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Abstract

These notes follow a course in real analysis from 2023–2024 at The Ohio State
University. We follow [Fol99] very closely, and at times even exactly.
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0 Preliminaries

The purpose of this introductory chapter is to establish the notation and terminology
that will be used throughout the book and to present a few diverse results from set theory
and analysis that will be needed later. The style here is deliberately terse, since this
chapter is intended as a reference rather than a systematic exposition.

0.1 The Language of Set Theory

It is assumed that the reader is familiar with the basic concepts of set theory; the
following discussion is meant mainly to fix our terminology.

Number Systems. Our notation for the fundamental number systems is as follows:
Zě1 “ the set of positive integers (not including zero)
Z “ the set of integers
Q “ the set of rational numbers
R “ the set of real numbers
C “ the set of complex numbers
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Logic. We shall avoid the use of special symbols from mathematical logic, preferring
to remain reasonably close to standard English. We shall, however, sometimes use the
abbreviation iff for “if and only if.”

One point of elementary logic that is often insufficiently appreciated by students is
the following: If A and B are mathematical assertions and ´A,´B are their negations,
the statement “ A implies B” is logically equivalent to the contrapositive statement “ ´B
implies ´A.” Thus one may prove that A implies B by assuming ´B and deducing ´A,
and we shall frequently do so. This is not the same as reductio ad absurdum, which
consists of assuming both A and ´B and deriving a contradiction.

Sets. The words “family” and “collection” will be used synonymously with “set,” usually
to avoid phrases like “set of sets.” The empty set is denoted by ∅, and the family of all
subsets of a set X is denoted by PpXq:

PpXq “ tE | E Ă Xu

Here and elsewhere, the inclusion sign Ă is interpreted in the weak sense; that is, the
assertion “ E Ă X” includes the possibility that E “ X.

Remark 1 (Human language conversion). What follows in this remark is an excerpt from
Professor Nicolaescu’s course notes from the past few years. Suppose that we are given a
family of subsets pSiqiPI of a set Ω. Let us observe that the statement

ω P
č

iPI
Si

translates into the formula @i P I, ω P Si or, in human language, ω belongs to all the sets
in the family. The statement

ω P
ď

iPI
Si

translates into the formula Di P I, ω P Si or, in human language, ω belongs to at least one
of the sets Si. For example a statement of the form

ω P
ď

nPZě1

č

kěn
Sk

translates into
Dn P Zě1, @k ě n, ω P Sk.

Equivalently, this means that ω belongs to all but finitely many of the sets Sk. Conversely,
statements involving the quantifiers D, @ can be translated into set theoretic statements
using the conversion rules

D Ñ Y, @ Ñ X.

If E is a family of sets, we can form the union and intersection of its members:
ď

EPE
E “ tx : x P E for some E P Eu

č

EPE
E “ tx : x P E for all E P Eu
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Usually it is more convenient to consider indexed families of sets:
E “ tEα | α P Au “ tEαuαPA,

in which case the union and intersection are denoted by
ď

αPA
Eα,

č

αPA
Eα

If Eα X Eβ “ ∅ whenever α ‰ β, the sets Eα are called disjoint. The terms “disjoint
collection of sets” and “collection of disjoint sets” are used interchangeably, as are “disjoint
union of sets” and “union of disjoint sets.”

When considering families of sets indexed by Zě1, our usual notation will be
tEnu

8

n“1 or tEnu
8

1

and likewise for unions and intersections. In this situation, the notions of limit superior
and limit inferior are sometimes useful:

lim supEn “
č8

k“1

ď8

n“k
En, lim inf En “

ď8

k“1

č8

n“k
En

The reader may verify that
lim supEn “ tx | x P En for infinitely many nu,
lim inf En “ tx | x P En for all but finitely many nu.
If E and F are sets, we denote their difference by E ∖ F :

E ∖ F “ tx | x P E and x R F u

and their symmetric difference by E△F :
E△F “ pE ∖ F q Y pF ∖ Eq.

When it is clearly understood that all sets in question are subsets of a fixed set X, we
define the complement Ec of a set E (in X):

Ec
“ X ∖ E.

In this situation we have deMorgan’s laws:
´

ď

αPA
Eα

¯c

“
č

αPA
Ec
α,

´

č

αPA
Eα

¯c

“
ď

αPA
Ec
α

If X and Y are sets, their Cartesian product XˆY is the set of all ordered pairs px, yq

such that x P X and y P Y . A relation from X to Y is a subset of XˆY . (If Y “ X,
we speak of a relation on X.) If R is a relation from X to Y , we shall sometimes write
xRy to mean that px, yq P R. The most important types of relations are the following: -
Equivalence relations. An equivalence relation on X is a relation R on X such that

xRx for all x P X

xRy iff yRx

xRz whenever xRy and yRz for some y.
The equivalence class of an element x is ty P X | xRyu.X is the disjoint union of these
equivalence classes. - Orderings. See Folland Section 0.2. - Mappings. A mapping
f : X Ñ Y is a relation R from X to Y with the property that for every x P X there is a
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unique y P Y such that xRy, in which case we write y “ fpxq. Mappings are sometimes
called maps or functions; we shall generally reserve the latter name for the case when Y
is C or some subset thereof.

If f : X Ñ Y and g : Y Ñ Z are mappings, we denote by g ˝ f their composition:
g ˝ f : X Ñ Z, g ˝ fpxq “ gpfpxqq

If D Ă X and E Ă Y , we define the image of D and the inverse image of E under a
mapping f : X Ñ Y by

fpDq “ tfpxq | x P Du, f´1
pEq “ tx | fpxq P Eu

It is easily verified that the map f´1 : PpY q Ñ PpXq defined by the second formula
commutes with union, intersections, and complements:

f´1
´

ď

αPA
Eα

¯

“
ď

αPA
f´1

pEαq, f´1
´

č

αPA
Eα

¯

“
č

αPA
f´1

pEαq,

f´1
pEc

q “ pf´1
pEqq

c.

(The direct image mapping f : PpXq Ñ PpY q commutes with unions, but in general not
with intersections or complements.)

If f : X Ñ Y is a mapping, X is called the domain of f and fpXq is called the range
of f.f is said to be injective if fpx1q “ fpx2q only when x1 “ x2, surjective if fpXq “ Y ,
and bijective if it is both injective and surjective. If f is bijective, it has an inverse
f´1 : Y Ñ X such that f´1 ˝ f and f ˝ f´1 are the identity mappings on X and Y ,
respectively. If A Ă X, we denote by f |A the restriction of f to A:

pf |Aq : A Ñ Y, pf |Aqpxq “ fpxq for x P A

A sequence in a set X is a mapping from Zě1 into X. (We also use the term finite sequence
to mean a map from t1, . . . , nu into X where n P Zě1.) If f : Zě1 Ñ X is a sequence and
g : Zě1 Ñ Zě1 satisfies gpnq ă gpmq whenever n ă m, the composition f ˝ g is called a
subsequence of f . It is common, and often convenient, to be careless about distinguishing
between sequences and their ranges, which are subsets of X indexed by Zě1. Thus, if
fpnq “ xn, we speak of the sequence txnu

8

1 ; whether we mean a mapping from Zě1 to X
or a subset of X will be clear from the context.

Earlier we defined the Cartesian product of two sets. Similarly one can define the
Cartesian product of n sets in terms of ordered n-tuples. However, this definition becomes
awkward for infinite families of sets, so the following approach is used instead. If tXαuαPA

is an indexed family of sets, their Cartesian product
ś

αPAXα is the set of all maps
f : A Ñ

Ť

αPAXα such that fpαq P Xα for every α P A. (It should be noted, and
then promptly forgotten, that when A “ t1, 2u, the previous definition of X1 ˆX2 is
set-theoretically different from the present definition of

ś2
1Xj . Indeed, the latter concept

depends on mappings, which are defined in terms of the former one.) If X “
ś

αPAXα

and α P A, we define the αth projection or coordinate map πα : X Ñ Xα by παpfq “ fpαq.
We also frequently write x and xα instead of f and fpαq and call xα the αth coordinate
of x.
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If the sets Xα are all equal to some fixed set Y , we denote
ś

αPAXα by Y A:
Y A

“ the set of all mappings from A to Y .
If A “ t1, . . . , nu, Y A is denoted by Y n and may be identified with the set of ordered
n-tuples of elements of Y .

0.2 Orderings

A partial ordering on a nonempty set X is a relation R on X with the following
properties:

• if xRy and yRz, then xRz;
• if xRy and yRx, then x “ y;
• xRx for all x.

If R also satisfies
• if x, y P X, then either xRy or yRx,

then R is called a linear (or total) ordering. For example, if E is any set, then PpEq is
partially ordered by inclusion, and R is linearly ordered by its usual ordering. Taking this
last example as a model, we shall usually denote partial orderings by ď, and we write
x ă y to mean that x ď y but x ‰ y. We observe that a partial ordering on X naturally
induces a partial ordering on every nonempty subset of X. Two partially ordered sets X
and Y are said to be order isomorphic if there is a bijection f : X Ñ Y such that x1 ď x2
iff fpx1q ď fpx2q.

If X is partially ordered by ď, a maximal (resp. minimal) element of X is an element
x P X such that the only y P X satisfying x ď y (resp. x ě y) is x itself. Maximal and
minimal elements may or may not exist, and they need not be unique unless the ordering
is linear. If E Ă X, an upper (resp. lower) bound for E is an element x P X such that
y ď x (resp. x ď y) for all y P E. An upper bound for E need not be an element of E,
and unless E is linearly ordered, a maximal element of E need not be an upper bound for
E. (The reader should think up some examples.)

If X is linearly ordered by ď and every nonempty subset of X has a (necessarily
unique) minimal element, X is said to be well ordered by ď, and (in defiance of the laws
of grammar) ď is called a well ordering on X. For example, Zě1 is well ordered by its
natural ordering.

We now state a fundamental principle of set theory and derive some consequences of
it.

Theorem 0.2: 0.1: The Hausdorff Maximal Principle.

Every partially ordered set has a maximal linearly ordered subset.

In more detail, this means that if X is partially ordered by ď, there is a set E Ă X
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that is linearly ordered by ď, such that no subset of X that properly includes E is linearly
ordered by ď. Another version of this principle is the following:

Theorem 0.3: 0.2: Zorn’s Lemma.

If X is a partially ordered set and every linearly ordered subset of X has an upper
bound, then X has a maximal element.

Clearly the Hausdorff maximal principle implies Zorn’s lemma: An upper bound for a
maximal linearly ordered subset of X is a maximal element of X. It is also not difficult
to see that Zorn’s lemma implies the Hausdorff maximal principle. (Apply Zorn’s lemma
to the collection of linearly ordered subsets of X, which is partially ordered by inclusion.)

Theorem 0.4: 0.3: The Well Ordering Principle.

Every nonempty set X can be well ordered.

Proof. Let W be the collection of well orderings of subsets of X, and define a partial
ordering on W as follows. If ď1 and ď2 are well orderings on the subsets E1 and E2, then
ď1 precedes ď2 in the partial ordering if (i) ď2 extends ď1, i.e., E1 Ă E2 and ď1 and ď2

agree on E1, and (ii) if x P E2 ∖E1 then y ď2 x for all y P E1. The reader may verify that
the hypotheses of Zorn’s lemma are satisfied, so that W has a maximal element. This
must be a well ordering on X itself, for if ď is a well ordering on a proper subset E of
X and x0 P X ∖ E, then ď can be extended to a well ordering on E Y tx0u by declaring
that x ď x0 for all x P E.

Theorem 0.5: 0.4: The Axiom of Choice.

If tXαuαPA is a nonempty collection of nonempty sets, then
ś

αPAXα is nonempty.

Proof. Let X “
Ť

αPAXα. Pick a well ordering on X and, for α P A, let fpαq be the
minimal element of Xα. Then f P

ś

αPAXα.

Corollary 0.6: 0.5.

If tXαuαPA is a disjoint collection of nonempty sets, there is a set Y Ă
Ť

αPAXα such
that Y X Xα contains precisely one element for each α P A.

Proof. Take Y “ fpAq where f P
ś

αPAXα.

We have deduced the axiom of choice from the Hausdorff maximal principle; in fact, it
can be shown that the two are logically equivalent.
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0.3 Cardinality

If X and Y are nonempty sets, we define the expressions
cardpXq ď cardpY q, cardpXq “ cardpY q, cardpXq ě cardpY q

to mean that there exists f : X Ñ Y which is injective, bijective, or surjective, respectively.
We also define

cardpXq ă cardpY q, cardpXq ą cardpY q

to mean that there is an injection but no bijection, or a surjection but no bijection, from
X to Y . Observe that we attach no meaning to the expression “ cardpXq” when it stands
alone; there are various ways of doing so, but they are irrelevant for our purposes (except
when X is finite— see below). These relationships can be extended to the empty set by
declaring that

cardp∅q ă cardpXq and cardpXq ą cardp∅q for all X ‰ ∅
For the remainder of this section we assume implicitly that all sets in question are
nonempty in order to avoid special arguments for ∅. Our first task is to prove that the
relationships defined above enjoy the properties that the notation suggests.

Proposition 0.7: 0.6.

cardpXq ď cardpY q iff cardpY q ě cardpXq.

Proof. If f : X Ñ Y is injective, pick x0 P X and define g : Y Ñ X by gpyq “ f´1pyq if
y P fpXq, gpyq “ x0 otherwise. Then g is surjective. Conversely, if g : Y Ñ X is surjective,
the sets g´1ptxuqpx P Xq are nonempty and disjoint, so any f P

ś

xPX g
´1ptxuq is an

injection from X to Y .

Proposition 0.8: 0.7.

For any sets X and Y , either cardpXq ď cardpY q or cardpY q ď cardpXq.

Proof. Consider the set J of all injections from subsets of X to Y . The members of J can
be regarded as subsets of XˆY , so J is partially ordered by inclusion. It is easily verified
that Zorn’s lemma applies, so J has a maximal element f , with (say) domain A and range
B. If x0 P X ∖ A and y0 P Y ∖B, then f can be extended to an injection from A Y tx0u
to Y Y ty0u by setting fpx0q “ y0, contradicting maximality. Hence either A “ X, in
which case cardpXq ď cardpY q, or B “ Y , in which case f´1 is an injection from Y to X
and cardpY q ď cardpXq.

Theorem 0.9: 0.8: The Schröder-Bernstein Theorem.

If cardpXq ď cardpY q and cardpY q ď cardpXq then cardpXq “ cardpY q.
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Proof. Let f : X Ñ Y and g : Y Ñ X be injections. Consider a point x P X: If x P gpY q,
we form g´1pxq P Y ; if g´1pxq P fpXq, we form f´1pg´1pxqq; and so forth. Either this
process can be continued indefinitely, or it terminates with an element of X ∖ gpY q

(perhaps x itself), or it terminates with an element of Y ∖ fpXq. In these three cases we
say that x is in X8, XX , or XY ; thus X is the disjoint union of X8, XX , and XY . In the
same way, Y is the disjoint union of three sets Y8, YX , and YY . Clearly f maps X8 onto
Y8 and XX onto YX , whereas g maps YY onto XY . Therefore, if we define h : X Ñ Y by
hpxq “ fpxq if X P X8 Y XX and hpxq “ g´1pxq if x P XY , then h is bijective.

Proposition 0.10: 0.9: Proposition.

For any set X, cardpXq ă cardpPpXqq.

Proof. On the one hand, the map fpxq “ txu is an injection from X to PpXq. On the
other, if g : X Ñ PpXq, let Y “ tx P X | x R gpxqu. Then Y R gpXq, for if Y “ gpx0q
for some x0 P X, any attempt to answer the question “Is x0 P Y ?” quickly leads to an
absurdity. Hence g cannot be surjective.

A set X is called countable (or denumerable) if cardpXq ď cardpZě1q. In particular,
all finite sets are countable, and for these it is convenient to interpret “card pXq” as the
number of elements in X:

cardpXq “ n iff cardpXq “ cardpt1, . . . , nuq

If X is countable but not finite, we say that X is countably infinite.

Proposition 0.11: 0.10.

(a) If X and Y are countable, so is XˆY .
(b) If A is countable and Xα is countable for every α P A, then

Ť

αPAXα is countable.
(c) If X is countably infinite, then cardpXq “ cardpZě1q.

Proof. . To prove (a) it suffices to prove that Z2
ě1 is countable. But we can define a

bijection from Zě1 to Z2
ě1 by listing, for n successively equal to 2, 3, 4, . . ., those elements

pj, kq P Z2
ě1 such that j ` k “ n in order of increasing j, thus:

p1, 1q, p1, 2q, p2, 1q, p1, 3q, p2, 2q, p3, 1q, p1, 4q, p2, 3q, p3, 2q, p4, 1q, . . .

As for (b), for each α P A there is a surjective fα : Zě1 Ñ Xα, and then the map
f : Zě1 ˆA Ñ

Ť

αPAXα defined by fpn, αq “ fαpnq is surjective; the result therefore
follows from (a). Finally, for (c) it suffices to assume that X is an infinite subset of Zě1.
Let fp1q be the smallest element of X, and define fpnq inductively to be the smallest
element of E ∖ tfp1q, . . . , fpn ´ 1qu. Then f is easily seen to be a bijection from Zě1 to
X.
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Corollary 0.12: 0.11.

Z and Z2 are countable.

Proof. Z is the union of the countable sets Z, t´n : n P Zu, and t0u, and one can define a
surjection f : Z2 Ñ Z by fpm,nq “ m{n if n ‰ 0 and fpm, 0q “ 0.

A set X is said to have the cardinality of the continuum if cardpXq “ cardpRq. We
shall use the letter c as an abbreviation for cardpRq:

cardpXq “ c iff cardpXq “ cardpRq

Proposition 0.13: 0.12.

cardpPpZě1qq “ c.

Proof. If A Ă Zě1, define fpAq P Zě1 to be
ř

nPA 2´n if Zě1∖A is infinite and 1`
ř

nPA 2´n

if Zě1∖A is finite. (In the two cases, fpAq is the number whose base-2 decimal expansion is
0.a1a2 ¨ ¨ ¨ or 1.a1a2 ¨ ¨ ¨ , where an “ 1 if n P A and an “ 0 otherwise.) Then f : PpZě1q Ñ

Zě1 is injective. On the other hand, define g : PpZě1q Ñ Zě1 by gpAq “ logp
ř

nPA 2
´nq if

A is bounded below and gpAq “ 0 otherwise. Then g is surjective since every positive real
number has a base-2 decimal expansion. Since cardpPpZě1qq “ cardpPpZě1qq, the result
follows from the Schröder-Bernstein theorem.

Corollary 0.14: 0.13.

If cardpXq ě c, then X is uncountable.

Proof. Apply Proposition 10.

The converse of this corollary is the so-called continuum hypothesis, whose validity is
one of the famous undecidable problems of set theory; see Folland Section 0.7.

Proposition 0.15: 0.14.

(a) If cardpXq ď c and cardpY q ď c, then cardpXˆY q ď c.
(b) If cardpAq ď c and cardpXαq ď c for all α P A, then cardp

Ť

αPAXαq ď c.

