, take ¢ = (S 1/1)_ 1 where v is as
in Equation (8.0.1). Then g = ¢ € C® by Proposition 11(d) and Proposition 15, and
lg = ¢ — gll,, < /2 for sufficiently small ¢ by Theorem 17. The same argument applies if
L? is replaced by Cy, | - |, by || - |+, and ?? by Proposition 116. O

Theorem 8.20: 8.18: The C* Urysohn Lemma.

If K < R" is compact and U is an open set containing K, there exists f € C'° such
that 0 < f < 1,f =1on K, and supp(f) c U.

Proof. Let 6 = p(K,U¢) (the distance from K to U¢, which is positive since K is compact),
and let V = {z | p(x, K) < 6/3}. Choose a nonnegative ¢ € C such that {¢ = 1 and
¢(z) =0 for |z| = /3 (for example, (S w)il@b(g/g with ¢ as in Equation (8.0.1)), and set
f =xv=¢. Then f € CP by Proposition 11(d) and Proposition 15, and it is easily checked
that 0 < f < 1,f =1on K, and supp(f) < {z | p(z, K) <2§/3} c U. O

Exercise 8.21: Folland Exercise 8.5.

If s: R" xR™® — R" is defined by s(x,y) = x — y, then s7!(FE) is Lebesgue measurable
whenever E is Lebesgue measurable. (For n = 1, draw a picture of s71(E) < R?. Tt
should be clear that after rotation through an angle w/4, s~ !(E) becomes F x R where
= {x ‘ V2zreFE }, and Theorem 87 can be applied. The same idea works in higher
dimensions.)

Exercise 8.22: Folland Exercise 8.6.

Prove Theorem 14(a) by using Folland Exercise 6.31 to show that
V*g@NT<Lﬁgﬁgmﬂihfwﬂﬂﬂx—yﬂwy

Exercise 8.23: Folland Exercise 8.7.

If f is locally integrable on R™ and g € C* has compact support, then f * g € C*.

Exercise 8.24: Folland Exercise 8.8.

Suppose that f € LP(R). If there exists h € LP(R) such that
lim |y~ (r—yf — f) = hl, =0
y—0

we call h the strong LP derivative of f. If f € LP(R™), strong L partial derivatives
of f are defined similarly. Suppose that p and ¢ are conjugate exponents, f € L”, g e L9,
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and the LP derivative 0;f exists. Then 0;(f * g) exists (in the ordinary sense) and
equals (0;f) = g.

Exercise 8.25: Folland Exercise 8.9.

If f e LP(R), the strong LP derivative of f (call it h; see Folland Exercise 8.8) exists
if and only if f is absolutely continuous on every bounded interval (perhaps after
modification on a null set) and its pointwise derivative f’ is in L?, in which case h = f’
a.e. (For “only if,” use Folland Exercise 8.8: If g € C,. with {¢g = 1, then f*g, — f
and (f * g;) — h as t — 0. For “if,” write

r+y)— flz 1 (Y

HEE 2Ty = 2 11w+ 0 - paar
0

and use Minkowski’s inequality for integrals.)

Exercise 8.26: Folland Exercise 8.10.

Let ¢ satisfy the hypotheses of Theorem 18. If f € LP(1 < p < o), define the
¢-maximal function of f to be Myf(x) = sup,.o|f = ¢:(z)|. (Observe that the
Hardy-Littlewood maximal function H f is M| f| where ¢ is the characteristic function
of the unit ball divided by the volume of the ball.) Show that there is a constant C,
independent of f, such that Myf < C'- Hf. (Break up the integral § f(z — y)é:(y)dy
as the sum of the integrals over |y| < t and over 2F¢ < |y| < 2¥* (kK =0,1,2,...), and
estimate ¢, on each region.) It follows from Theorem 44 that My is weak type (1,1),
and the proof of Theorem 45 can then be adapted to give an alternate demonstration

that f« ¢, — ({¢) [ ae.

Exercise 8.27: Folland Exercise 8.11.

Young’s inequality shows that L' is a Banach algebra, the product being convolution.

(a) If J is an ideal in the algebra L!, so is its closure in L.

(b) If f e L', the smallest closed ideal in L' containing f is the smallest closed sub-
space of L! containing all translates of f. (If g € C,, f * g(x) can be approximated
by sums ) f(z — y;)9(y;)Ay,;. On the other hand, if {¢;} is an approximate
identity, f * 7,(¢¢) — 7,f ast — 0.)

8.3 The Fourier Transform

One of the fundamental principles of harmonic analysis is the exploitation of symmetry.
To be more specific, if one is doing analysis on a space on which a group acts, it is a good
idea to study functions (or other analytic objects) that transform in simple ways under
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the group action, and then try to decompose arbitrary functions as sums or integrals of
these basic functions.

The spaces we are studying are R™ and T", which are abelian groups under addition
and act on themselves by translation. The building blocks of harmonic analysis on these
spaces are the functions that transform under translation by multiplication by a factor
of absolute value one, that is, functions f such that for each = there is a number ¢(x)
with |¢(x)] = 1 such that f(y + z) = ¢(x)f(y). If f and ¢ have this property, then
f(z) = ¢(x)f(0), so f is completely determined by ¢ once f(0) is given; moreover,

o(x)e(y) f(0) = o(x) f(y) = f(z +y) = oz +y)f(0)
so that (unless f = 0) ¢(x + y) = ¢(x)p(y). In short, to find all fs that transform as
described above, it suffices to find all ¢s of absolute value one that satisfy the functional
equation ¢(z + y) = ¢(z)p(y). Upon imposing the natural requirement that ¢ should be
measurable, we have a complete solution to this problem.

Theorem 8.28: 8.19.

If ¢ is a measurable function on T" (resp. R") such that ¢(x + y) = ¢(x)d(y) and
|p| = 1, there exists £ € T" (resp. £ € R?) such that ¢(x) = ¥™i¢=,

Proof. We first prove this assertion on R. Let a € R be such that S t)dt # 0; such an a
surely exists, for otherw1se the Lebesgue differentiation theorem Would imply that ¢ =0
a.e. Setting A = (So , then, we have

f ()6 (1)dt — AL (x + 1)t — Af+a¢(t)dt

Thus ¢, being the indefinite integral of a locally integrable function, is continuous; and
then, being the integral of a continuous function, it is C'*. Moreover,

&' (z) = Alo(x + a) — ¢(x)] = Bo(z), where B = A[p(a) — 1].
It follows that (d/dx)(e P?¢(x)) = 0, so that e P®¢p(z) is constant. Since ¢(0) = 1, we
have ¢(x) = 5%, and since |¢| = 1, B is purely imaginary, so B = 27i¢ for some £ € R.
This completes the proof for R; as for R, the ¢ we have been considering will be periodic
(with period 1) if and only if €?™ = 1 if and only if £ € R.
The n-dimensional case follows easily, for if eq, ..., e, is the standard basis for R™, the
functions 1;(t) = ¢(te;) satisfy ¥;(t + s) = ¥;(¢)1;(s) on R, so that ¢;(t) = e*™&* and

hence
¢(z) = ¢<Z xﬂ]) 1_[ i(xy) = 275, H

8.3.1 Fourier transform on T"

The idea now is to decompose more or less arbitrary functions on R™ or T" in terms
of the exponentials e?™€_ In the case of T" this works out very simply for L? functions:
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Theorem 8.29: 8.20.
Let E.(x) = €*™ % Then {E, | k € Z"} is an orthonormal basis of L?(T").

Proof. Verification of orthonormality is an easy exercise in calculus; by Fubini’s theorem
it boils down to the fact that Sé e?™*tdt equals 1 if kK = 0 and equals 0 otherwise. Next,
since B F) = E,,,, the set of finite linear combinations of the E,s is an algebra. It
clearly separates points on T"; also, Fy = 1 and E, = E_,.. Since T" is compact, the
Stone-Weierstrass theorem implies that this algebra is dense in C'(T") in the uniform
norm and hence in the L? norm, and C(T") is itself dense in L?(T™) by ??. It follows
that {E,} is a basis. O

_ We can restate Theorem 29 as follows. If f € L?(T™), we define its Fourier transform
f, a function on T", by

Jw) =By = | flayemrda,

and we call the series

ZHGZ” J/c\(ﬁ) En

the Fourier series of f.> Theorem 29 then says that the Fourier transform maps L*(T")
onto £*(T"), that |f|ls = |f]2 (Parseval’s identity), and that the Fourier series of f
converges to f in the L? norm. We shall consider the question of pointwise convergence
in the next two sections. R R

Actually, the definition of f(x) makes sense if f is merely in L'(T"), and |f (k)| < ||f]1,
so the Fourier transform extends to a norm-decreasing map from L'(T") to ¢*(T"). (The
Fourier series of an LlAfunction may be quite badly behaved, but there are still methods
for recovering f from f when f € L', as we shall see in the next section.) By interpolating
between L' and L?, we obtain the following result.

Theorem 8.30: 8.21: The Hausdorff-Young Inequality.

Suppose that 1 < p < 2 and ¢ is the conjugate exponent to p. If f € LP(T"), then
fet(Z) and | flg < |-

Proof. Since |f|w < |fll and | fla = |f]2 for f € L' or f € L2, the assertion follows from
the Riesz-Thorin interpolation theorem. O

3The term “Fourier transform” is also used to mean the map f — f .
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8.3.2 Fourier transform on R"

The situation on R" is more delicate. The formal analogue of Theorem 29 should be

fl@) =1 FO& 7 d¢, where f(€) = | f(z)e 2% da
R" -

These relations turn out to be valid when suitably interpreted, but some care is needed.
In the first place, the integral defining f(&) is likely to diverge if f € L?. However, it
certainly converges if f € L'. We therefore begin by defining the Fourier transform of

f e L'(R") by
FHE = J©) = | f@)e ™ da

(We use the notation J for the Fourier transform only in certain situations where it is
needed for clarity.) Clearly | f|., < |f]1, and f is continuous by Theorem 50; thus
J: L'Y(R") - BC(R")

We summarize the elementary properties of ¥ in a theorem.

Theorem 8.31: 8.22.
Suppose f, g€ L'(R").

(a) (1, )" (&) = e 2V f(&) and 7,,(f) = h where h(z) = > f(z).

(b) If T is an invertible linear transformation of R™ and S = (7%) " is its inverse
transpose, then (f o T)* = |detT|~"f o S. In particular, if 7" is a rotation, then
(foT)" = foT;and if Tz =t~ z(t > 0), then (f o T)"(£) = t"f(t£), so that
()" (§) = f(t£) in the notation of (8.13).

(c) (f+9)" =T[3 . .

(d) If 2*f € L! for |a] < k, then f e C* and 0°f = ((—2miz)*f)".

(e) If feCk, 0*fe L' for || <k, and 0°f € C for || < k — 1, then (0°f)"(§) =
(2mi§)* f(£).

(f) (The Riemann-Lebesgue Lemma) F(L'(R™)) < Co(R").

Proof.
(a) We have

(r, F)(€) = f f(x — y)e ey = j f(a)e @) gy = o2y Fg)

and similarly for the other formula.
(b) By Theorem 87,

(foT)(E) = ff(Tx)e_mg'mdx = |det T|! ff(g;)e—zms-Tlxdx

= |detT|™* Jf(x)eQ”isg'xdx = | det T]’lf(Sé)
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(c)

(d)

(e)

By Fubini’s theorem,

© = [ e = wowe iy

ij 27Ti§~(x—y)g(y)e—%if-ydxdy
- fie) [ atwe-nay
= f()3(e).

By Theorem 50 and induction on |a/,

= 55 ff e Ty = ff —2mix)® e 2mET Iy

First assume n = ]a\ = 1. Since f € Cy, we can integrate by parts:

ff —271'25 Ty = ( —2m§ :r|_ Jf 27T’L€ —27m‘5.mdx
— 2mic f (©).

The argument for n > 1, |a| = 1 is the same—to compute (0;f)", integrate by parts
in the jth variable— and the general case follows by induction on |a|.

By (e), if f € C' n C., then ]§|f( ) is bounded andAhenceAf e Cy. But the set
of all such fs is dense in L' by Proposition 19, and f,, — f uniformly whenever
Jn— [in L'. Since C is closed in the uniform norm, the result follows. Continuity
of f follows from the DCT, so we only need to show f vanishes at infinity. For

[ = Xla1,b1]x-X[an,bn]> W€ have

fe) = J ) e @O (2)de

b 1
= | | f e—Qﬂzxk'fkdxk — | | —-(627F1/bk§k _ e_Qﬂ'lakfk)’
F= Ja k=1 —2mi&,

which tends to 0 as [§] — oo. Next, if f € L'(R"), pick simple functions {¢;}72, such
that | — 6], — 0 as j — 0.

FEOI<IFE) = 5| + |85(6) < |f — b5l + 16;(8)],

and both terms vanish as 7 — oo. .

Parts (d) and (e) of Theorem 31 point to a fundamental property of the Fourier
transform: Smoothness properties of f are reflected in the rate of decay of f at infinity,
and vice versa. Parts (a), (c), (e), and (f) of this theorem are valid also on T", as is (b)
provided that T" leaves the lattice T" invariant (Folland Exercise 8.12).
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Corollary 8.32: 8.23.

F maps the Schwartz class 8 continuously into itself.

Proof. If f e 8, then 0% f € L' n Cy for all o, 3, so by Theorem 31d,e, fis C* and
(@0 )" = (=1 2m) Pl €2 ).
Thus 0°(£°f) is bounded for all «, 3, whence f € 8§ by Proposition 2. Moreover, since
§(1+ |z)) ™ e < o,
[z )], < |z f[l, < CI(1 + [2])" a7 £,
It then follows that | f|(ns < Cnpg Zlvlélﬁ\ | f||(N+n+1,4) Dy the proof of Proposition 2, so
the Fourier transform is continuous on 8. m

At this point we need to compute an important specific Fourier transform.

Proposition 8.33: 8.24.

If f(z) = e ™* where a > 0, then f(£) = a~ "% lé"/a,

—71'(11'2

Proof. First consider the case n = 1. Since the derivative of e is —2rae~™** by

Theorem 31(d,e) we have

Y] . —maz?\ A i A i . 2
(FY(€) = (~2mize™™)(€) = —(f) "€ = ~ (2mi€) [(€) = ~ £ (€)
It follows from the product rule that (d/d¢)(e™/ f (£)) = 0, so that ™/ “f(ﬁ) is constant.
To evaluate the constant, set & = 0 and use Proposition 102:

J’('\(O) _ Je‘”ax2dx _ a—1/2

The n-dimensional case follows by Fubini’s theorem, since |z|* = >} 23
f(§ = H1 fexp(—mm? — 2mi&x;)dx;
= T'la 2 exp(~me2/a)] = a2 exp(~xl¢]/a). =

We are now ready to invert the Fourier transform. If f € L', we define
£(@) = flea) = [ Fe)menag

and we claim that if f € L' and f € L! then (]?)v = f. A simple appeal to Fubini’s
theorem fails because the integrand in

(D(a) = || flgpezmeremenayag

is not in L'(R" x R™). The trick is to introduce a convergence factor and then pass to the
limit, using Fubini’s theorem via the following lemma.

Version of April 30, 2024 at 11pm EST Page 292 of 368


https://www.greysonwesley.com/home

Greyson C. Wesley §8.3: The Fourier Transform

Lemma 8.34: 8.25.
If f,ge L', then ng ={r9.

Proof. Both integrals are equal to ({ f(z)g(§)e ™ *dzd€. O

Theorem 8.35: 8.26: The Fourier Inversion Theorem.

If fe L' and fe L', then f agrees almost everywhere with a continuous function fj,

~

and (f)" = (f¥)" = fo.

Proof. Given t > 0 and =z € R", set
¢(&) = exp(2mi€ - x — wt*[¢]?)
By Theorem 31(a) and Proposition 33,
Ay) =t " exp(—mlr — y[*/t*) = gi(z — y)
where g(z) = e ™ and the subscript ¢ has the meaning in (8.13). By Lemma 34, then,
| e emesfiorie = [ Fo = [ 16 = 1+t
Since { e~ dx = 1, by Theorem 17 we have f # g, — f in the L' norm as t — 0. On the

other hand, since f € L' the dominated convergence theorem yields

P%@“%?mﬁ®@=fﬁ@ﬂ&%=®%m

It follows that f = (f)" a.e., and similarly (f¥)" = f a.e. Since (f)" and (f¥)" are
continuous, being Fourier transforms of L' functions, the proof is complete. n

Corollary 8.36: 8.27.
If fe L' and f = 0, then f = 0 a.c.

Theorem 8.37: 8.28: Corollary.

F is an isomorphism of § onto itself.

Proof. By Corollary 32, § maps J continuously into itself, and hence so does f — [V,
since fV(x) = f(—x). By the Fourier inversion theorem, these maps are inverse to each
other. O

At last we are in a position to derive the analogue of Theorem 29 on R™.
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Theorem 8.38: 8.29: The Plancherel Theorem.

If fe L' A L2 then fe L% and F |11 ~12 extends uniquely to a unitary isomorphism
on L2

Proof. Let X = {fe L'| fe L'}. Since f € L' implies f € L®, we have X = L? by
Proposition 16, and X is dense in L* because 8 = X and 8 is dense in L by Proposition 19.
Given f,g € X, let h = g. By the inversion theorem,

~

he) = j 2 ) d = f FTET(2)d = 9(E)

Hence, by Lemma 34,
|ra= s~ |in-7s

Thus F |x preserves the L? inner product; in particular, by taking g = f, we obtain
[fll2 = [ fll2. Since F(X) = X by the Fourier inversion theorem, F|x extends by continuity
to a unitary isomorphism on LZ.

It remains only to show that this extension agrees with F on all of L' n L?. But
if fe L'nL?and g(z) = e ™*” as in the proof of the inversion theorem, we have
f* g, € L' by Young’s inequality and (f = g;)¢ € L' because (f * g;)((§) = e IR f(¢)
and f is bounded. Hence f = g, € X; moreover, by Theorem 17, f = g, — f in both the Lt
and L? norms. Therefore (f * g;) — f both uniformly and in the L? norm, and we are

done. O

We have thus extended the domain of the Fourier transform from L' to L' + L?. Just
as on T", the Riesz-Thorin theorem yields the following result for the intermediate L?
spaces.

Theorem 8.39: 8.30: The Hausdorff-Young Inequality.

Suppose that 1 < p < 2 and ¢ is the conjugate exponent to p. If f € LP(R"), then
feLY(R") and [ fl, < [ f]5-

If fe L' and f e L', the inversion formula

ﬂ@=fﬂo&%wa

exhibits f as a superposition of the basic functions e?™%; it is often called the Fourier

integral representation of f. This formula remains valid in spirit for all f € L2,
although the integral (as well as the integral defining f) may not converge pointwise. The
interpretation of the inversion formula will be studied further in the next section.

We conclude this section with a beautiful theorem that involves an interplay of Fourier

series and Fourier integrals. To motivate it, consider the following problem: Given a
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function f € L'(R™), how can one manufacture a periodic function (that is, a function on
R™) from it? Two possible answers suggest themselves. One way is to “average” f over
all periods, producing the series >, pn f(z — k). This series, if it converges, will surely
define a periodic function. The other way is to restrict f to the lattice R" and use it to
form a Fourier series Y, __pn f(k)e*™*. The content of the following theorem is that these
methods both work and both give the same answer.

Theorem 8.40: 8.31.

If f € L'(R™), the series Y, pn T f converges pointwise a.e. and in L'(R") to a function
Pf such that [Pf|, < |f[:. Moreover, for x € R", (Pf)" () (Fourier transform on
R") equals f(x) (Fourier transform on R™).

Proof. Let QQ = [—1 l)n. Then R™ is the disjoint union of the cubes Q + k =

272

(o4 k| 2e Q). ke R 5o
[IDVSTESCTEESD g VI e IO

Now apply Theorem 48. First, it shows that the series Y. 7, f converges a.e. and in L'(T")
to a function Pf € L'(T") such that |Pf[; < |f]1, since T™ is measure-theoretically
identical to ). Second, it yields

F(Pf)(r) = JQ Zkel" flx — k)(i*%mmdx = ZkeZ" ot f(x)ef%rin-(IJrk)dI

A~

=D | S = | f@)e e = fo), 0

If we impose conditions on f to guarantee that the series in question converge absolutely,
we obtain a more refined result.

Theorem 8.41: 8.32: The Poisson Summation Formula.

~

Suppose f € C(R") satisfies |f(z)] < C(1 + |z|)™" ¢ and |f(&)] < C(1 + |£])™"= for

some C,e > 0. Then
ZkeZ” f(x * k) - ZKEZ” f(/i)QZTM'K"Z

where both series converge absolutely and uniformly on T™. In particular, taking x = 0,

ZkeZ" f(k) - ZHEZ" f(K)

Proof. The absolute and uniform convergence of the series follows from the fact that
D kezn (L+|E])7"7¢ < oo, which can be seen by comparing the latter series to the convergent
integral §(1+|z|)~" °dz. Thus the function Pf = 3, 7. f is in C(Z") and hence in L*(Z"),
so Theorem 56 implies that the series . f(k)e?™** converges in L?(Z") to Pf. Since it
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also converges uniformly, its sum equals Pf pointwise. (The replacement of k& by —k in
the formula for Pf is immaterial since the sum is over all k € Z".) ]

Exercise 8.42: Folland Exercise 8.12.

Work out the analogue of Theorem 31 for the Fourier transform on T".

Exercise 8.43: Folland Exercise 8.13.

Let f(z) = 3 — « on the interval [0,1), and extend f to be periodic on R.
(a) f(0) =0, and f(k) = (2mir) " if K # 0.
(b) > k=% =nm?/6. (Use the Parseval identity.)