Proof. For (a) it suffices to take X “ Y “ PpZě1q. Define ϕ, ψ : Zě1 Ñ Zě1 by ϕpnq “ 2n
and ψpnq “ 2n ´ 1. It is then easy to check that the map f : PpZě1q

2 Ñ PpZě1q

defined by fpA,Bq “ ϕpAq Y ψpBq is bijective. (b) follows from (a) as in the proof of
Proposition 11.
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0.4 More About Well-Ordered Sets

The material in this section is optional; it is used only in a few exercises and in some
notes at the ends of chapters.

Let X be a well ordered set. If A Ă X is nonempty, A has a minimal element, which
is its maximal lower bound or infimum; we shall denote it by inf A. If A is bounded above,
it also has a minimal upper bound or supremum, denoted by supA. If x P X, we define
the initial segment of x to be

Ix “ ty P X | y ă xu

The elements of Ix are called predecessors of x.
The principle of mathematical induction is equivalent to the fact that Zě1 is well

ordered. It can be extended to arbitrary well ordered sets as follows:

Theorem 0.16: 0.15: The Principle of Transfinite Induction.

Let X be a well ordered set. If A is a subset of X such that x P A whenever Ix Ă A,
then A “ X.

Proof. If X ‰ A, let x “ infpX ∖ Aq. Then Ix Ă A but x R A.

Proposition 0.17: 0.16.

If X is well ordered and A Ă X, then
Ť

xPA Ix is either an initial segment or X itself.

Proof. Let J “
Ť

xPA Ix. If J ‰ X, let b “ infpX ∖ Jq. If there existed y P J with y ą b,
we would have y P Ix for some x P A and hence b P Ix, contrary to construction. Hence
J Ă Ib, and it is obvious that Ib Ă J .

Proposition 0.18: 0.17.

If X and Y are well ordered, then either X is order isomorphic to Y , or X is order
isomorphic to an initial segment in Y , or Y is order isomorphic to an initial segment
in X.

Proof. Consider the set F of order isomorphisms whose domains are initial segments in X
or X itself and whose ranges are initial segments in Y or Y itself. F is nonempty since
the unique f : tinfXu Ñ tinf Y u belongs to F, and F is partially ordered by inclusion (its
members being regarded as subsets of XˆY ).

An application of Zorn’s lemma shows that F has a maximal element f , with (say)
domain A and range B. If A “ Ix and B “ Iy, then A Y txu and B Y tyu are again
initial segments of X and Y , and f could be extended by setting fpxq “ y, contradicting
maximality. Hence either A “ X or B “ Y (or both), and the result follows.
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Proposition 0.19: 0.18.

There is an uncountable well ordered set Ω such that Ix is countable for each x P Ω. If
Ω1 is another set with the same properties, then Ω and Ω1 are order isomorphic.

Proof. Uncountable well ordered sets exist by the well ordering principle; let X be one.
Either X has the desired property or there is a minimal element x0 such that Ix0 is
uncountable, in which case we can take Ω “ Ix0 . If Ω1 is another such set, Ω1 cannot
be order isomorphic to an initial segment of Ω or vice versa, because Ω and Ω1 are
uncountable while their initial segments are countable, so Ω and Ω1 are order isomorphic
by Proposition 18.

The set Ω in Proposition 19, which is essentially unique qua well ordered set, is called
the set of countable ordinals. It has the following remarkable property:

Proposition 0.20: 0.19.

Every countable subset of Ω has an upper bound.

Proof. If A Ă Ω is countable,
Ť

xPA Ix is countable and hence is not all of Ω. By
Proposition 17, there exists y P Ω such that

Ť

xPA Ix “ Iy, and y is thus an upper bound
for A.

The set Zě1 of positive integers may be identified with a subset of Ω as follows. Set
fp1q “ inf Ω, and proceeding inductively, set fpnq “ infpΩ∖ tfp1q, . . . , fpn ´ 1quq. The
reader may verify that f is an order isomorphism from Zě1 to Iω, where ω is the minimal
element of Ω such that Iω is infinite.

It is sometimes convenient to add an extra element ω1 to Ω to form a set Ω˚ “ ΩYtω1u

and to extend the ordering on Ω to Ω˚ by declaring that x ă ω1 for all x P Ω. ω1 is called
the first uncountable ordinal. (The usual notation for ω1 is Ω, since ω1 is generally taken
to be the set of countable ordinals itself.)

0.5 The Extended Real Number System

It is frequently useful to adjoin two extra points 8p“ `8q and ´8 to R to form the
extended real number system R “ R Y t´8,8u, and to extend the usual ordering on R
by declaring that ´8 ă x ă 8 for all x P R. The completeness of R can then be stated
as follows: Every subset A of R has a least upper bound, or supremum, and a greatest
lower bound, or infimum, which are denoted by supA and inf A. If A “ ta1, . . . anu, we
also write

maxpa1, . . . , anq “ supA, minpa1, . . . , anq “ inf A
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From completeness it follows that every sequence txnu in R has a limit superior and a
limit inferior:

lim supxn “ inf
kě1

psupněk xnq, lim inf xn “ supkě1

´

inf
něk

xn

¯

The sequence txnu converges (in R) iff these two numbers are equal (and finite), in which
case its limit is their common value. One can also define limsup and lim inf for functions
f : R Ñ R, for instance:

lim supxÑa fpxq “ inf
δą0

psup0ă|x´a|ăδ fpxqq

The arithmetical operations on R can be partially extended to R:
x ˘ 8 “ ˘8px P Rq, 8 ` 8 “ 8, ´8 ´ 8 “ ´8

x ¨ p˘8q “ ˘8px ą 0q, x ¨ p˘8q “ ¯8px ă 0q

We make no attempt to define 8 ´ 8, but we abide by the convention that, unless
otherwise stated,

0 ¨ p˘8q “ 0

(The expression 0 ¨ 8 turns up now and then in measure theory, and for various reasons
its proper interpretation is almost always 0.)

We employ the following notation for intervals in R: if ´8 ď a ă b ď 8,
pa, bq “ tx | a ă x ă bu, ra, bs “ tx | a ď x ď bu

pa, bs “ tx | a ă x ď bu, ra, bq “ tx | a ď x ă bu

We shall occasionally encounter uncountable sums of nonnegative numbers. If X is an
arbitrary set and f : X Ñ r0,8s, we define

ř

xPX fpxq to be the supremum of its finite
partial sums:

ÿ

xPX
fpxq “ sup

!

ÿ

xPF
fpxq

ˇ

ˇ

ˇ
F Ă X,F finite

)

(Later we shall recognize this as the integral of f with respect to counting measure on X.)

Proposition 0.21: 0.20.

Given f : X Ñ r0,8s, let A “ tx | fpxq ą 0u. If A is uncountable, then
ř

xPX fpxq “ 8.
If A is countably infinite, then

ř

xPX fpxq “
ř8

1 fpgpnqq where g : Zě1 Ñ A is any
bijection and the sum on the right is an ordinary infinite series.

Proof. We have A “
Ť8

1 An where An “ tx | fpxq ą 1{nu. If A is uncountable, then
some An must be uncountable, and

ř

xPF fpxq ą cardpF q{n for F a finite subset of An; it
follows that

ř

xPX fpxq “ 8. If A is countably infinite, g : Zě1 Ñ A is a bijection, and
BN “ gpt1, . . . , Nuq, then every finite subset F of A is contained in some BN . Hence

ÿ

xPF
fpxq ď

ÿN

1
fpgpnqq ď

ÿ

xPX
fpxq
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Taking the supremum over N , we find
ÿ

xPF
fpxq ď

ÿ8

1
fpgpnqq ď

ÿ

xPX
fpxq

and then taking the supremum over F , we obtain the desired result.

Some terminology concerning (extended) real-valued functions: A relation between
numbers that is applied to functions is understood to hold pointwise. Thus f ď g
means that fpxq ď gpxq for every x, and maxpf, gq is the function whose value at x is
maxpfpxq, gpxqq. If X Ă R and f : X Ñ R, f is called increasing if fpxq ď fpyq whenever
x ď y and strictly increasing if fpxq ă fpyq whenever x ă y; similarly for decreasing. A
function that is either increasing or decreasing is called monotone.

If f : R Ñ R is an increasing function, then f has right- and left-hand limits at each
point:

fpa`q “ lim
x∖a

fpxq “ inf
xąa

fpxq, fpa´q “ lim
xÕa

fpxq “ supxăa fpxq.

Moreover, the limiting values fp8q “ supaPR fpxq and fp´8q “ infaPR fpxq exist (possibly
equal to ˘8). f is called right continuous if fpaq “ fpa`q for all a P R and left continuous
if fpaq “ fpa´q for all a P R.

For points x in R or R, |x| denotes the ordinary absolute value or modulus of x,
|a ` ib| “

?
a2 ` b2. For points x in Rn or Rn, |x| denotes the Euclidean norm:

|x| “

”

ÿn

1
|xj|

2
ı1{2

We recall that a set U Ă R is open if, for every x P U,U includes an interval centered at x.

Proposition 0.22: 0.21.

Every open set in R is a countable disjoint union of open intervals.

Proof. If U is open, for each x P U consider the collection Jx of all open intervals I
such that x P I Ă U . It is easy to check that the union of any family of open intervals
containing a point in common is again an open interval, and hence Jx “

Ť

IPJx
I is an open

interval; it is the largest element of Jx. If x, y P U then either Jx “ Jy or Jx X Jy “ ∅, for
otherwise Jx Y Jy would be a larger open interval than Jx in Jx. Thus if J “ tJx | x P Uu,
the (distinct) members of J are disjoint, and U “

Ť

JPJ J . For each J P J, pick a rational
number fpJq P J . The map f : J Ñ Q thus defined is injective, for if J ‰ J 1 then
J X J 1 “ ∅; therefore J is countable.

0.6 Metric Spaces

A metric on a set X is a function ρ : XˆX Ñ r0,8q such that
• ρpx, yq “ 0 iff x “ y;
• ρpx, yq “ ρpy, xq for all x, y P X;
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• ρpx, zq ď ρpx, yq ` ρpy, zq for all x, y, z P X.
(Intuitively, ρpx, yq is to be interpreted as the distance from x to y.) A set equipped with
a metric is called a metric space.

Example 23. The following are some example of metric spaces.
(i) The Euclidean distance ρpx, yq “ |x ´ y| is a metric on Rn.
(ii) ρ1pf, gq “

ş1

0
|fpxq ´ gpxq|dx and ρ8pf, gq “ sup0ďxď1 |fpxq ´ gpxq| are metrics on

the space of continuous functions on r0, 1s.
(iii) If ρ is a metric on X and A Ă X, then ρ|pAˆAq is a metric on A.
(iv) If pX1, ρ1q and pX2, ρ2q are metric spaces, the product metric ρ on X1ˆX2 is given

by
ρppx1, x2q, py1, y2qq “ maxpρ1px1, y1q, ρ2px2, y2qq

Other metrics are sometimes used on X1ˆX2, for instance,
ρ1px1, y1q ` ρ2px2, y2q or rρ1px1, y1q

2
` ρ2px2, y2q

2
s
1{2

These, however, are equivalent to the product metric in the sense that we shall define
at the end of this section.

Let pX, ρq be a metric space. If x P X and r ą 0, the (open) ball of radius r about x is
Bpr, xq “ ty P X | ρpx, yq ă ru

A set E Ă X is open if for every x P E there exists r ą 0 such that Bpr, xq Ă E, and closed
if its complement is open. For example, every ball Bpr, xq is open, for if y P Bpr, xq and
ρpx, yq “ s then Bpr ´ s, yq Ă Bpr, xq. Also, X and ∅ are both open and closed. Clearly
the union of any family of open sets is open, and hence the intersection of any family
of closed sets is closed. Also, the intersection (resp. union) of any finite family of open
(resp. closed) sets is open (resp. closed). Indeed, if U1, . . . Un are open and x P

Şn
1 Uj,

for each j there exists rj ą 0 such that Bprj, xq Ă Uj, and then Bpr, xq Ă
Şn

1 Uj where
r “ minpr1, . . . , rnq, so

Şn
1 Uj is open.

If E Ă X, the union of all open sets U Ă E is the largest open set contained in E; it
is called the interior of E and is denoted by Eo. Likewise, the intersection of all closed
sets F Ą E is the smallest closed set containing E; it is called the closure of E and is
denoted by E. E is said to be dense in X if E “ X, and nowhere dense if E has empty
interior. X is called separable if it has a countable dense subset. (For example, Qn is a
countable dense subset of Qn.) A sequence txnu in X converges to x P X (symbolically:
xn Ñ x or limxn “ x) if limnÑ8 ρpxn, xq “ 0.

Proposition 0.24: 0.22.

If X is a metric space, E Ă X, and x P X, the following are equivalent:
(a) x P E.
(b) Bpr, xq X E ‰ ∅ for all r ą 0.
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(c) There is a sequence txnu in E that converges to x.

Proof. If Bpr, xq X E “ ∅, then Bpr, xqc is a closed set containing E but not x, so x R E.
Conversely, if x R E, since pEqc is open there exists r ą 0 such that Bpr, xq Ă pEqc Ă Ec.
Thus (a) is equivalent to (b). If (b) holds, for each n P Zě1 there exists xn P Bpn´1, xqXE,
so that xn Ñ x. On the other hand, if Bpr, xq X E “ ∅, then ρpy, xq ě r for all y P E, so
no sequence of E can converge to x. Thus (b) is equivalent to (c).

If pX1, ρ1q and pX2, ρ2q are metric spaces, a map f : X1 Ñ X2 is called continuous
at x P X if for every ε ą 0 there exists δ ą 0 such that ρ2pfpyq, fpxqq ă ε whenver
ρ1px, yq ă δ—in other words, such that f´1pBpε, fpxqqq Ą Bpδ, xq. The map f is called
continuous if it is continuous at each x P X1 and uniformly continuous if, in addition, the
δ in the definition of continuity can be chosen independent of x.

Proposition 0.25: 0.23.

f : X1 Ñ X2 is continuous iff f´1pUq is open in X1 for every open U Ă X2.

Proof. If the latter condition holds, then for every x P X1 and ε ą 0, the set
f´1pBpε, fpxqqq is open and contains x, so it contains some ball about x; this means that f
is continuous at x. Conversely, suppose that f is continuous and U is open in X2. For each
y P U there exists εy ą 0 such that Bpεy, yq Ă U , and for each x P f´1ptyuq there exists
δx ą 0 such that Bpδx, xq Ă f´1pBpεy, yqq Ă f´1pUq. Thus f´1pUq “

Ť

xPf´1pUq
Bpδx, xq

is open.

A sequence txnu in a metric space pX, ρq is called Cauchy if ρpxn, xmq Ñ 0 as n,m Ñ 8.
A subset E of X is called complete if every Cauchy sequence in E converges and its limit
is in E. For example, Rn (with the Euclidean metric) is complete, whereas Rn is not.

Proposition 0.26: 0.24.

A closed subset of a complete metric space is complete, and a complete subset of an
arbitrary metric space is closed.

Proof. If X is complete, E Ă X is closed, and txnu is a Cauchy sequence in E, txnu has
a limit in X. By Proposition 0.22, x P E “ E. If E Ă X is complete and x P E, by
Proposition (0.22) there is a sequence txnu in E converging to x.txnu is Cauchy, so its
limit lies in E; thus E “ E.

In a metric space pX, ρq we can define the distance from a point to a set and the
distance between two sets. Namely, if x P X and E,F Ă X,

ρpx,Eq “ inftρpx, yq | y P Eu
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ρpE,F q “ inftρpx, yq | x P E, y P F u “ inftρpx, F q | x P Eu

Observe that, by Proposition 24, ρpx,Eq “ 0 iff x P E. We also define the diameter of
E Ă X to be

diamE “ suptρpx, yq | x, y P Eu

E is called bounded if diamE ă 8.
If E Ă X and tVαuαPA is a family of sets such that E Ă

Ť

αPA Vα, tVαuαPA is called a
cover of E, and E is said to be covered by the Vαs. E is called totally bounded if, for
every ε ą 0, E can be covered by finitely many balls of radius ε. Every totally bounded
set is bounded, for if x, y P

Ťn
1 Bpε, zjq, say x P Bpε, z1q and y P Bpε, z2q, then

ρpx, yq ď ρpx, z1q ` ρpz1, z2q ` ρpz2, yq ď 2ε ` maxtρpzj, zkq | 1 ď j, k ď nu

(The converse is false in general.) If E is totally bounded, so is E, for it is easily seen
that if E Ă

Ťn
1 Bpε, zjq, then E Ă

Ťn
1 Bp2ε, zjq.

Theorem 0.27: 0.25.

If E is a subset of the metric space pX, ρq, the following are equivalent:
(a) E is complete and totally bounded.
(b) (The Bolzano-Weierstrass Property) Every sequence in E has a subsequence that

converges to a point of E.
(c) (The Heine-Borel Property) If tVαuαPA is a cover of E by open sets, there is a

finite set F Ă A such that tVαuαPF covers E.

Proof. We shall show that (a) and (b) are equivalent, that (a) and (b) together imply (c),
and finally that (c) implies (b).

(a) implies (b): Suppose that (a) holds and txnu is a sequence in E. E can be
covered by finitely many balls of radius 2´1, and at least one of them must contain xn for
infinitely many n: say, xn P B1 for n P N1.E X B1 can be covered by finitely many balls
of radius 2´2, and at least one of them must contain xn for infinitely many n P N1: say,
xn P B2 for n P N2. Continuing inductively, we obtain a sequence of balls Bj of radius
2´j and a decreasing sequence of subsets Nj of Zě1 such that xn P Bj for n P Nj. Pick
n1 P N1, n2 P N2, . . . such that n1 ă n2 ă ¨ ¨ ¨ . Then txnju is a Cauchy sequence, for
ρpxnj , xnkq ă 21´j if k ą j, and since E is complete, it has a limit in E.

(b) implies (a): We show that if either condition in (a) fails, then so does (b). If E is
not complete, there is a Cauchy sequence txnu in E with no limit in E. No subsequence of
txnu can converge in E, for otherwise the whole squence would converge to the same limit.
On the other hand, if E is not totally bounded, let ε ą 0 be such that E cannot be covered
by finitely many balls of radius ε. Choose xn P E inductively as follows. Begin with any
x1 P E, and having chosen x1, . . . , xn, pick xn`1 P E ∖

Ťn
1 Bpε, xjq. Then ρpxn, xmq ą ε

for all n,m, so txnu has no convergent subsequence.
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(a) and (b) imply (c): It suffices to show that if (b) holds and tVαuαPA is a cover of
E by open sets, there exists ε ą 0 such that every ball of radius ε that intersects E is
contained in some Vα, for E can be covered by finitely many such balls by (a). Suppose to
the contrary that for each n P Zě1 there is a ball Bn of radius 2´n such that Bn XE ‰ ∅
and Bn is contained in no Vα. Pick xn P Bn X E; by passing to a subsequence we may
assume that txnu converges to some x P E. We have x P Vα for some α, and since Vα
is open, there exists ε ą 0 such that Bpε, xq Ă Vα. But if n is large enough so that
ρpxn, xq ă ε{3 and 2´n ă ε{3, then Bn Ă Bpε, xq Ă Vα, contradicting the assumption on
Bn.

(c) implies (b): If txnu is a sequence in E with no convergent subsequence, for each
x P E there is a ball Bx centered at x that contains xn for only finitely many n (otherwise
some subsequence would converge to x). Then tBxuxPE is a cover of E by open sets with
no finite subcover.

A set E that possesses the properties (a)-(c) of Theorem 27 is called compact. Every
compact set is closed (by Proposition 26) and bounded; the converse is false in general
but true in Rn.

Proposition 0.28: 0.26.

Every closed and bounded subset of Rn is compact.

Proof. Since closed subsets of Rn are complete, it suffices to show that bounded subsets
of Rn are totally bounded. Since every bounded set is contained in some cube

Q “ r´R,Rs
n

“ tx P Rn
| maxp|x1|, . . . , |xn|q ď Ru

it is enough to show that Q is totally bounded. Given ε ą 0, pick an integer k ą R
?
n{ε,

and express Q as the union of kn congruent subcubes by dividing the interval r´R,Rs

into k equal pieces. The side length of these subcubes is 2R{k and hence their diameter
is

?
np2R{kq ă 2ε, so they are contained in the balls of radius ε about their centers.

Two metrics ρ1 and ρ2 on a set X are called equivalent if
Cρ1 ď ρ2 ď C 1ρ1 for some C,C 1

ą 0

It is easily verified that equivalent metrics define the same open, closed, and compact
sets, the same convergent and Cauchy sequences, and the same continuous and uniformly
continuous mappings. Consequently, most results concerning metric spaces depend not on
the particular metric chosen but only on its equivalence class.

1 Measures

In this chapter we set forth the basic concepts of measure theory, develop a general
procedure for constructing nontrivial examples of measures, and apply this procedure to
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construct measures on the real line.

1.1 Introduction

One of the most venerable problems in geometry is to determine the area or volume of a
region in the plane or in 3-space. The techniques of integral calculus provide a satisfactory
solution to this problem for regions that are bounded by “nice” curves or surfaces but are
inadequate to handle more complicated sets, even in dimension one. Ideally, for n P Zě1

we would like to have a function µ that assigns to each E Ă Zně1 a number µpEq P r0,8s,
the n-dimensional measure of E, such that µpEq is given by the usual integral formulas
when the latter apply. Such a function µ should surely possess the following properties:

(i) If E1, E2, . . . is a finite or infinite sequence of disjoint sets, then
µpE1 Y E2 Y ¨ ¨ ¨ q “ µpE1q ` µpE2q ` ¨ ¨ ¨

(ii) If E is congruent to F (that is, if E can be transformed into F by translations,
rotations, and reflections), then µpEq “ µpF q.

(iii) µpQq “ 1, where Q is the unit cube
Q “ tx P Rn

| 0 ď xj ă 1 for j “ 1, . . . , nu

Unfortunately, these conditions are mutually inconsistent. Let us see why this is true
for n “ 1. (The argument can easily be adapted to higher dimensions.) To begin with,
we define an equivalence relation on r0, 1q by declaring that x „ y if and only if x ´ y is
rational. Let N be a subset of r0, 1q that contains precisely one member of each equivalence
class. (To find such an N , one must invoke the axiom of choice.) Next, let R “ Q X r0, 1q,
and for each r P R let

Nr “ tx ` r | x P N X r0, 1 ´ rqu Y tx ` r ´ 1 | x P N X r1 ´ r, 1qu

That is, to obtain Nr, shift N to the right by r units and then shift the part that sticks
out beyond r0, 1q one unit to the left. Then Nr Ă r0, 1q, and every x P r0, 1q belongs to
precisely one Nr. Indeed, if y is the element of N that belongs to the equivalence class of
x, then x P Nr where r “ x ´ y if x ě y or r “ x ´ y ` 1 if x ă y; on the other hand, if
x P Nr XNs, then x´ r (or x´ r` 1) and x´ s (or x´ s` 1) would be distinct elements
of N belonging to the same equivalence class, which is impossible.

Suppose now that µ : PpRq Ñ r0,8s satisfies (i), (ii), and (iii). By (i) and (ii),
µpNq “ µpN X r0, 1 ´ rqq ` µpN X r1 ´ r, 1qq “ µpNrq

for any r P R. Also, since R is countable and r0, 1q is the disjoint union of the Nrs,

µpr0, 1qq “
ÿ

rPR
µpNrq

by (i) again. But µpr0, 1qq “ 1 by (iii), and since µpNrq “ µpNq, the sum on the right is
either 0 (if µpNq “ 0) or 8 (if µpNq ą 0). Hence no such µ can exist.

Faced with this discouraging situation, one might consider weakening (i) so that
additivity is required to hold only for finite sequences. This is not a very good idea, as we
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shall see: The additivity for countable sequences is what makes all the limit and continuity
results of the theory work smoothly. Moreover, in dimensions n P Zě3, even this weak
form of (i) is inconsistent with (ii) and (iii). Indeed, in 1924 Banach and Tarski proved
the following amazing result:

Let U and V be arbitrary bounded open sets in Rn, n P Zě3. There exist k P R and
subsets E1, . . . , Ek, F1, . . . , Fk of Rn such that

• the Ejs are disjoint and their union is U ;
• the Fjs are disjoint and their union is V ;
• Ej is congruent to Fj for j “ 1, . . . , k.

Thus one can cut up a ball the size of a pea into a finite number of pieces and
rearrange them to form a ball the size of the earth! Needless to say, the sets Ej and Fj
are very bizarre. They cannot be visualized accurately, and their construction depends
on the axiom of choice. But their existence clearly precludes the construction of any
µ : PpRnq Ñ r0,8s that assigns positive, finite values to bounded open sets and satisfies
(i) for finite sequences as well as (ii).

The moral of these examples is that Rn contains subsets which are so strangely put
together that it is impossible to define a geometrically reasonable notion of measure for
them, and the remedy for the situation is to discard the requirement that µ should be
defined on all subsets of Rn. Rather, we shall content ourselves with constructing µ on a
class of subsets of Rn that includes all the sets one is likely to meet in practice unless one
is deliberately searching for pathological examples. This construction will be carried out
for n “ 1 in Folland Section 1.5 and for n ą 1 in Folland Section 2.6.

It is worthwhile, and not much extra work, to develop the theory in much greater
generality. The conditions (ii) and (iii) are directly related to Euclidean geometry, but
set functions satisfying (i), called measures, arise also in a great many other situations.
For example, in a physics problem involving mass distributions, µpEq could represent the
total mass in the region E. For another example, in probability theory one considers a
set X that represents the possible outcomes of an experiment, and for E Ă X,µpEq is
the probability that the outcome lies in E. We therefore begin by studying the theory of
measures on abstract sets.

1.2 Sigma Algebras

In this section we discuss the families of sets that serve as the domains of measures.
Let X be a nonempty set. An algebra of sets on X is a nonempty collection A

of subsets of X that is closed under finite unions and complements; in other words, if
E1, . . . , En P A, then

Ťn
1 Ej P A; and if E P A, then Ec P A. A σ-algebra is an algebra

that is closed under countable unions. (Some authors use the terms field and σ-field
instead of algebra and σ-algebra.)
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We observe that since
Ş

j Ej “ p
Ť

j E
c
j q
c, algebras (resp. σ-algebras) are also closed

under finite (resp. countable) intersections. Moreover, if A is an algebra, then ∅ P A and
X P A, for if E P A we have ∅ “ E X Ec and X “ E Y Ec.

It is worth noting that an algebra A is a σ-algebra provided that it is closed under
countable disjoint unions. Indeed, suppose tEju

8

1 Ă A. Set

Fk “ Ek ∖
”

ďk´1

1
Ej

ı

“ Ek X

”

ďk´1

1
Ej

ıc

Then the Fks belong to A and are disjoint, and
Ť8

1 Ej “
Ť8

1 Fk. This device of replacing
a sequence of sets by a disjoint sequence is worth remembering; it will be used a number
of times below.

Some examples: If X is any set, PpXq and t∅, Xu are σ-algebras. If X is uncountable,
then

A “ tE Ă X | E is countable or Ec is countable u

is a σ-algebra, called the σ-algebra of countable or co-countable sets. (The point here is
that if tEju

8

1 Ă A, then
Ť8

1 Ej is countable if all Ej are countable and is co-countable
otherwise.)

It is trivial to verify that the intersection of any family of σ-algebras on X is again a
σ-algebra. It follows that if E is any susbset of EpXq, there is a unique smallest σ-algebra
EpEq containing E, namely, the intersection of all σ-algebras containing E. (There is
always at least one such, namely, EpXq.) EpEq is called the σ-algebra generated by E. The
following observation is often useful:

Lemma 1.1: 1.1.

If E Ă MpFq then MpEq Ă MpFq.

The proof is an exercise.
If X is any metric space, or more generally any topological space (see Folland Chapter

4), the σ-algebra generated by the family of open sets in X (or, equivalently, by the family
of closed sets in X) is called the Borel σ-algebra on X and is denoted by BX . Its members
are called Borel sets. BX thus includes open sets, closed sets, countable intersections of
open sets, countable unions of closed sets, and so forth.

There is a standard terminology for the levels in this hierarchy. A countable intersection
of open sets is called a Gδ set; a countable union of closed sets is called an F σ set; a
countable union of Gδ sets is called a Gδσ set; a countable intersection of Fσ sets is called
an F σδ set; and so forth. ( δ and σ stand for the German Durchschnitt and Summe, that
is, intersection and union.)

The Borel σ-algebra on R will play a fundamental role in what follows. For future
reference we note that it can be generated in a number of different ways:
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Proposition 1.2: 1.2.

BR is generated by each of the following:
(a) the open intervals: ε1 “ tpa, bq | a ă bu,
(b) the closed intervals: E2 “ tra, bs | a ă bu,
(c) the half-open intervals: E3 “ tpa, bs | a ă bu or E4 “ tra, bq | a ă bu,
(d) the open rays: E5 “ tpa,8q | a P Ru or E6 “ tp´8, aq | a P Ru,
(e) the closed rays: E7 “ tra,8q | a P Ru or E8 “ tp´8, as | a P Ru.

Proof. The elements of Ej for j ‰ 3, 4 are open or closed, and the elements of ε3 and
E4 are Gδ sets—for example, pa, bs “

Ş8

1 pa, b ` n´1q. All of these are Borel sets, so by
Lemma 1, EpEjq Ă ER for all j. On the other hand, every open set in R is a countable
union of open intervals, so by Lemma 1 again, ER Ă EpE1q. That ER Ă Epεjq for j ě 2 can
now be established by showing that all open intervals lie in EpEjq and applying Lemma 1.
For example, pa, bq “

Ť8

1 ra ` n´1, b ´ n´1s P EpE2q. Verification of the other cases is left
to the reader (Folland Exercise 1.2).

Let tXαuαPA be an indexed collection of nonempty sets, X “
ś

αPAXα, and πα : X Ñ

Xα the coordinate maps. If Mα is a σ-algebra on Xα for each α, the product σ-algebra
on X is the σ-algebra generated by

tπ´1
α pEαq | Eα P Mα, α P Au

We denote this σ-algebra by
Â

αPAMα. (If A “ t1, . . . , nu we also write
Ân

1 Mj or
M1 b ¨ ¨ ¨ b Mn.) The significance of this definition will become clearer in Folland Section
2.1; for the moment we give an alternative, and perhaps more intuitive, characterization
of product σ-algebras in the case of countably many factors.

Proposition 1.3: 1.3.

If A is countable, then
Â

αPAMα is the σ-algebra generated by t
ś

αPAEα | Eα P Mαu.

Proof. If Eα P Mα, then π´1
α pEαq “

ś

βPAEβ where Eβ “ X for β ‰ α; on the other
hand,

ś

αPAEα “
Ş

αPA π
´1
α pEαq. The result therefore follows from Lemma 1.

Proposition 1.4: 1.4.

Suppose that Mα is generated by εα, α P A. Then
Â

αPAMα is generated by M1 “

tπ´1
α pEαq | Eα P Mα, α P Au. If A is countable and Xα P Mα for all α,

Â

αPAMα is
generated by M2 “ t

ś

αPAEα | Eα P Mαu.

Proof. Obviously MpM1q Ă
Â

αPAMα. On the other hand, for each α, the collection
tE Ă Xα | π´1

α pEq P MpM1qu is easily seen to be a σ-algebra on Xα that contains Mα
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and hence Mα. In other words, π´1
α pEq P MpM1q for all E P Mα, α P A, and hence

Â

αPAMα Ă MpM1q. The second assertion follows from the first as in the proof of
Proposition 3.

Proposition 1.5: 1.5.

Let X1, . . . , Xn be metric spaces and let X “
śn

1 Xj, equipped with the product
metric. Then

Ân
1 BXj Ă BX . If the Xjs are separable, then

Ân
1 BXj “ BX .

Proof. By Proposition 4, bn
1BXj is generated by the sets π´1

j pUjq, 1 ď j ď n, where Uj is
open in Xj . Since these sets are open in X, Lemma 1 implies that bn

1BXj Ă BX . Suppose
now that Cj is a countable dense set in Xj, and let Bj be the collection of balls in Xj

with rational radius and center in Cj . Then every open set in Xj is a union of members of
Bj—in fact, a countable union since Bj itself is countable. Moreover, the set of points in
X whose jth coordinate is in Cj for all j is a countable dense subset of X, and the balls
of radius r in X are merely products of balls of radius r in the Xjs. It follows that BXj is
generated by Bj and BX is generated by t

śn
1 Ej | Ej P Bju. Therefore BX “

Ân
1 BXj by

Proposition 4.

Corollary 1.6: 1.6.

BRn “
Ân

1 BR.

We conclude this section with a technical result that will be needed later. We define
an elementary family to be a collection E of subsets of X such that

• ∅ P E,
• if E,F P E then E X F P E,
• if E P E then Ec is a finite disjoint union of members of E.

Proposition 1.7: 1.7.

If E is an elementary family, the collection E of finite disjoint unions of members of E
is an algebra.

Proof. . If A,B P E and Bc “
ŤJ

1 CjpCj P E , disjoint), then A ∖ B “ YJ
1 pA X Cjq and

AYB “ pA∖BqYB, where these unions are disjoint, so A∖B P E and AYB P E. It now
follows by induction that if A1 . . . , An P E, then

Ťn
1 Aj P E; indeed, by inductive hypothesis

we may assume that A1, . . . , An´1 are disjoint, and then
Ťn

1 Aj “ An Y
Ťn´1

1 pAj ∖ Anq,
which is a disjoint union. To see that E is closed under complements, suppose A1, . . . An P E

and Acm “
ŤJm
j“1B

j
m with B1

m, . . . , B
Jm
m disjoint members of E. Then

´

ďn

m“1
Am

¯c

“
čn

m“1

´

ďJm

j“1
Bj
m

¯

“
ď

tBj1
1 X ¨ ¨ ¨ X Bjn

n | 1 ď jm ď Jm, 1 ď m ď nu,
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which is in A.

Exercise 1.8: Folland Exercise 1.1.

A family of sets R Ă RpXq is called a ring if it is closed under finite unions and
differences (i.e., if E1, . . . , En P R, then

Ťn
1 Ej P R, and if E,F P R, then E ∖ F P R).

A ring that is closed under countable unions is called a σ-ring.
(a) Rings (resp. σ-rings) are closed under finite (resp. countable) intersections.
(b) If R is a ring (resp. σ-ring), then R is an algebra (resp. σ-algebra) if and only if

X P R.
(c) If R is a σ-ring, then tE Ă X | E P R or Ec P Ru is a σ-algebra.
(d) If R is a σ-ring, then tE Ă X | E X F P R for all F P Ru is a σ-algebra.

Solution.
(a) First, we make the following claim: Let tEiuiPI be a family of sets indexed by I, and

let E “
Ť

iPI Ei, then
č

iPI
Ei “ E ∖

´

ď

iPI
E ∖ Ei

¯

.

We will prove this by showing each is a subset of the other.
(Ď) Let e P

Ş

iPI Ei. Then e P Ei for all i P I, and clearly e P E. Also, since
e P Ei for all i, we see that e R E ∖ Ei for any i P I. Then e R

Ť

iPI E ∖ Ei. Since
e P E and e R

Ť

iPI E ∖ Ei, then e P E ∖ p
Ť

iPI E ∖ Eiq.
(Ě) Now assume e P E ∖ p

Ť

iPI E ∖ Eiq. Then we have e P E and e R E ∖ Ei for
any i. That is to say e R E or e P Ei for all i P I. We’ve already established e P E,
so we must have e P Ei for all i P I, then we have e P

Ş

iPI Ei.
Now we have established the two sets are equal. Let R be a ring (σ-ring), and

let tEiuiPI be a family of sets indexed by the finite (countable) set I. Then we have
E “

Ť

iPI Ei is the finite (countable) union of sets in R, and so E P R. Since R is
closed under finite set differences, we have that

Ş

iPI Ei “ E ∖ p
Ť

iPI E ∖ Eiq P R.
Therefore, any ring (σ-ring) R is closed under finite (countable) intersection.

(b) We suppose R is a ring (σ-ring) and is therefore closed under finite (countable) unions
and differences. We also make the assumption that R is nonempty, as otherwise, R
is trivially closed under unions, differences, and complements.

p ùñ q Suppose R is an algebra (σ-algebra). Then R is closed under complements.
As R is nonempty, there exists E P R, where E Ă X. As R is closed under
complements, Ec P R. As R is closed under finite (countable) unions, E Y Ec P R.
But X “ E Y Ec, so X P R.

p ðù q Suppose X P R. As R is closed under differences, then for all E P R, we
know X ∖ E P R. But Ec “ X ∖ E, so for all E P R, we have that Ec P R, so R

is closed under complements. Hence, as R is closed under complements and finite
(countable) unions, then R is an algebra (σ-algebra).
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(c) We let S “ tE Ă X | E P R or Ec P Ru. To prove S is a σ-algebra, we must show it
is closed under countable unions and complements.

To prove S is closed under complements, we consider an arbitrary subset, E P S.
Because E P S, it must be that either E P R or Ec P R. As pEcqc “ E, this means
that pEcqc P R or Ec P R, which means that Ec P S by the definition of S. Hence, S
is closed under taking complements.