Solution.
(a) First note f e L*(T), since
2?2 pqe=l 1
S A 8.43.1
I = [ 1r@Pde = [ -5 + 3]90:0 = (8.43.1)
We have

2 rx=1
f f —27r20a: dr J f ] _ 0,
z=0
and if k € Z ~ {0},

~ 1 ) 1 1 ) 1 4
f(k) — f (_ o I’) 6727T’L]€x dr = f _67271'7,’451 dr — f x€727rzka: dz
T 2 _0 2 0

~1 x S R
— _ : —2mikz g
4mik [—2#ike‘2”2kz]x_o " ok L ‘ ‘
I N S B
~ B 47?2'/{ omik 4wk 2mik’
(b) By part (a) |f(k)]* = 1/(47r2k‘2) SO by Plancherel’s theorem
w 1 2 2 (8. 431 2

Exercise 8.44: Folland Exercise 8.14.
(Wirtinger’s Inequality) If f € C'([a,b]) and f(a) = f(b) = 0, then

f|f s < (2 )J\f )

(By a change of variable it suffices to assume a = 0,b = 5. Extend f to [ 2 5] by
setting f(—z) = —f(z), and then extend f to be periodic on R. Check that f, thus
extended, is in C''(R) and apply the Parseval identity.)
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Exercise 8.45: Folland Exercise 8.15.

Let sincx = (sinwz)/mx(sinc0 = 1).

(a) If a > 0,X[-a.a)(*) = X[1q(T) = 2asinc2az.

(b) Let H, = {f e L*| f(&) =0 (a.e.) for |{| > a}. Then H is a Hilbert space and
{V2asinc(2az — k) | k € Z} is an orthonormal basis for H.

(¢) (The Sampling Theorem) If f € H,, then f € Cj (after modification on a null
set), and f(x) = " f(k/2a)sinc(2ax — k), where the series converges both
uniformly and in L2 (In the terminology of signal analysis, a signal of bandwidth
2a is completely determined by sampling its values at a sequence of points {k/2a}
whose spacing is the reciprocal of the bandwidth.)

Solution.
(a) We have
a : —1 ) . in(2
Rlaal(€) = j eI i = (7T — ) = ;—29 = 2asinc(2a€)

and, by changing variables x — —x in the integrand of X[ a,a] (€), we find

X[\:a,a] (6) = f 627Ti§$ = _J 67271-1.&: de = J 6727”'635 do = X[Afa,a] (5)

(b) %, is a linear subspace: If f,g e #, and X\ € C, then for all |{] > a we have
f(€) =g(§) =0, so
(f +Ag)" (&) = f(§) + Ag(§) =0+ A0 =0.

Thus f + A\g € #,, so ¥, is a linear subspace of L.

¥, is closed: Suppose {f.},_; = %, and ||f, — f|, — 0. Since the Fourier
transform is unitary on L? (hence an isometry), | fn, — f|, — 0, that is, f,, — f in
L?. Thus there exists a subsequence f,, — f pointwise a.e., so for a.e. 7 € R, we
have for |{] > a

F(€) = lim f,, (z) = lim 0 = 0.
k—o0 k—o0

Thus f € %,, so %, is a closed linear subspace of the Hilbert space L?, and thus %,
is a Hilbert space.

Now for k € Z and z € R, define (x(z) == v/2a sinc(2ax — k). We claim {(;}rez is
an orthonormal basis of #,. We first show {(j}xez = #,. For any k € Z,

@ 1

Ce(z) = V2asine(2az — k) = \/%(2(1 sinc(2a(x — k/2a))) = \/_2>GX[V—a,a](x —k/2a).
(8.45.1)
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Taking the Fourier transform, we obtain

A 1 v A @_2”i£(k/2a) Y N e—27ri(k/2a)§
G (&) = ﬁ(Tk/QaX[_a,a]) (&) = T(X[_a,a]) (&) = VG X[-aa](§),

(8.45.2)
where for the last equality we used X[_q,q € L* and that the Fourier transform is a
unitary isomorphism on L?. In particular, Equation (8.45.2) shows both that ¢ € L?
(since its Fourier transform is) and that (x(£) = 0 whenever |¢| > a, so ( € %,.
{Ck}rez 1s an orthonormal set in #,: Since the Fourier transform is a unitary
operator L? — L% we have for all k € Z that

1
Gl = @16y =50 |
and if £ € Z ~ {k},

a a

, 1
e27rz(k—k)£ dé- _ _J 1 df _ 17
2a

—a

1 . .
e e O e Frw G
_ i ¢ o2 (5 _ 2a mi(k—0) _ _mi(l—k)\ | _ sin(m(k —())
" 2a = )d§ (2m(k ) (e ¢ )) -~ 27i(k —0)

Thus {Cx}rez is an orthonormal set in %,.
{Ck}kez is a basis of #,: Suppose f € ¥, satisfies {f|(x) = 0 (and hence also
(¢ Y =0) for all k € Z. Then for each k € Z,

_ (s.zi).g) 1 2mi(k/20)¢
0= ff ) A ¢

\/% _1/2f (n/2a)e 2ﬂzk”dn—\/%f fr(—n/2a) Ek( )dn = \/%<fOS‘Ek>,

where s: n — —n/2a, and Ex(n) = > In particular <fx[,a’a]]Ek> = 0 for all
k € Z. But by Folland Theorem 8.20 {Ej}ez is an orthonormal basis for L*(T),
S0 fX[-aa = 0 a.e. Therefore, since f € L*(T), by the Fourier inversion theorem
(namely since the Fourier transform is an isomorphism L? > L?), fos=0ae. on
[-1/2,1/2]. Thus fX[ a4 = 0 a.e., and hence f = 0 for a.e. { € R (since already
f(&) =0 for all £ > a). It follows that {(x}rez is a basis of #,,.

(c) Fix f € #,. By part (b) {(x}xez is an orthonormal basis of %,, so

F= 20 160G = X (GG

where the series converge in L2 Thus it is is enough to show {f|(x) = ff(k/Qa)
for k € Z and that ZkeZ f(k/2a)() converges to f uniformly. We have

SN = f FA ()R b0y ) da

1 2mi(k/2a)x _L a
- wf (z)e2mith dx—f (- k/20) = = f(k/20).

so it only remains to show the series converges uniformly, and for this it is enough to
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show the sequence {3 f(k/2a)C} nez is uniformly Cauchy
Fix ¢ > 0. By Parseval’s identity 3}, ,|(f|G)| = | f]5 < o0, so for all sufficiently
large N € Z

D Il <e. (8.45.3)
Now fix z € R and M, N € Z with M < N. For all sufficiently large M, N € Z, we
have

>, fk2a)sine(2az — k)| =[S <FIGoG(@)] = X, KAIGOIG @)

< (X 1iwl) (2 Ja@p) " L e (2 awp)

where we used the Cauchy—-Schwarz inequality. Since X[_q,q) is a factor of (j, we may
assume z € [—a, a], and hence that 0 < |z| < a. But we only know this (the previous
sentence) for (i, not (! This requires a correction before the rest of the argument
to work. It thus only remains to show the remaining sum term on the right-hand
side is uniformly bounded for all z € [—a, a] as M, N — oo. For all sufficiently large
M, N € Z, sufficiently large and k€ {M +1,..., N}, we have

2
202 — K = k= 2a]* > |6 — 2afaf) > BL - &
and hence
1 <3
12ax — k|7~ k2
so that ,
N 2a N |sin(7(2ax — k 2a 1 4a N 1
S o = T3 R < 5 S o < D <

where the final step is by Folland Exermse 8.13(b). The argument that
|z — S, f(k/2a) sinc(2az — k)|, < e for all sufficiently large M, N € Z with
M < N is similar. Thus the series .~ __ f(k/2a)sinc(2az — k) is uniformly Cauchy,
and hence converges uniformly.

Lastly, we show f(z) = Y}, f(k/2a)sinc(2ax — k) a.e. and that f € C;. We
already know the partial sums converge to f in L?, so some subsequence of the
partial sums converge to f pointwise a.e., so, after modification of f on a null set f
equals the given series. Thus f is the uniform limit of the partial sums—which are
themselves continuous since sinc is—so f is continuous. To see f vanishes at infinity,
note that if we take the Fourier transformation of Equation (8.45.2) once more, we
obtain

Ck —2mi(k/2a)€ X[—a,a] (5)6—27riz§ dg _ )627ri(—a:—k’/2a)£ df

\/% J \/%—a JX[—a,a] (€

= X[V a(—2 = k/2a)

(84)1

Gr(—).

§
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But {(x}kez is an orthonormal basis for %,, so we have a convergent series in L?
given by

Fer) = 3 lGa) = 3 flGle) =3 (c o 3 (16 ) @) = Fa)
where the penultimate equality is by the DCT, so in particular fe L' by the Fourier
inversion theorem. Thus f(—z) = f(x) is the Fourier transform of an L' function,
so f € Cy by the Riemann-Lebesgue lemma. O]

Exercise 8.46: Folland Exercise 8.16.

Let fi = X[-1,1] * X[-k.K]-
(a) Compute fi(x) explicitly and show that | fl|, = 2.
(b) f¥(z) = (wx) ?sin2nkzsin 27z, and |fY|, — o as k — . (Use Folland
Exercise 8.15(a), and substitute y = 27kx in the integral defining | f|;.)
(c) F(L') is a proper subset of Cy. (Consider g; = fy and use the open mapping
theorem.)

Solution.
(a) Let [a,b],[c,d] = R. Then
X]e,d] (JJ - y) = 6c<mfy$d = 5:pfd<y<:pfc = X[z—d,z—c] (y)7

SO

X[ab] * X[e,d] (T) = fX[a,b] (V) X[eq (@ —¥) Ay = X(a ) (V) X[z—da—ea (¥) dy

= JX[a,b]m[cc—d,x—c] (y) dy = m([av b] N [ZL’ - da T — C])
Thus
[l = supger|m([=1,1] n [z =k = + k)| < m([-1,1]) = 2.
(b) By Folland Exercise 8.15(a),
F (@) = (X = xe) () = X (@)X (2)
= 2sinc(2x)2k sinc(2kz) = (mx) % sin(2nz) sin(27kz)

and, making the substitution y — 2kmx, we obtain

|1t @las =2 ]|

- sin(27x) sin(27wkx)
1 ' _ * Isiny||sin(y/k)
= Ak | |z sin(y) sinly/k) dy =4[kl Jm | =) =00
sin(y/k) ‘X[N,N] < xqw,n] € LY, so by the DCT we have

sin(yy//ll;) ' iy = JN - Siny(%@ l dy = fjv

y/k —N koo

dx

' dy.
For all N € Zy, Ty

N
lim f
k—o0 -N
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Hence

N .
e J =i (5.46.1)
for all N € Z~. But the right-hand side i_vlgrges to o0 as N — oo, which we now show
(or, alternatively, by Folland Exercise 2.59). Note that |sinz| > 1/2 for all z € R such
that |z| € [7/6, 57 /6], [77/6,117/6], [137/6,177/6], . ... On these respective intervals,
we have |1/z| > 6/57,6/117,6/17x,..., and thus |22 > 3/57,3/11x,3/17x, ...
Therefore, for all k € Z~q, by taking the limit of Equation (8.46.1) as N — o0, we
1 1 3 1

obtain
® 1
SR L S . _
foo Y (57T+117T+177r+ ) D SN sl

(¢) Any f € F(L') is continuous since F maps L! into Cy. Now suppose for a contra-
diction F(L') = Co. By the Hausdorfl-Young inequality, F is bounded as a map
L' — Cp (since f € Cy < Cy, hence | f||, = [f]., < |If|, for all f e L'). Thus F is
a bounded surjection, so by the open mapping theorem JF is invertible on L' and
F~1: Cy — L' is bounded. Then there exists C' > 0 such that for all k € Z=,

7 (a)
Ifely < Cllfel, = 2C,

contradicting part (b) since kaHl — w as k — . O

sin y

Exercise 8.47: Folland Exercise 8.17.

Given a > 0, let f(z) = e ?™z% ! for z > 0 and f(x) =0 for = < 0.

(a) feL' and fe L?ifa> 3.

(b) f(&) =T(a)[(2m)(1 +i£)]~*. (Here we are using the branch of z* in the right half
plane that is positive when z is positive. Cauchy’s theorem may be used to justify
the complex substitution y = (1 + i)z in the integral defining f )

(c) If a,b > 1 then

JOO 92=a=br (g 4 b — 1)

_Oo(l — i) "1 4 ix) dr = OO

Exercise 8.48: Folland Exercise 8.18.

Suppose f € L*(R).
(a) The L? derivative f’ (see Exercises 24 and 25) exists if and only if £f € L?, in

which case f’(é) = 2m’§ﬂ§).
(b) If the L? derivative f’ exists, then

[1r@ras] < [lespas [i7@as

(If the integrals on the right are finite, one can integrate by parts to obtain
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§1f12=—2Refzff")
(c) (Heisenberg’s Inequality) For any b, § € R,
1£12

[ =i P [ - pRR© P > 1

(The inequality is trivial if either integral on the right is infinite; if not, reduce
to the case b = § = 0 by considering g(z) = e >™%* f(x + b).) This inequality, a
form of the quantum uncertainty principle, says that f and f cannot both be
sharply localized about single points b and f.

Exercise 8.49: Folland Exercise 8.19.

(A variation on the theme of Folland Exercise 8.18) If f € L?*(R") and the set S =
{x | f(z) # 0} has finite measure, then for any measurable

R | (77 < flim(s)m(E).

Solution. Given that the measure of the set S is finite (m(S) < ), it follows that
LP(S) < L4(S) for 1 < q < p. Thus, since f € L*(S), we have f € L'(S). And for any
fixed £ € R", we have

J ]62”“'5\2dx = J ldz = m(S) < o,

so the map z — €2™@¢ is also in L?(S). Now by Hélder’s inequality
I =| [ f@ m“m:\fm 2)e 27 da) < |lylsl, = 7 lgm(S)"
(8.49.1)
where the second equality is because f \Rn\g = 0 (by definition of S). Thus
| Fxels = J F©F ac ||f|\2 (S )lef = [ flsm(S)m(E). O

Exercise 8.50: Folland Exercise 8.20.

If f e L'(R*™), define Pf(z) = §f(z,y)dy. (Here x € R™ and y € R™.) Then
PfeL'R"),[Pfl < |fl and (Pf)"(€) = f(&,0).

Exercise 8.51: Folland Exercise 8.21.

State and prove a result that encompasses both Theorem 40 and Folland Exercise 8.20,
in the setting of Fourier transforms on closed subgroups and quotient groups of R™.
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Exercise 8.52: Folland Exercise 8.22.

Since F commutes with rotations, the Fourier transform of a radial function is radial;
that is, if F e LY(R") and F(z) = f(|z|), then F(£) = g(|¢]), where f and g are related
as follows.

(a) Let J(&) = {4 e™“do(z) where o is surface measure on the unit sphere S in R" (The-
orem 99). Then J is radial—say, J(£) = j(|¢])—and g(p) = ;" j(27rp) f(r)r"dr.

(b) J satisfies >, 07 J + J = 0.

(c) j satisfies pj”(p) + (n—1)5'(p) + pj(p) = 0. (This equation is a variant of Bessel’s
equation. The function j is completely determined by the fact that it is a solution
of this equation, is smooth at p = 0, and satisfies j(0) = o(9) = 27%/T'(n/2). In
fact, j(p) = (2m)"2p2=/2 ], 5 2(p) where J, is the Bessel function of the first
kind of order «.)

(d) Iftn = 3,j(p) = 4mp~tsinp. (Set f(p) = pj(p) and use (c) to show that f”+ f = 0.
Alternatively, use spherical coordinates to compute the integral defining J(0, 0, p)
directly.)

Exercise 8.53: Folland Exercise 8.23.

In this exercise we develop the theory of Hermite functions.
(a) Define operators T,T* on 8§(R) by T'f(z) = 27Y?[xf(z) — f'(z)] and T* f(z) =
2712z f(z) + f'(2)]. Then $(Tf)g =S f(T*g) and T*T*— T*T* = KT+
(b) Let ho(z) = 7Y%=/ and for k > 1 let h = (k!)"Y2T*hy. (h is the kth
normalized Hermite functlon.) We have Thy = vk + 1hi1 and T*hy = \/Ehk_l,
and hence TT*h;, = khy,.
(c) Let S = 2TT* + I. Then Sf(x) = 22f(z) — f"(z) and Shy, = (2k + 1)h. (S is
called the Hermite operator.)
(d) {hx}y is an orthonormal set in L*(R). (Check directly that [holl, = 1, then
observe that for k > 0, { hph,, = k=1 §(TT*hy)h,, and use (a) and (b).)
(e) We have

T4(0) = (122 () e (o)

(use induction on k), and in particular,

h _ <_1)k x2/2 d ’ —x?
W) = e @) €
(f) Let Hy(z) = € /?hg(x). Then Hj is a polynomial of degree k, called the kth

normalized Hermite polynomial. The linear span of Hy, ..., H,, is the set of all

polynomials of degree < m. (The kth Hermite polynomial as usually defined is
[7/22k k1] 1)
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(g) {hr}y is an orthonormal basis for L?(R). (Suppose f L hy for all k, and let
g(z) = f(z)e**/2. Show that § = 0 by expanding e 274 in its Maclaurin series
and using (f).)

(h) Define A: 2 — L2 by Af(x) = (2m)V'f(2v/27), and define f = A7'FAf
for f € L?. Then A is unitary and f(g) (27) V2§ f(x)e~"*dx. Moreover,
Tf = —iT(f) for f € F, and hg = ho; hence hy, = (— )khk. Therefore, if
or = Ahy, {Qk}go is an orthonormal basis for L? consisting of eigenfunctions for

F; namely, ¢ = (—i)*¢y.

Q5.
Suppose that f € L'(R) and both f and ]? have compact support. Prove that f = 0.

Solution. Since we can translate and compose with scalar multiplication, we may assume
without loss of generality supp f < [0,1/2]. Since f € L', By the Hausdorff-Young
theorem f e L® and ||f||, < | f],.- Hence f is a.e. bounded, and in particular

17l = 171 < 110ty < 0

Thus fe L' so by the Fourier inversion theorem f is a.e. continuous and f N= ()N = f .
Since supp f is bounded, there exists N e Zp such that f ( ) = 0 whenever |k| >

In particular, the Fourier series of f is Z NS ( )emme By a corollary to the Fourler

inversion theorem (namely Folland Corollary 8.27), tosee f =N _f ( )eXmmT g6, it

suffices to show for k € Z that

@(m — Z::q\f f(m)e%im“>(m) = f(k).
And indeed,

%(l’ —s ZTN’L:_N f(m)€27rzmx> (/‘i) _ L (2Z=_N f(m)e%mmm) 67271'1/{90 dax
~ 1 ~ ~
Y | e as = 3 fma = o),

S0 f = me v f(m)eX™m* a.e. But f vanishes on the interval (1/2,1), so the sum
SN f(m)e*™ ™ — 0 must also; but any trigonometric polynomial that vanishes on
an interval must be identically zero (e.g., by the identity principle, since trigonometric
polynomials are holomorphic), so f = 0. ]

Q6.

Show that the conditions 1 + 2 =1and 1 < p < 2 in the Hausdorff-Young inequality
(Folland Theorem 8.30) are both necessary for such an inequality to hold. ¢
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“Hint: For the second condition, consider the functions fy(z) = s~ %e~™*I"/* for s = 1 + it and
t>0.

Solution. Suppose p, q € [1, 0] satisfy
[ £l < [f]lp for all f e LP(R™). (8.53.1)

e Necessity that the exponents are conjugate: Suppose p,q € [1,00], and consider an
arbitrary f € LP(R™). For ¢ > 0, define f;(z) =t "f(t"'z).

1/p 1/p
Hfth = <f | F ()P da:) =" <f " f ()| dx) = t—n(l_l/p)Hpr,

(8.53.2)
and this equation still holds if p = oo with the convention 1/p = 0. Now in particular
we know f; € LP. Now write

=t J Ft w)e ™ dt = f Fy)e 200 dy = f(t6).
Then

~ ~ 1/q N 1/q R
7l = ([iferas) = e [ifiora) - o, s

SO

A (8533) gy 883D 8.53.2) n/ae—n 1,1
Il =" 0 fl, < t/q\lfth =" gD p = 5+ 1)Hfl\p,

where we use the condition that 1/¢ = 0 for ¢ = co. But ¢ > 0 was arbitrary,
so this must hold for all such ¢; thus 1/p+ 1/¢ — 1 = 0, so p and ¢ are conjugate
exponents. Thus the conjugate exponent condition in the Hausdorff—Young inequality
is necessary for p,q € [1, o0].

e Necessity that p € [1,2]: Suppose for a contradiction p € (2, 0] and again consider
an arbitrary f e L*(R™). First note p # o0, since otherwise by Folland Exercise 8.15
the L'(R) function xj_1 1) satisfies

o

a contradiction (and the case of general n € Z, is similar by considering x[—1/2,1/2]"),
SO we may assume p € (2, 0).

Let f,(z) = s~2e™*/s and let h(z) = e ™k so that f, = h by Folland
Proposition 8.24. By our assumption (8.53.1) and the previous point, 1/p + 1/q = 1.
Then ¢ € (1,2), and in particular ¢ < p. We have

/p , 1/p P FOHa;dd
Ihl, = ( j el |pdx) :( f ol da:) 0250w (353.4)

(8r 1)

sin(€) ~
—=d¢ = [X-1 4], Ix-1.11le =1,
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and

~ 1/q 1/q
A A e R e |

pi‘ﬁl?% —n/2 ™ "/ 2 4 2 2\1/2
=0 (m) = (L4 ¢3)™Ag 2a(1 + %)V
1

g 21+ ¢2)5GD = g1 4 2) 1G5, (8.53.5)
where for the last equality we used the requirement from the previous point that
1/p+1/q = 1. In particular h € LP(R™), so by our assumption (8.53.1)

B2 mnza(q 4 )5 (G—3),

P 2V |nl, = (R,

Raising both sides to the power of —2/n, we obtain
PP < g1+ 122G, (8.53.6)
Since p < ¢ by assumption, —1/2(1/q — 1/p) < 0, so by choosing ¢ > 0 appropriately
we can make (1 +¢)~ 2 E‘E) arbitrarily small. But p'/? is strictly positive, so this
contradicts Equation (8.53.6). Thus p ¢ (2, 0], so p € [1,2]. ]

8.4 Summation of Fourier Integrals and Series

The Fourier inversion theorem shows how to express a function f on R" in terms of f
provided that f and f are in L'. The same result holds for periodic functions. Namely,
if fe LY(R") and f € ¢*(R™), then the Fourier series 3. f(x)e?™* converges absolutely
and uniformly to a function g. Since ¢! < ¢2, it follows from Theorem 29 that f € L? and
that the series converges to f in the L? norm. Hence f = g a.e., and f = g everywhere if
f is assumed continuous at the outset. R

Two questions therefore arise. What conditions on f will guarantee that f is integrable?
And how can f be recovered from f if f is not integrable?

As for the first question, since f is bounded for f € L', the issue is the decay of f at
infinity, and this is related to the smoothness properties of f. For example, by Theorem 3le,
if fe " (R") and 0*f € L' n Cp for |a| < n + 1, then 1F(O)] < C(1+ €)™ and
hence f e L*(R") by Corollary 101. The same result holds for periodic functions, for the
same reason: If f € C"*1(R™), then |f(x)| < C(1 + |x[)™™ ! and hence f ¢ El(R").

To obtain sharper results when n > 1 requires a generalized notion of partial derivatives,
so we shall postpone this task until §9.3. (See Theorem 43.) However, for n = 1 we can
easily obtain a better theorem that covers the useful case of functions that are continuous
and piecewise C''. We state it for periodic functions and leave the nonperiodic case to the
reader (Folland Exercise 8.24).
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Theorem 8.54: 8.33.

Suppose that f is periodic and absolutely continuous on R, and that f’ e LP(R) for
some p > 1. Then f € (}(R).

Proof. Since p > 1, we have C, = Yk < o0; and since LP(T) < L*(T) for
p >_2, we may assume that p < 2. Integration by parts (Theorem 79) shows that
(f )(( ) = 2Tk f ( ). Hence, by the inequalities of Holder and Hausdorfl-Young, if ¢ is
the conjugate exponent to p,

3 solF < [3, g orte) ][5, Crlefae]

) 1/p 9 1/p
= BS ), < B
Adding |]?(0)| to both sides, we see that ||fH1 < 0.

We now turn to the problem of recovering f from f under minimal hypotheses on f,
and we consider first the case of R™. The proof of the Fourier inversion theorem contains
the essential idea: Replace the divergent integral § f(£)e*™7d¢ by FOD(t€)exisw ¢
where ® is a continuous function that vanishes rapidly enough at mﬁnlty to make the
integral converge. If we choose ® to satisfy ®(0) = 1, then ®(t£) — 1 as t — 0, and with
any luck the corresponding integral will converge to f in some sense. One ® that works
is the function ®(£) = e "¢ used in the proof of the inversion theorem, but we shall
see below that there are others of independent interest. We therefore formulate a fairly
general theorem, for which we need the following lemma that complements Theorem 31(c).

Lemma 8.55: 8.34.
If f,g € L*(R"), then (fg)¥ = f » g.

Proof. f g € L' by Plancherel’s theorem and Holder’s inequality, so ( )v makes sense.
e

Given x € R™, let h(y) = g(z — y). It is easily verified that h(¢) = ﬂ 2T g0 since F

is unitary on L2,

- [ s7= [ 7i= [Foaeemca - (7o)

Theorem 8.56: 8.35.

Suppose that ® € L' n Cy, ®(0) = 1, and ¢ = @ € L'. Given fe L' + L? fort >0
set

Jf tf 27rz§zd€
(a) If fe LP(1 <p<oo),thenfteLp and |[f* — f|, > 0ast— 0.
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(b) If f is bounded and uniformly continuous, then so is f*, and f* — f uniformly as
t— 0.

(¢) Suppose also that |¢p(x)] < C(1 + |x|)"" ¢ for some C,e > 0. Then f'(z) — f(z)
for every x in the Lebesgue set of f.

Proof. We have f = f; + fy where f; € L' and f, € L?. Since fl e L”, ]?2 € Lo,
and ® € (L' n Cy) = (L' n L?), the integral defining f' converges absolutely for every
x. Moreover, if ¢y(z) = t"¢(t" ), we have ®(t£) = (¢;)" (£) by the inversion theorem
and Theorem 31b, and §¢(z)dz = ®(0) = 1. Since ¢, ® € L' we have f; ¢ € L' and
f1® € L, so by Theorem 8.22c and the inversion formula,

| Fuoperemena - o)
Also, ¢ € L? by the Plancherel theorem, so by Lemma 55,

f Fo©)B(1E)P™Ed = f + 6 (€)

In short, f* = f = ¢, so the assertions follow from Theorems 8.14 and 8.15.
By combining this theorem with the Poisson summation formula, we obtain a corre-
sponding result for periodic functions.

Theorem 8.57: 8.36.

Suppose that ® € C'(R") satisfies |®(£)] < C(1 + [£])7"7¢, |2V (x)| < C(1 + |z|)™"°
and ®(0) = 1. Given f e L}(R"), for t > 0 set
L T S L e
(which converges absolutely since >, |®(tx)| < 0).
(a) If fe LP(T")(1 < p < ), then [[f* = f[, - 0 as t — 0, and if f € C(T"), then

ft — f uniformly as t — 0.
(b) fY(x) — f(x) for every x in the Lebesgue set of f.

Proof. Let ¢ = ®¥ and ¢;(z) =t "¢(t 'x). Then (¢;)" () = ®(t£), and ¢; satisfies
the hypotheses of the Poisson summation formula, so

Zkezn Or(x — k) = Zkezn D(tr)e2mine

Let us denote the common value of these sums by v,(x). Then

(f = 00)" (K) = F(R)u(r) = J(R)D(tR) = (F)" (r).

so ft = f =1),. Hence, by Young’s inequality and Theorem 40 we have
11, < If el < 1flpleel, = 1£1p0¢0

so the operators f +— f* are uniformly bounded on LP,1 < p < «©
Now, since ® is continuous and ®(0) = 1, we clearly have f' — f uniformly (and
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hence in LP(T™)) if f is a trigonometric polynomial—that is, if f (k) = 0 for all but finitely
many x. But the trigonometric polynomials are dense in C'(T™) in the uniform norm by
the Stone-Weierstrass theorem, and hence also dense in LP(T") in the LP norm for p < o0.
Assertion (a) therefore follows from Proposition 89.

To prove (b), suppose that = is in the Lebesgue set of f; by translating f we may

assume that x = 0, which simplifies the notation. With @) = [—— l) , we have

F1(0) = £ 640 ff Jibe(—

Since
|pe(z)] < Ct (1 +tHa]|) " ° < Ct|a| ™
for x € @Q and k # 0 we have |¢;(—z + k)| < C2"*¢¢°|k|~" ¢, and hence

which vanishes as ¢t — 0. On the other hand, if we define g = fxg € L*(R"), then 0 is in
the Lebesgue set of g (because 0 is in the interior of @), and the condition that 0 be in the
Lebesgue set of g depends only on the behavior of g near 0), so by Theorem 18,
i | f()ou(—a)do = limg + 6,(0) = 9(0) = f0)

Q —>

t—0

Let us examine some specific examples of functions ® that can be used in Theorems 8.35
and 8.36. The first is the one already used in the proof of the inversion theorem,

() = e pla) = @Y () = e
This ¢ is called the Gauss kernel or Weierstrass kernel. It is important for a number of

reasons, including its connection with the heat equation that we shall explain in Folland
Section 8.7. When n = 1, its periodized version

1 e |2 42 Cri2K2 ik
wt<x> _ _Z e nle—k[?/t* _ 2 e TR 2mikea
t keZ KEZ

in terms of which the f? in Theorem 57 is given by f! = f 1)y, is essentially one of the
Jacobi theta functions, which are connected with elliptic functions and have applications
in number theory.

The second example is ®(¢) = e=2l whose inverse Fourier transform ¢ is called the
Poisson kernel on R”. When n = 1, we have

0
¢($) _ f 627r(1-‘rim).£d5 n JOO e27’r(_1+l‘m)§d§
—o0 0

RS I S S B
Com|l4ir 1—dx|  w(1+2?)
The formula for ¢ in higher dimensions is worked out in Folland Exercise 8.26; it turns out
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that ¢(z) is a constant multiple of (1 + |z[2)”""™/2 Like the Gauss kernel, the Poisson
kernel has an interpretation in terms of partial differential equations that we shall explain
in Folland Section 8.7.

If we take n = 1 and ®(¢) = e~?"kl in Theorem 57, make the substitution r = e~
and write A, f in place of f!, we obtain

K| 7 —2miKkT
Af@) =Y f e
= FO) + 3 IR + F(—k)e>mH]

This formula is a special case of one of the classical methods for summing a (possibly)
divergent series. Namely, if 280 ay is a series of complex numbers, for 0 < r < 1 its rth
Abel mean is the series >, r*ay. If the latter series converges for r < 1 to the sum S(r)
and the limit S = lim,; S(r) exists, the series Y aj is said to be Abel summable to S.
If 3 ax converges to the sum S, then it is also Abel summable to S (Folland Exercise
8.27), but the Abel sum may exist even when the series diverges.

In (8.38), A, f(z) is the rth Abel mean of the Fourier series of f, in which the kth and
(—k)th terms are grouped together to make a series indexed by the nonnegative integers.
It has the following complex-variable interpretation: If we set z = re*™®, then

0 ~ o ~
Arfx) =3 Fk)R+ ) F(=k)Z*

The two series on the right define, respectively, a holomorphic and an antiholomorphic
function on the unit disc |z| < 1. In particular, A, f(z) is a harmonic function on the unit
disc, and the fact that A,.f — f as r — 1 means that f is the boundary value of this
function on the unit circle. See also Folland Exercise 8.28.

Our final example is the function ®(£) = max(1—[¢[,0) with n = 1. Its inverse Fourier
transform is

0 1
ow) = | (e Qe+ [ - geneas

0
e2rir 4 p=2miz _ 9 sin7z\?
- (2miz)? - ( T )
If we use this @ in Theorem 57, take t = (m +1)"'(m = 0,1,2,...), and write o, f(z) for
Y+ (1)) we obtain

rf@) = Y L g o

r=—m  m+ 1

n m m+1-—Fk ~ 2mikx n —2mikx

= FO) + 2, = = LR + f(—k)e ]
This is an instance of another classical method for summing divergent series. Namely,
if 280 ay is a series of complex numbers, its mth Cesto mean is the average of its first
m + 1 partial sums, (m + 1)7' 3" S, where S,, = > ax. If the sequence of Cesto means
converges as m — o0 to a limit .S, the series is said to be Cesto summable to S. It is
easily verified that if Zgo ay converges to S, then it is Cesto summable to S (but perhaps
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not conversely), and that o, f(x) is the mth Cesto mean of the Fourier series of f with
the kth and (—k)th terms grouped together. See Folland Exercise 8.29, and also Folland
Exercise 8.33 in the next section.

Exercise 8.58: Folland Exercise 8.24.

State and prove an analogue of Theorem 54 for functions on R. (In addition to the
hypotheses that f be locally absolutely continuous and that f’ € LP for some p > 1,
you will need some further conditions f and/or f’ at infinity to make the argument
work. Make them as mild as possible.)

Exercise 8.59: Folland Exercise 8.25.

For 0 < a < 1, let A,(T) be the space of Hélder continuous functions on T of exponent
« as in Folland Exercise 5.11. Suppose 1 <p <o and p~t +¢7 ! = 1.
(a) If f satisfies the hypotheses of Theorem 54, then f € Ay, (T), but f need not lie
in A,(T) for any o > 1/q. (Hint: f(b) — f(a) = SZ f(t)dt.)
(b) If & < 1, A,(T) contains functions that are not of bounded variation and hence
are not absolutely continuous. (But see Folland Exercise 3.37.)

Exercise 8.60: Folland Exercise 8.26.

The aim of this exercise is to show that the inverse Fourier transform of e=2él on R™ is
oa) = LD (1 oy
m(n+1)/2

(a) B =0,ef =a1§" (1+13) e dt. (Use (8.37).)

(b) I B = 0,6 = [ (ns)"2e~*e~#/4ds. (Use (a), Proposition 33, and the formula
1+~ = (e 1)3gs))

(c) Let B = 2r|¢| where ¢ € R"; then the formula in (b) expresses e 2"l as a
superposition of dilated Gauss kernels. Use Proposition 33 again to derive the
asserted formula for ¢.

Exercise 8.61: Folland Exercise 8.27.

Suppose that the numerical series ZBO ay is convergent.
(a) Let S% = " ag. Then 3 r*a, = Y1 ST (r/ — p9+1) 4§77 for 0 < 7 < 1
(“summation by parts”).
(b) 37 o] < supo S5,
(¢) The series Y *ay, is uniformly convergent for 0 < r < 1, and hence its sum S(r)
is continuous there. In particular, Y a) = lim, > 15(r).
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Exercise 8.62: Folland Exercise 8.28.

Suppose that f e L(T), and let A, f be given by (8.38).
(a) A.f = f* P, where P.(x) = Y.*_rlfle?m i5 the Poisson kernel for T.

(b) P.(z) = (1—172)/(1 +r*— 2rcos2nrx).

Exercise 8.63: Folland Exercise 8.29.

Given {ay}; = C, let S, = Y5 ax and 0, = (m + 1)1 30" S,
(a) om = (m+ 1)1 30 (m+1—k)ay.
(b) If lim, . S, = ZSO ay exists, then so does lim,,_,» 0,,, and the two limits are

equal.
(¢) The series >’ (—1)* diverges but is Abel and Cesto summable to 3.

Exercise 8.64: Folland Exercise 8.30.

If fe L'Y(R™), f is continuous at 0, and f} 0, then fe L'. (Use Theorem 8.35¢ and
Fatou’s lemma.)

Exercise 8.65: Folland Exercise 8.31.

Suppose a > 0. Use (8.37) to show that
ZOO 1 . Tl + 6727”1

—0 k2 + a2 ql—e2m
Then subtract a=2 from both sides and let @ — 0 to show that Y k=2 = 72/6.

Exercise 8.66: Folland Exercise 8.32.

A C™ function f on R is real-analytic if for every x € R, f is the sum of its Taylor
series based at x in some neighborhood of z. If f is periodic and we regard f as a
function on S = {z € R | |z| = 1}, this condition is equivalent to the condition that f
be the restriction to S of a holomorphic function on some neighborhood of S. Show

that f € C°(R) is real-analytic if and only if | f(x)| < Ce=¢l*l for some C, e > 0. (See
the discussion of the Abel means A, f in the text, and note that z = 2! when |z| = 1.)

8.5 Pointwise Convergence of Fourier Series

The techniques and results of the previous two sections, involving such things as LP
norms and summability methods, are relatively modern; they were preceded historically by
the study of pointwise convergence of one-dimensional Fourier series. Although the latter is
one of the oldest parts of Fourier analysis, it is also one of the most difficult—unfortunately
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for the mathematicians who developed it, but fortunately for us who are the beneficiaries
of the ideas and techniques they invented in doing so. A thorough study of this issue is
beyond the scope of this book, but we would be remiss not to present a few of the classic
results.

To set the stage, suppose f € L'(T). We denote by S, f the mth symmetric partial
sum of the Fourier series of f:

Smfl@) =" F(k)emite
From the definition of f(k), we have

1
Sufl@) = 3" [ f@)e ey = 12D, (@)
0
where D,, is the mth Dirichlet kernel:
Dm($) _ Zr_nm e2m’kzx

The terms in this sum form a geometric progression, so

om 2r(2m+1)x __ 1

Dm(ﬂi) _ 67271'1me €2mkx _ 672mmz :
0 627rz:v —1

(&

Multiplying top and bottom by ™™ yields the standard closed formula for D,,,:

Dy () = 6(2’”“)’”“'” — e:(z-m“)m‘” _ Sin(27?1 + 1)rx (8.66.1)

e — T s wx

The difficulty with the partial sums S, f, as opposed to (for example) the Abel or Cesio
means, can be summed up in a nutshell as follows. S,,f can be regarded as a special case
of the construction in Theorem 57; in fact, with the notation used there, S,,f = f/™ if
we take ® = x[—1,1]. But x[—1,1] does not satisfy the hypotheses of Theorem 57, because
its inverse Fourier transform (7z)~!sin 27z (Folland Exercise 8.15(a)) is not in L'(R).
On the level of periodic functions, this is reflected in the fact that although D,, € L'(R)
for all m, |D,,|; — o« as m — oo (Folland Exercise 8.34).

Among the consequences of this is that the Fourier series of a continuous function f
need not converge pointwise, much less uniformly, to f; see Folland Exercise 8.35. (This
does not contradict the fact that trigonometric polynomials are dense in C(T) ! Tt just
means that if one wants to approximate a function f € C(T) uniformly by trigonometric
polynomials, one should not count on the partial sums S,, f to do the job; the Cesto means
defined by (8.39) work much better in general.) To obtain positive results for pointwise
convergence, one must look in other directions.

The first really general theorem about pointwise convergence of Fourier series was
obtained in 1829 by Dirichlet, who showed that S, f(z) — 3[f(z+) + f(z—)] for every
x provided that f is piecewise continuous and piecewise monotone. Later refinements
of the argument showed that what is really needed is for f to be of bounded variation.
We now prove this theorem, for which we need two lemmas. The first one is a slight
generalization of one of the more arcane theorems of elementary calculus, the “second
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mean value theorem for integrals.”

Lemma 8.67: 8.41.

Let ¢ and 9 be real-valued functions on [a, b] Suppose that ¢ is monotone and right
continuous on [a, b] and v is continuous on [a, b]. Then there exists n € [a, b] such that

M ota) [ vwran + o0 fw

Proof. Adding a constant ¢ to ¢ changes both sides of the equation by the amount
CSZ (x)dzr, so we may assume that ¢(a) = 0. We may also assume that ¢ is increasing;
otherwise replace ¢ by —¢. Let ¥(z) = SZ W (t)dt (so that W' = —1)) and apply Theorem 79:

b
[ st = —sww) + f( | eiole)

The endpoint evaluations vanish since ¢(a) = W(b) = 0. Since ¢ is increasing and
Sa 5 do = o(b) — ¢(a) = qb(b) if m and M are the minimum and maximum values of ¥
on |]a b] we have me(b) S 5 Ydo < M@(b). By the intermediate value theorem, then,

there exists 1 € [a, b] such that S ) Wdo = W(n)o(b), which is the desired result.

Lemma 8.68: 8.42.

There is a constant C' < o0 such that for every m > 0 and every [a,b] < [—3, 1],

x)dzx| < C

12

0 xz—forallm

Moreover, Sgl 12 Dm(@)dz =
Proof. By Equation (8.66.1), § Dy(z)dr = § 2@ g, o Ogn@om +
Dra[ = — L]dz.
Since (sin7z)~' — (72)~" is bounded on [—1,1] and |sin(2m + 1)7z| < 1, the second
integral on the right is bounded in absolute value by a constant. With the substitution
y = (2m + 1)mx, the first one becomes

J(2m+1)ﬂb Slnydy _ Sl[(Qm + 1)7Tb] — Sl[<2m + 1)7TCL]
(

2m+1)7ra Y ™

where Si(z) = {; y~'sinydy. But Si(z) is continuous and approaches the finite limits +37
as r — +oo (see Folland Exercise 2.59(b)), so Si(x) is bounded. This proves the first
assertion. As for the second one,

1/2 ‘
D, m_Z_J >k dy = 1

—1/2 1/2
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(only the term with k& = 0 is nonzero), so since D,, is even,

0 1

D (x)dx = f: D (x)dx = 5

—-1/2

Theorem 8.69: 8.43.

If f e BV(T)—that is, if f is periodic on T and of bounded variation on [— ,

nlll_rgo Smf(x) = %[f(a:—k) + f(x—)] for every x

In particular, lim,, . S, f(x) = f(z) at every = at which f is continuous.

Proof. We begin by making some reductions. In examining the convergence of S, f(z),
we may assume that z = 0 (by replacing f with the translated function 7_,f), that f is
real-valued (by considering the real and imaginary parts separately), and that f is right
continuous (since replacing f(t) by f(t+) affects neither S, f nor $[f(0+) + f(0-)]). In
this case, by Theorem 3.27 b, on the interval [—%, %) we can write f as the difference
of two right continuous increasing functions g and h. If these functions are extended
to R by periodicity, they are again of bounded variation, and it is enough to show that
Smg(0) — 1[g(0+) + g(0—)] and likewise for h.

In short, it suffices to consider the case where x = 0 and f is increasing and right con-

tinuous on [—3,1). Since D,, is even, we have S, f(0) = f * D,,(0) = Si/f/z f(x)Dy,(z)dz,

T 202
so by Lemma 68,

S f(0) ~ A(04) + 7(0-)]
1/2 0
= |, @~ sonpa@a [ 15— 501D @

0

We shall show that the first integral on the right tends to zero as m — o0; a similar

argument shows that the second integral also tends to zero, thereby completing the proof.
Given € > 0, choose § > 0 small enough so that f(§) — f(0+) < ¢/C where C is as in

Lemma 68. Then by Lemma 67, for some 7 € [0, J],

5
[ ) = 70D 0)as| = 116 - 0+
which is less than €. On the other hand, by (8.40),

1/2
| 1@ = 700D = 5. (-m) =5
where g4is the periodic function given on the interval [—%, %) by

x) — f(0+)]et™
(o) - )= 105)
isinmx

But g+ € LY(T), so g+(F¥m) — 0 as m — oo by the Riemann-Lebesgue lemma (the

Y

f Dy ()

X[51/2) ()
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periodic analogue of Theorem 31f). Therefore,

1/2
J [f(x) = f(0+)]Dp(x)dx| < €

0

lim sup,,_, .,

for every ¢ > 0, and we are done.

One of the less attractive features of Fourier series is that bad behavior of a function
at one point affects the behavior of its Fourier series at all points. For example, if f has
even one jump discontinuity, then f cannot be in £(Z) and so the series Y. f(k)emik®
cannot converge absolutely at any point. However, to a limited extent the convergence
of the series at a point x depends only on the behavior of f near z, as explained in the
following localization theorem.

Theorem 8.70: 8.44.

If f and g are in L'(T) and f = g on an open interval I, then S, f —S,,g — 0 uniformly
on compact subsets of I.

Proof. It is enough to assume that g = 0 (consider f — g), and by translating f we
may assume that [ is centered at 0, say I = (—c, ¢) where ¢ < % Fix § < ¢; we shall show
that if f =0 on I then S,,f — 0 uniformly on [—§,d].