To prove that S is closed under countable unions, let tEjujPZě1 be a countable
collection of sets in S. We need to show that either

Ť

jPZě1
Ej P R or p

Ť

jPZě1
Ejq

c
“

Ş

jPZě1
Ec P R. We know that for each Ej P S, we have that either Ej P R or

Ec
j P R. Let A “ tn P Zě1 | En P Ru and note that this implies if n P Zě1 ∖ A then

En R R and so Ec
n P R. As Zě1 is countable, then A and Zě1 ∖A are both countable

as subsets of a countable set are countable. Therefore,
Ť

jPAEj P R as this is a
countable union of elements in R and R is a σ-ring, and

Ş

jPZě1∖AE
c
j P R as σ-rings

are closed under countable intersections by part (a) We note that we can always split
up a set into a disjoint union E “ pE X F q Y pE X F cq, which we use to say that

č

jPZě1∖A
Ec
j “

´

č

jPZě1∖A
Ec
j X

ď

jPA
Ej

¯

Y

´

č

jPZě1∖A
Ec
j X p

ď

jPA
Ejq

c
¯

noting that p
Ť

jPAEjq
c “

Ş

jPAE
c
j we get that

č

jPZě1

Ec
j “

´

č

jPZě1∖A
Ec
j X p

ď

jPA
Ejq

c
¯

“
č

jPZě1∖A
Ec
j∖

´

č

jPZě1∖A
Ec
j X

ď

jPA
Ej

¯

As
Ş

jPZě1∖AE
c
j ∖ p

Ş

jPZě1∖AE
c
j X

Ť

jPAEjq is taking the difference and finite inter-
section of elements of R, and R is a σ-ring, this implies

Ş

jPZě1
Ec
j P R. Therefore,

Ť

jPZě1
Ej “ p

Ş

jPZě1
Ec
j q
c is an element of S, and so S is closed under countable

unions.
Hence, as S is closed under countable unions and complements, S is a σ-algebra.

(d) We let S “ tE Ă X | E X F P R for all F P Ru. We want to show that S is a σ-
algebra given that R is a σ-ring, which means we must show it is closed under
countable unions and complements.

To show S is closed under complements, suppose E P S. Then for all F P R, we
have that E X F P R, and as R is closed under taking differences, we have that

Ec
X F “ F ∖ pE X F q P R

as F and E X F are both in R. Hence, for all F P R, we have that Ec X F P R, and
so Ec P S. As E P S was arbitrary, S is closed under taking complements.

To show S is closed under countable unions, let tEjujPZě1 be a countable collection
of sets in S. Fix F P R. For each Ej P S, we have that Ej XF P R. As R is a σ-ring,
it is closed under countable unions, and so

ď

jPZě1
pEj X F q P R

We can show that
ď

jPZě1

pEj X F q “

´

ď

jPZě1

Ej

¯

X F
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by observing that if x P
Ť

jPZě1
pEj X F q, then x P pEj X F q for some j P Zě1,

which implies that x P Ej and x P F , so x P p
Ť

jPZě1
Ejq and x P F , and therefore

x P p
Ť

jPZě1
Ejq XF . Similarly, if x P p

Ť

jPZě1
Ejq XF , then x P F and x P

Ť

jPZě1
Ej ,

so x P F and x P Ej for some j P Zě1, so x P Ej X F , and hence x P
Ť

jPZě1
pEj X F q.

Therefore, we know that
´

ď

jPZě1
Ej

¯

X F “
ď

jPZě1
pEj X F q P R

As F P R is arbitrary, we have that for all F P R, p
Ť

jPZě1
Ejq X F P R, and so

Ť

jPZě1
Ej P S by definition. Therefore, S is closed under countable unions and

complements, so S is a σ-algebra.

Exercise 1.9: Folland Exercise 1.2.

Complete the proof of Proposition 2.

Solution. To complete the proof of Proposition 2, it suffices to show BR Ă BpBjq for
2 ď j ď 8. Folland shows that MpMjq for 1 ď j ď 8 and MR Ă MpM1q is trivial. We
have the following representations:

• MpM2q : pa, bq “
Ť8

1 pa ` 1{n, b ´ 1{ns.
• MpM3q : pa, bq “

Ť8

1 pa, b ´ 1{ns.
• MpM4q : pa, bq “

Ť8

1 ra ` 1{n, bq.
• MpM5q : pa, bq “ pa,8q X p´8, bq.
• MpM6q : pa, bq “ pa,8q X p´8, bq.
• MpM7q : pa, bq “ pa,8q X p´8, bq.
• MpM8q : pa, bq “ pa,8q X p´8, bq.

It follows that every open set is generated by taking countable unions, complements, and
intersections of sets from Ej for all 1 ď j ď 8.

Exercise 1.10: Folland Exercise 1.3.

Let M be an infinite σ-algebra.
(a) M contains an infinite sequence of disjoint sets.
(b) cardpMq ě c.

Exercise 1.11: Folland Exercise 1.4.

An algebra A is a σ-algebra if and only if A is closed under countable increasing unions
(i.e., if tEju

8

1 Ă A and E1 Ă E2 Ă ¨ ¨ ¨ , then
Ť8

1 Ej P A).

Solution. Let A be a σ-algebra. Then by definition, A is closed under countable unions,
so in particular A is closed under countable increasing unions.
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Conversely, suppose A is an algebra and A is closed under countable increasing
unions. Let tEiuiPZě1 be a countable family of sets where Ei P A for all i P Zě1. Define
Fi “

Ťi
k“1Ek for all i P Zě1. Since A is an algebra, it is closed under finite unions, and

so Fi P A for all i P Zě1. Also note that tFiuiPZě1 as defined is an increasing family of
sets, that is Fi Ď Fi`1 for all i P Zě1. Therefore we have

Ť

iPZě1
Fi P A. Finally note that

Ť

iPZě1
Fi “

Ť

iPZě1
Ei and so

Ť

iPZě1
Ei P A.

Exercise 1.12: Folland Exercise 1.5.

If M is the σ-algebra generated by M, then M is the union of the σ-algebras generated
by M as M ranges over all countable subsets of M. (Hint: Show that the latter object
is a σ-algebra.)

1.3 Measures

Let X be a set equipped with a σ-algebra M. A measure on M (or on pX,M), or
simply on X if M is understood) is a function µ : M Ñ r0,8s satisfying the following two
properties.
(i) µp∅q “ 0.
(ii) If tEju

8

1 is a sequence of disjoint sets in M, then µp
Ť8

1 Ejq “
ř8

1 µpEjq.
Property (ii) is called countable additivity. It implies finite additivity:
(ii’) If E1, . . . En are disjoint sets in M, then µp

Ťn
1 Ejq “

řn
1 µpEjq,

because one can take Ej “ ∅ for j ą n. A function µ that satisfies (i) and (ii’) but not
necessarily (ii) is called a finitely additive measure.

If X is a set and M Ă MpXq is a σ-algebra, pX,Mq is called a measurable space and
the sets in M are called measurable sets. If µ is a measure on pX,Mq, then pX,M, µq is
called a measure space.

Let pX,M, µq be a measure space. Here is some standard terminology concerning
the “size” of µ. If µpXq ă 8 (which implies that µpEq ă 8 for all E P M since
µpXq “ µpEq `µpEcq), µ is called finite. If X “

Ť8

1 Ej where Ej P M and µpEjq ă 8 for
all j, µ is called σ-finite. More generally, if E “

Ť8

1 Ej where Ej P M and µpEjq ă 8 for
all j, the set E is said to be σ-finite for µ. (It would be correct but more cumbersome to
say that E is of σ-finite measure.) If for each E P M with µpEq “ 8 there exists F P M

with F Ă E and 0 ă µpF q ă 8, µ is called semifinite.
Every σ-finite measure is semifinite (Folland Exercise 1.13), but not conversely. Most

measures that arise in parctice are σ-finite, which is fortunate since non- σ-finite measures
tend to exhibit pathological behavior. The properties of non- σ-finite measures will be
explored from time to time in the exercises.

Example 13. Let us examine a few examples of measures. These examples are of a rather
trivial nature, although the first one is of practical importance. The construction of more
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interesting examples is a task to which we shall turn in the next two sections.
• Let X be any nonempty set, M “ MpXq, and f any function from X to r0,8s.

Then f determines a measure µ on M by the formula µpEq “
ř

xPE fpxq. (For the
definition of such possibly uncountable sums, see Folland Section 0.5.) The reader
may verify that µ is semifinite if and only if fpxq ă 8 for every x P X, and µ is
σ-finite if and only if µ is semifinite and tx | fpxq ą 0u is countable. Two special
cases are of particular significance: If fpxq “ 1 for all x, µ is called counting measure;
and if, for some x0 P X, f is defined by fpx0q “ 1 and fpxq “ 0 for x ‰ x0, µ is
called the point mass or Dirac measure at x0. (The same names are also applied to
the restrictions of these measures to smaller σ-algebras on X.)

• Let X be an uncountable set, and let M be the σ-algebra of countable or cocountable
sets. The function µ on M defined by µpEq “ 0 if E is countable and µpEq “ 1 if E
is co-countable is easily seen to be a measure.

• Let X be an infinite set and M “ MpXq. Define µpEq “ 0 if E is finite, µpEq “ 8

if E is infinite. Then µ is a finitely additive measure but not a measure.

The basic properties of measures are summarized in the following theorem.

Theorem 1.14: 1.8.

Let pX,M, µq be a measure space.
(a) (Monotonicity) If E,F P M and E Ă F , then µpEq ď µpF q.
(b) (Subadditivity) If tEju

8

1 Ă M, then µp
Ť8

1 Ejq ď
ř8

1 µpEjq.
(c) (Continuity from below) If tEju

8

1 Ă M and E1 Ă E2 Ă ¨ ¨ ¨ , then µp
Ť8

1 Ejq “

limjÑ8 µpEjq.
(d) (Continuity from above) If tEju

8

1 Ă M, E1 Ą E2 Ą ¨ ¨ ¨ , and µpE1q ă 8, then
µp
Ş8

1 Ejq “ limjÑ8 µpEjq.

Proof. (a) If E Ă F , then µpF q “ µpEq ` µpF ∖ Eq ě µpEq.
(b) Let F1 “ E1 and Fk “ Ek ∖ p

Ťk´1
1 Ejq for k ą 1. Then the Fks are disjoint and

Ťn
1 Fj “

Ťn
1 Ej for all n. Therefore, by (a),

µ
´

ď8

1
Ej

¯

“ µ
´

ď8

1
Fj

¯

“
ÿ8

1
µpFjq ď

ÿ8

1
µpEjq

(c) Setting E0 “ ∅, we have

µ
´

ď8

1
Ej

¯

“
ÿ8

1
µpEj ∖ Ej´1q “ lim

nÑ8

ÿn

1
µpEj ∖ Ej´1q “ lim

nÑ8
µpEnq

(d) Let Fj “ E1 ∖ Ej; then F1 Ă F2 Ă ¨ ¨ ¨ , µpE1q “ µpFjq ` µpEjq, and
Ť8

1 Fj “

E1 ∖ p
Ş8

1 Ejq. By (c), then,

µpE1q “ µ
´

č8

1
Ej

¯

` lim
jÑ8

µpFjq “ µ
´

č8

1
Ej

¯

` lim
jÑ8

rµpE1q ´ µpEjqs

Since µpE1q ă 8, we may subtract it from both sides to yield the desired result.
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We remark that the condition µpE1q ă 8 in part (d) could be replaced by µpEnq ă 8

for some n ą 1, as the first n´ 1Ejs can be discarded from the sequence without affecting
the intersection. However, some finiteness assumption is necessary, as it can happen that
µpEjq “ 8 for all j but µp

Ş8

1 Ejq ă 8. (For example, let µ be counting measure on
pZě1,PpZě1qq and let Ej “ tn | n ě ju; then

Ş8

1 Ej “ ∅.)
If pX,M, µq is a measure space, a set E P M such that µpEq “ 0 is called a null set.

By subadditivity, any countable union of null sets is a null set, a fact which we shall use
frequently. If a statement about points x P X is true except for x in some null set, we
say that it is true almost everywhere (abbreviated a.e.), or for almost every x. (If more
precision is needed, we shall speak of a µ-null set, or µ-almost everywhere).

If µpEq “ 0 and F Ă E, then µpF q “ 0 by monotonicity provided that F P M, but in
general it need not be true that F P M. A measure whose domain includes all subsets
of null sets is called complete. Completeness can sometimes obviate annoying technical
points, and it can always be achieved by enlarging the domain of µ, as follows.

Theorem 1.15: 1.9.

Suppose that pX,M, µq is a measure space. Let M “ tN P M | µpNq “ 0u and M “

tE Y F : E P M and F Ă N for some N P Mu. Then M is a σ-algebra, and there is a
unique extension µ of µ to a complete measure on M.

Proof. Since M and M are closed under countable unions, so is M. If E Y F P M where
E P M and F Ă N P M, we can assume that E XN “ ∅ (otherwise, replace F and N by
F ∖E and N∖Eq. Then EYF “ pEYNqXpN c Y F q, so pEYF qc “ pEYNqcYpN∖F q.
But pE Y Nqc P M and N ∖ F Ă N , so that pE Y F qc P M. Thus M is a σ-algebra.

If EYF P M as above, we set µpEYF q “ µpEq. This is well defined, since if E1YF1 “

E2 Y F2 where Fj Ă Nj P M, then E1 Ă E2 YN2 and so µpE1q ď µpE2q ` µpN2q “ µpE2q,
and likewise µpE2q ď µpE1q. It is easily verified that µ is a complete measure on M, and
that µ is the only measure on M that extends µ; details are left to the reader (Folland
Exercise 1.6).

The measure µ in Theorem 15 is called the completion of µ, and M is called the
completion of M with respect to µ.

Exercise 1.16: Folland Exercise 1.6.

Complete the proof of Theorem 15.

Exercise 1.17: Folland Exercise 1.7.

If µ1, . . . , µn are measures on pX,Mq and a1, . . . , an P r0,8q, then
řn
j“1 ajµj is a

measure on pX,Mq.
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Solution. We have
µpHq “

ÿn

j“1
ajµjpHq “

ÿn

j“1
aj ¨ 0 “ 0,

where the second equality is because µj is a measure for each j P t1, . . . , nu. Now let
tEju

8
j“1 be a countable subset of M consisting of mutually pairwise disjoint subsets. Then

µ
´

ď8

j“1
Ej

¯

“
ÿn

j“1
ajµj

´

ď8

k“1
Ek

¯

“
ÿn

j“1
aj

´

ÿ8

k“1
µjpEkq

¯

(by countable additivity of each µj)

“
ÿn

j“1
aj lim

NÑ8

´

ÿN

k“1
µjpEkq

¯

(definition of infinite sum)

“ lim
NÑ8

´

ÿn

j“1
aj
ÿN

k“1
µjpEkq

¯

(limit of a finite linear combination)

“
ÿ8

k“1
µpEjq, (finite linear combination of limit of sum)

so µ is countably additive. Thus µ is a measure.

Exercise 1.18: Folland Exercise 1.8.

If pX,M, µq is a measure space and tEju
8
j“1 Ă M, then

µplim infjÑ8 Ejq ď lim infjÑ8 µpEjq.

Also,
µplim supjÑ8 Ejq ě lim supjÑ8 µpEjq

provided that µp
Ť8

j“1Ejq ă 8.

Solution. Let tEju
8
j“1 be any countable collection of elements of M, where M is the

σ-algebra on which µ is defined.
• µplim infjÑ8 Ejq ď lim infjÑ8 µpEjq: We have

µplim infjÑ8 Ejq “ µ
´

ď

nPZě1

č

jěn
Ej

¯

“ lim
nÑ8

µ
´

č

jěn
Ej

¯

ď lim infjÑ8 Ej,

where the third equality is by continuity from below and the final inequality can be
argued as follows. Since

č

jěn
Ej Ă Ej for all j ě n,

by monotonicity of µ, we have

µ
´

č

jěn
Ej

¯

Ă µpEjq for all j ě n.

Thus µp
Ş

jěnEjq is a lower bound for tµpEjq | j ě nu. It follows that

µ
´

č

jěn
Ej

¯

ď inf
jěn

Ej.
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Sending n Ñ 8, we obtain

µ
´

č

jěn
Ej

¯

ď lim
nÑ8

inf
jěn

Ej “ lim infnÑ8 µpEjq.

• lim supnÑ8 µpEnq ď µplim supjÑ8 Ejq if µp
Ť8

j“1Ejq ă 8: Suppose µp
Ť8

j“1Ejq ă 8.
Then

lim supjÑ8 µpEjq “ lim
nÑ8

supjěn µpEjq ď µplim supjÑ8 Ejq,

where the final inequality holds because

µplim supjÑ8 Ejq “ µ
´

č

nPZě1

ď

jěn
Ej

¯

“ lim
nÑ8

µ
´

ď

jěn
Ej

¯

ě lim
nÑ8

supjěn µpEjq,

where the second last equality is by continuity from above since µp
Ť8

j“1Ejq ă 8

and the inequality is because µp
Ť

jěnEjq is an upper bound for tµpEjq | j ě nu, for
all n P Zě1.

Exercise 1.19: Folland Exercise 1.9 (Strenthened Version).

Let pX,M, µq be a measure space.
(a) If E,F P M, then

µpEq ` µpF q “ µpE Y F q ` µpE X F q.

(b) If E Ă X is µ˚-measurable, then for every subset A Ă X we have
µ˚

pEq ` µ˚
pAq “ µ˚

pE X Aq ` µ˚
pE Y Aq.

Note that only one subset needs to be µ˚-measurable, unlike for measures!

Solution.
(a) First note that E Y F,E X F,EzF P M. Thus

µpEq ` µpF q “ µpEzF q ` µpE X F q ` µpF q “ µpE Y F q ` µpE X F q,

where we have used the facts
pEzF q X pE X F q “ H “ pEzF q X F.

(b) Since E is µ˚-measurable, we can write
µ˚

pEq ` µ˚
pAq “ µ˚

pEq ` µ˚
pA X Eq ` µ˚

pA X Ec
q.

Applying that E is µ˚-measurable once again yields
µ˚

pE Y Aq “ µ˚
ppE Y Aq X Eq ` µ˚

ppE Y Aq X Ec
q “ µ˚

pEq ` µ˚
pA X Ec

q.

Combining the last two equations proves that
µ˚

pEq ` µ˚
pAq “ µ˚

pEq ` µ˚
pA X Eq ` µ˚

pA X Ec
q “ µ˚

pE X Aq ` µ˚
pE Y Aq.
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Exercise 1.20: Folland Exercise 1.10.

Given a measure space pX,M, µq and E P M, define µEpMq “ µpA X Eq for A P M.
Then µE is a measure.

Solution. First observe that µEpHq “ µpH X Eq “ µpHq “ 0. Next, given a sequence of
disjoint sets in M, tEjujPZě1

, note that tEj X EujPZě1
are disjoint and

µE

´

ď

jPZě1
Ej

¯

“ µ
´´

ď

jPZě1
Ej

¯

X E
¯

“ µ
´

ď

jPZě1

pEj X Eq

¯

“
ÿ

jPZě1
µpEj X Eq “

ÿ

jPZě1
µEpEjq.

Thus µE is a measure.

Exercise 1.21: Folland Exercise 1.11.

A finitely additive measure µ is a measure if and only if it is continuous from below as
in Theorem 14(c). If µpXq ă 8, µ is a measure if and only if it is continuous from
above as in Theorem 14(d).

Exercise 1.22: Folland Exercise 1.12.