The first step is to show that S,,f — 0 pointwise on [—§,d], and the argument is
similar to the preceding proof. Namely, by (8.40) we have

1/2
Smf(x) = f@ =y9)Dpn(y)dy = Gor (=m) = Go,m(m)

~1/2

where
flz —y)erm
a1 (y) = W
Since f(x —y) = 0 on a neighborhood of the zeros of sin 7y, the functions g, 4+ are in
LY(T), 80 gu+(Fm) — 0 by the Riemann-Lebesgue lemma.

The next step is to show that if xy, x9 € [0, d], then S, f(x1) — S, f(22) vanishes as
x1 — oo — 0, uniformly in m. By (8.40) again,

1/2
Smf(ilfl) — Smf(l'g) = J

—1/2 sin Ty

sin(2m + 1)y

[f(z1 —y) = [z —y)]dy.

But f(z1 —y) — f(z2 —y) = 0 for |y| < ¢— 4, and for ¢ — § < |y| < 5 we have
sin(2m + 1)y < 1 _ 4
sin 7y sinm(c — 9)
where A is independent of m. Hence
1/2
S f(21) = S f(22)| < A ) |fx1—y) = flza —y)ldy = Al7e, f — 70u [y
~1/2
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which vanishes as x; — 29 — 0 by (the periodic analogue of) Proposition 4.

Now, given € > 0, we can choose 1 small enough so that if xy,z5 € [0, d] and
|z1 — x2| < n, then |S,.f(z1) — Simf(x2)| < /2. Choose z1, ...,z € [—0,d] so that the
intervals |z — x;| < n cover [—0,d]. Since S, f(z;) — 0 for each j, we can choose M large
enough so that |S,,f(z;)| < e/2 for m > M and 1 < j < k. If || < 4, then, we have
|z — z;| < n for some j, so

S f ()| < |Smf () = S f ()] + [Sm f ()] <&

for m > M, and we are done.

Corollary 8.71: 8.45.

Suppose that f € L'(T) and I is an open interval of length < 1.

(a) If f agrees on I with a function g such that g € ¢*(Z), then S,,f — f uniformly
on compact subsets of I.

(b) If f is absolutely continuous on I and f’ € LP(I) for some p > 1, then S,,f — f
uniformly on compact subsets of I.

Proof. If f =g on I, then S,,f — f = Spf —9 = (Suf — Smg) + (Smg — g) on I, and
if g € (1(Z), then S,,g — ¢ uniformly on Z; (a) follows. As for (b), given [ag,bo] < I,
pick a < ag and b > by so that [a,b] < I, and let g be the continuous periodic function
that equals f on [a,b] and is linear on [b,a + 1] (which is unique since g(b) = f(b) and
gla+1) = g(a) = f(a)). Under the hypotheses of (b), g is absolutely continuous on Z
and ¢’ € LP(Z), so g € {*(Z) by Theorem 54. Thus S,,f — f uniformly on [ag, by] by (a).

Finally, we discuss the behavior of S, f near a jump discontinuity of f. Let us first
consider a simple example: Let

1

o(z) = 5% [z] ([z] = greatest integer < z).

Then ¢ is periodic and is C* except for jump discontinuities at the integers, where
é(j+) — ¢(j—) = 1. Tt is easy to check that ¢(0) = 0 and ¢(k) = (2mwik)™! for k # 0
(Folland Exercise 8.13(a)), so that

2mikax

e m sin 2wkx

Snd®) = D pan Trily ~ 2 ok
From Corollary 71 it follows that S,,¢ — ¢ uniformly on any compact set not containing
an integer, and it is obvious that S,,¢(z) = 0 when x is an integer. But near the integers a
peculiar thing happens: S,,¢ contains a sequence of spikes that overshoot and undershoot
¢, as shown in Figure 8.1, and as m — oo the spikes tend to zero in width but not in height.
In fact, when m is large the value of S,,¢ at its first maximum to the right of 0 is about
0.5895, about 18% greater than ¢(04) = %. This is known as the Gibbs phenomenon; the
precise statement and proof are given in Folland Exercise 8.37.

Now suppose that f is any periodic function on R having a jump discontinuity at
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x = a (that is, f(a+) and f(a—) exist and are unequal). Then the function

g9(x) = f(z) = [f(at) = fa—)]¢(x — a)

is continuous at every point where f is, and also at = a provided that we (re)define
g(a) to be 3[f(a+) + f(a—)], as the jumps in f and ¢ cancel out. If g satisfies one of
the hypotheses of Corollary 71 on an interval I containing a, the Fourier series of g will
converge uniformly near a, and hence the Fourier series of f will exhibit the same Gibbs
phenomenon as that of ¢.

Finally, suppose that f is periodic and continuous except at finitely many points
ai,...,a € T, where f has jump discontinuities. We can then subtract off all the jumps
to form a continuous function g:

9(z) = f(x) = Y [f(a;+) = fa;)|é(z — aj)
If f satisfies some mild smoothness conditions—for example, if f is absolutely continuous
on any interval not containing any a; and f’ € L? for some p > 1—then g will be in
(*(Z). Conclusion: S,,f — f uniformly on any interval not containing any a;, S,,(a;) —

1

sLf(aj+) + f(a;—)], and Sy, f exhibits the Gibbs phenomenon near every a;.

Exercise 8.72: Folland Exercise 8.33.

Let 0,,f be the Cesto means of the Fourier series of f given by (8.39).
(a) omf = [ = F,, where F,, = (m + 1)7* >, Dy and Dy, is the kth Dirichlet kernel.
(See Folland Exercise 8.29(a).) F,, is called the mth Fejér kernel.
(b) Fu(x) = sin*(m + Daz/(m + 1)sin®7z.  (Use (8.40) and the fact that
sin(2k + 1)7x = Im e@k+Dmiz )

Exercise 8.73: Folland Exercise 8.34.

If D, is the mth Dirichlet kernel, |D,,|, — o as m — oo. (Make the substitution
y = (2m + 1)mx and use Folland Exercise 2.59(a)..)

Exercise 8.74: Folland Exercise 8.35.

The purpose of this exercise is to show that the Fourier series of “most” continuous
functions on T do not converge pointwise.
(a) Define 6 (f) = S f(0). Then ¢ € C(T)* and 6] = | Dyl
(b) The set of all f e C(T) such that the sequence {S,,f(0)} converges is meager in
C(T). (Use Folland Exercise 8.34 and the uniform boundedness principle.)
(c¢) There exist f € C(T) (in fact, a residual set of such fs) such that {S,,f(x)}
diverges for every x in a dense subset of T. (The result of (b) holds if the point 0
is replaced by any other point in T. Apply Folland Exercise 5.40..)

Version of April 30, 2024 at 11pm EST Page 318 of 368


https://www.greysonwesley.com/home

Greyson C. Wesley §8.6: Fourier Analysis of Measures

Exercise 8.75: Folland Exercise 8.36.

The Fourier transform is not surjective from L'(T) to Cy(T). (Use Folland Exercise
8.34, and confer with Folland Exercise 8.16(c).)

Exercise 8.76: Folland Exercise 8.37.

(a) Let ¢ be given by (8.46) and let A,, = S,,6 — ¢. Then (d/dx)A,,(z) = Dp,(x)
for x ¢ 7Z.
(b) The first maximum of A,, to the right of 0 occurs at z = (2m + 1)~!, and

lim A, J‘gfﬁ——~0%%
m—0o0 2m + 1

(Use (8.40) and the fact that A,,(z) = §§ AL (t)dt — 3.)
(c) More generally, the jth critical pomt of A, to the right of 0 occurs at x =
j/2m+1)(j=1,...,2m), and

' 1 (" sint 1
lim A, [ —2 :—f L
o0 om + 1 Ty t 2

These numbers are positive for j odd and negative for j even. (See Folland
Exercise 2.59(b))

8.6 Fourier Analysis of Measures

We recall that M(R") is the space of complex Borel measures on R™ (which are
automatically Radon measures by ?7?), and we embed L'(R") into M (R™) by identifying
f € L' with the measure dy = fdm. We shall need to define products of complex measures
on Cartesian product spaces, which can easily be done in terms of products of positive
measures by using Radon-Nikodym derivatives. Namely, if pu,v € M(R"), we define
uxve M(R"<R™) by

du dv
dpxv)(ay) = G2 @) )l ) )
If p,v e M(R™), we define their convolutlon prve M(R™) by u+v(E) = puxvia (E))
where a: R" xR™ — R" is addition, a(z,y) = x + y. In other words,

pxv(E HXE:Hydu z)dv(y)

Proposition 8.77: 8.48.

(a) Convolution of measures is commutative and associative.
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(b) For any bounded Borel measurable function h,

| nate ) = || e + ) autorivo).

(©) [p=v] < |ullv].
(d) If du = fdm and dv = gdm, then d(pu *v) = (f * g)dm; that is, on L' the new

and old definitions of convolution coincide.

Proof. Commutativity is obvious from Fubini’s theorem, as is associativity, for A= p*v
is unambiguously defined by the formula

- JfJXEererzd/\( Vdpu(y)dv(2)

Assertion (b) follows from (8.47) by the usual linearity and approximation arguments. In
particular, taking h = d|p = v|/d(u = v), since |h| = 1 we obtain

WHV|=fhﬂu“O<JIWWWWWF4uHW

which proves (c). Finally, if du = fdm and dv = gdm, for any bounded measurable h we

have
fh«uwo=Jfo+wf@M@me
~ || 1)@ - wygt)dady = [ n@)(F +g)la)da

whence d(p = v) = (f = g)dm.
We can also define convolutions of measures with functions in LP(R", m), which we
implicitly assume to be Borel measurable. (By Proposition 22, this is no restriction.)

Proposition 8.78: 8.49.

If fe LP(R")(1 < p < o) and p € M(R™), then the integral f = u(z) = § f(z —y)du(y)
exists for a.e. @, f+p e LP, and | f = ull, < |fllp|ul. (Here ¢ LP” and “a.e.” refer to
Lebesgue measure.)

Proof. If f and p are nonnegative, then f = u(x) exists (possibly being equal to o) for
every x, and by Minkowski’s inequality for integrals,

If o« mllp < ff(' = lpduly) = 1 flplel

In particular, f  pu(z) < o for a.e. z. In the general case this argument applies to |f|
and |u|, and the result follows easily.
In the case p = 1, the definition of f = u in Proposition 78 coincides with the definition
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given earlier in which f is identified with fdm, for

L fent)ds = [ xe@) @ - yduty)ds = [[ xete + ) f @) doduty

for any Borel set E. Thus L'(R"™) is not merely a subalgebra of M(R") with respect to
convolution but an ideal.

We extend the Fourier transform from L'(R") to M(R") in the obvious way: If
we M(R™), i is the function defined by

Q) = [ e duo

(The Fourier transform on measures is sometimes called the Fourier-Stieltjes transform.)
Since =22 js uniformly continuous in x, it is clear that i is a bounded continuous
function and that ||, < |ul. Moreover, by taking h(z) = e~**® in Proposition 77b,
one sees immediately that (u = v)" = fiv.

We conclude by giving a useful criterion for vague convergence of measures in terms of
Fourier transforms.

Proposition 8.79: 8.50.

Suppose that p, g, . .., and g are in M(R™). If |ux| < C < oo for all k and iy — [
pointwise, then p, — p vaguely.

Proof. If f € 8, then f¥ € 8§ (Corollary 32), so by the Fourier inversion theorem,

| s = |[ £ @ dydunta) = | 1 Wity

Since f¥ € L' and |/, < C, the dominated convergence theorem implies that { fdu, —
§ fdu. But 8 is dense in Cy(R™) (Proposition 19), so by Proposition 89, { fdu, — § fdu
for all f e Cy(R™), that is, up — p vaguely.

This result has a partial converse: If p, — pu vaguely and |ugl| — |p], then i, —
pointwise. This follows from Folland Exercise 7.3.

Exercise 8.80: Folland Exercise 8.38.

Work out the analogues of the results in this section for measures on the torus T".

Exercise 8.81: Folland Exercise 8.39.

If pu is a positive Borel measure on T with u(T) = 1, then |u(k)| < 1 for all k£ # 0
unless p is a linear combination, with positive coefficients, of the point masses at
0,=,...,™ for some m € T, in which case fi(jm) = 1 for all j € T.

Y m)
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Exercise 8.82: Folland Exercise 8.40.

LY(R") is vaguely dense in M(R™). (If € M(R™), consider ¢ * p1 where {¢},., is an
approximate identity.)

Exercise 8.83: Folland Exercise 8.41.

Let A be the set of finite linear combinations of the point masses ¢,z € R™. Then A is
vaguely dense in M (R™). (If f is in the dense subset C.(R") of L*(R™) and g € Cy(R"),
approximate S fg by Riemann sums. Then use Folland Exercise 8.40.)

Exercise 8.84: Folland Exercise 8.42.

A function ¢ on R" that satisfies Z;T,Lkzl 2Zpp(x; — x)) = 0 for all z1,..., 2, € R and
all z1,..., 2, € R" for any m € R, is called positive definite. If € M(R") is positive,
then [1 is positive definite.

8.7 Applications to Partial Differential Equations

In this section we present a few of the many applications of Fourier analysis to the
theory of partial differential equations; others will be found in Chapter 9. We shall use
the term differential operator to mean a linear partial differential operator with smooth
coefficients, that is, an operator L of the form

Lf(x) = ngm ao(2)0%f(z), aq € C®

If the a,s are constants, we call L a constant-coefficient operator. In this case, if for all
sufficiently well-behaved functions f (for example, f € 8§) we have

LNHE =D aa2rie)f()

It is therefore convenient to write L in a slightly different form: We set b, = (2i)!*la,
and introduce the operators

laf<m

D* = (2mi) Il
so that
L= ngm baD*, (Lf) = ngm bl f

Thus, if P is any polynomial in n complex variables, say P(£) = X<, bal®, we can form
the constant-coefficient operator P(D) = 3, _,, baD®, and we then have [P(D)f] = P[.
The polynomial P is called the symbol of the operator P(D).

eaClearly, one potential application of the Fourier transform is in finding solutions of
the differential equation P(D)u = f. Indeed, application of the Fourier transform to both
sides yields 4 = P! f, whence u = (P~ f)". Moreover, if P~! is the Fourier transform of
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a function ¢, we can express u directly in terms of f as u = f = ¢. For these calculations
to make sense, however, the functions f and P~'f (or P~') must be ones to which the
Fourier transform can be applied, which is a serious limitation within the theory we have
developed so far. The full power of this method becomes available only when the the
domain of the Fourier transform is substantially extended. We shall do this in Folland
Section 9.2; for the time being, we invite the reader to work out a fairly simple example
in Folland Exercise 8.43. (It must also be pointed out that even when this method works,
u = (P71f)" is far from being the only solution of P(D)u = f; there are others that grow
too fast at infinity to be within the scope even of the extended Fourier transform.)

Let us turn to some more concrete problems. The most important of all partial
differential operators is the Laplacian

n 2 n
A=) % = —4n® ) D} = P(D) where P(¢) = —4r*[¢[?

The reason for this is that A is essentially the only (scalar) differential operator that is
invariant under translations and rotations. (If one considers operators on vector-valued
functions, there are others, such as the familiar grad, curl, and div of 3-dimensional vector
analysis.) More precisely, we have:

Theorem 8.85: 8.51.

A differential operator L satisfies L(foT) = (Lf)oT for all translations and rotations
T if and only if there is a polynomial P in one variable such that L = P(A).

Proof. Clearly L is translation-invariant if and only if L has constant coeflicients, in
which case L = Q(D) for some polynomial ) in n variables. Moreover, since (Lf)" = Qf
and the Fourier transform commutes with rotations, L commutes with rotations if and
only if @ is rotation-invariant. Let @ = > " Q; where @Q; is homogeneous of degree j; then
it is easy to see that () is rotation-invariant if and only if each @); is rotation-invariant.
(Use induction on j and the fact that Q;(¢) = lim, o7~/ 37" Qi(r{).) But this means
that Q;(¢) depends only on [£], so Q;(§) = ¢;]¢)’ by homogeneity. Moreover, || is a
polynomial precisely when j is even, so ¢; = 0 for j odd. Setting b, = (—472) ey, then,
we have Q(&) = S bp(—472[¢]2)F, that is, L = ] by A

One of the basic boundary value problems for the Laplacian is the Dirichlet problem:
Given an open set Q c R” and a function f on its boundary €, find a function w on Q
such that Au =0 on Q and u|02 = f. (This statement of the problem is deliberately a
bit imprecise.) We shall solve the Dirichlet problem when (2 is a half-space.

For this purpose it will be convenient to replace n by n+1 and to denote the coordinates
on R"*! by xq,...,2,,t. We continue to use the symbol A to denote the Laplacian on
R"™, and we set
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so the Laplacian on R"™! is A + 02. We take the half-space 2 to be R™ x (0, c0). Thus,
given a function f on R", satisfying conditions to be made more precise below, we wish
to find a function u on R™ x [0, o0) such that (A + 02)u = 0 and u(z,0) = f(z).

The idea is to apply the Fourier transform on R™, thus converting the partial differential
equation (A + 02)u = 0 into the simple ordinary differential equation (—47%|¢|* + 0?)u = 0.
The general solution of this equation is

U, 1) = cr(§)e ™™ + cy(€)e”™ e

and we require that u(¢,0) = f(ﬁ) We therefore obtain a solution to our problem by
taking c1(§) = f(£), c2(§) = 0 (more about the reasons for this choice below); this gives
a(ét) = f(&)e 2l or u(x,t) = (f » P,)(x) where P, = (e"2"¥l)" is the Poisson kernel
introduced in Folland Section 8.4. As we calculated in Folland Exercise 8.26,

I(i(n+1 t

Py(z) = (2( )) —nF1)/2
D2 (12 1 |z]2)

So far this is all formal, since we have not specified conditions on f to ensure that these
manipulations are justified. We now give a precise result.

Theorem 8.86: 8.53.

Suppose f € LP(R")(1 < p < o). Then the function u(z,t) = (f » P;)(z) satisfies
(A + 02)u =0 on R"x (0,0), and lim;_,qu(x,t) = f(z) for a.e. z and for every x at
which f is continuous. Moreover, lim;_q [|u(-,t) — f], = 0 provided p < 0.

Proof. P, and all of its derivatives are in L9(R") for 1 < ¢ < o0, since a rough
calculation shows that [02P,(z)| < Cylz|™" 1ol and |0/ P,(x)| < Cjlx|™ ! for large x.
Also, (A + 02)P,(z) = 0, as can be verified by direct calculation or (more easily) by taking
the Fourier transform. Hence f = P, is well defined and

A+ (f+P)=f+(A+)P=0
Since Py(z) = t™"Py(t"'z) and § P (z)dx = ﬁl(O) = 1, the remaining assertions follow
from Theorems 8.14 and 8.15.

The function u(z,t) = (f * P;)(z) is not the only one satisfying the conclusions of
Theorem 86; for example, v(z,t) = u(z,t) + ct also works, for any c € C. For f e L,
we could also obtain a large family of solutions by taking c; in (8.52) to be an arbitrary
function in C* and ¢; = f — ¢3. (But there is no nice convolution formula for the
resulting function u, because e?™¢l is not the Fourier transform of a function or even a
distribution.) The solution u(x,t) = (f * P;)(x) is distinguished, however, by its regularity
at infinity; for example, it can be shown that if f € BC(C"), then w is the unique solution
in BC(C"x [0, 0)).

The same idea can be used to solve the heat equation

(6 — A)yu=0
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on R" x (0,00) subject to the initial condition u(z,0) = f(z). (Physical interpretation:
u(z,t) represents the temperature at position z and time ¢ in a homogeneous isotropic
medium, given that the temperature at time 0 is f(z).) Indeed, Fourier transformation
leads to the ordinary differential equation (0; + 47%|£|*)u = 0 with initial condition
u(&,0) = f(f) The unique solution of the latter problem is u(&,t) = f(f)e*‘l’er‘g'Q. In
view of Proposition 33, this yields
u(w,t) = f*Gy(x), Gila) = (dnt) ™2 lol/At

Here we have Gy(z) = t~"/2G,(t71/%x), so after the change of variable s = 1/t, Theorems
8.14 and 8.15 apply again, and we obtain an exact analogue of Theorem 86 for the initial
value problem (0; — A)u = 0,u(z,0) = f(x). Actually, in the present case the hypotheses

on f can be relaxed considerably because G; € §; see Folland Exercise 8.44.
Another fundamental equation of mathematical physics is the wave equation

(07 — A)u=0
(Physical interpretation: wu(x,t) is the amplitude at position z and time ¢ of a wave

traveling in a homogeneous isotropic medium, with units chosen so that the speed of
propagation is 1.) Here it is appropriate to specify both u(z,0) and d,u(z,0):

(0 =Au=0, u(z0)=f(z), du,0)=g(x)
After applying the Fourier transform, we obtain
(07 +Am*lgP)a(é. 1) =0, a(&,0) = f(&), (& 0) =7(&)

the solution to which is

A(6.) = (cos2rtiENFE) + T (6
Since
cos 2mt|&| = %l—ﬂf;ig”ﬂ]

it follows that
sin 2rt|¢] ]
u(z,t) = f=0Wi(z) + g = Wi(x), where W, = [T\f]]
But here there is a problem: (27|¢])~!sin 27t|€| is the Fourier transform of a function
only when n < 2 and the Fourier transform of a measure only when n < 3; for these cases
the resulting solution of the wave equation is worked out in Exercises 45-47. To carry
out this analysis in higher dimensions requires the theory of distributions, which we shall
examine in Chapter 9. (We shall not, however, derive the explicit formula for W;, which
becomes increasingly complicated as n increases.)
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Exercise 8.87: Folland Exercise 8.43.

Let ¢(x) = e /2 on R. Use the Fourier transform to derive the solution u = f * ¢
of the differential equation u — u” = f, and then check directly that it works. What
hypotheses are needed on f?

Exercise 8.88: Folland Exercise 8.44.

Let Gy(z) = (4mt)~"2e~1#"/% "and suppose that f € LL . (R") satisfies | f(z)| < C.el*’
for every ¢ > 0. Then u(z,t) = f = Gi(x) is well defined for all x € R™ and ¢ > 0;
(0 — A)u = 0 on R"x (0,00); and lim;_,gu(z,t) = f(z) for a.e. x and for every x at
which f is continuous. (To show u(z,t) — f(z) a.e. on a bounded open set V', write
f=0¢f +(1—¢)f where ¢ € C, and ¢ = 1 on V, and show that [(1 — ¢)f] =G, — 0
onV.)