Let pX,M, µq be a finite measure space.
(a) If E,F P M and µpE∆F q “ 0, then µpEq “ µpF q.
(b) Say that E „ F if µpE△F q “ 0; then „ is an equivalence relation on M.
(c) For E,F P M, define ρpE,F q “ µpE∆F q. Then ρpE,Gq ď ρpE,F q ` ρpF,Gq,

and hence ρ defines a metric on the space M{ „ of equivalence classes.

Solution.
(a) First, recall that the symmetric difference is defined by E∆F “ pEzF q Y pF zEq.

Since EzF and F zE are disjoint, we have
µpE∆F q “ µpEzF q ` µpF zEq,

so that if µpE∆F q “ 0 (since µ only takes on nonnegative values) we have
µpEzF q “ 0 “ µpF zEq.

Therefore,
µpEq “ µpE X F q ` µpEzF q “ µpE X F q ` µpF zEq “ µpF q.

(b) Reflexive: As µpE∆Eq “ µpHq “ 0 for all E P M, we have E „ E for all E P M.
Symmetric: Since E∆F “ F∆E by definition (as the name symmetric difference

suggests!), if E „ F then 0 “ µpE∆F q “ µpF∆Eq so that F „ E for all E,F P M.
Transitive: Suppose that E „ F and F „ G for E,F,G P M. Then we have that

µpE∆F q “ 0 “ µpF∆Gq.
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As we want to show that µpE∆Gq “ 0, we first note that both EzG “ E XGc and
GzE “ G X Ec are measurable since E and G are. Furthermore, one sees

EzG Ă pEzF q Y pF zGq, GzE Ă pGzF q Y pF zEq,

so that both EzG and GzE are null sets. Therefore, we conclude µpE∆Gq “ 0 so
that E „ G.

(c) By definition, we have that ρ : M{ „Ñ r0,8s. Furthermore, µpE∆F q “ ρpE,F q “ 0
if and only if E „ F , that is, E and F are in the same equivalence class. As we just
proved, µ, and hence ρ, is symmetric. By our remarks in proving b., it is clear that

E∆G Ă pE∆F q Y pF∆Gq.

Hence, by monotonicity we have
ρpE∆Gq “ µpE∆Gq ď µpE∆F q ` µpF∆Gq “ ρpE∆F q ` ρpF∆Gq,

so that the triangle inequality holds. Therefore, ρ defines a metric on the space
M{ „ of equivalence classes.

Exercise 1.23: Folland Exercise 1.13.

Every σ-finite measure is semifinite.

Solution. Let µ be σ-finite, and fix E P M with µpEq “ `8. Since µ is σ-finite, it can be
expressed as a countable union of sets tUiu

8
i“1 of finite measure. We have E \ Ec “ X “

Ť8

i“1 Ui, which implies

E “

´

ď8

i“1
Ui

¯

∖ Ec
“
ď8

i“1
pUi ∖ Ec

q “
ď8

i“1
pUi X Eq.

Therefore,

`8 “ µpEq “ µ
´

ď8

i“1
pUi X Eq

¯

ď
ÿ8

i“1
µpUi X Eq.

Now, for each i, we know that Ui X E Ă E, and µpUi X Eq ă 8 since µpUiq ă 8. It
remains to show that 0 ă µpUk XEq ă 8 for some k. Suppose there were no such k; then
for all i, we would have µpUi X Eq “

ř8

i“1p0q “ 0, which contradicts our assumption that
µpEq “ `8. This completes the proof.

Exercise 1.24: Folland Exercise 1.14.

If µ is a semifinite measure and µpEq “ 8, for any C ą 0 there exists F Ă E with
C ă µpF q ă 8.
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Exercise 1.25: Folland Exercise 1.15.

Given a measure µ on pX,Mq, define µ0 on M by
µ0pEq “ suptµpF q | F Ă E and µpF q ă 8u.

(a) µ0 is a semifinite measure. It is called the semifinite part of µ.
(b) If µ is semifinite, then µ “ µ0. (Use Folland Exercise 1.14.)
(c) There is a measure ν on M (in general, not unique) which assumes only the values

0 and 8 such that µ “ µ0 ` ν.

Exercise 1.26: Folland Exercise 1.16.

Let pX,M, µq be a measure space. A set E Ă X is called locally measurable if
E X A P M for all A P M such that µpAq ă 8. Let M̃ be the collection of all locally
measurable sets. Clearly M Ă M̃; if M “ M̃, then µ is called saturated.
(a) If µ is σ-finite, then µ is saturated.
(b) M̃ is a σ-algebra.
(c) Define µ̃ on M̃ by µ̃pEq “ µpEq if E P M and µ̃pEq “ 8 otherwise. Then µ̃ is a

saturated measure on M̃, called the saturation of µ.
(d) If µ is complete, so is rµ.
(e) Suppose that µ is semifinite. For E P M̃, define µpEq “

suptµpAq | A P M and A Ă Eu. Then µ is a saturated measure on M̃ that extends
µ.

(f) Let X1, X2 be disjoint uncountable sets, X “ X1 Y X2, and M the σ-algebra of
countable or co-countable sets in X. Let µ0 be counting measure on MpX1q, and
define µ on M by µpEq “ µ0pE X X1q. Then µ is a measure on M, M̃ “ MpXq,
and in the notation of parts (c) and (e), µ̃ ‰ µ.

Exercise 1.27: The Borel-Cantelli Lemma.

Let pX,M, µq be a measure space, let tEju
8
j“1 Ă M, and let lim supEj denote the set

of points that lie in infinitely many of the Ej. If
ÿ8

j“1
µpEjq ă 8,

then
µplim supEjq “ 0.

Solution. Notice that µp
Ť8

j“1Ejq ă `8 since

µ
´

ď8

j“1
Ej

¯

ď
ÿ8

j“1
µpEjq (by monotonicity)

ă `8 (given).
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So, by continuity from above, we have

µplim supEjq “ µ
´

č8

k“1

ď8

j“k
Ej

¯

(definition of lim supEj)

“ lim
kÑ8

µ
´

ď8

j“k
Ej

¯

(continuity from below)

ď lim
kÑ8

ÿ8

j“k
µpEjq (monotonicity)

Since we know that
ř8

j“1 µpEjq ă `8, it follows that limkÑ8

ř8

j“k µpEjq “ 0. Hence,
the above limit is zero, as desired.

1.4 Outer Measures

In this section we develop the tools we shall use to construct measures. To motivate
the ideas, it may be useful to recall the procedure used in calculus to define the area of
a bounded region E in the plane R2. One draws a grid of rectangles in the plane and
approximates the area of E from below by the sum of the areas of the rectangles in the
grid that are subsets of E, and from above by the sum of the areas of the rectangles in
the grid that intersect E. The limits of these approximations as the grid is taken finer
and finer give the “inner area” and “outer area” of E, and if they are equal, their common
value is the “area” of E. (We shall discuss these matters in more detail in 2.6.) The key
idea here is that of outer area, since if R is a large rectangle containing E, the inner area
of E is just the area of R minus the outer area of R∖ E.

The abstract generalization of the notion of outer area is as follows:

Definition 28. An outer measure on a nonempty set X is a function µ˚ : PpXq Ñ r0,8s

that satisfies
• µ˚p∅q “ 0,
• µ˚pAq ď µ˚pBq if A Ă B, and
• µ˚p

Ť8

1 Ajq ď
ř8

1 µ
˚pAjq.

The most common way to obtain outer measures is to start with a family E of
“elementary sets” on which a notion of measure is defined (such as rectangles in the plane)
and then to approximate arbitrary sets “from the outside” by countable unions of members
of E. The precise construction is as follows.

Proposition 1.29: 1.10.

Let E Ă EpXq and ρ : E Ñ r0,8s be such that ∅ P E, X P E, and ρp∅q “ 0. For any
A Ă X, define

µ˚
pAq “ inf

!

ÿ8

1
µpEjq

ˇ

ˇ

ˇ
Ej P E and A Ă

ď8

1
Ej

)

Then µ˚ is an outer measure.
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Proof. For any A Ă X there exists tEju
8

1 Ă E such that A Ă
Ť8

1 Ej (take Ej “ X for all
j) so the definition of µ˚ makes sense. Obviously µ˚p∅q “ 0 (take Ej “ ∅ for all j), and
µ˚pAq ď µ˚pBq for A Ă B because the set over which the infimum is taken in the definition
of µ˚pAq includes the corresponding set in the definition of µ˚pBq. To prove the countable
subadditivity, suppose tAju

8

1 Ă EpXq and ε ą 0. For each j there exists tEk
j u

8

k“1 Ă E

such that Aj Ă
Ť8

k“1E
k
j and

ř8

k“1 ρpEk
j q ď µ˚pAjq ` ε2´j. But then if A “

Ť8

1 Aj, we
have A Ă

Ť8

j,k“1E
k
j and

ř

j,k ρpEk
j q ď

ř

j µ
˚pAjq ` ε, whence µ˚pAq ď

ř

j µ
˚pAjq ` ε.

Since ε is arbitrary, we are done.

The fundamental step that leads from outer measures to measures is as follows:

Definition 30. If µ˚ is an outer measure on X, a set A Ă X is called µ˚-measurable if
µ˚

pEq “ µ˚
pE X Aq ` µ˚

pE X Acq for all E Ă X.

Of course, the inequality µ˚pEq ď µ˚pE XAq ` µ˚pE X Acq holds for any A and E, so
to prove that A is µ˚-measurable, it suffices to prove the reverse inequality. The latter is
trivial if µ˚pEq “ 8, so we see that A is µ˚-measurable iff

µ˚
pEq ě µ˚

pE X Aq ` µ˚
pE X Acq for all E Ă X such that µ˚

pEq ă 8.
Some motivation for the notion of µ˚-measurability can be obtained by referring to the
discussion at the beginning of this section. If E is a “well-behaved” set such that E Ą A,
the equation µ˚pEq “ µ˚pE X Aq ` µ˚pE X Acq says that the outer measure of A, µ˚pAq,
is equal to the “inner measure” of A, µ˚pEq ´ µ˚pE X Acq. The leap from “well-behaved”
sets containing A to arbitrary subsets of X a large one, but it is justified by the following
theorem.

Theorem 1.31: 1.11: Carathéodory’s Theorem.

If µ˚ is an outer measure on X, the collection M of µ˚-measurable sets is a σ-algebra,
and the restriction of µ˚ to M is a complete measure.

Proof. First, we observe that M is closed under complements since the definition of
µ˚-measurability of A is symmetric in A and Ac. Next, if A,B P M and E Ă X,

µ˚
pEq “ µ˚

pE X Aq ` µ˚
pE X Acq

“ µ˚
pE X A X Bq ` µ˚

pE X A X Bc
q ` µ˚

pE X Ac X Bq ` µ˚
pE X Ac X Bc

q.

But pA Y Bq “ pA X Bq Y pA X Bcq Y pAc X Bq, so by subadditivity,
µ˚

pE X A X Bq ` µ˚
pE X A X Bc

q ` µ˚
pE X Ac X Bq ě µ˚

pE X pA Y Bqq

and hence
µ˚

pEq ě µ˚
pE X pA Y Bqq ` µ˚

pE X pA Y Bq
c
q

It follows that A Y B P M, so M is an algebra. Moreover, if A,B P M and A X B “ ∅,
µ˚

pA Y Bq “ µ˚
ppA Y Bq X Aq ` µ˚

ppA Y Bq X Acq “ µ˚
pAq ` µ˚

pBq,
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so µ˚ is finitely additive on M.
To show that M is a σ-algebra, it will suffice to show that M is closed under countable

disjoint unions. If tAju
8

1 is a sequence of disjoint sets in M, let Bn “
Ťn

1 Aj and
B “

Ť8

1 Aj. Then for any E Ă X,
µ˚

pE X Bnq “ µ˚
pE X Bn X Anq ` µ˚

pE X Bn X Acnq

“ µ˚
pE X Anq ` µ˚

pE X Bn´1q

so a simple induction shows that µ˚pE X Bnq “
řn

1 µ
˚pE X Ajq. Therefore,

µ˚
pEq “ µ˚

pE X Bnq ` µ˚
pE X Bc

nq ě
ÿn

1
µ˚

pE X Ajq ` µ˚
pE X Bc

q

and letting n Ñ 8 we obtain

µ˚
pEq ě

ÿ8

1
µ˚

pE X Ajq ` µ˚
pE X Bc

q ě µ˚
´

ď8

1
pE X Ajq

¯

` µ˚
pE X Bc

q

“ µ˚
pE X Bq ` µ˚

pE X Bc
q ě µ˚

pEq

All the inequalities in this last calculation are thus equalities. It follows that B P M

and—taking E “ B—that µ˚pBq “
ř8

1 µ
˚pAjq, so µ˚ is countably additive on M. Finally,

if µ˚pAq “ 0, for any E Ă X we have
µ˚

pEq ď µ˚
pE X Aq ` µ˚

pE X Acq “ µ˚
pE X Acq ď µ˚

pEq

so that A P M. Therefore µ˚ | M is a complete measure.

Our first applications of Carathéodory’s theorem will be in the context of extending
measures from algebras to σ-algebras. More precisely, if A Ă ApXq is an algebra, a
function µ0 : A Ñ r0,8s will be called a premeasure if

• µ0p∅q “ 0,
• if tAju

8

1 is a sequence of disjoint sets in A such that
Ť8

1 Aj P A, then µ0p
Ť8

1 Ajq “
ř8

1 µ0pAjq.
In particular, a premeasure is finitely additive since one can take Aj “ ∅ for j large.
The notions of finite and σ-finite premeasures are defined just as for measures. If µ0

is a premeasure on A Ă ApXq, it induces an outer measure on X in accordance with
Proposition 29, namely,

µ˚
pEq “ inf

!

ÿ8

1
µ0pAjq

ˇ

ˇ

ˇ
Aj P A, E Ă

ď8

1
Aj

)

Proposition 1.32: 1.13.

If µ0 is a premeasure on A and µ˚ is defined by (1.12), then
(a) µ˚ | A “ µ0;
(b) every set in A is µ˚ measurable.

Proof. (a) Suppose E P A. If E Ă
Ť8

1 Aj with Aj P A, let Bn “ EX pAn ∖
Ťn´1

1 Ajq.
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Then the Bns are disjoint members of A whose union is E, so µ0pEq “
ř8

1 µ0pBjq ď
ř8

1 µ0pAjq. It follows that µ0pEq ď µ˚pEq, and the reverse inequality is obvious since
E Ă

Ť8

1 Aj where A1 “ E and Aj “ ∅ for j ą 1.
(b) If A P A, E Ă X, and ε ą 0, there is a sequence tBju

8

1 Ă A with E Ă
Ť8

1 Bj and
ř8

1 µ0pBjq ď µ˚pEq ` ε. Since µ0 is additive on A,

µ˚
pEq ` ε ě

ÿ8

1
µ0pBj X Aq `

ÿ8

1
µ0pBj X Acq ě µ˚

pE X Aq ` µ˚
pE X Acq

Since ε is arbitrary, A is µ˚-measurable.

Theorem 1.33: 1.14.

Let A Ă ApXq be an algebra, µ0 a premeasure on A, and A the σ-algebra generated
by A. There exists a measure µ on A whose restriction to A is µ0—namely, µ “ µ˚ | A

where µ˚ is given by (1.12). If ν is another measure on A that extends µ0, then
νpEq ď µpEq for all E P A, with equality when µpEq ă 8. If µ0 is σ-finite, then µ is
the unique extension of µ0 to a measure on A.

Proof. The first assertion follows from Carathéodory’s theorem and Proposition 32 since
the σ-algebra of µ˚-measurable sets includes A and hence A. As for the second assertion,
if E P A and E Ă

Ť8

1 Aj where Aj P A, then νpEq ď
ř8

1 νpAjq “
ř8

1 µ0pAjq, whence
νpEq ď µpEq. Also, if we set A “

Ť8

1 Aj, we have

νpAq “ lim
nÑ8

ν
´

ďn

1
Aj

¯

“ lim
nÑ8

µ
´

ďn

1
Aj

¯

“ µpAq

If µpEq ă 8, we can choose the Ajs so that µpAq ă µpEq ` ε, hence µpA∖ Eq ă ε, and
µpEq ď µpAq “ νpAq “ νpEq ` νpA∖ Eq ď νpEq ` µpA∖ Eq ď νpEq ` ε

Since ε is arbitrary, µpEq “ νpEq. Finally, suppose X “
Ť8

1 Aj with µ0pAjq ă 8, where
we can assume that the Ajs are disjoint. Then for any E P M,

µpEq “
ÿ8

1
µpE X Ajq “

ÿ8

1
νpE X Ajq “ νpEq

so ν “ µ.

The proof of this theorem yields more than the statement. Indeed, µ0 may be extended
to a measure on the algebra M˚ of all µ˚-measurable sets. The relation between M and M˚

is explored in Folland Exercise 1.22 (along with Folland Exercise 1.20(b), which ensures
that the outer measures induced by µ0 and µ are the same).

Exercise 1.34: Folland Exercise 1.17.

If µ˚ is an outer measure on X and tAju
8

j“1 is a sequence of disjoint µ˚-measurable
sets, then

µ˚
´

E X

´

ď8

j“1
Aj

¯¯

“
ÿ8

j“1
µ˚

pE X Ajq
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for any E Ă X.

Solution. By subadditivity, we immediately have
µ˚

pE X pYjPZě1Ajqq “ µ˚
pYjPZě1E X Ajq ď

ÿ

jPZě1
µ˚

pE X Ajq, for any E Ă X.

On the other hand, since E X pYn
j“1Ajq Ă E X pYjPZě1Ajq, it follows that

ÿn

j“1
µ˚

pE X Ajq “ µpE X pY
n
j“1Ajqq ď µpE X pYjPZě1Ajqq, for all n and any E Ă X.

Therefore, taking the limit n Ñ 8 yields the inequality, and combining the inequalities
proves that

µ˚
pE X pYjPZě1Ajqq “

ÿ

jPZě1
µ˚

pE X Ajq, for any E Ă X

Exercise 1.35: Folland Exercise 1.18.

Let A Ă ApXq be an algebra, Aσ the collection of countable unions of sets in A, and
Aσδ the collection of countable intersections of sets in Aσ. Let µ0 be a premeasure on
A and µ˚ the induced outer measure.
(a) For any E Ă X and ε ą 0, there exists A P Aσ with E Ă A and µ˚pAq ď µ˚pEq`ε.
(b) If µ˚pEq ă 8, then E is µ˚-measurable if and only if there exists B P Aσδ with

E Ă B and µ˚pB ∖ Eq “ 0.
(c) If µ0 is σ-finite, the restriction µ˚pEq ă 8 in (b) is superfluous.

Exercise 1.36: Folland Exercise 1.19.

Let µ˚ be an outer measure on X induced from a finite premeasure µ0. If E Ă X,
define the inner measure of E to be µ˚pEq “ µ0pXq´µ˚pEcq. Then E is µ˚-measurable
if and only if µ˚pEq “ µ˚pEq. (Use Folland Exercise 1.18.)

Exercise 1.37: Folland Exercise 1.20.