Solution.

(i) For z € R" and t > 0, and choose £ > 0 such that 1 — 4t > 0. Then by completing
the square in the exponent and applying [Fol99, Proposition 2.53| we obtain

(0 + GO = (@l ay < 0, [ty
< C. f el = (l* =2 [yl +1y1*) dy

< C, e((l 4t5)2—i)x|2je—14ﬁte(yl2— S lellvl+ (5 4ts> l21%) dy

4t

gose((lmf;t)wlzfe 4z (- lel) g

< Cuel (i)' = )0f [ el et gy

< Cr2(48)2(1 — dte) () 4l < oo,

soy— f(y)Gi(x —y) is in L*(R™). Thus f * Gy(z) is well-defined for all z € R™ and
all t > 0.
(ii) We claim

(0 = A)(f=Gy) = 0. (8.88.1)
By [Fol99, Proposition 8.24], the Fourier transform of G, for t > 0 is given by
Cil€) = ()2 (4t 2emel _ gonf2tatll (8.88.2)

Applying the Fourier transform to Equation (8.88.1), we obtain by [Fol99, discussion
on p. 273| and [Fol99, Theorem 8.22(c), p. 249]

(00 + A7 E°) (f * G)M () = 72 F () (B~ ™ 4 dm?|gPe=tm1IEF)
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= () (Amlgfe T 4 Attt =
s0 (0 — A)(f = Gy) = 0 on R" x (0,00). This proves (ii).

(i) Fix ¢,r > 0, and again choose ¢ > 0 such that 1 — 4t > 0. For = € R", let
B, (z) denote the open ball in R" centered at z. Since |f(z)| < C.e** and B, ()
is bounded, f € LP(B,.(z)) for all p € [1 ]. Now choose ¢ € C.(R") such that
®|B,(z) = 1. By estimating as in part (i) and noting 1 — ¢ = 0 on B,(x), we obtain

(L= 6)f » Cula)] < Culdm) ”/2J|1 (9ot g
< (47rt) n/QC’e — 4t5 - |m|2 J|1_ |@ — 4ta’y — 4tsx| dy
< (drt) ™20 () —)lel® f 11— g(y)|e ezl qy
(@)

< (rt)y () L g, [ ottt ay

Br(z) ,

— (dt) 2O (48) (1 — dte ) 2e((Pi) ) el — |,
and this is finite because ¢ € C.(R™) (so that |1 — ¢[_ < ). Smce the exponential
decays to 0 faster than any polynomial as ¢ — oo (since (13&-)2 — 4 = —1/4t+0(t?)),
it follows that implies |(1 — ¢)f = Gi(z)] — 0 as t — 0.

We claim (¢f) » Gi(x) — f(z) as t — 0 for a.e. x in the Lebesgue set of f.
Now let r = t. Since ¢ = 1 on B,.(x), we have by taking ¢ small enough so that
By(z) < supp ¢ that

(67) » Gula) — f(2)] = \ [1w6 -y sio)

< f @) — F@)[Gux — )] dy
By(z)
< (dmt) ™2 f () — F()] dy,

Bt(ﬂf,‘)

_ o(ﬁ Lt(m)‘f@ ~ (@) dy),

where C' is the reciprocal of the constant given explicitly in [Fol99, Corollary 2.55,
p. 80]. By Lebesgue’s differentiation theorem [Fol99, Theorem 3.21, p. 98|, the
integral on the right-hand side converges to f(x) for all  in the Lebesgue set of f.
In particular, lim;,o f * G¢(z) = f(z) for a.e.  and for all x at which f is continuous
(see [Fol99, §3.4, Exercise 24, p. 100]). O
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Exercise 8.89: Folland Exercise 8.45.

Let n = 1. Use (8.55) and Folland Exercise 8.15(a) to derive d’Alembert’s solution to
the initial value problem (8.54):

u(z,t) = %[f(x +t)+ f(x—t)] + %Jzt g(s)ds

Under what conditions on f and g does this formula actually give a solution?

Exercise 8.90: Folland Exercise 8.46.

Let n = 3, and let oy denote surface measure on the sphere |z| = ¢. Then
sin 27t|¢]| R
el N P
27_[_‘5’ ( 7'(') O-t(g)
(See Folland Exercise 8.22(d).) What is the resulting solution of the initial value

problem (8.54), expressed in terms of convolutions? What conditions on f and g ensure
its validity?

Exercise 8.91: Folland Exercise 8.47.

Let n = 2. If £ e R%, let € = (£,0) € R3. Rewrite the result of Folland Exercise 8.46,
in2ntle] 1 ‘~
s1n—7r~]§] = _f 6_27”5'xd0t(x)
2m|€] ATt )iz
in terms of an integral over the disc D; = {y | |y| <t} in R? by projecting the upper

and lower hemispheres of the sphere |z| =t in R? onto the equatorial plane. Conclude
that (27|¢|)~! sin 27t|€| is the Fourier transform of

W) = (2m) 7 (8 = [a*)"*xp, ()
and write out the resulting solution of the initial value problem (8.54).

Exercise 8.92: Folland Exercise 8.48.

Solve the following initial value problems in terms of Fourier series, where f, g, and
u(-,t) are periodic functions on R:

(a) (02 +0*)u = 0,u(z,0) = f(x). (Cf. the discussion of Abel means in Folland
Section 8.4.)

(b) (0 — *u = 0,u(x,0) = f(x).

(C> (atQ - ag)u = O,U(ZL‘,O) = f(:L‘), &tu(x70) = 9(17)
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Exercise 8.93: Folland Exercise 8.49.

In this exercise we discuss heat flow on an interval.

(a) Solve (0; — d*)u = 0 on (a,b)x(0,00) with boundary conditions u(x,0) = f(z) for
z € (a,b),u(a,t) = u(b,t) = 0 for t > 0, in terms of Fourier series. (This describes
heat flow on (a,b) when the endpoints are held at a constant temperature. It
suffices to assume a = 0,b = %; extend f to R by requiring f to be odd and
periodic, and use Folland Exercise 8.48(b).)

(b) Solve the same problem with the condition u(a,t) = wu(b,t) = 0 replaced by
Oru(a,t) = 0zu(b,t) = 0. (This describes heat flow on (a,b) when the endpoints
are insulated. This time, extend f to be even and periodic.)

Exercise 8.94: Folland Exercise 8.50.

Solve (02 — 0%)u = 0 on (a,b) x (0,00) with boundary conditions u(z,0) = f(z) and
owu(x,0) = g(x) for x € (a,b),u(a,t) = u(b,t) = 0 for t > 0, in terms of Fourier series
by the method of Folland Exercise 8.49(a). (This problem describes the motion of a
vibrating string that is fixed at the endpoints. It can also be solved by extending f to
be odd and periodic and using Folland Exercise 8.45. That form of the solution tells
you what you see when you look at a vibrating string; this one tells you what you hear
when you listen to it.)

9 Extra section: Rate of decay of Fourier coefficients

The following theorems (and their proofs) are from 4/3-4/12 lectures.
The following is a partial solution to the “inverse Fourier series problem”, which asks
when a function has a prescribed Fourier series.

Theorem 9.1.

If {a,}*_ . = R is a nonnegative even sequence® that satisfies the condition®
1

Gp < E(an-‘rl + an—l) Vn e Z>07

then there exists f € L!(T) such that a, = f(n).

By “even sequence” we mean a,, = —a,, for n € Zx.
This is informally referred to as a “convexity condition” for reasons you can probably guess,
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Corollary 9.2.

The Fourier series coefficients of f € L'(T) tend to 0 at an arbitrarily slow rate.

Theorem 9.3.

If fe LY(T) and f is an odd function,” then
) STTEA
neZ~{0} n

~ ~

“By “odd function” we mean f(|n|) = —f(—|n|) for all n € Z.

For a € (0,1), define
Lip,(T) == {f € C(T) | 3C > 0 such that Vz € T,|f(x + k) — f(z)| < C|k|"}

f € Lip,(T) means that f € C(T) and there exists C' > 0 such that |f(x + k) — f(z)|
Clk|* for all z € T.

N

Theorem 9.4.

~

If f e Lip,(T), then f(n) = O(n™%) as |n| — .

Theorem 9.5.

~

If fe LY(T) and f(n) = O(1/n) as |n| — oo, then S, f(z) and o, f(z), the symmetric
partial sums and Cesaro partial sums, respectively, converge for the same values of
z and to the same limit. Moreover, if o, f(x) converges uniformly in a set E, then
Sy f(x) converges uniformly on F.

Corollary 9.6.
If f € BV(T) then S, f(z) — limy 3(f(z + k) + f(z — k)). If in addition f € C(T),

then the Fourier series of f converges to f everywhere. (This is a consequence of

~

Fejér’s theorem and the fact that f € BV(T) implies f(n) = O(1/n) as n — o0.)

9.7 Principle of localization.

Suppose f,g € L(T) and f(x) = g(x) in a neighborhood of y. Then the Fourier series
of f and g at x either both converge to the same limit or both diverge.

Note 8. The local behavior of f can affect the global behavior of its Fourier series. For
instance, suppose f is continuous on T except at some point where f is a jump discontinuity.

Version of April 30, 2024 at 11pm EST Page 330 of 368


https://www.greysonwesley.com/home

Greyson C. Wesley §9.1: Absolute convergence of Fourier series

Then its Fourier series does not converge absolutely anywhere, that is, fgé 0t In fact, if
f € LYT) and f € 0, then Fourier inversion holds in the sense that the Fourier series

of f converges a.e. to f. (Indeed, Y, f(n)e2”m’ converges absolutely and uniformly
to a continuous function g. On the other hand, since (*(T) < (*(T), the Fourier series
converges in the L? norm to a function fy € L*(T) < LY(T), so fo(n) = f(z) for alln € Z.

Then by the uniqueness theorem for L* functions, f = fy a.e. and thus f = g a.e.)

To show the principle of localization, it suffices to show that if f € L!(T) and vanishes
on an interval I, then S, f(x) — 0 as n — o for z € I. In fact, if f € L'(T) and

J~1/2 m‘ 1
—1/2

9.1 Absolute convergence of Fourier series

t < oo,

then lim,, .4 S, f(0) = 0.

As before, C'(T) denotes 1-periodic functions f: R — C. Let
AT) = {fecm|Y, Ifm) <}

Thus A(T) is the set of 1-periodic functions f: R — C whose Fourier series converge
absolutely.

Theorem 9.9: Sergei Bernstein, 1914.

For a € (1/2,1], Lip,(T) < A(T).

Theorem 9.10: Antoni Zygmund, 1928.

For any «a € (0,1), Lip,(T) n BV(T) < A(T).

9.1.1 Application of multidimensional Fourier series to random walks

Consider a particle on the d-dimensional lattice Z‘ that moves to a neighboring point
in the lattice at each unit time interval. Assume each unit step u,, at time n is independent
of each other and each possible direction has equal probability. The position at time n is
Sp = Uy + -+ + u, and for given unit steps e, ...,e,, p(ug = z1,us = €9,...,6, = €,) =
[Ty p(u; =e;) = (55)"

Question. Assume the particle starts at the origin. What is the expected number of times
that it returns to the origin? (The answer depends on the dimension d).
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Theorem 9.11: Pélya, 1921.

P(s, = 0 infinitely often) = 1 when d = 1 or d = 2, and
P(lim|3n| = oo) =1

n—o0

when d € Z,.

Theorem 9.12.

Assume @ € L' (R™) nCy(R"), ®(0) = 1, and ® = @ where ¢ € L*(R™). For f € L'+ L?
and € > 0, define

fw) = | aeofeemde

(a) For pe[1,0), if f € LP then f. — f in LP.

(b) If f is bounded and uniformly continuous, then f. — f uniformly (and f; is
uniformly continuous).

(c) If |p(z)] < C(1 + |z|) "7 for some C,o > 0, then f.(z) — f(z) at point in the
Lebesgue set of f (that is, when lim,_,g m SBT(x)|f(y) — f(x)|dy = 0), and
thus f. — f pointwise a.e.

Proposition 9.13.
Suppose f, g € L*(R™). Then (f§)" = f *g.

The discrete analog (for Fourier series) of this theorem is the following.

Theorem 9.14.

Assume ® € C(R™), ®(0) = 1, and & = @, where |®() < A1+ [£])" 7| and |p(2)|l <
A(1 4+ |z|)™"7 for some o > 0. For f e L'(T") and € > 0, define

few) = @(ek)f(k)e™™.
(a) If p e [1,0) and f € LP(T"), then f. — f in LP. If f € C(T"), then f. — f
uniformly.

(b) If z is a point in the Lebesgue set of f, then f.(z) — f(x). In particular, f. — f
a.e.

Corollary 9.15.

2\ & ~ .
For p € [1, ), the Riesz means ZkeZ",|k|<R<1 - %) f(k)e* e converge to f in LP

and a.e. as R — o0 when a > (n —1)/2.
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Proof. See Folland. n
Corollary 15 is false for a = (n — 1)/2 and p = 1.

9 Elements of Distribution Theory

At least as far back as Heaviside in the 1890s, engineers and physicists have found it
convenient to consider mathematical objects which, roughly speaking, resemble functions
but are more singular than functions. Despite their evident efficacy, such objects were
at first received with disdain and perplexity by the pure mathematicians, and one of the
most important conceptual advances in modern analysis is the development of methods
for dealing with them in a rigorous and systematic way. The method that has proved to
be most generally useful is Laurent Schwartz’s theory of distributions, based on the idea
of linear functionals on test functions. For some purposes, however, it is preferable to
use a theory more closely tied to L? on which the power of Hilbert space methods and
the Plancherel theorem can be brought to bear, namely, the (L?) Sobolev spaces. In this
chapter we present the fundamentals of these theories and some of their applications.

9.1 Distributions

In order to find a fruitful generalization of the notion of function on R", it is necessary
to get away from the classical definition of function as a map that assigns to each point
of R™ a numerical value. We have already done this to some extent in the theory of LP
spaces: If f € LP, the pointwise values f(x) are of little significance for the behavior of f
as an element of L”, as f can be modified on any set of measure zero without affecting
the latter. What is more to the point is the family of integrals § f¢ as ¢ ranges over the
dual space L?. Indeed, we know that f is completely determined by its action as a linear
functional on L?; on the other hand, if we take ¢ = ¢, = m(Br)_IX B, where B, is the ball
of radius r about z, by the Lebesgue differentiation theorem we can recover the pointwise
value f(z), for almost every z, as lim,_o { f¢,. Thus, we lose nothing by thinking of f as
a linear map from L?(R™) to R rather than as a map from R” to R.

Let us modify this idea by allowing f to be merely locally integrable on R™ but
requiring ¢ to lie in C°. Again the map ¢ — { f¢ is a well-defined linear functional
on O, and again the pointwise values of f can be recovered a.e. from it, by an easy
extension of Theorem 18. But there are many linear functionals on C° that are not of
the form ¢ — § f¢, and these—subject to a mild continuity condition to be specified
below—will be our “generalized functions.”

Recall that for £ < R"™ we have defined C°(E) to be the set of all C* functions whose
support is compact and contained in E. If U < R" is open, C(U) is the union of the
spaces C(K) as K ranges over all compact subsets of U. Each of the latter is a Fréchet
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space with the topology defined by the norms
6 %], (ae{0,1,2,...)"

in which a sequence {¢,} converges to ¢ if and only if 0%¢; — 0%¢ uniformly for all a.
(The completeness of CX(K) is easily proved by the argument in Folland Exercise 5.9.)
With this in mind, we make the following definitions, in which U is an open subset of R":

i. A sequence {¢;} in C(U) converges in C to ¢ if {¢;} = C(K) for some compact
set K < U and ¢; — ¢ in the topology of C*(K), that is, 0“¢; — 0*¢ uniformly for all
.

ii. If X is a locally convex topological vector space and T: C*(U) — X is a linear
map, 7 is continuous if T|CF(K) is continuous for each compact K < U, that is, if
T¢; — T'¢ whenever ¢p; — ¢ in CP(K) and K < U is compact.

iii. A linear map 7': C¥(U) — C*(U’) is continuous if for each compact K < U there
is a compact K’ < U’ such that T(C(K)) < CP(K’), and T is continuous from C(K)
to CP(K').

iv. A distribution on U is a continuous linear functional on C(U). The space of all
distributions on U is denoted by D’(U), and we set D’ = D'(R"). We impose the weak™
topology on D’(U), that is, the topology of pointwise convergence on C'F(U).

Two remarks: First, the standard notation D’ for the space of distributions comes
from Schwartz’s notation D for C'°, which is also quite common. Second, there is a locally
convex topology on C° with respect to which sequential convergence in C° is given by
(i) and continuity of linear maps 7': C — X and T: C¥ — C¥ is given by (ii) and (iii).
However, its definition is rather complicated and of little importance for the elementary
theory of distributions, so we shall omit it.

Here are some examples of distributions; more will be presented below. - Every
f € Lj,. (U)—that is, every function f on U such that {, |f| < oo for every compact
K < U—defines a distribution on U, namely, the functional ¢ — § f¢, and two functions
define the same distribution precisely when they are equal a.e. - Every Radon measure p
on U defines a distribution by ¢ — §¢du. - If 2o € U and « is a multi-index, the map
¢ — 0°¢(xp) is a distribution that does not arise from a function; it arises from a measure
w precisely when a = 0, in which case p is the point mass at x.

If fe L, (U), we denote the distribution ¢ — { f¢ also by f, thereby identifying
Li. (U) with a subspace of D’(U). In order to avoid notational confusion between f(z)
and f(¢) = { f¢, we adopt a different notation for the pairing between C*(U) and D'(U).
Namely, if F' € D'(U) and ¢ € CP(U), the value of F' at ¢ will be denoted by (F, ¢).
Observe that the pairing (-,-) between D’(U) and C¥(U) is linear in each variable; this
conflicts with our earlier notation for inner products but will cause no serious confusion.
If 1 is a measure, we shall also identify p with the distribution ¢ — § ¢du

Sometimes it is convenient to pretend that a distribution F'is a function even when
it really is not, and to write { F(z)¢(x)dz instead of (F, ¢). This is the case especially
when the explicit presence of the variable x is notationally helpful.
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At this point we set forth two pieces of notation that will be used consistently
throughout this chapter. First, we shall use a tilde to denote the reflection of a function
in the origin:

¢(z) = ¢(—x).
Second, we denote the point mass at the origin, which plays a central role in distribution
theory, by 6:

6, ¢) = ¢(0)
As an illustration of the role of 4 and the notion of convergence in D', we record the
following important corollary of Theorem 17:

Proposition 9.1: 9.1.

Suppose that f € L'(R") and § f = a, and for ¢ > 0 let fi(x) = t ™" f(¢t"'z). Then
fi > adin D" ast — 0.

Proof. If ¢ € C'F, by Theorem 17 we have

i) = f Jub = fo = 3(0) — ad(0) = ad(0) = a(s, 6

Although it does not make sense to say that two distributions F' and G in D'(U) agree at
a single point, it does make sense to say that they agree on an open set V' < U; namely,
F = G on V if and only if (F,¢) = (G, ¢) for all p € CF (V). (Clearly, if F' and G are
continuous functions, this condition is equivalent to the pointwise equality of F' and G on
V; if F and G are merely locally integrable, it means that F = G a.e. on V.) Since a
function in C*(V; U V3) need not be supported in either V; or V4, it is not immediately
obvious that if F = G on V; and on V5 then F' = G on V; u V5. However, it is true:

Proposition 9.2: 9.2.

Let {V,} be a collection of open subsets of U and let V = |, V,. If F,G € D'(U) and
F =G on each V,, then FF'= G on V.

Proof. If ¢ € C(V), there exist ay,...ay such that supp ¢ < |J"V,,. Pick
V1, ...,y € CF such that supp(y;) < V,,, and >;1"9; = 1 on supp(¢). (That this can
be done is the C* analogue of Proposition 125, proved in the same way as that result by
using the C'* Urysohn lemma.) Then (F, ¢) = > (F,¢;¢0) = YXG,¥;0) = (G, $).

According to Proposition 2, if F' € D'(U), there is a maximal open subset of U on
which F' = 0, namely the union of all the open subsets on which F' = 0. Its complement
in U is called the support of F'.

There is a general procedure for extending various linear operations from functions
to distributions. Suppose that U and V are open sets in R", and T is a linear map
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from some subspace X of LL . (U) into L. (V). Suppose that there is another linear
mapT": CP (V) — C*(U) such that

.ﬁTﬂ¢=ff@%>(feX¢€C?WW

Suppose also that 7" is continuous in the sense defined above. Then T' can be extended
to a map from D'(U) to D'(V), still denoted by T', by
(TF,¢) =(F.T'¢)y (FeD'(U),¢peCr(V))

The intervention of the continuous map 7" guarantees that the original T', as well as
its extension to distributions, is continuous with respect to the weak* topology on
distributions: If F,, — F' € D'(U), then TF, — TF in D'(V).

Here are the most important instances of this procedure. In each of them, U is an
open set in R™, and the continuity of 7" is an easy exercise that we leave to the reader.

i. (Differentiation) Let T'f = 0*f, defined on C1*(U). If ¢ € C*(U), integration by
parts gives {(0%f)¢ = (—1)1% § £(0%¢); there are no boundary terms since ¢ has compact
support. Hence 7" = (—1)1T|C*(U), and we can define the derivative 0*F € D'(U) of
any F'€ D'(U) by

(0°F, ¢) = (~1)I*UF,0°¢).
Notice, in particular, that by this procedure we can define derivatives of arbitrary locally
integrable functions even when they are not differentiable in the classical sense; this is
one of the main reasons for the power of distribution theory. We shall discuss this matter
in more detail below. ii. (Multiplication by Smooth Functions) Given i) € C*(U), define
Tf=1f. Then T" = T|C*(U), so we can define the product Y F € D'(U) for F € D'(U)
by
WF,¢) = (F )

Moreover, if ¢ € CZ(U), this formula makes sense for any ¢ € C*(R"™) and defines ¢ F' as
a distribution on R".

iii. (Translation) Given y e R", let V. = U +y = {r+y|2xeU} and let T = 7,.
(Recall that we have defined 7, f(z) = f(z—y).) Since § f(x—y)o(z)dzx = § f(z)p(z+y)dz,
we have T = 7_,|CP(U + y). For F € D'(U), then, we define the translated distribution
7,7 € D'(U +y) by

<TyF’ ¢> = <F’ T—y¢>

For example, the point mass at y is 7,0.

iv. (Composition with Linear Maps) Given an invertible linear transformation S of
R let V = S7Y(U) and let Tf = foS. Then T"¢ = |det S| "*¢ o S~! by Theorem 87, so
for F e D'(U) we define F oS e D'(S71(U)) by

(FoS, ¢y=|detS| " (F,¢poS™h.
In particular, for Sz = —z we have fo S = f,5 ' = S, and | det S| = 1, so we define the
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reflection of a distribution in the origin by
(F,¢) =<{F,¢)
v. (Convolution, First Method) Given ¢ € C, let

={r|x—yeU foryesupp(v)}
( V is open but may be empty.) If f € Ll (U), the integral

~ | rte = dy—Jf v— o)y = [ £(n0)

is well defined for all z € V. The same definition works for F' € D’(U): the convolution
F' « ) is the function defined on V' by

Fuy(@) = (Frd)

Since T;E?Z — 7'1,01; in C¥ as x — xg, F 1) is a continuous function (actually C®, as we
shall soon see) on V. As an example, for any ¢ € C¥ we have

5+ 9(@) = (5,70 ) = 7B(0) = ()

so 0 is the multiplicative identity for convolution. vi. (Convolution, Second Method) Let
¥,9, and V be as in (v). If fe Ll (U) and ¢ € C2(V), we have

[rews = |[ @10 - potwavds = [ 16+

That is, if Tf = f 1, then T maps L. _ (U) into LL_ (V) and T'¢ = ¢«1p. For F € D'(U),
we can therefore define F' * 1 as a distribution on V' by

(F iy, ) =(F.d= 1)
Again, we have ¢ =1 = 1), for

G,y = 562Dy = 62 B0 fgzs z)dz = (b, 6

The definitions of convolution in (v) and (vi) are actually equivalent, as we shall now
show.

Proposition 9.3: 9.3.

Suppose that U is open in R” and ¥ € CL. Let V = {z | 2 —y € U for y € supp(¥)}.
For F'e D/(U) and z € V let F »(z) = <F TIQZ>. Then

(a) F=yeC?(V).
(b) 0%(F «4p) = (0“F)x¢p = Fx (0).
(c) For any ¢ € CX(V),{(F «)p = (F, ¢ = ).

Proof. Let ey, ..., e, be the standard basis for R". If x € V, there exists ty > 0 such
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that © + te; € U for |t| <y, and it is easily verified that
t! (Tﬁtejiz - TIVZ> — Txéj\zz in CP(U)ast—0
It follows that 0;(F «)(z) exists and equals F * 0;4(z), so by induction, F'« ¢ e C*(V)
and 0%(F = 1)) = F % 0*1). Moreover, since 0%t = (—1)/*g2e) and 0°7, = 7,0%, we have
(0°F) s () = (0°F, 0 ) = (~1)IF, 07, ) = (Fomad® ) = F x (0°0)(a).
Next, if ¢ € CX(V), we have

= (6t - 21y = [owmdray

The integrand here is continuous and supported in a compact subset of U, so the integral can
be approximated by Riemann sums. That is, for each (large) m € Z~; we can approximate
supp(¢) by a union of cubes of side length 2=™ (and volume 27") centered at points

YT - Yilm) € SUpP(9); then the corresponding Riemann sums S™ = 277" 3. gb(yj )Tym¢

are supported in a common compact subset of U and converge uniformly to ¢= w as m — oo.
L1kew1se 0%S™ =27 3 (Y ) Ty 04 converges uniformly to ¢ = 0% = 0%(¢ = w) SO

— ¢+ 1) in C2(U). Hence,
(F,¢+ 8y = lim (F,8™) = Tim 27 3 o) F,mpd)

_ f ¢(y)<F, ry@dy = Jcb(y)F = P(y)dy

Next we show that although distributions may be highly singular objects, they can all
be approximated in the (weak*) topology of distributions by smooth functions, even by
compactly supported ones.

Lemma 9.4: 9.4.

Suppose that ¢ € CP,¢p € CF, and [ = 1, and let Yy (x) = t " (t712).
(a) Given any neighborhood U of supp(¢), we have supp(¢ * 1»;) < U for ¢ sufficiently
small.

(b) ¢ *1py - ¢ in CL ast — 0.

Proof. If supp(v)) < {z | |x| < R} then supp(¢ = 1)) is contained in the set of points
whose distance from supp(¢) is at most ¢R; this is included in a fixed compact set if ¢t < 1
and is included in U if ¢ is small. Moreover, 0%(¢ = 1) = (0%¢) = ¢y — 0“¢ uniformly as
t — 0, by Theorem 17. The result follows.

Proposition 9.5: 9.5.
For any open U < R", C*(U) is dense in D’(U) in the topology of D'(U).
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Proof. Suppose F' € D'(U). We shall first approximate F' by distributions supported
in compact subsets of U, then approximate the latter by functions in C?(U).

Let {V;} be an increasing sequence of precompact open subsets of U whose union is U,
as in Proposition 122. For each j, by the C* Urysohn lemma we can pick ¢; € CF(U)
such that ¢; = 1 on V;. Given ¢ € C*(U), for j sufficiently large we have supp(¢) < V;
and hence (F, ¢) = (F, (;¢) = ((;F, ¢). Therefore (;F' — F as j — .

Now, as we noted in defining products of smooth functions and distributions, since
supp(¢;) is compact, (;F' can be regarded as a distribution on R". Let 1,1, be as
in Lemma 4, and J(m) = t¢(—x). Then S@Z = 1 also, so given ¢ € CF, we have

O * th — ¢ in C by Lemma 4. But then by Proposition 3, we have ((;F) = ¢y € C*

and (GF) 0, 8) = (GF, 6+ ) = (GF,6), 50 (GF) + y — GF in D'. In short, every
neighborhood of F' in D'(U) contains the C* functions ((;F') = ¢ for j large and ¢ small.
Finally, we observe that supp(¢;) < Vj for some k. If supp(¢) n V) = @, then

for sufficiently small ¢ we have supp (qb * Jt) NV = @ (Lemma 4 again) and hence

UGF) =y, ¢) = <F, ¢ ((b x zzt>> = 0. In other words, supp(((;F) = ¢) = V), < U, so we
are done.

We conclude this section with some further remarks and examples concerning differen-
tiation of distributions. To restate the basic facts: Every F' € D’(U) possesses derivatives
0“F € D'(U) of all orders; moreover, 0% is a continuous linear map of D’(U) into itself.
Let us examine a couple of one-dimensional examples to see what sort of things arise by
taking distribution derivatives of functions that are not classically differentiable.

First, differentiating functions with jump discontinuities leads to “delta-functions,”
that is, distributions given by measures that are point masses. The simplest example is
the Heaviside step function H = X(0,«0), for which we have

(H'.¢y = —(H, &y = j " (@) = 6(0) = (5,6)

so H' = §. See Exercises 5 and 7 for generalizations.

Second, distribution derivatives can be used to extract “finite parts” from divergent
integrals. For example, let f(z) = 27 x(0,0)(2).f is locally integrable on R\{0} and so
defines a distribution there, but § f¢ diverges whenever ¢(0) # 0. Nonetheless, there is a
distribution on R that agrees with f on R\{0}, namely, the distribution derivative of the
locally integrable function L(x) = (log x)X(0,:0)(2). One way of seeing what is going on
here is to consider the functions L.(x) = (log %)X (c,x)(z). By the dominated convergence
theorem we have { Lo = lim._o § L.¢ for any ¢ € C, that is, L. — L in D'; it follows
that L. — L' in D’. But

Tty = ~(Lest) = = [ Htoytogade = [ 2o+ o105

As e — 0, this last sum converges even though the two terms individually do not. Formally,
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passage to the limit gives (L, ¢) = { f¢ + (log 0)¢(0); that is, L’ is obtained from f by
subtracting an infinite multiple of 6. (This process is akin to the “renormalizations” used
by physicists to remove the divergences from quantum field theory.)

Another way to analyze this situation is to consider smooth approximations to L, such
as Lf(x) = L(x)y(ex) where 9 is a smooth function such that ¢(z) = 0 for x < 1 and
(x) =1 for & = 2. The reader is invited to sketch the graphs of L¢ and (LE)/; the latter
will look like the graph of f together with a large negative spike near the origin, which
turns into “ —o0 - §” as ¢ — 0. See also Folland Exercise 9.10,Folland Exercise 9.12.

Finally, we remark that one of the bugbears of advanced calculus, that equality of
mixed partials need not hold for functions whose derivatives are not continuous, disappears
in the setting of distributions: 0;0; = dx0; on C; therefore 0;0; = 0r0; on D'l In the
standard counterexample, f(z,y) = zy(z? — y?) (2 + y?) " (with £(0,0) = 0), 0,0, f and
0y0z f are locally integrable functions that agree everywhere except at the origin; hence
they are identical as distributions.

Exercise 9.6: Folland Exercise 9.1.

Suppose that fi, fa,..., and f are in L] _(U). The conditions in (a) and (b) below
imply that f,, — f in D’(U), but the condition in (c) does not.

(a) f,e LP(U)(1 < p <o) and f, — f in the LP norm or weakly in LP.

(b) For all n, |f,| < g for some g € LL _(U), and f, — [ a.e.

(¢) fn — [ pointwise.

Exercise 9.7: Folland Exercise 9.2.

The product rule for derivatives is valid for products of smooth functions and distribu-
tions.

Exercise 9.8: Folland Exercise 9.3.

k

On R, if ¢ € C* then ¢ = Zlg(—l)J( j

denote derivatives.

>¢(j)(0)5(k_j) , where the superscripts

Exercise 9.9: Folland Exercise 9.4.

Suppose that U and V' are open in R” and ®: V' — U is a C* diffeomorphism. Explain
how to define F' o ® € D'(U) for any F € D'(V).
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Exercise 9.10: Folland Exercise 9.5.

Suppose that f is continuously differentiable on R except at xy,...,x,,, where f
has jump discontinuities, and that its pointwise derivative df /dz (defined except at
the x;s) is in L. (R). Then the distribution derivative f’ of f is given by f’ =
(df fdz) + 257" [f (z5+) — f(2;=)]7a,6.

Exercise 9.11: Folland Exercise 9.6.

If f is absolutely continuous on compact subsets of an interval U < R, the distribution
derivative f’ € D'(U) coincides with the pointwise (a.e.-defined) derivative of f.

Exercise 9.12: Folland Exercise 9.7.

Suppose f € Li . (R). Then the distribution derivative f’ is a complex measure on R

if and only if f agrees a.e. with a function F' € NBV, in which case {f', ¢) = { ¢dF.

Exercise 9.13: Folland Exercise 9.8.

Suppose f € LP(R™). If the strong LP derivatives 0;f exist in the sense of Folland
Exercise 8.8, , they coincide with the partial derivatives of f in the sense of distributions.

Exercise 9.14: Folland Exercise 9.9.

A distribution F' on R" is called homogeneous of degree \ if F oS, = r*F for all v > 0,
where S, (z) = rz.

(a) ¢ is homogeneous of degree —n.

(b) If F is homogeneous of degree A, then 0*F is homogeneous of degree A — |a|.

(c) The distribution (d/dx)|x(0,0)(z)logz] discussed in the text is not homogeneous,
although it agrees on R\{0} with a function that is homogeneous of degree -1.

Exercise 9.15: Folland Exercise 9.10.

Let f be a continuous function on R™\{0} that is homogeneous of degree —n (i.e.,
f(rz) = r~"f(z)) and has mean zero on the unit sphere (i.e., { fdo = 0 where o is
surface measure on the sphere). Then f is not locally integrable near the origin (unless
f =0), but the formula

PV =ty | f@od (6eC?)
x|>€e
defines a distribution PV (f)— “ PV” stands for “principal value”—that agrees with
f on R™\{0} and is homogeneous of degree —n in the sense of Folland Exercise 9.9.
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(Hint: For any a > 0, the indicated limit equals

J| ; f(@)[o(x) — ¢(0)]dz + J F(2)b(z)dx

|z|>a

and these integrals converge absolutely.)

Exercise 9.16: Folland Exercise 9.11.

Let F' be a distribution on R™ such that supp(F') = {0}.
(a) There exist N € Z~1,C > 0 such that for all ¢ € C°,

EOI<CY)_ sualo()

(b) Fix ¢ € CF with ¢(x) = 1 for |z| < 1 and ¢(x) = 0 for |z| = 2. If p € CP, let
or(z) = ¢(2)[1 — Y (kz)]. If 0*¢(0) = 0 for |o| < N, then 0*¢r — 0*¢ uniformly
as k — oo for |a| < N. (Hint: By Taylor’s theorem, [0%¢(z)| < C|z|N*1~lel for
la| < N.)

(c) If p € CF and 0“¢(0) = 0 for |a] < N, then (F,¢) = 0.

(d) There exist constants c, (|| < N) such that F' =3,y ca0%0.

Exercise 9.17: Folland Exercise 9.12.

Suppose A > n; then the function z +— |z|~ on R" is not locally integrable near the
origin. Here are some ways to make it into a distribution:

(a) If o€ CF, let Pd’f be the Taylor polynomial of ¢ about x = 0 of degree k. Given
k>X—n—1and a > 0, define

Fror= | (o) - Pl ok | o(@lel M

lz|<a |z|>a
Then FF is a distribution on R™ that agrees with |x|=* on R™\{0}.
(b) If A ¢ Z and we take k to be the greatest integer < A — n, we can let @ —  in
(a) to obtain another distribution F that agrees with |z|~* on Z™\{0}:

B0 = [[o(a) - Ph@)ol Mda
(c) Let n =1 and let k be the greatest integer < \. Let

f(x) [(k =) (1= X)] Ysgna)*|z|*=*  if A>k
) =
(=D (k= 1)1 (sgna)*log |z  if A=k
Then f € L. (R), and the distribution derivative f*) agrees with |2|=* on R\{0}.

loc

(d) According to Folland Exercise 9.11, the difference between any two of the dis-

tributions constructed in (a)-(c) is a linear combination of § and its derivatives.
Which one?
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Exercise 9.18: Folland Exercise 9.13.

If FeD and 0;F =0for j =1,...,n, then F'is a constant function. (Consider f =1,
where 1), is an approximate identity in C°.)

Exercise 9.19: Folland Exercise 9.14.

For n > 3, define F, F* € L] (R") by
o (ol +22)"
wn(2—n)’ wn(2 —n)
where w,, = 272/T'(n/2) is the volume of the unit sphere, and let A be the Laplacian.
(a) AFe(z) = e "g(e'z) where g(z) = nw*(|z|2 + 1)~ "2/,
(b) {g=1. (Use polar coordinates and set s = r2/(r* + 1).)
(¢) AF =6.(F° — F in D’; use Proposition 1.)
d) If ¢ € CP, the function f = F = ¢ satisfies Af = ¢.
()

F(z) = Fé(x) =

(

e) The results of (¢) and (d) hold also for n = 1 but can be proved more simply
there. For n = 2, they hold provided F, F© are defined by F(z) = (27) !log|z|
and F© = (47) log(|z|* + 2).

Exercise 9.20: Folland Exercise 9.15.

Define G on R* xR by G(x,t) = (4t) " 2e 1=/ ¢ 0 (1).
(a) (0r — A)G =6, where A is the Laplacian on R". (Let G®(z,t) = G(x,1)X(e,00)(1);
then G° — G in D’. Compute {(J; — A)G®, ¢) for ¢ € CL, recalling the discussion
of the heat equation in §8.7.)
(b) If ¢ € CP(R™x R), the function f = G = ¢ satisfies (0 — A)f = ¢.

Solution.
(a) Let € > 0 and ¢ € CP(R"xR). Then G € D'(R" xR), and by Fubini’s theorem

(p,G*) = G°¢p = JOOJ Gz, t)p(x,t)dx dt
R"xR e Jrn

=0, f M Gle ot dedt = (6,6,
0 R™

s0 G —> G in D'(R*"xR) as e — 0. For x € R" and t € (¢, 0), it follows from [Fol99,
§8.7, Exercise 44, assertion (ii)| that (A — ¢;)G®(x,t) = 0; thus

AGE (z,t) = ;G (x,1). (9.20.1)
In addition (see [Fol99, p. 284]), we have
Oep(x, )G (x,t) = —d(x,t)0:G" (x, 1), (9.20.2)
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SO

(¢, (0 — NG = (0, + A, G
_ J n ( J (6, )ACE (2, 1) + Ad(x, )G (w, 1)) i

+ JE(¢(I,t)AG€(a:,t) + ¢(z, t) AG®(z, 1)) dt) dz

0
(9.20.2)

29 [ ([ (026 @0 + Sote. 06w, 0) a
[ 6l 0067 w0 - 6026 .0 at ) d

0

2 [ ([ (etenaemn - st naetem) a
" f (6, G (2, 1) — b, ) ACE (2, ) dt> dz

f J oz, t) (0 — A)G (z,t)dtde = | ¢(x,e)G(x,¢e) da.
n Rn
(b) Let ¢ € CP(R™xR). Since G € D'(R™xR), by [Fol99, Proposition 9.3(b)| we have

(0 =A)G*9) = (G —A)G)xd =06+ =9,
where the second equality is by part (a) and the third equality holds since § is an
identity for the convolution product. O

9.2 Compactly Supported, Tempered, and Periodic Distributions

If U is an open set in R"™, the space of all distributions on U whose support is a
compact subset of U is denoted by £'(U); as usual, we set &' = &'(R"™).E'(U) turns out to
be a dual space in its own right, as we shall now show.

The space C*(U) of C* functions on U is a Fréchet space with the C* topology—that
is, the topology of uniform convergence of functions, together with all their derivatives, on
compact subsets of U. This topology can be defined by a countable family of seminorms
as follows. Let {Vm}io be an increasing sequence of precompact open subsets of U whose
union is U, as in Proposition 122; then for each m € Z~; and each multi-index o we have
the seminorm

[ Flpm.1 = supe, [0°f ()]

Clearly 0*f; — 0 f uniformly on compact sets for all a if and only if | f; — f[,, . — 0
for all m, a; a different choice of sets V,, would yield an equivalent family of seminorms.
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Proposition 9.21: 9.7.
C*(U) is dense in C*(U).
Proof. Let {V,,}]" be as in (9.6). For each m, by the C* Urysohn lemma we can pick

VY € CP(U) with ¢, = 1 on V,,. If ¢ € C*(U), clearly [/, — @l ng,a) = 0 provided
m = my; thus ¢,,¢ — ¢ in the C* topology.

Theorem 9.22: 9.8.

E'(U) is the dual space of C*(U). More precisely: If F' € &'(U), then F extends
uniquely to a continuous linear functional on C*(U); and if G is a continuous linear
functional on C*(U), then G|C*(U) € &' (U).

Proof. If F' e €& (U), choose ¢ € CF(U) with 1) = 1 on supp(F’), and define the linear
functional G on C*(U) by (G, ¢) = {F,1¢). Since F is continuous on CL(supp()), and
the topology of the latter is defined by the norms ¢ — [0%¢||,, by Proposition 87 there
exist N € Zz; and C' > 0 such that (G, ¢)| < C' X, <n[0°(¥9)], for ¢ € C*(U). By the
product rule, if we choose m large enough so that supp(¢) < V,,, this implies that

(GBI <CY S WPrcnppl () < C' Y [0lma

so that G is continuous on C*(U). That G is the unique continuous extension of F' follows
from Proposition 21.

On the other hand, if G is a continuous linear functional on C*(U), by Proposition 87
there exist C,m, N such that (G,$)| < CX, <y [0[ma) for all ¢ € C*(U). Since
&) pma) < [0%¢]|,,, this implies that G is continuous on C°(K) for each compact K < U,
so G|C*(U) € D'(U). Moreover, if [supp(¢)] n V,, = &, then (G,¢) = 0; hence
supp(G) = V,,, and G|C*(U) € D'(U).

The operations of differentiation, multiplication by C'® functions, translation, and
composition by linear maps discussed in Folland Section 9.1 all preserve the class &'. As
for convolution, there is more to be said.

First, if F'e€ & and ¢ € C then F * ¢ € C'F, as Proposition 11d remains valid in this
setting. Second, if F' € & and ¥ € C*, F =1 can be defined as a C* function or as a
distribution just as before:

Foi(e) = (Frd), (Fri,6)=(Foxd) (9eCF)

(see Folland Exercise 9.16). Finally, a further dualization allows us to define convolutions
of arbitrary distributions with compactly supported distributions. To wit, if /'€ D’ and
G e D', we can define F'+= G € D" and G = F € D’ as follows:

(FrG,0y=(F,Gxd), (GeF.d)=(GFre) (9eC7)
and likewise for . The proof that F + G and G = F are indeed distributions (i.e., that

a|<N
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they are continuous on C'¥) and that '+ G = G = F requires a closer examination of
the continuity of the maps involved. We shall not pursue this matter here; however, see
Exercises 20 and 21.

A notable omission from our list of operations that can be extended from functions
to distributions is the Fourier transform J. The trouble is that F does not map C° into
itself; in fact, if ¢ € CF, then (5 cannot vanish on any nonempty open set unless ¢ = 0.
To see this, suppose qg = 0 on a neighborhood of &,. Replacing ¢ by e 2™€%¢ we may
assume that & = 0. Since ¢ has compact support, we can expand e~2™%% in its Maclaurin
series and integrate term by term to obtain

~ o8 1
o) = Zk:o % J(—QWZ{ . x)k’d)(x)dl‘ = Za aga J(—Q?Tix)a¢(x)dl’
(see Folland Exercise 8.2(a) in Folland Section 8.1). But {(—2miz)*¢(x)dz = 0°$(0) for

A~

all o by Theorem 31d. These derivatives all vanish by assumption, so ¢ = 0 and hence
¢ =0.

However, we do have available a slightly larger space of smooth functions that is
mapped into itself by &, namely, the Schwartz class 6. We recall that F is a Fréchet space
with the topology defined by the norms

[élxva) = SuPpepn (1 + |2)¥]0%0(2)]

Proposition 9.23: 9.9.

Suppose ¥ € CF and (0) = 1, and let ¢*(z) = ¢ (ex). Then for any ¢ € 8,¢°¢ — ¢
in § as € — 0. In particular, C'" is dense in 8.