Let µ˚ be an outer measure on X, M˚ the σ-algebra of µ˚-measurable sets, µ “ µ˚ | M˚,
and µ` the outer measure induced by µ as in (1.12) (with µ and M˚ replacing µ0 and
M).
(a) If E Ă X, we have µ˚pEq ď µ`pEq, with equality if and only if there exists

A P M˚ with A Ą E and µ˚pAq “ µ˚pEq.
(b) If µ˚ is induced from a premeasure, then µ˚ “ µ`. (Use Folland Exercise 1.18a.)
(c) If X “ t0, 1u, there exists an outer measure µ˚ on X such that µ˚ ‰ µ`.
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Exercise 1.38: Folland Exercise 1.21.

Let µ˚ be an outer measure induced from a premeasure and µ the restriction of µ˚ to
the µ˚-measurable sets. Then µ is saturated. (Use Folland Exercise 1.18.)

Exercise 1.39: Folland Exercise 1.22.

Let pX,M, µq be a measure space, µ˚ the outer measure induced by µ according to
(1.12), M˚ the σ-algebra of µ˚-measurable sets, and µ “ µ˚ | M˚.
(a) If µ is σ-finite, then µ is the completion of µ. (Use Folland Exercise 1.18.)
(b) In general, µ is the saturation of the completion of µ. (See Exercises 16 and 21.)

Exercise 1.40: Folland Exercise 1.23.

Let A be the collection of finite unions of sets of the form pa, bs X Q where ´8 ď a ă

b ď 8.
(a) A is an algebra on Q. (Use Proposition 7.)
(b) The σ-algebra generated by A is ApQq.
(c) Define µ0 on A by µ0p∅q “ 0 and µ0pAq “ 8 for A ‰ ∅. Then µ0 is a premeasure

on A, and there is more than one measure on ApQq whose restriction to A is µ0.

Exercise 1.41: Folland Exercise 1.24.

Let µ be a finite measure on pX,Mq, and let µ˚ be the outer measure induced by µ.
Suppose that E Ă X satisfies µ˚pEq “ µ˚pXq (but not that E P M).
(a) If A,B P M and A X E “ B X E, then µpAq “ µpBq.
(b) Let ME “ tA X E | A P Mu, and define the function ν on ME defined by νpAX

Eq “ µpAq (which makes sense by (a)). Then ME is a σ-algebra on E and ν is a
measure on ME.

1.5 Borel Measures on the Real Line

We are now in a position to construct a definitive theory for measuring subsets of R
based on the idea that the measure of an interval is its length. We begin with a more
general (but only slightly more complicated) construction that yields a large family of
measures on R whose domain is the Borel σ-algebra BR; such measures are called Borel
measures on R.

To motivate the ideas, suppose that µ is a finite Borel measure on R, and let F pxq “

µpp´8, xsq. pF is sometimes called the distribution function of µ.) Then F is increasing
by Theorem 14a and right continuous by Theorem 1.8 d since p´8, xs “

Ş8

1 p´8, xns

whenever xn Œ x. (Recall the discussion of increasing functions in §0.5.) Moreover,

Version of April 30, 2024 at 11pm EST Page 41 of 368

https://www.greysonwesley.com/home


Greyson C. Wesley §1.5: Borel Measures on the Real Line

if b ą a, p´8, bs “ p´8, as Y pa, bs, so µppa, bsq “ F pbq ´ F paq. Our procedure will
be to turn this process around and construct a measure µ starting from an increasing,
right-continuous function F . The special case F pxq “ x will yield the usual “length”
measure.

The building blocks for our theory will be the left-open, right-closed intervals in
R—that is, sets of the form pa, bs or pa,8q or ∅, where ´8 ď a ă b ă 8. In this section
we shall refer to such sets as h-intervals (h for “half-open”). Clearly the intersection of
two h-intervals is an h-interval, and the complement of an h-interval is an h-interval or
the disjoint union of two h-intervals. By Proposition 7, the collection A of finite disjoint
unions of h-intervals is an algebra, and by Proposition 2, the σ-algebra generated by A is
AR.

Proposition 1.42: 1.15.

Let F : R Ñ R be increasing and right continuous. If paj, bjs pj “ 1, . . . , nq are disjoint
h-intervals, let

µ0

´

ďn

1
paj, bjs

¯

“
ÿn

1
rF pbjq ´ F pajqs

and let µ0p∅q “ 0. Then µ0 is a premeasure on the algebra A.

Proof. First we must check that µ0 is well defined, since elements of A can be represented
in more than one way as disjoint unions of h-intervals. If tpaj, bjsu

n
1 are disjoint and

Ťn
1 paj, bjs “ pa, bs, then, after perhaps relabeling the index j, we must have a “ a1 ă

b1 “ a2 ă b2 “ . . . ă bn “ b, so
řn

1 rF pbjq ´ F pajqs “ F pbq ´ F paq. More generally, if
tIiu

n
1 and tJju

m
1 are finite sequences of disjoint h-intervals such that

Ťn
1 Ii “

Ťn
1 Jj, this

reasoning shows that
ÿ

i
µ0pIiq “

ÿ

i,j
µ0pIi X Jjq “

ÿ

j
µ0pJjq

Thus µ0 is well defined, and it is finitely additive by construction.
It remains to show that if tIju

8

1 is a sequence of disjoint h-intervals with
Ť8

1 Ij P A

then µ0p
Ť8

1 Ijq “
ř8

1 µ0pIjq. Since
Ť8

1 Ij is a finite union of h-intervals, the sequence
tIju

8

1 can be partitioned into finitely many subsequences such that the union of the
intervals in each subsequence is a single h-interval. By considering each subsequence
separately and using the finite additivity of µ0, we may assume that

Ť8

1 Iȷ is an h-interval
I “ pa, bs. In this case, we have

µ0pIq “ µ0

´

ďn

1
Ij

¯

` µ0

´

I ∖
ďn

1
Ij

¯

ě µ0

´

ďn

1
Ij

¯

“
ÿn

1
µ0pIjq

Letting n Ñ 8, we obtain µ0pIq ě
ř8

1 µpIjq. To prove the reverse inequality, let us
suppose first that a and b are finite, and let us fix ε ą 0. Since F is right continuous,
there exists δ ą 0 such that F pa ` δq ´ F paq ă ε, and if Ij “ paj, bj , for each j there
exists δj ą 0 such that F pbj ` δjq ´ F pbjq ă ε2´j. The open intervals paj, bj ` δjq cover
the compact set ra ` δ, bs, so there is a finite subcover. By discarding any paj, bj ` δjq
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that is contained in a larger one and relabeling the index j, we may assume that - the
intervals pa1, b1 ` δ1q, . . . , paN , bN ` δNq coverra ` δ, bs, - bj ` δj P paj`1, bj`1 ` δj`1q for
j “ 1, . . . , N ´ 1.

But then
µ0pIq ă F pbq ´ F pa ` δq ` ε

ď F pbN ` δNq ´ F pa1q ` ε

“ F pbN ` δNq ´ F paNq `
ÿN´1

1
rF paj`1q ´ F pajqs ` ε

ď F pbN ` δNq ´ F paNq `
ÿN´1

1
rF pbj ` δjq ´ F pajqs ` ε

ă
ÿN

1
rF pbjq ` ε2´j

´ F pajqs ` ε

ă
ÿ8

1
µpIjq ` 2ε

Since ε is arbitrary, we are done when a and b are finite. If a “ ´8, for any M ă 8

the intervals pajbj ` δjq cover r´M, bs, so the same reasoning gives F pbq ´ F p´Mq ď
ř8

1 µ0pIjq ` 2ε, whereas if b “ 8, for any M ă 8 we likewise obtain F pMq ´ F paq ď
ř8

1 µ0pIjq ` 2ε. The desired result then follows by letting ε Ñ 0 and M Ñ 8.

Theorem 1.43: 1.16.

If F : R Ñ R is any increasing, right continuous function, there is a unique Borel
measure µF on R such that µF ppa, bsq “ F pbq ´ F paq for all a, b. If G is another such
function, we have µF “ µG if and only if F ´G is constant. Conversely, if µ is a Borel
measure on R that is finite on all bounded Borel sets and we define

F pxq “

$

’

&

’

%

µpp0, xsq if x ą 0

0 if x “ 0

´µpp´x, 0sq if x ă 0

then F is increasing and right continuous, and µ “ µF .

Proof. Each F induces a premeasure on A by Proposition 42. It is clear that F and G
induce the same premeasure if and only if F ´ G is constant, and that these premeasures
are σ-finite (since R “

Ť8

´8
pj, j ` 1s). The first two assertions therefore follow from

Theorem 33. As for the last one, the monotonicity of µ implies the monotonicity of F ,
and the continuity of µ from above and below implies the right continuity of F for x ě 0
and x ă 0. It is evident that µ “ µF on A, and hence µ “ µF on AR by the uniqueness
in Theorem 33.

Several remarks are in order. First, this theory could equally well be developed by
using intervals of the form ra, bq and left continuous functions F . Second, if µ is a finite
Borel measure on R, then µ “ µF where F pxq “ µpp´8, xsq is the cumulative distribution
function of µ; this differs from the F specified in Theorem 43 by the constant µpp´8, 0sq.
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Third, the theory of Folland Section 1.4 gives, for each increasing and right continuous F ,
not only the Borel measure µF but a complete measure µF whose domain includes BR. In
fact, µF is just the completion of µF (Folland Exercise 1.22a or Theorem 46 below), and
one can show that its domain is always strictly larger than BR. We shall usually denote
this complete measure also by µF ; it is called the Lebesgue-Stieltjes measure associated
to F .

Lebesgue-Stieltjes measures enjoy some useful regularity properties that we now
investigate. In this discussion we fix a complete Lebesgue-Stieltjes measure µ on R
associated to the increasing, right continuous function F , and we denote by Mµ the
domain of µ. Thus, for any E P Mµ,

µpEq “ inf
!

ÿ8

1
rF pbjq ´ F pajqs

ˇ

ˇ

ˇ
E Ă

ď8

1
paj, bjs

)

“ inf
!

ÿ8

1
µppaj, bjsq

ˇ

ˇ

ˇ
E Ă

ď8

1
paj, bjs

)

.

We first observe that in the second formula for µpEq we can replace h-intervals by open
h-intervals:

Lemma 1.44: 1.17.

For any E P Mµ,

µpEq “ inf
!

ÿ8

1
µppaj, bjqq

ˇ

ˇ

ˇ
E Ă

ď8

1
paj, bjq

)

Proof. Let us call the quantity on the right νpEq. Suppose E Ă
Ť8

1 paj, bjq. Each paj, bjq
is a countable disjoint union of h-intervals Ikj pk “ 1, 2, . . .q; specifically, Ikj “ pckj , c

k`1
j s

where tcju is any sequence such that c1j “ aj and ckj increases to bj as k Ñ 8. Thus
E Ă

Ť8

j,k“1 I
k
j , so

ÿ8

1
µppaj, bjqq “

ÿ8

j,k“1
µpIkj q ě µpEq

and hence νpEq ě µpEq. On the other hand, given ε ą 0 there exists tpaj, bjsu
8

1 with
E Ă

Ť8

1 paj, bjs and
ř8

1 µppaj, bjsq ď µpEq ` ε, and for each j there exists δj ą 0 such
that F pbj ` δjq ´ F pbjq ă ε2´j. Then E Ă

Ť8

1 paj, bj ` δjq and
ÿ8

1
µppaj, bj ` δjqq ď

ÿ8

1
µppaj, bjsq ` ε ď µpEq ` 2ε

so that νpEq ď µpEq.

Theorem 1.45: 1.18.

If E P Mµ, then
µpEq “ inftµpUq | U Ą E and U is open u

“ suptµpKq | K Ă E and K is compact u.
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Proof. By Lemma 44, for any ε ą 0 there exist intervals paj, bjq such that E Ă
Ť8

1 paj, bjq
and µpEq ď

ř8

1 µppaj, bjqq ` ε. If U “
Ť8

1 paj, bjq then U is open, U Ą E, and µpUq ď

µpEq ` ε. On the other hand, µpUq ě µpEq whenever U Ą E, so the first equality is valid.
For the second one, suppose first that E is bounded. If E is closed, then E is compact
and the equality is obvious. Otherwise, given ε ą 0 we can choose an open U Ą E ∖ E
such that µpUq ď µpE ∖ Eq ` ε. Let K “ E ∖ U . Then K is compact, K Ă E, and

µpKq “ µpEq ´ µpE X Uq “ µpEq ´ rµpUq ´ µpU ∖ Eqs

ě µpEq ´ µpUq ` µpE ∖ Eq ě µpEq ´ ε

If E is unbounded, let Ej “ E X pj, j ` 1s. By the preceding argument, for any ε ą 0
there exist compact Kj Ă Ej with µpKjq ě µpEjq ´ ε2´j. Let Hn “

Ťn
´nKj. Then Hn

is compact, Hn Ă E, and µpHnq ě µp
Ťn

´nEjq ´ ε. Since µpEq “ limnÑ8 µp
Ťn

´nEjq, the
result follows.

Theorem 1.46: 1.19.

If E Ă R, the following are equivalent.
(a) E P Mµ.
(b) E “ V ∖N1 where V is aGδ set and µpN1q “ 0.
(c) E “ H Y N2 where H is an Fσ set and µpN2q “ 0.

Proof. Obviously (b) and (c) each imply (a) since µ is complete on Mµ. Suppose E P Mµ

and µpEq ă 8. By Theorem 45, for j P Zě1 we can choose an open Uj Ą E and a compact
Kj Ă E such that

µpUjq ´ 2´j
ď µpEq ď µpKjq ` 2´j.

Let V “
Ş8

1 Uj and H “
Ť8

1 Kj. Then H Ă E Ă V and µpV q “ µpHq “ µpEq ă 8, so
µpV ∖ Eq “ µpE ∖Hq “ 0. The result is thus proved when µpEq ă 8; the extension to
the general case is left to the reader (Folland Exercise 1.25).

The significance of Theorem 46 is that all Borel sets (or, more generally, all sets in Mµ)
are of a reasonably simple form modulo sets of measure zero. This contrasts markedly
with the machinations necessary to construct the Borel sets from the open sets when
null sets are not excepted; see Proposition 60 below. Another version of the idea that
general measurable sets can be approximated by “simple” sets is contained in the following
proposition.

Proposition 1.47: 1.20.

If E P Mµ and µpEq ă 8, then for every ε ą 0 there is a set A that is a finite union
of open intervals such that µpE△Aq ă ε.

Proof. See Folland Exercise 1.26.
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We now examine the most important measure on R, namely, Lebesgue measure: This
is the complete measure µF associated to the function F pxq “ x, for which the measure
of an interval is simply its length. We shall denote it by m. The domain of m is called
the class of Lebesgue measurable sets, and we shall denote it by L. We shall also refer to
the restriction of m to LR as Lebesgue measure.

Among the most significant properties of Lebesgue measure are its invariance under
translations and simple behavior under dilations. If E Ă R and s, r P R, we define

E ` s “ tx ` s | x P Eu, rE “ trx | x P Eu.

Theorem 1.48: 1.21.

If E P L, then E ` s P L and rE P L for all s, r P R. Moreover, mpE ` sq “ mpEq

and mprEq “ |r|mpEq.

Proof. Since the collection of open intervals is invariant under translations and dilations,
the same is true of BR. For E P BR, let mspEq “ mpE ` sq and mrpEq “ mprEq. Then
ms and mr clearly agree with m and |r|m on finite unions of intervals, hence on BR by
Theorem 33. In particular, if E P BR and mpEq “ 0, then mpE ` sq “ mprEq “ 0, from
which it follows that the class of sets of Lebesgue measure zero is preserved by translations
and dilations. It follows that B (the members of which are a union of a Borel set and a
Lebesgue null set) is preserved by translation and dilations and that mpE ` sq “ mpEq

and mprEq “ |r|mpEq for all E P B.

The relation between the measure-theoretic and topological properties of subsets of R
is delicate and contains some surprises. Consider the following facts. Every singleton set
in R has Lebesgue measure zero, and hence so does every countable set. In particular,
mpQq “ 0. Let trju

8

1 be an enumeration of the rational numbers in r0, 1s, and given ε ą 0,
let Ij be the interval centered at rj of length ε2´j. Then the set U “ p0, 1q X

Ť8

1 Ij is
open and dense in r0, 1s, but mpUq ď

ř8

1 ε2
´j “ ε; its complement K “ r0, 1s ∖ U is

closed and nowhere dense, but mpKq ě 1 ´ ε. Thus a set that is open and dense, and
hence topologically “large,” can be measuretheoretically small, and a set that is nowhere
dense, and hence topologically “small,” can be measure-theoretically large. (A nonempty
open set cannot have Lebesgue measure zero, however.)

The Lebesgue null sets include not only all countable sets but many sets having the
cardinality of the continuum. We now present the standard example, the Cantor set,
which is also of interest for other reasons.

The Lebesgue null sets include not only all countable sets but many sets having the
cardinality of the continuum. We now present the standard example, the Cantor set,
which is also of interest for other reasons.
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Each x P r0, 1s has a base-3 decimal expansion x “
ř8

1 aj3
´j where aj “ 0, 1, or 2.

This expansion is unique unless x is of the form p3´k for some integers p, k, in which case
x has two expansions: one with aj “ 0 for j ą k and one with aj “ 2 for j ą k. Assuming
p is not divisible by 3, one of these expansions will have ak “ 1 and the other will have
ak “ 0 or 2. If we agree always to use the latter expansion, we see that

a1 “ 1 if and only if
1

3
ă x ă

2

3
,

a1 ‰ 1 and a2 “ 1 if and only if
1

9
ă x ă

2

9
or

7

9
ă x ă

8

9
,

and so forth. It will also be useful to observe that if x “
ř

aj3
´j and y “

ř

bj3
´j, then

x ă y if and only if there exists an n such that an “ bn and aj “ bj for j ă n.
The Cantor set C is the set of all x P r0, 1s that have a base-3 expansion x “

ř

aj3
´j

with aj ‰ 1 for all j. Thus C is obtained from r0, 1s by removing the open middle third
`

1
3
, 2
3

˘

, then removing the open middle thirds
`

1
9
, 2
9

˘

and
`

7
9
, 8
9

˘

of the two remaining
intervals, and so forth. The basic properties of C are summarized as follows:

Proposition 1.49: 1.22.

Let C be the Cantor set.
(a) C is compact, nowhere dense, and totally disconnected (i.e., the only connected

subsets of C are single points). Moreover, C has no isolated points.
(b) mpCq “ 0.
(c) cardpCq “ c.

Proof. We leave the proof of (a) to the reader (Folland Exercise 1.27). As for (b), C is
obtained from r0, 1s by removing one interval of length 1

3
, two intervals of length 1

9
, and

so forth. Thus

mpCq “ 1 ´
ÿ8

0

2j

3j`1
“ 1 ´

1

3
¨

1

1 ´ p2{3q
“ 0.

Lastly, suppose x P C, so that x “
ř8

0 aj3
´j where aj “ 0 or 2 for all j. Let fpxq “

ř8

1 bj2
´j where bj “ aj{2. The series defining fpxq is the base-2 expansion of a number

in r0, 1s, and any number in r0, 1s can be obtained in this way. Hence f maps C onto
r0, 1s, and (c) follows.

Let us examine the map f in the preceding proof more closely. One readily sees that if
x, y P C and x ă y, then fpxq ă fpyq unless x and y are the two endpoints of one of the
intervals removed from r0, 1s to obtain C. In this case fpxq “ p2´k for some integers p, k,
and fpxq and fpyq are the two base-2 expansions of this number. We can therefore extend
f to a map from r0, 1s to itself by declaring it to be constant on each interval missing
from C. This extended f is still increasing, and since its range is all of r0, 1s it cannot
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have any jump discontinuities; hence it is continuous. f is called the Cantor function or
Cantor-Lebesgue function.

The construction of the Cantor set by starting with r0, 1s and successively removing
open middle thirds of intervals has an obvious generalization. If I is a bounded interval
and α P p0, 1q, let us call the open interval with the same midpoint as I and length equal to
α times the length of I the “open middle αth” of I. If tαju

8

1 is any sequence of numbers in
p0, 1q, then, we can define a decreasing sequence tKju of closed sets as follows: K0 “ r0, 1s,
and Kj is obtained by removing the open middle αjth from each of the intervals that
make up Kj´1. The resulting limiting set K “

Ş8

1 Kj is called a generalized Cantor set.
Generalized Cantor sets all share with the ordinary Cantor set the properties (a) and (c)
in Proposition 49. As for their Lebesgue measure, clearly mpKjq “ p1 ´ αjqmpKj´1q, so
mpKq is the infinite product

ś8

1 p1 ´ αjq “ limnÑ8

śn
1 p1 ´ αjq. If the αj are all equal

to a fixed α P p0, 1q (for example, α “ 1
3

for the ordinary Cantor set), we have mpKq “ 0.
However, if αj Ñ 0 sufficiently rapidly as j Ñ 8,mpKq will be positive, and for any
β P p0, 1q one can choose αj so that mpKq will equal β; see Folland Exercise 1.32. This
gives another way of constructing nowhere dense sets of positive measure.

Not every Lebesgue measurable set is a Borel set. One can display examples of sets in
L∖ LR by using the Cantor function; see Folland Exercise 2.9.

Exercise 1.50: Folland Exercise 1.25.

Complete the proof of Theorem 46

Exercise 1.51: Folland Exercise 1.26.

Prove Proposition 47. (Use Theorem 45.)

Exercise 1.52: Folland Exercise 1.27.

Prove Proposition 49(a). (Show that if x, y P C and x ă y, there exists z R C such
that x ă z ă y.)

Exercise 1.53: Folland Exercise 1.28.

Let F be increasing and right continuous, and let µF be the associated measure. Then
µF ptauq “ F paq´F pa´q, µF pra, bqq “ F pb´q´F pa´q, µF pra, bsq “ F pbq´F pa´q, and
µF ppa, bqq “ F pb´q ´ F paq.
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Exercise 1.54: Folland Exercise 1.29 (Variant).

Let µ˚ be an outer measure on X. If V is a µ˚-measurable subset of X and E is a
µ˚-measurable subset of X contained in V , then

µ˚
pE ∖ V q ą 0.

Proof. If µ˚pE∖V q “ 0, then E∖V is µ˚-measurable. so EXpE∖V qc “ E∖pV ∖V q “ V ,
a contradiction. Thus µ˚pV ∖ Aq ą 0.

Remark 55. Since every null set is µ˚-measurable and µ˚ restricted to the σ-algebra
of µ˚-measurable sets is a complete measure, it is clear that µ˚pEq ą 0 if E contains a
µ˚-nonmeasurable set. Indeed, if V is a nonmeasurable set in E but µ˚pEq “ 0, then since
any subsets of null sets are measurable when the measure is complete, this would mean V
would be measurable, a contradiction. Thus µ˚pEq ą 0.

Exercise 1.56: Folland Exercise 1.30.

If E P L and mpEq ą 0, for any α ă 1 there is an open interval I such that
mpE X Iq ą αmpIq.

Exercise 1.57: Folland Exercise 1.31.

If E P L and mpEq ą 0, the set E ´ E “ tx ´ y | x, y P Eu contains an interval
centered at 0. (If I is as in Folland Exercise 1.30 with α ą 3

4
, then E ´ E contains

`

´1
2
mpIq, 1

2
mpIq

˘

.)

Exercise 1.58: Folland Exercise 1.32.

Suppose tαju
8

1 Ă p0, 1q.
(a)

ś8

1 p1 ´ αjq ą 0 if and only if
ř8

1 αj ă 8. (Compare
ř8

1 logp1 ´ αjq to
ř

αj.)
(b) Given β P p0, 1q, exhibit a sequence tαju such that

ś8

1 p1 ´ αjq “ β.

Exercise 1.59: Folland Exercise 1.33.

There exists a Borel set A Ă r0, 1s such that 0 ă mpAXIq ă mpIq for every subinterval
I of r0, 1s. a

aHint: Every subinterval of r0, 1s contains Cantor-type sets of positive measure.

Proposition 1.60: 1.23.

MpEq “
Ť

αPΩMα, where Ω is the set of countable ordinals.
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Proof. Transfinite induction shows that Eα Ă EpEq for all α P Ω, and hence
Ť

αPΩ Eα Ă

EpEq. The reverse inclusion follows from the fact that any sequence in Ω has a supremum
in Ω (see Folland Proposition 20): If Ej P Eαj for j P Zě1 and β “ suptαju, then Ej P Eα
for all j and hence

Ť8

1 Ej P Eβ where β is the successor of α.

Combining Proposition 60 with Folland Proposition 15, we see that if cardpZě1q ď

cardpEq ď c, then cardpEpEqq “ c. (See Folland Exercise 1.3.)

2 Integration

2.1 Measurable Functions

We first study the category of measurable spaces, whose morphisms are measurable
mappings. Recall that any set map f : X Ñ Y induces a mapping f´1 : PpY q Ñ PpXq,
given by the preimage of f , that preserves unions, intersections, and complements. (Check!)
Thus, if N is a σ-algebra on Y , then M – f´1pNq is a σ-algebra on X.

Definition 1. A morphism of measurable spaces is called a measurable function. That
is, given measurable spaces pX,Mq, pY,Nq and a set map f : X Ñ Y , f is called pM,Nq-
measurable, or simply measurable when M and N are understood, if f´1pEq P M

whenever E P N. One can check that this in fact makes the collection of measurable spaces
with measurable mappings into a category.

Proposition 2.2: 2.1.

If N “ MpEq, then f : X Ñ Y is pM,Nq-measurable if and only if f´1pEq P M for all
E P E.

Proof. The forward implication is trivial. Conversely, if tE Ă Y | f´1pEq P Mu is a
σ-algebra containing E, then it contains M.

Corollary 2.3: 2.2.

If X and Y are topological spaces, then every continuous f : X Ñ Y is pBX ,BY q-
measurable.

Proof. This is almost trivial, and becomes so when noting f is continuous if and only if
f´1pUq is open for all open subsets U of Y .

If pX,Mq is a measurable space, a real- or complex-valued function f on X is called
M-measurable, or simply measurable when M is understood, if f is pM,BRq- or
pM,BCq-measurable.
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BR or BC are always understood as the σ-algebra on the codomain unless otherwise
specified. In particular, f : R Ñ C is Lebesgue measurable (resp. Borel measurable)
if it is pL,BCq- (resp.pBR,BCq-)measurable; likewise for f : R Ñ R.

Warning 2.4.

If f, g are Lebesgue measurable, it is not necessarily the case that f ˝ g is Lebesgue
measurable, even if g is assumed to be continuous.

Proposition 2.5: 2.3.

If pX,Mq is a measurable space and f : X Ñ R, the following are equivalent:
• f is M-measurable.
• tf ą au – f´1ppa,8qq P M for all a P R.
• tf ě au – f´1pra,8qq P M for all a P R.
• tf ă au – f´1pp´8, aqq P M for all a P R.
• tf ď au – f´1pp´8, asq P M for all a P R.

Proof. This is an immediate consequence of Proposition 2.

Sometimes we wish to consider measurability on subsets ofX. If pX,Mq is a measurable
space, f is a function on X, and E P M, we say that f is measurable on E if
f´1pBq X E P M for all Borel sets B. (Equivalently, f |E is ME-measurable, where
ME “ tF X E | F P Mu.)

Given a set X, if tpYα,NαquαPA is a family of measurable spaces, and f : X Ñ Yα is
a map for each α P A, there is a unique smallest σ-algebra on X with respect to which
the fαs are all measurable, namely, the σ-algebra generated by the sets f´1

α pEαq with
Eα P Nα and α P A. It is called the σ-algebra generated by tfαuαPA. In particular, if
X “

ś

αPA Yα, we see that the product σ-algebra on X is the σ-algebra generated by the
coordinate maps π´1

α : X Ñ Yα.

Proposition 2.6: 2.4.

Let pX,Mq and pYα,Nαqpα P Aq be measurable spaces, Y “
ś

αPA Yα, N “
Â

αPANα,
and πα : Y Ñ Yα the coordinate maps. Then f : X Ñ Y is pM,Nq-measurable if and
only if fα “ πα ˝ f is pM,Nαq-measurable for all α.

Proof. If f is measurable, so is each fα since the composition of measurable maps is
measurable. Conversely, if each fα is measurable, then for all Eα P Nα, f´1pπ´1

α pEαqq “

f´1
α pEαq P M, for which f is measurable by Proposition 2.
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Corollary 2.7: 2.5.

A function f : X Ñ C is M-measurable if and only if Re f and Im f are M-measurable.

Proof. This follows from Proposition 6 since BC “ BR2 “ BR b BR by Proposition 5.

It is sometimes convenient to consider functions with values in the extended real
number system R “ r8,8s. We define Borel sets in R by BR “ tE Ă R | E X R P BRu.
(This coincides with the usual definition of the Borel σ-algebra if we make R into a metric
space with metric ρpx, yq “ |Apxq ´Apyq|, where Apxq “ arctanx.) It is easily verified as
in Proposition 5 that BR is generated by the rays pa,8s or r´8, aqpa P Rq, and we define
f : X Ñ R to be M-measurable if it is pM,BRq-measurable.

We now establish that measurability is preserved under the familiar algebraic and
limiting operations.

Proposition 2.8: Extended Version of 2.6.

Let pX,Mq be a measurable space and suppose f, g, and fk are M-measurable for all
k.

(1) The sets tf ă gu, tf ď gu, and tf “ gu are in M for all k,

(2) The restriction of f to any E P M is M-measurable,

(3) f ` g is M-measurable,

(4) λf for any constant λ is measurable,

(5) fg is M-measurable, and

(6) supk fk, infk fk, lim supk fk, lim infk fk are all M-measurable.

Proof. For (1), write

tf ă gu “
ď

rPQ

´

tf ă ru

P M by
(5)

X

P M by
(5)

tr ă gu

¯

P M,

so tf ď gu “ tg ă fu
c and tf “ gu “ tf ď gu X tg ď fu are also in M. For (2), note that

tf |E ă au “ tf ă au X E for any a P R. For (3), write tf ` g ą au “
Ť

rPQtf ą ru X

tg ą a ´ ru. To see (4), first note if c “ 0 then cf “ 0 is M-measurable because
constant functions are measurable. If c ą 0 then tcf ą au “ tf ą a{cu. If c ă 0 then
tf ă a{cu. (5) follows from the fact fg “ pf ` gq2 ´ pf ´ gq2 together with the previous
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points. To see (6), write tsupk fk ą au “
Ť8

k“1tfk ą au, and infk fk “ ´ supp´fkq,
lim supkÑ8 “ infk supněk fn “ infk supn fn`k, and similarly for lim infkÑ8 fk.

Remark 9. Proposition 8 holds for R-valued functions. (Check!)

To prove the following two corollaries, apply Corollary 7.

Corollary 2.10: 2.8.

If f, g : X Ñ R is measurable, then so are maxtf, gu and mintf, gu.

Corollary 2.11: 2.9.

If tfn : X Ñ Cu8
n“1 is a sequence of measurable functions and fn Ñ f pointwise, then

f is measurable.

By Corollary 11, measurability is closed under pointwise limits. We will soon define an
integral on the set of nonnegative measurable functions, which will mean that if we have
a pointwise limit of integrable functions, then the limit is integrable. This is something
that we didn’t necessarily have before measures, as shown in the following example.

2.2 Constructing Measurable Functions from Simple Functions

We now build functions from building blocks. Let pX,Mq be a measurable space.

Definition 12. Given E Ă X, define a map χE : X Ñ R, called the characteristic
function of E, by

χEpxq “

#

1 if x P E,

0 if x R E.

The standard representation of a simple function f is

f “
ÿn

j“1
zjχEj ,

where Ej “ f´1ptzjuq, im f “ tz1, . . . , znu. Note that the Ej are disjoint sets. We can
write it this way because any simple function is a finite linear combination of characteristic
functions. Note that we allow zj “ 0, and indeed these sets may play an important role
when multiplying or composing functions.

Remark 13. Note that χE is measurable if and only if E P M. (Check!)

Remark 14. It is useful to know how to construct or disassemble characteristic functions
of given measurable sets. To that end, here are some useful characteristic function
identities. Let E,F P M.

χEc “ 1 ´ χE,
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χEYF “ χE ` χF ´ χEχF ,

χEXF “ χEχF ,

χE∖F “ χEp1 ´ χF q,

χE△F “ χE ` χF ´ 2χEχF ,

µpE△F q “

ż

|χE ´ χF | dµ.

Definition 15. A simple function f : X Ñ C is a finite linear combination of charac-
teristic functions.

Remark 16. It is useful to note that f : X Ñ C is simple if and only if f is measurable
and im f is a finite set.

Notation 17. Given any sequence tfn : X Ñ Ru of set functions and a set function
f : X Ñ R, we will write fn Õ f to mean

f1 ď f2 ď ¨ ¨ ¨ ď f

and fn Ñ f pointwise.

Theorem 2.18: 2.10.

Let pX,Mq be a measurable space.
(a) If f : X Ñ r0,8s is measurable, then there exist simple functions tϕnu8

n“1 such
that ϕn Õ f , and this convergence is uniform on any set where f is bounded.

(b) If f : X Ñ C is measurable, then there exists a sequence tϕu8
n“1 of simple functions

such that |ϕn| Õ |f | and ϕn Ñ f pointwise, and the latter convergence is uniform
on any set where f is bounded.

Proof. This is a constructive proof. We will prove (a) since (b) will then follow. Suppose
f : X Ñ r0,8s is measurable. Let

Ek
n “ f´1

ˆˆ

k

2n
,
k ` 1

2n

ȷ˙

and Fn “ f´1
pp2n,8sq,

where 0 ď k ď 22n ´ 1 and n ranges over all nonnegative integers. Define

ϕn “
ÿ22n´1

k“0

k

2n
χEk

n
` 2nχFn

One can check fn Õ f by induction. Further note that 0 ď f ´ ϕn ď 1{2n on a set where
f ď 2n, which again follows from an induction argument, and completes the proof of (a).
To get part (b) from part (a), let f “ g ` ih, where g and h are real functions, so that
f “ g` ´ g´ ` iph` ´ h´q, where g`, g´, h`, h´ : X Ñ r0,8s. Then the result follows
from part (a) and the triangle inequality.
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Proposition 2.19: Slight Alteration of 2.11.

• If f is measurable and f “ g a.e., then g is measurable.
• If tfnu8

n“1 are measurable and fn Ñ f a.e., then f is measurable.

Proof. (a) If f “ g µ-a.e., then µptf “ gucq “ 0. Then since µ is complete, any subset of
tf “ guc is measurable. We want to show tg ą au is measurable for any a P R. Since

tg ą au “ ptg ą au X tf “ guq Y ptg ą au X tf “ gu
c
q

l jh n

—NĂtf“gu,
µpNq“0

,

we have
tg ą au
l jh n

measurable

“ tf ą au
l jh n

measurable

Y N
ljhn

measurable

.

For (b), let E “ tfn Ñ fu. Since fn Ñ f µ-a.e., µpEcq “ 0. By Proposition 8, f is
measurable on Ec, so tf ą au X Ec is measurable. Then

tf ą au
l jh n

measurable

“ tf ą au X Ec

l jh n

measurable

Y tf ą au X E
l jh n

Ă null set E
ñ measurable

.

Remark 20. Proposition 19(a) implies µ is complete. In fact, Proposition 19(b) also
implies µ is complete. (Check!)

Exercise 2.21.

If X “ A Y B where A,B P M, a function on X is measurable if and only if f is
measurable on A and B.

Solution. This proof can be found here. Let fA “ f |A and fB “ f |B. If f is measurable,
then for each C P BR we have for J P tA,Bu that

pfJq
´1

pCq “ f´1
pCq X J P M.

Hence fA and fB are measurable. Now for the converse, note that
f´1

pCq “ pf´1
pCq X Aq Y pf´1

pCq X Bq “ pfAq
´1

pCq Y pfBq
´1

pCq P M

and thus f is measurable.

Proposition 2.22: 2.12.

Let pX,M, µq be a measure space and pX,M, µq its completion. If f is M-measurable
on X, then there exists a M-measurable function g such that f “ g µ-a.e.
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Proof. First we show this for simple functions. If f “ χE, where E P M, then E “ AYN ,
where A P M and µpNq “ 0. Let g “ χA. Then tf ‰ gu Ă N ùñ f “ g µ-a.e.

Now suppose f is a simple function, say f “
řn
j“1 zjχEj , where Ej “ f´1ptzjuq. One

can then use induction to prove there exist M-measurable g such that ϕ “ ψ µ-a.e.
(Check!). By Theorem 18, there exists a sequence tϕnu8

n“1 such that ϕn Ñ f . Then there
exists a sequence tψnu8

n“1 of M-measurable simple functions such that ϕn “ f except on
a set En, where µpEnq “ 0. We fix M Q N “

Ť8

n“1En such that µpNq “ 0. Then set
g “ lim

nÑ8
χpX∖Nq ¨ ψn
l jh n

measurable

,

so that g “ f µ-a.e.

2.3 Integration of Nonnegative Functions

Fix a measure space pX,M, µq and define
L`

pµq “ tM-measurable functions f : X Ñ r0,8su.

If the measure space pX,M, µq is understood, then we simply write L` to mean L`pµq.
Note that writing L`pµq specifies not only the measure but the whole measure space
pX,M, µq, because given a measure µ : M Ñ X the σ-algebra M is specifies since it is the
domain of µ and the underlying set X is specified since it is the unique maximal set in M.

Given a simple function ϕ P L` with standard representation ϕ “
řn
j“1 ajχEj . We

define
ż

ϕ dµ “
ÿn

j“1
ajµpEjq.

We may also write this as
ş

ϕpxq dµpxq, or even simply
ş

ϕ when the measure µ is understood.
Here we are using the convention 0 ¨ 8 “ 0. Given E P M, we define

ż

E

ϕ dµ “

ż

ϕχE dµ

Proposition 2.23: 2.13.