Proof. Given N € Z-,, for any n > 0 we can choose a compact set K such that
(1 + |z))N|é(x)| < n for x ¢ K. Since 1(ex) — 1 uniformly for z € K as ¢ — 0, it
follows easily that [¢%¢ — ng( N0 — 0 for every N. For the norms involving derivatives,
we observe that by the product rule,

(L + a0 (W0 — @) = (1 + |z))V (¢°0%¢ — 0*¢) + Ex()
where E. is a sum of terms involving derivative of ¢)°. Since
079 ()] = |0y (ex)| < Cpel”
we have |E.|, < Ce — 0 as ¢ — 0. The preceding argument then shows that
[4°¢ = 8l (n0) = O
A tempered distribution is a continuous linear functional on §. The space of tempered
distributions is denoted by ¢’; it comes equipped with the weak* topology, that is, the
topology of pointwise convergence on §. If F' € 8, then F|CF is clearly a distribution,

since convergence in C'¥ implies convergence in 8, and F|C® determines F' uniquely by
Proposition 23. Thus we may, and shall, identify ¢’ with the set of distributions that
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extend continuously from C to d. We say that a locally integrable function is tempered
if it is tempered as a distribution.

The condition that a distribution be tempered means, roughly speaking, that it does
not grow too fast at infinity. Here are a few examples: - Every compactly supported
distribution is tempered. - If f € LL _(R") and {(1 + |z|)"|f(z)|dz < o0 for some N, then
f is tempered, for |Sf<b| < C|¢llo,n)- - The function f(z) = e* on R is tempered if and
only if a is purely imaginary. Indeed, suppose a = b + ic with b, c real. If b = 0, then f
is bounded and hence tempered by (ii). If b # 0, choose a function 1 € C such that
§¢ =1, and let ¢;(z) = e"*(x — j). It is easily verified that ¢; — 0in § as j — +o©
(if b>0) or j — —oo (if b < 0), but § f¢; = {4 =1 for all j. - On the other hand, the
function f(x) = e* cose” on R is tempered, because it is the derivative of the bounded
function sine”. Indeed, if ¢ € §, integration by parts yields

j fol = |- f ¢'(z)sine*dz| < O]y

Intuitively, f(z) is not too large “on average” when x is large, because of its rapid
oscillations.

We turn to the consideration of the basic linear operations on tempered distributions.
The operations of differentiation, translation, and composition with linear transformations
work just the same way for tempered distributions as for plain distributions; these
operations all map ¢ and ¢’ into themselves. The same is not true of multiplication by
arbitrary smooth functions, however. The proper requirement on ) € C* in order for the
map F' — ¢ F to preserve 8 and & is that v and all its derivatives should have at most
polynomial growth at infinity:

10%(z)| < Co(1 + |2)N@ for all a
Such C* functions are called slowly increasing. For example, every polynomial is slowly
increasing; so are the functions (1 + |z|?)*(s € R), which will play an important role in
the next section.

As for convolutions, for any F' € 8’ and ¢ € § we can define the convolution F' = 1) by
F=(z) = <F, W,Z>, as before, and we have an analogue of Proposition 3:

Proposition 9.24: 9.10.

If Fe8 and ¢ € 8, then F' =1 is a slowly increasing C* function, and for any ¢ € 8
we have ((F = )¢ = (F, ¢ = 1).

Proof. That F =1 € C™ is established as in Proposition 3. By Proposition 87, the
continuity of F' implies that there exist m, N, C such that

Fol<CY olme (G€8)
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and hence by (8.12),
|[F ()|

N

C D oy S0Py (1 )™ |00 — )
<O+ Je)™ Y, sy (1+ o = y])" 0% (z = )]
C+la)™ 5y [¥lma:

The same reasoning applies with ¢ replaced by 0%, so F « 1) is slowly increasing.
Next, by Proposition 3 we know that the equation (£ « ¢))¢ = (F,¢ 1) holds when
¢,¢ € CF. By Proposition 23, if ¢,7) € 8§ we can find sequences {¢;} and {¢;} in
C¥ that converge to ¢ and ¢ in 8. Then ¢; = ¢; — ¢ =1 in 8 by (the proof of)
Proposition 16, so <F bj * > — (F, ¢ = w> On the other hand, the preceding estimates

show that [F'=;(x)] < C(1 + |z|)™ with C' and m independent of j, and likewise
|pj(x)] < C(1+ |z)™™ " so §(F «;)¢; — {(F + )¢ by the dominated convergence
theorem.

Finally, we come to the principal raison d’étre of tempered distributions, the Fourier
transform. We recall (Corollary 32) that the Fourier transform maps ¢ continuously into
itself, and that for f,g e L' (in particular, for f, g€ 8) we have

| Fwatwits = [ [ s@gtyre vty = | stz

We can therefore extend the Fourier transform to a continuous linear map from &’ to itself
by defining

(F.¢)=(F,¢) (Fes ¢es)
This definition clearly agrees with the one in Chapter 8 when F' € L' + L2

The basic properties of the Fourier transform in Theorem 31 continue to hold in this
setting. To wit,

(1,F) = e’QWif'yﬁ, Tnﬁ’ = [62””7'1}/7’\],
goF = [(—27m)aFT, (8"‘Fﬁ — (2mi€)°F
(foT) = et T['fo (T*) " (T e GL(n,R)),

(Fed)) = GF (ves).
(The first four of these formulas involve products of slowly increasing C'* functions,
specified by their values at a general point z or £, and tempered distributions.) The easy
verifications of these facts are left to the reader (Folland Exercise 9.17).
Moreover, we can define the inverse transform in the same way:

(FY,¢) = (F,¢7).

Version of April 30, 2024 at 11pm EST Page 348 of 368


https://www.greysonwesley.com/home

Greyson C. Wesley §9.2: Compactly Supported, Tempered, and Periodic Distributions

The Fourier inversion theorem formula ¢ = (qg)v = (¢V ) then extends to §':
((B)*,0) = (F.6" ) = (F,(6")) = (F,0)

so that (ﬁ )Y = F, and likewise <F V) = F'. Thus the Fourier transform is an isomorphism
on 5. R

If F e &', there is an alternative way to define F'. Indeed, (F, ¢) makes sense for any
¢ e C* and 1f we take ¢(x) = e 2™ we obtain a function of ¢ that has a strong claim

to be called F (£). In fact, the two deﬁnitions are equivalent:
Proposition 9.25: 9.11.

If F e &, then F is a slowly increasing C® function, and it is given by F(¢) = (F, E_¢)
where Eg( r) = 2T,

Proof. Let g(¢) = (F,E_¢). Consideration of difference quotients of g, as in the
proof of Proposition 3, shows that g is a C* function with derivatives given by 0%g(§) =
(F,08E ¢) = (—2mi)lel(F, 2 E_¢). Moreover, by Theorem 22 and Proposition 87, there
exist m, N, C' such that

g€ < O, Dyl Boe@)]] < C(1 4+ m) (1 + [¢])Y

so ¢ is slowly increasing. R

It remains to show that g = F', and by Proposition 23 it suffices to show that
§ g0 = (F,¢) for ¢ € C. In this case g € CF, so { g¢ can be approximated by Riemann
sums as in the proof of Proposition 3, say >, g(&;)#(&;)AE;. The corresponding sums
D1o(&)e ™A, and their derivatives in z converge uniformly, for x in any compact

set, to ¢(z) and its derivatives. Therefore, since F' is a continuous functional on C®,

JW = lim ) (F, E_¢,)¢(¢;) A, = hm<F7Z¢(:CJ')E*§jA£]’> = (F.¢)

It is time for some examples. First and foremost, the Fourier transform of the point mass
at 0 is the constant function 1:{J, E_¢) = E_¢(0) = 1. More generally, for point masses
at other points and their derivatives, we have

(27,80(€) = (~)Us 7, B = (~)lag(e e ),y
= (2mig) e 2
In particular:

Proposition 9.26: 9.12.

The Fourier transforms of the linear combinations of § and its derivatives are precisely
the polynomials.

Version of April 30, 2024 at 11pm EST Page 349 of 368


https://www.greysonwesley.com/home

Greyson C. Wesley §9.2: Compactly Supported, Tempered, and Periodic Distributions

The Fourier inversion theorem then yields the formulas for the Fourier transforms of
polynomials and imaginary exponentials:

(2%)” = [(~2)°]" = (-2mi)~le?s, E, = (E_,)" =7,0

As an illustration of the heuristics associated to these results, consider the formula

fe%ig'xdf = ()

Although this is nonsensical as a pointwise equality, it is valid when viewed from the right
angle. One the one hand, it expresses the fact that the Fourier transform of the constant
function 1 is 6. More interestingly, it is a concise statement of the Fourier inversion
theorem. Indeed, if we replace x by x — y, integrate both sides against ¢ € 8, and reverse
the order of integration on the left, we obtain

|[ e rayae = |5~ oty

The integral on the left is (gg)v(x), and the integral on the right equals ¢(z) !
It is an important fact that every distibution is, at least locally, a linear combination
of derivatives of continuous functions. The Fourier transform yields an easy proof of this:

Proposition 9.27: 9.14.

(a) If F'e &, there exist N € Zx1, constants ¢,(|a| < N), and f € Cy(ZZ,) such that
F - Z|O¢|$N Caaaf. o

(b) If F e D'(U) and V is a precompact open set with V' < U, there exist N, c,, f as
above such that F'= >} |y ca0®f on V.

Proof. By Proposition 25, if F' € & then F is slowly increasing, so the function
g(&) = (1 +1¢2)"™MF(¢) will be in L' if the integer M is chosen sufficiently large. Let
f=70;then fe Cyand F = (1+ ]§|2)Mf, so F = (I — (4n?)' 37 5]2-)Mf. This proves
(a); for (b), choose 1 € CX(U) such that ¢» = 1 on V, and apply (a) to ¢ F.

We conclude this section with a sketch of the theory of periodic distributions; some of
the details are fleshed out in Exercises 22-24.

The space C*(T") of smooth periodic functions is a Fréchet space with the topology
defined by the seminorms ¢ — [0*¢|,, and a distribution on T" is a continuous linear
functional on this space; the space of distributions on T" is denoted by D’(T"). If
F € D'(T"), its Fourier transform is the function /' on T" define by f(li) = (F,E_,)
where E, (z) = ™. Since I satisfies an estimate of the form |[(F, ¢)| < C'Z|a|<NHaa¢Hua
there exist C, N such that

F(r) < C(1+ [])™
and the Fourier transform is an isomorphism from D’(T") to the space of all functions on
T" satisfying such an estimate. Moreover, if F' € D'(T"), the Fourier series ), F(k)E,
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converges in D'(T") to F.

Instead of defining periodic distributions as distributions on T™ (linear functionals on
C*(T™)), one can define them as distributions on T™ (linear functionals on C°(T")) that
are invariant under the translations 7., x € T". Accordingly, let

D'(R"),p = {F € D'(R") | 7, " = F for k € R}
The periodization map P¢ = > . 7.¢ used in Theorem 40 is easily seen to map
CP(Z™) continuously into C*(Z"), so it induces a map P’: D'(Z") — D'(Z™) given by
(P'F,¢) = (F,P¢). Since Por, = P for k € Z", we have 7,, o P' = P’| that is, the range
of P lies in D'(Z"),,, . In fact, P": D(Z") — D'(Z"),,, is a bijection. (The proof is
nontrivial; see Folland Exercise 9.24.) Moreover, if f € L'(Z"), then f and P’f coincide
as periodic functions on Z, for if ¢ € CX(Z"),

PLo=PH= | 1@ Tt
= z)o(x)dr = x)p(x)dxr = {f, o).
D, S = | @z =50

Thus the two descriptions of periodic distributions are equivalent.

If F'e D'(T"), the Fourier series Y, F'(k)FE, converges in D’(T™) to F'; on the other
hand, it follows easily from (9.15) that it also converges in S'(T"), and its sum there is
P'f. Thus D'(T")__ < D'(T"), and by (9.13) we have

(P'F) =Y F(r)E, = Y F(r)7.0
giving the relation between the R"—and R"-Fourier transforms for periodic distributions.
In particular, if F' = dgn, the point mass at the origin in R", then F (k) = 1 for all k;
hence P'F' and (P'F') are both equal to > 7,,0— a restatement of the Poisson summation
formula.

per

Exercise 9.28: Folland Exercise 9.16.

Suppose F' € & and ¢ € C*. Show that for any ¢ € C°, S<F, Tmaz>gb(:p)d:p =(F,¢p= @Z}

(The result can be reduced to Proposition 3; given F' and ¢, the indicated expressions
depend only on the values of ¢ in a compact set.)

Exercise 9.29: Folland Exercise 9.17.
Suppose that F' € 8. Show that

(a) (TyF/)\ = 6_27”'5'?/13,7,713 = [62”i”"”FT.

(b) 0°F = [(—zm)a 1, (02 F) = (2mig)~F.

(c) (F oT) = |det T|"'F o (T*)™" for T € GL(n,R).
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(d) (F «)0dF for o € 8.

Exercise 9.30: Folland Exercise 9.18.

If n =1+ m, let us write z € R" as (y,2) with y € Rl and z € R™. Let F denote the
Fourier transform on R™ and JF;, ¥, the partial Fourier transforms in the first and
second sets of variables—i.e., F1f(n, 2) = § f(y, z)e ?™"¥dy and likewise for F. Then
F1 and F, are isomorphisms on F(R™) and F'(R"), and F = F1F, = FoF7.

Exercise 9.31: Folland Exercise 9.19.

On R, let Fy = PV(1/x) as defined in Folland Exercise 9.10. Also, for ¢ > 0 let
F.(z) = 2(2® + 2) 7", GE(x) = (z +4e)7!, and S.(z) = e >l sgn z.

(a) lim._o F. = Fp in the weak™® topology of 8. (Theorem 17, with a = 0, may be
useful.)

(b) lim._oG. = Fy T wid. (Hint: (z +ie)! = (z Fie) (2 +£2) ")

(c) S. = (mi)~'F. and hence sgi = (i)' Fp.

(d) From (c) it follows that Fy = —mi sgn. Prove this directly by showing that
Fy = lime o oo He v, where He y(z) = 271 if e < |z] < N and H. y(x) = 0
otherwise, and using Folland Exercise 2.59(b).

(¢) Compute X(o) (i) by writing x(0,0) = 3sgn+3 and using (c), (ii) by writing
X(0,0) (%) = lim e™**x (9 ,.0) () and using (b).

Exercise 9.32: Folland Exercise 9.20.

Suppose that F'€ 8’ and G € §'.
(a) FG is well-defined element of §'.
(b) If ¢ € 8, then G =) € 8.
(c) Let F+G (or G+ F) be the tempered distribution such that (F « G)F = F7.
Then (F = G,y = (F,G + ) = (G, F 1) for ¢ € 8.

Exercise 9.33: Folland Exercise 9.21.

Suppose that F,G, H € §'.

(a) If at most one of F, G, H has noncompact support, then (F'«G)«H = F«(G* H),
where the convolutions are defined as in Folland Exercise 9.20.

(b) On R, let F' be the constant function 1,G = dd/dzr, and H = X(ox). Then
(F+G)=H and F = (G =+ H) are well defined in 8’ but are unequal.
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Exercise 9.34: Folland Exercise 9.22.

Let E.(z) = e>™*® 1If g: Z" — 7Z satisfies |g(x)| < C(1 + |x|)Y for some C, N > 0,
then the series ), _,n g(k)E, converges in D'(Z") to a distribution F' that satisfies
F = g. Tt also converges in D'(Z") to a tempered distribution G (= P'F) such that
7.G = G for all k.

Exercise 9.35: Folland Exercise 9.23.

Suppose that F,G € D'(T").

(a) There is a unique F = G € D’(T") such that (F = Gj = FG. (Use Folland Exercise
0.22.)

(b) If G € C®(T"), then F = G € C*(T") and F = G(z) = <F Txé> as on T".

Exercise 9.36: Folland Exercise 9.24.

Let P be the periodization map, Po = >, __,n Tu®.

(a) P isa continuous linear map from C°(R"™) to C*(R™). (Note that for ¢ € C and
x in a compact set, only finitely many terms of the series > 7.¢(z) are nonzero.)

(b) Choose v € CF with {v =1, and let w = 7 * xjo,1)». Then w e C¥ and Pw = 1.

(c) If v € C*(T™), then ¢ = P(wy)) (where 9 is regarded as a function on T"™ on
the left and as a function on T™ on the right). Consequently, P: C¥(T") —
C*(T") is surjective and the dual map P': D'(T") — D'(T") , is injective. d.
Given G' € D'(T"),,, , define F' € D'(T") by (F,¢) = (G,wy) (with the same
understanding as in part (c)). Then P'F' = G, so P’ maps D’(T"™) onto D'(T")

per °

Exercise 9.37: Folland Exercise 9.25.

Suppose that P is a polynomial in n variables such that only zero of P(§) in R" is
¢ =0, and let P(D) be as in Folland Section 8.7.

(a) Every tempered distribution F' that satifies P(D)F = 0 is a polynomial. (Use
Proposition 26 and Folland Exercise 9.11.)

(b) Every bounded function f that satisfies P(D)f = 0 is a constant. (This result, for
the special cases where P(D) is the Laplacian or the Cauchy-Riemann operator
O + 10, on R?, is known as Liouville’s theorem.)

Exercise 9.38: Folland Exercise 9.26.
On R™ xR, let G(z,t) = (dnt) "2 14y o o) (t).
(a) G is the tempered function G(&,7) = (2mit + 472[¢€|2)™". (Use Proposition 33
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and Folland Exercise 9.18.)
(b) Deduce that (d; — A)G = §. (Cf. Folland Exercise 9.15.)

Exercise 9.39: Folland Exercise 9.27.

Suppose that 0 < Rea < n.
(a) For any ¢ €8,

M0 =) [apoongiarae = "2 [ 1g-oteyas

n
m(n—a)/2 T

(Hint: By Proposition 33 and Lemma 34, if t > 0 we have

f e G da = 72 JQ_W/ 'o(€)de

Multiply both sides by ¢~'*("=%)/2dt and integrate from 0 to o0.)

(b) Let Ro(x) = I'((n—a)/2)[T(ar/2)297™2] " |2|*~™. Then R, is a tempered function
and R, is the tempered function R, (&) = (2¢])~.

(c) If n > 2, then ARy = —§. (Cf. Folland Exercise 9.14. See the next exercise for
the case n = 2.)

Exercise 9.40: Folland Exercise 9.28.
Suppose n = 2. For 0 < Rea < 2, let ¢, = ['((2 — @)/2)[[(a/2)2°7] " and Q. (x) =
ca(]€]272 — 1). (Note that Q, differs by a constant from the R, in Folland Exercise
0.27.)
(a) lim, 2 Qu(z) = —(27) ' log |z|, pointwise and in §'.
(b) By (a), lima_s Q. exists in &, and by Exercise 27b, Qu(£) = (27|¢])™— cad.
Noting that (27|£|)~2 is not integrable near the origin and that lim, .o ¢, = 0,
find an explicit formula for lim,_,, @a. (Folland Exercise 9.12 may help.)

Exercise 9.41: Folland Exercise 9.29.

For 1 < p < o, let C, be the set of all F' e € for which there exists C' > 0 such that
|F * |, < C|¢|, for all ¢ € C, so that the map ¢ — F = ¢ extends to a bounded
operator on LP.

(a) C; = M(R™). (If F € Cq, consider F = ¢, where {¢;} is an approximate identity,

and apply Alaoglu’s theorem.)

(b) Co = {F eC|Fe LOO}. (Use the Plancherel theorem.)

(c) If p and ¢ are conjugate exponents, then C, = C,. (Hint: (F'* ¢, ¢) = (F'« 0, 5>)

(d) If 1 <p <2 and q is the conjugate exponent to p, then e, = C, for all r € (p, q).
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(Use the Riesz-Thorin theorem.)
(e) €, <€, Cyforallpe(1,0).

9.3 Sobolev Spaces

One of the most satisfactory ways of measuring smoothness properties of functions and
distributions is in terms of L? norms. There are two reasons for this: L? has the advantage
of being a Hilbert space, and the Fourier transform, which converts differentiation into
multiplication by the coordinate functions, is an isometry on L2.

As a first step, suppose k € Z>; and let Hy be the space of all functions f € L*(Z2,)
whose distribution derivatives 0% f are L? functions for |a| < k. One can make Hj, into a
Hilbert space by imposing the inner product

(F9) = 300 | @ 0(F)

However, it is more convenient to use an equivalent inner product defined in terms of
the Fourier transform. Theorem 3le and the Plancherel theorem imply that f € Hj if
and only if £*f € L? for |a| < k. A simple modification of the argument in the proof of
Proposition 2 shows that there exist C7, Cy > 0 such that

Cul+eP)" < X J&f < Call + )
from which it follows that f € Hy if and only if (1 + |¢[2)*?f € L2 and that the norms

feo (X, 0ef) " and g el

are equivalent. The latter norm, however, makes sense for any k£ € R, and we can use it to
extend the definition of H} to all real k.

We proceed to the formal definitions. For any s € R the function & — (1 + |¢[2)*? is
C* and slowly increasing (Folland Exercise 9.30), so the map A, defined by

A = @+ k72
is a continuous linear operator on 8'—actually an isomorphism, since A;' = A_,. If s € R,
we define the Sobolev space H, to be

H,={fe8 |AfeL?

and we define an inner product and norm on Hy by

<ﬁw@=fmeEa=fﬂou+meo

R 1/2
Il = Il = | [1F©RO+ 6y
(The equality of the two formulas for {f, g)() and for | f| ) follows from the Plancherel

|o| <k
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theorem.) Note that the inner products (-, -)(s) are conjugate linear in the second variable,
but we are continuing to use the notation (-, -) for the bilinear pairing between 8 and
8. This will cause no confusion, since we shall not be using the inner products (-, )
explicitly.
The following properties of Sobolev spaces are simple consequences of the definitions
and the preceding discussion:
(i) The Fourier transform is a unitary isomorphism from H, to L*(R", us) where du,(£) =
(1 + [€]?)°d€. In particular, H, is a Hilbert space.
(ii) 8 is a dense subspace of H; for all s € R. (This follows easily from (i) and Proposi-

tion 19.)
(iii) If t < s, H, is a dense subspace of H, in the topology of H;, and | - ) < | - |(s)-
(iv) A, is a unitary isomorphism from H, to Hy 4 for all s,t € R.
(v) Ho=L* and | - |0) = | - |2 (by Plancherel).
(vi) 0% is a bounded linear map from H, to H,_|o for all s,a (because [{*| <
(1+[€)"").

By (iii) and (v), for s > 0 the distributions in H, are L? functions. For s < 0 the elements
of H, are generally not functions. For example, the point mass ¢ is in Hy if and only if
s < —3n, for ¢ is the constant function 1, and §(1 + |¢]?)°d¢ < oo if and only if s < —3n.
Another example: The distribution W, whose Fourier transform is (27|&|)~! sin 27t|€],
which arose in the discussion of the wave equation in Folland Section 8.7, is in H, if and
only if s < 1 — %n; it isin L' n L? when n = 1 and in L'\L? for n = 2, but is not a
function for n > 3.

Proposition 9.42: 9.16.

If s € R, the duality between & and S induces a unitary isomorphism from H_;
to (H,)*. More precisely, if f € H_,, the functional ¢ — {f,¢) on 8§ extends to a
continuous linear functional on H, with operator norm equal to || f|_s), and every
element of (H,)" arises in this fashion.

Proof. If fe H_; and ¢ € §,

G0 = {6y = [ 1@

since fY(§) = J?(—é) is a tempered function. Thus by the Schwarz inequality,

1/2 1/2
<, &) < Ulf (1+ ¢ da] U!d) 21 4 [¢P)de
= [fll=s)lolles)

so the functional ¢ — (f, ¢) extends continuously to H,, with norm at most | f|/—s. In
fact, its norm equals | f|/(—s), since if g € §' is the distribution whose Fourier transform is
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=~

9(§) = (1 + [¢*)7°f(€), we have g € H, and

<f,g>=flf(£)l (1 + gl de = [ 1) = Ifl=9)lgl)

Finally, if G € (H,)*, then G o ¥ is a bounded linear functional on L?(u,) where
dus(€) = (1 + [£]?)°dE, so there exists g € L?(u5) such that

fcb 1 + leP)de
But then G(¢) = {f, ») where f ( = (1+[¢]*)°g(¢), and f e H_ since

1712, f|f 2(1 4 |¢?)de = J|g 2(1 4 |¢P) de

For s > 0, the elements of H, are L? functions that are “ L?-differentiable up to order
s,” and it is natural to ask what is the relationship between this notion of smoothness
and ordinary differentiability. Of course, if one thinks of elements of Hy as distributions
or elements of L2, there is no distinction among functions that agree almost everywhere;
from this perspective, when one says that a function in H, is of class C*, one means that
it agrees a.e. with a C* function. With this understanding, the question just posed has a
simple and elegant answer. We introduce the notation

CEl={feC*R" | 0*f e C, for |af <k}
C¥ is a Banach space with the C* norm f — Dokl 0 fl.-

Theorem 9.43: 9.17: The Sobolev Embedding Theorem.

Suppose s > k + %n
(a) If f € H,, then (aa fe Ll and H(aa f)ﬂH < C|f]ls for |a| < k, where C depends
1

only on k — s.
(b) H, = C¥ and the inclusion map is continuous.

Proof. By the Schwarz inequality,
) [ 1(e Al = [[enfiolde < [+ i) fielag

< [ j 1+ |»:\2>S|f<£>\2dg] . [ f(l N §|2)k_5d£] s

The first factor on the right is | f|(s), and the second one is finite by Corollary 101 since
2(k — s) < —n. This proves (a), and (b) follows by the Fourier inversion theorem and the
Riemann-Lebesgue lemma.
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Corollary 9.44: 9.18.
If fe H, for all s, then f e C®.

An example may help to elucidate this theorem. Let f\(z) = ¢(z)|x]*, where X € R
and ¢ € CF with ¢ = 1 on a neighborhood of 0. Then the (classical) derivative 0% fy is
C* except at 0 and is homogeneous of degree A — |a| near 0, so that |0% f\| < Cya|z[*~1ol]
and in particular 0% f\ € L' provided A\ — |a| > —n. In this case d*f\, as an L' function,
is also the distribution derivative of fy. (To see this, replace fy by the C* function
o(z)(|z|2 + £2)™? and consider the limit as e — 0.) Moreover, of"f,\ e L* if and only if

—|a| > —3n, so f € Hy(k =0,1,2,...) if and only if A > k — 3n, whereas f) € C if
and only if A > k. See also Exercises 33-35 for some related results

Next, we show that multiplication by suitably smooth functions preserves the H,
spaces. We need a lemma:

Lemma 9.45: 9.19.
For all £,n e R™ and s € R,
(14161 + )" < 2¥(1 + 1€ — )"

Proof. Since |¢| < |£ — 7] + |n|, we have |£[* < 2(|€ — n]* + |n|?) and hence

L+ |67 < 2(1+ |§ = n*)(L + [n]*).
If s = 0, we have merely to raise both sides to the sth power. If s < 0, we interchange &
and 7 and replace s by —s, obtaining

L+ )7 <27+ [EF) A +[E—nP)
which is again the desired result.

Theorem 9.46: 9.20.

Suppose that ¢ € Co(R™) and that ¢ is a function that satisfies

Jasieprmaelas - o<
for some @ > 0. Then the map My(f) = ¢f is a bounded operator on H, for |s| < a

Proof. Since A, is a unitary map from H, to Hy = L?, it is equivalent to show that
AsMyA_; is a bounded operator on L% But

(meﬂﬁM®=a+mmW[ Ao = [ Ko
where

K(En) = 1+ + ) ""6(& - n)
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By Lemma 45,

K (& m)| < 2572(1 + 1€ = ) "V*|6(¢ — n)]
so if |s| < a, then §|K (&, n)|d¢ and §|K (€, 7)|dn are bounded by 2¢/2C. That AZMyA_; is
bounded on L? therefore follows from the Plancherel theorem and Theorem 50.

Corollary 9.47: 9.21.

If ¢ € 8, then My is a bounded operator on Hj for all s € R.

Our next result is a compactness theorem that is of great importance in the applications
of Sobolev spaces.

Theorem 9.48: 9.22: Rellich’s Theorem.

Suppose that {fi} is a sequence of distributions in H, that are all supported in a fixed
compact set K and satisfy supy||fi[, < o0. Then there is a subsequence {f,} that
converges in H; for all t < s.

Proof. First we observe that by Proposition 25, fk is a slowly increasing C” function.
Pick ¢ € C° such that ¢ = 1 on a neighborhood of K. Then f;, = ¢ fi, so fk = gb*fk where
the convolution is defined pointwise by an absolutely convergent integral. By Lemma 45
and the Schwarz inequality,

(1+ [

7i(©)
<21 [ 31 = I(1 + Ie = o) 2| a1 + oy
<22 4o | fl < constant.

Likewise, since aj <$* ﬁ) = ((3](;5) * ﬁ, we see that (1 + ’£|2)S/2

constant independent of £, 7, and k. In particular, the fks and their first derivatives are
uniformly bounded on compact sets, so by the mean value theorem and the Arzela-Ascoli

@fk(ﬁ)‘ is bounded by a

theorem there is a subsequence fkj that converges uniformly on compact sets.

We claim that {fy,;} is Cauchy in H, for all t < s. Indeed, for any R > 0 we can write
the integral

oo — Fil) = f a+1ePy 5 — Bl ©ae

as the sum of the integrals over the regions || < R and |£| > R. For |{| < R we use the
estimate

(1 + |§|2)t < (1 +R2)max(t,0)
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and for [¢| > R we use the estimate
(L+ 1€ < (L+ B+ [€]*)

which yield
2

| fra = fio, |5y <CR™(1 + R sup (€)

+ (1+ B e = S [
Given € > 0, the second term will be less than %5 provided R is chosen sufficiently large,
since t — s < 0; once such an R is fixed, the first term will less than %5 provided ¢ and j
are sufficiently large. The proof is therefore complete.

Although the definition of Sobolev spaces in terms of the Fourier transform entails
their elements being defined on all of R”, these spaces can also be used in the study of
local smoothness properties of functions. The key definition is as follows: If U is an open
set in R", the localized Sobolev space H!¢ (U) is the set of all distributions f € D’(U)
such that for every precompact open set V with V < U there exists g € H, such that
g=fonV.

fki — Jkj

Proposition 9.49: 9.23.
A distribution f € D'(U) is in H°¢ (U) if and only if ¢ f € H, for every ¢ € C*(U).

Proof. If f € H! (U) and ¢ € C*(U), then f agrees with some g € H, on a
neighborhood of supp(¢); hence ¢f = ¢g € H, by Corollary 47. For the converse, given a
precompact open V with V' < U, we can choose ¢ € C*(U) with ¢ = 1 on a neighborhood
of V by the C® Urysohn lemma; then ¢f € H, and ¢f = f on V. (We have implicitly
used Proposition 110 to obtain compact neighborhoods of supp ¢ and V in U.)

We conclude this section with one of the classic applications of Sobolev spaces, a
regularity theorem for certain partial differential operators.

If L =3 aj(d/dx)? is an ordinary differential operator with C* coefficients such that
a,, never vanishes, it is not hard to show that smooth data give smooth solutions. More
precisely, if Lu = f and f is C* on an open interval I, then u is C**™ on I. No such
result holds for partial differential operators in general. For example, for any f € L{ (R)
the function u(z,t) = f(x — t) satisfies the wave equation (02 — 0%)u = 0, but u has only
as much smoothness as f. However, there is a large class of differential operators for
which a strong regularity theorem holds. We restrict attention to the constant-coefficient
case, although the results are valid in greater generality.

Let P(D) = 3] j<m CaD (notation as in Folland Section 8.7) be a constant-coefficient
operator. We assume that m is the true order of P(D), i.e., that ¢, # 0 for some a with
|a| = m. The principal symbol P,, is the sum of the top-order terms in its symbol:

Pa®) =Y g

laf=m
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P(D) is called elliptic if B,,(§) # 0 for all nonzero £ € R™. Thus, ellipticity means that, in
a formal sense, P(D) is genuinely mth order in all directions. (For example, the Laplacian

A is elliptic on R", whereas the heat and wave operators 0; — A and 02 — A are not elliptic
on R"*1))

Lemma 9.50: 9.24.

Suppose that P(D) is of order m. Then P(D) is elliptic if and only if there exist
C, R > 0 such that |P(§)| = C|¢|™ when |[¢| = R.

Proof. If P(D) is elliptic, let Cy be the minimum value of the principal symbol P, on
the unit sphere || = 1. Then C; > 0, and since P, is homogeneous of degree m, we have
|Pn(€)] = C1[€™ for all €. On the other hand, P — P, is of order m — 1, so there exists
Cs such that |P(€) — P, ()] < Col¢|™!. Therefore,

1 _
[P = [En(€)] = [P() = Pu(§)] = 5C1J¢|™ for [¢] = 2G50

Conversely, if P(D) is not elliptic, say P,,(&) = 0, then |P(£)| < C|£]™! for every scalar
multiple £ of &,.

Lemma 9.51: 9.25.
If P(D) is elliptic of order m,u € Hy, and P(D)u € Hy, then u € Hy .

Proof. The hypotheses say that (1+ |¢[2)*0 € L? and (1 + [¢]?)**Pi e L2. By
Lemma 50, for some R > 1 we have

(L+ €)™ < 27 < C'2m | P(€)] for [¢] = R
and (1 + [€])™? < (1 + R2)™? for |¢| < R. Tt follows that
(1+ €)@ < (1 + |€)2(| Pal + [a]) e L?

that is, u € Hyyyp,.

Theorem 9.52: 9.26: The Elliptic Regularity Theorem.

Suppose that L is a constant-coefficient elliptic differential operator of order m, {2 is
an open set in R”, and u € D'(Q). If Lu € H°°(Q) for some s € R, then u € H'°% (Q);
and if Lu e C*(Q), then u € C*(Q).

Proof. The second assertion follows from the first in view of Corollary 44, so by
Proposition 49 we must show that if Lu € H°°(Q) and ¢ € C*(Q), then ¢u € H,,,,. Let
V be a precompact open set such that supp(¢) = V < V < €, and choose 1 € C*(Q)
such that ¢ = 1 on V. Then ¢u € &', so it follows from Proposition 25 that Yu € H,
for some o € R. By decreasing ¢ we may assume that s + m — o is a positive integer k.
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Set ¢y = 1 and 1, = ¢, and choose recursively 1, ..., 9,1 € C such that 1); = 1 on a
neighborhood of supp(¢) and supp(¢;) is contained in the set where 1;_; = 1. We shall
prove by induction that ¢;u € H,,;. When j = k, we obtain ¢u = Ypu € Hoy = Hp,
which will complete the proof.

The crucial observation is that for any ¢ € C° the operator [L, (] defined by

[L.¢lf = L(Cf) = CLf

is a differential operator of order m — 1 whose coefficients are linear combinations of
derivatives of (; in particular, these coefficients are C'° functions that vanish on any
open set where ( is constant. (This follows from the product rule for derivatives.) Thus,
if f e Hy, we have 0°f € H;_ (1) for o] < m — 1 and hence [L,(|f € H;_(n-1) by
Theorem 46.

For 7 = 0 we have ypu € H, by assumption. Suppose we have established that
Yju € Hyyj, where 0 < j < k. Then by the preceding remarks,

L(¥j1u) = Vi lu+ [L,jia]u = o Lu + [ L4 [Yu
€Hs+ Hoyj(m-1) = Horjr1-m
Since ©j41u = Y 1¢;u € Hyyj, Lemma 51 (with P(D) = L) implies that ¢; yu € Hyiji1,
and we are done.

Two classical special cases of this theorem are particularly noteworthy. First, every
distribution solution of Laplace’s equation Au = 0 is a C* function. (This fact is known as
Weyl’s lemma.) Second, if L = d; +ids on R?, the equation Lu = 0 is the Cauchy-Riemann
equation, whose solutions are the holomorphic (or analytic) functions of z = x1 + izy. We
thus recover the fact that holomorphic functions are C'°.

Exercise 9.53: Folland Exercise 9.30.
Let f,(€) = (1 + [€]%)*%. Then [0%f,(€)| < Co(1 + [€])= ],

Exercise 9.54: Folland Exercise 9.31.

If k € Z=1, Hy, is the space of all f € L? that possess strong L? derivatives 0°f, as
defined in Folland Exercise 8.8, for |a| < k; and these strong derivatives coincide with
the distribution derivatives.

Exercise 9.55: Folland Exercise 9.32.

Suppose r < s < t. For any € > 0 there exists C' > 0 such that || f| ) <[ f]w+C|fllm
for all f e H;.
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Exercise 9.56: Folland Exercise 9.33.

(Converse of the Sobolev Theorem) If H, < Cf, then s > k + in. (Use the closed
graph theorem to show that the inclusion map H, — C§ is continuous and hence that

0%6 € (H,)" for |a| < k.)

Exercise 9.57: Folland Exercise 9.34.
(A Sharper Sobolev Theorem) For 0 < a < 1, let

SUD, 4,

Ao(R™) = { f e BC(R™)

fo- 1l )
[ =yl

(a) If s = in + a where 0 < a < 1, then |76 — 7,0y < Calz —y[*. (We have

(Tmé/)\(f) = e~ 2™&®  Write the integral defining 7,0 — 7, H?_s) as the sum of the

integrals over the regions |£| < R and |¢| > R, where R = |z — y|™!, and use the
mean value theorem to estimate (7,0 — 7,0) on the first region.)
(b) If s = in + o where 0 < a < 1, then H, < A,(R™).

(c) If s = In+k + a where k € Z>; and 0 < a < 1, then

2
H,c {feCl|ofe AR for |a| <k}

Exercise 9.58: Folland Exercise 9.35.

The Sobolev theorem says that if s > %n, it makes sense to evaluate functions in H, at
a point. For 0 < s < %n, functions in H, are only defined a.e., but if s > %k with & < n,
it makes sense to restrict functions in H, to subspaces of codimension k. More precisely,
let us write R* = R*" *xR* 2 = (y,2),£ = (n,(), and define R: §(R") — §(R"*) by
(a) (Rf)(n) =S f(n,¢)dC. (See Folland Exercise 8.20.)
(b) If s > Lk,

(R < €+ ) [ 1F QP+ Il + I¢P)dc
(c) R extends to a bounded map from H (R") to Hs_ (42 (R"=*) provided s > %k

Exercise 9.59: Folland Exercise 9.36.

Suppose that 0 # ¢ € CF and {a;} is a sequence in R™ with |a;] — oo, and let
¢j(x) = ¢(z —a;j). Then {¢,} is bounded in H; for every s but has no convergent
subsequence in H; for any t.
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Exercise 9.60: Folland Exercise 9.37.

The heat operator d; — A is not elliptic, but a weakened version of Theorem 52 holds
for it. Here we are working on R™"*! with coordinates (z,t) and dual coordinates (¢, 7),
and 0, — A = P(D) where P(¢,7) = 2mit + 472|¢[%
(a) There exist C, R > 0 such that [£||(&,7)]"2 < C|P(&,7)| for |(&,7)] > R. (Con-
sider the regions |7| < [£]? and || = |£]? separately.)
(b) If f e Hy and (6, — A)f € Hy, then f € Hyyy and 0, f € Hoy(1yo) for 1 <i < n.
(c) If ¢ e CP(R™), we have

[0: = A, C1f = (8¢ = AQ) f =2 (0.0 (0, f)
(d) If Qis open in R"™ w e D'(Q), and (¢, — A)u e HO® (), then u € H S (Q). (Let
1, be as in the proof of Theorem 52. Show inductively that if Yyu € H,, then

Yju € Hyy(j2) and Oy, (Yju) € Hyy(j—1y2 provided o + 15 < s.)

Exercise 9.61: Folland Exercise 9.38.

Suppose sp < s1 and ty < t1, and for 0 < A < 1 let
Sy = (1—)\)80-1—/\81, th = (1—>\)t0+)\t1

If T is a bounded linear map from H,, to H;, whose restriction to Hj, is bounded
from H,, to Hy,, then the restriction of 7' to Hy, is bounded from Hg, to H;, for
0 <A< 1. (Tisbounded from H, to H; if and only if A,TA_; is bounded on LZ.
Observe that A, is well defined for all z € C and A, is unitary on every H if Re
z=0. Let s(z) = (1 — 2)s¢ + 2zs1,t(2) = (1 — 2)tp + zt1, and for 0 < Rez < 1 and
¢, € 8 let F(z) = {[Ays) TA—_s(z)@]p. Apply the three lines lemma as in the proof of
the Riesz-Thorin theorem.)

Exercise 9.62: Folland Exercise 9.39.

Let €2 be an open set in R", and let G: 2 — R"™ be a C'* diffeomorphism. For any
¢ € CP(G(Q)), the map T'f = (¢f) o G is bounded on H; for all s; consequently,
f oG e H" (Q) whenever f e H'® (G(Q)). Proceed as follows:
(a) If s =0,1,2,..., use the chain rule and the fact that f € H, if and only if 0*f € L?
for |of <'s.
(b) Use Folland Exercise 9.38 to obtain the result for all s > 0.
(c¢) For s < 0, use Proposition 42 and the fact that the transpose of T is another
operator of the same type, namely, T7'f = (¢ f) o H where H = G~! and ¢ =
(J¢) o G with J(z) = |det D,G].
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Exercise 9.63: Folland Exercise 9.40.

State and prove analogues of the results in this section for the periodic Sobolev spaces

Hy(T") = {f € D(T") | Y1+ ) IF () < o0}
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Radon-Nikodym theorem, 111
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108
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absolutely convergent, 183

accumulation point, 138

algebra, 175

almost uniformly, 74

approximate identity, 285
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base, 138
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closed, 203
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cluster point, 144, 156
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cofinal, 157

compactly supported, 165

compact, 159

completely regular, 151

completion, 30

conditional expectation, 116

conjugate exponent, 230
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continuous, 146

convergence in L', 64

converges in measure, 72

converges, 140, 156

converge, 183

convex, 136

convolution, 279

countably compact, 161

dense, 137

density, 113, 123

directed by reverse inclusion, 155

directed set, 155

disconnected, 144

discrete, 131

embedding, 147

equicontinuous at x, 172

equicontinuous, 172

equivalent, 183

essential supremum, 232

eventually in, 155

extended p-integrable, 103

finer, 138

finite intersection property, 159

finite signed measure, 106

first axiom of countability, 140

first category, 197

first countable, 140

frequently in, 155

functions of bounded variation on R, 125

generic, 197

graph, 203

homeomorphic, 147

homeomorphism, 147

hyperconnected, 153

indexed by, 155

initial topology generated by {fa}
147

inner approximation, 90

inner content, 90

inner product, 216
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integrable, 62

interior, 137

invertible, 186

isometry, 186

isomorphism, 186

lattice, 175

limit superior for real-valued functions of
a real variable, 118

limit, 156

locally compact, 164

locally integrable (with respect to the
Lebesgue measure), 117

meager, 197

measurable function, 50

measurable on E, 51

measurable, 50

monotone class generated by P, 80

monotone class, 80

mutually singular, 104

negative for v, 103

negative variation of F', respectively, 127

negative variation of v, 105

neighborhood base, 138

neighborhood, 138

net, 155

norm topology, 183

normalized functions of bounded
variation on R, 127

normed linear space, 183

normed vector space, 183

norm, 183

nowhere dense, 138

null for v, 103

one-point compactification, 166

open cover, 159

open sets, 137

open, 202

order topology, 144

orthonormal basis, 221
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oscillation, 199

outer approximation, 90
outer content, 90

outer measure, 36
paracompact, 170
partition of unity, 168
partition, 69

pointwise bounded, 172
popcorn function, 200
positive for v, 103
positive measure, 102
positive variation of F'; 127
positive variation of v, 105
pre-Hilbert space, 217
precompact, 159

product of y and v, 79
proper, 169

quotient norm, 184
quotient space, 184
regular, 120, 121
relatively closed, 137
relatively open, 137
residual, 197

scalar product, 216
second axiom of countability, 140
second category, 197
second countable, 140
seminorm, 182

separable, 140

separate points, 175
separation axioms, 141
sequentially compact, 161
shrink nicely, 120
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