Let ϕ, ψ be simple functions in L`.
(a) If c ě 0, then

ş

cϕ “ c
ş

ϕ.
(b)

ş

pϕ ` ψq “
ş

ϕ `
ş

ψ.
(c) If ϕ ď ψ, then

ş

ϕ ď
ş

ψ.
(d) The map ν1 : M Ñ r0,8s given by ν1pEq “

ş

E
dµ is a measure on M.

Proof. (a), (b), and (c) are immediate by definition of the integral for simple functions.
To see (d), note that for any E P M, ν1pEq “

ş

E
dµ “ µpEq. Thus ν1 “ µ, which and we

already know µ is a measure, so ν1 is a measure.
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We now extend the definition of the integral to all f P L`. We define
ż

f dµ “ sup

"
ż

ϕ dµ

ˇ

ˇ

ˇ

ˇ

0 ď ϕ ď f, ϕ simple
*

.

By Proposition 23, this definition satisfies
ż

cf “ c

ż

f for all c ě 0,

and

f ď g ùñ

ż

f ď

ż

g.

Theorem 2.24: 2.14: Monotone Convergence Theorem.

If tfnu Ă L`pµq and fn Õ f as n Ñ 8, then
ż

f “ lim
nÑ8

ż

fn.

Proof. Since fn ď f for all n P Zě1 and the integral is monotone, by taking the limit as
n Ñ 8 we obtain

lim
nÑ8

ż

fn ď

ż

f.

It remains to show the reverse inequality. Let ϕ be a simple function with 0 ď ϕ ď f ,
and let En “ tx | fnpxq ě αϕpxqu for a fixed α P p0, 1q. Then the En form an increasing
sequence in the sense that E1 Ă E2 Ă ¨ ¨ ¨ . The Ej are measurable (Check!) and
Ť8

j“1Ej “ X (Check!). Now
ş

fn ě
ş

En
ě α

ş

En
ϕ by Proposition 23 and continuity from

below of the measure A ÞÑ
ş

A
dµ. Since this is true for all α ă 1, taking the limit as

α Ñ 1 from below gives that it also holds for α “ 1, that is, that
ş

fn ě
ş

En
ϕ. Taking the

supremum over all simple functions 0 ď ϕ ď f , we obtain
ż

f ď lim
nÑ8

ż

fn,

which completes the proof.

Before continuing, we introduce an extremely powerful technique for proving results
with the theory we have so far developed: an induction principle on measurable functions:

Theorem 2.25: Induction Principle for Measurable Functions.

Let pX,Mq be a measurable space, F the set of measurable functions (resp. measurable
nonnegative functions) with property P such that the following hold.

(a) For all E P M, χE P F.
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(b) For all f, g P F, af ` bg P F for all a, b P R (resp. all nonnegative a, b P R).

(c) For all tfnu8
n“1 Ă F such that fn Õ f , f P F.

Then F contains all measurable functions (resp. nonnegative measurable functions).

Proof. Prove the case of nonnegative measurable functions first as follows: Note (a) with
(b) implies simple functions are in F. Then approximate any f P L` by simple functions,
and then apply (c). To prove the case for all a, b P R, then F satisfying (a), (b’), and (c)
contain all measurable functions by applying the nonnegative case above to each of f`,
f´, then using part (b) to the sum f “ f` ´ f´ to get the result, since f`, f´ ě 0 and
are measurable.

Theorem 2.26: 2.15: MCT for Series.

If tfnu Ă L`, then
ż

ÿ8

n“1
fn “

ÿ8

n“1

ż

fn.

Proof. Suppose f1, f2 P L`. Then there exist simple functions ϕn, ψn such that ϕn Õ f1
and ψn Õ f2. Then ϕn ` ψn Õ f1 ` f2. Then

ż

pf1 ` f2q
(MCT)

“

ż

lim
nÑ8

pϕn ` ψnq “ lim
nÑ8

ż

ϕn ` lim
nÑ8

ż

ψn
(MCT)

“

ż

f `

ż

g.

Continuing similarly, we can see N ,
ż

ÿN

n“1
fn “

ÿN

n“1

ż

fn. (2.26.1)

for all positive integers N . Sending n Ñ 8, we obtain
ÿ8

n“1

ż

fn “ lim
NÑ8

ÿN

n“1

ż

fn
(2.26.1)

“ lim
NÑ8

ż

ÿN

n“1
fn

(MCT)
“

ż

ÿ8

n“1
fn.

Proposition 2.27: 2.16.

Let f P L`. Then
ż

f “ 0 ðñ f “ 0 a.e.

Proof. (ñ) If f is simple, say with standard representation
řn
j“1 ajχEj , then

0 “

ż

f “
ÿn

j“1
ajµpEjq ðñ aj “ 0 or µpEjq “ 0 for all j “ 1, . . . , n,

so f can only be nonzero on null sets, and hence f “ 0 a.e.
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Now suppose f is any function and f “ 0 a.e. Then any simple function ϕ with
0 ď ϕ ď f must also equal 0 a.e., and since

ş

f is defined as the supremum of such simple
functions we conclude

ş

f “ 0.
(ð) We will show that if f ‰ 0 a.e., then

ş

f ‰ 0. Suppose f ‰ 0 a.e. Then
µptf ą 0uq0. We can write

tf ą 0u “
ď8

n“1
tfpxq ą 1{nu
l jh n

–En

.

Then µpEnq ą 0 for some n P Zě1. Then f ą χEn{n, so
ş

f ą µpEnq{n ą 0, which
completes the proof.

Corollary 2.28: 2.17: MCT for Convergence Almost Everywhere.

If tfnu Ă L`, f P L` and fn Õ f a.e., then
ż

f “ lim
nÑ8

ż

fn.

Proof. Suppose fn increases to fpxq for all x P E and µpEcq “ 0. Then

fχEpxq “

#

fpxq if x P E,

0 if x P Ec.

So, f ´ fχE “ 0 a.e. Similarly, fn ´ fnχE “ 0 a.e. Then
ż

f
(24)
“

ż

fχE
(MCT)

“ lim
nÑ8

fnχE
p27q
“ lim

ż

fn.

Remark 29. The assumption that tfnu be increasing to f is a crucial one. For example,
consider fn “ nχp0,1{nq for each x. But, with respect to the Lebesgue measure, we have

lim
nÑ8

fn “ 0 ‰ 1 “ n

ˆ

1

n

˙

“

ż

fn.

Theorem 2.30: 2.18: Fatou’s Lemma.

If tfnu8
n“1 Ă L`, then

ż

lim infnÑ8 fn ď lim infnÑ8

ż

fn.

Proof. For each fixed k P Zě1, we have infněk fn ď fj whenever j ě k. Thus
ş

infněk fn ď
ş

fj whenever j ě k. Taking the infimum of both sides over all j ě k, we obtain
ż

inf
něk

fn ď inf
jěk

ż

fj (2.30.1)
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Letting k Ñ 8, we find
ż

lim
kÑ8

inf
něk

fn ď lim
kÑ8

ż

inf
něk

fn
(2.30.1)

ď lim infnÑ8

ż

fn.

Corollary 2.31: 2.19.

If tfnu Ă L`, f P L`, and fn Ñ f a.e., then
ż

f ď lim infnÑ8

ż

fn.

Proof. This is almost verbatim the proof of Corollary 28.

Proposition 2.32: 2.20.

If f P L` and
ş

f ă 8, then tf “ 8u is a null set, and tf ą 0u is σ-finite.

Proof. tf “ `8u “
Ş8

n“1tf ě nu. We have for each n that

µptf “ `8uq ď µptf ě nuq “

ż

tfěnu

dµ ď
1

n

ż

f ă
1

n
M

for some M ą 0, where such an M exists because
ş

f ă 8. Sending n Ñ 8, the right-hand
side vanishes. Thus tf “ 8u has measure zero.

We now show tf ą 0u is σ-finite. Write

tf ą 0u “
ď8

n“1
tf ą 1{nu

— En

,

so if Fn “ En ∖
Ťn´1

1 E then tf ą 0u is the countable disjoint union of Fn. If some Fn
has infinite measure, then

ż

f “

ż

Fn

f

“8

`

ż

F c
n

f

ě 0, since
fPL`

“ 8,

contradicting
ş

f ă 8.

Exercise 2.33: Folland Exercise 2.13.

Suppose tfnu Ă L`,
ş

f ă 8. fn Ñ f , and
ş

fn Ñ
ş

f ă 8, then
ş

E
fn Ñ

ş

E
f for all

E P M.

Solution. Let E P M. Since fn Ñ f pointwise, f P L`. Then
ż

E

f “

ż

fχE
p30q

ď lim infnÑ8

ż

fnχE “ lim infnÑ8 fn,
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so we only need to show lim supnÑ8

ş

E
fn ď

ş

f . Since f ´ fχE P L`, we can write
ż

f ´

ż

E

f
p30q

ď lim infnÑ8

ż

pfn ´ fnχEq “ lim infnÑ8

ż

fn ´ lim supnÑ8

ż

E

fn “

ż

f ´ lim supnÑ8

ż

E

fn.

Since
ş

f ă 8, we can subtract it from both sides to obtain lim supnÑ8

ş

E
fn ď

ş

f .

Remark 34. The above claim fails if
ş

E
fn Ñ

ş

E
f “ 8. To see this, consider the

Lebesgue measure space pR,L,mq, f “ χr2,8q, fn “ χr2,8q ` nχr0,1{nq and E “ r0, 1q. In
this case fn Ñ f pointwise,

ş

f “
ş

fn “ 8 and hence
ş

f “ limnÑ8

ş

fn, but
ż

E

f “ 0 ‰ 1 “ lim
nÑ8

1 “ lim
nÑ8

n ¨ mpr0, 1{nqq “ lim
nÑ8

ż

E

fn.

Exercise 2.35: Folland Exercise 2.16.

If f P L` and
ş

f ă 8, then for all ε ą 0 there exists E P M such that µpEq ă 8 and
ş

E
f ą

`ş

f
˘

´ ε.

Solution. Let ε ą 0. Since sup
␣ş

ϕ
ˇ

ˇ 0 ď ϕ ď f, where ϕ is simple
(

“
ş

f ă 8, by defini-
tion of the supremum there exists a simple function ϕ such that 0 ď ϕ ď f and

ż

ϕ ą

ˆ
ż

f

˙

´ ε. (2.35.1)

Write can ϕ as ϕ “
řn
j“1 ajχEj , where aj ě 0 and the Ej are disjoint elements of M. Let

E “
Ťn
j“1Ej. Then

ż

ϕ “

ż

E

ϕ ď

ż

E

f (2.35.2)

by monotonicity of the integral. Combining Equations (2.35.1) and (2.35.2), we conclude
ż

E

f ě

ż

E

f ě

ż

ϕ ą

ˆ
ż

f

˙

´ ε.

Exercise 2.36: Folland Exercise 2.17.

Assume Fatou’s Lemma and deduce the MCT from it.

Solution. Let tfnu8
n“1 Ă L`, fn Õ f (so f P L`). We want to show

ş

f “ limnÑ8

ş

fn. By
Fatou’s Lemma,

ş

f ď lim infnÑ8

ş

fn, so we need to show lim supn
ş

fn ď
ş

f . But fn ď f
for all n, so taking the limsup of both sides gives lim supnÑ8

ş

fn ď lim sup f “
ş

f , as
desired.

2.4 Integration of Complex Functions

We again fix a measure space pX,M, µq. The integral can be extended from L` to all
complex-value d measurable functions in the following way. We first extend the integral
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to all real-valued functions by considering the positive part f` and the negative part f´

of a given measurable real valued function f : X Ñ R, and define
ż

f “

ż

f`
´

ż

f´.

whenever at least one of
ş

f` and
ş

f´ is finite. If both
ş

f` and
ş

f´ are both ă 8, or
equivalently if

ş

|f | ă 8, we say f is integrable. We say a measurable complex-valued
function f : X Ñ C is integrable if

ş

|f | ă 8. More generally, if E P M, f is integrable
on E if

ş

E
|f | ă 8. Since |f | ď |Re f | ` | Im f | ď 2|f |, f is integrable if and only if Re f

and Im f are both integrable, and in this case we define
ż

f “

ż

Re f ` i

ż

Im f

Proposition 2.37: 2.21.

The set of real-valued integrable functions is a complex valued vector space and the
integral is a linear functional on it.

Proof.
This follows from the fact that |af ` bg| ď |a||f | ` |b||g|, and it is easy to check that

ş

af “ a
ş

f for any a P R. (Check!) To show additivity, suppose that f and g are integrable
and let h “ f ` g. Then h` ´ h´ “ f` ´ f´ ` g` ´ g´, so h` ` f´ ` g´ “ h´ ` f` ` g`.
By Theorem 26,

ż

h`
`

ż

f´
`

ż

g´
“

ż

h´
`

ż

f`
`

ż

g`,

and regrouping then yields the desired result:
ż

h “

ż

h`
´

ż

h´
“

ż

f`
´

ż

f´
`

ż

g`
´

ż

g´
“

ż

f `

ż

g.

Showing the analogous statement for the complex case is left as an exercise.

The superscript 1 is standard notation, but it will not assume any significance for us
until Chapter 6.

Proposition 2.38: 2.22.

If f : X Ñ C is integrable, then
ˇ

ˇ

ş

f
ˇ

ˇ ď
ş

|f |.

Proof. The claim is true if
ş

f “ 0, and if f is real valued then
ˇ

ˇ

ˇ

ˇ

ż

f

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż

f`
´

ż

f´

ˇ

ˇ

ˇ

ˇ

ď

ż

f`
`

ż

f´
“

ż

|f |,
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which also affirms the claim. If f is complex-valued and
ş

f ‰ 0, let α “ sgn
`ş

f
˘

. Then
ˇ

ˇ

ş

f
ˇ

ˇ “ α
ş

f “
ş

αf , so
ş

αf is real, which means
ˇ

ˇ

ˇ

ˇ

ż

f

ˇ

ˇ

ˇ

ˇ

“ Re

ż

αf “

ż

Repαfq ď

ż

|Repαfq| ď

ż

|αf | “

ż

|f |.

Proposition 2.39: 2.23.

(a) If f : X Ñ C is integrable, then tf ‰ 0u is σ-finite and t|f | “ `8u is a null set.
(b) If f, g : X Ñ C are integrable, then

ż

E

f “

ż

E

g for all E P M ðñ

ż

|f ´ g| “ 0 ðñ f “ g a.e.

Proof. (a) and the second equivalence in (b) follow from Propositions 27 and 32. If
ş

|f ´ g| “ 0, then for any E P M,
ˇ

ˇ

ˇ

ˇ

ż

E

f ´

ż

E

g

ˇ

ˇ

ˇ

ˇ

p38q

ď

ż

χE|f ´ g| ď

ż

|f ´ g| “ 0,

so that
ş

E
f “

ş

E
g. Conversely, if f ‰ g a.e., then at least one of the positive or negative

parts of the functions u “ Repf ´ gq or v “ Impf ´ gq are nonzero on a set of positive
measure. We may assume u` ą 0 to is nonzero on a set E of positive measure, since the
other cases are similar. In this case we have Rep

ş

E
f ´

ş

E
gq “

ş

E
u` ą 0 since u´ “ 0 on

E, affirming the claim.

Proposition 39 shows that for the purposes of integration it makes no difference if we
alter functions on null sets. Indeed, one can integrate functions f that are only defined
on a measurable set E whose complement is null simply by defining f to be zero (or
anything else) on Ec. In this fashion we can treat R-valued functions that are finite a.e.
as real-valued functions for the purposes of integration.

With this in mind, it is convenient to define L1pµq (or L1pX,µq, or L1pXq, or simply
L1, depending on the context) as the set of equivalence classes of a.e.-defined integrable
functions on X, where f and g are considered equivalent if and only if f “ g a.e. Then
L1pµq is a complex vector space under pointwise a.e. addition and scalar multiplication,
and we will write “f P L1pµq” to mean that f is an a.e.-defined integrable function.

Remark 40 (Very important remark). Here we will make some critical observations.
(1) If µ is the completion of µ, Proposition 22 yields a natural one-to-one correspondence

between L1pµq and L1pµq, so we can and will identify these spaces. In other words,
when discussing the complex vector space of complex-valued integrable functions with
respect to a measure space pX,M, µq, we may assume µ is complete.

(2) L1 is a metric space with distance function ρpf, gq “
ş

|f´g|. (The triangle inequality
is easily verified, and obviously ρpf, gq “ ρpg, fq; but to obtain the condition that
ρpf, gq “ 0 only when f “ g, one must identify functions that are equal a.e., according
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to Proposition 39(b).) We shall refer to convergence with respect to this metric as
convergence in L1; thus fn Ñ f in L1 if and only if

ş

|fn ´ f | Ñ 0.

Exercise 2.41.

The integral is absolutely continuous on L1. In other words, if f P L1, then for all
ε ą 0, there exists δ ą 0 such that for all E P M,

µpEq ă δ ùñ

ż

E

|f | ă ε.

Solution. Since f P L1, µpt|f | “ 8uq “ 0. Thus there exists some M such that µpt|f | ą

Muq ă ε{2. Let δ “ ε{p2Mq and suppose E P M has µpEq ă δ. Then
ż

E

|f | “

ż

tfěMuXE

|f | `

ż

tfăMuXE

|f | ď

ż

tfěMu

|f | ` M

ż

tfăMuXE

dµ ă
ε

2
`��M

ε

2��M
“ ε,

as desired.

Theorem 2.42: Folland Exercise 2.18: Strenghtened Fatou’s Lemma.

Let tfn : X Ñ Ru be any sequence of measurable functions.

(a) If for all n, ´fn ď g for some g P L1 X L`, then
ż

lim infnÑ8 fn ď lim infnÑ8

ż

fn.

(b) If for all n, fn ď g for some g P L1 X L`, then

lim supnÑ8

ż

fn ď

ż

lim supnÑ8 fn.

Proof. By Proposition 39(b), it suffices to replace the “a.e.” with “everywhere”. We first
show (a). The hypotheses imply tg ` fnu8

n“1 Ă L`, so
ż

g`

ż

lim infnÑ8 fn “

ż

lim infnÑ8pg`fnq
p30q

ď lim infnÑ8

ż

pg`fnq “

ż

g`lim infnÑ8

ż

fn.

Since
ş

g is finite, we can subtract it from both sides to obtain the desired result.
For (b), the hypotheses imply tg ´ fnu8

n“1 Ă L`, so
ż

g ´

ż

lim infnÑ8p´fnq “

ż

lim infnÑ8pg ´ fnq
p30q

ď lim infnÑ8

ż

pg ´ fnq “

ż

g ´ lim supnÑ8

ż

fn.

Since
ş

g is finite, we can subtract it from both sides and use that
ş

lim infnÑ8p´fnq “
ş

lim supnÑ8 fn to obtain the desired result.

The following theorem has an intuitive explanation. In the context of integration on R
with Lebesgue measure as in the discussion preceding Fatou’s Lemma, the idea behind this
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theorem is that if fn Ñ f a.e. and the graph of |fn| is confined to a region of the plane
with finite area so that the area beneath it cannot escape to infinity, then

ş

fn Ñ
ş

f .

Theorem 2.43: 2.24: Dominated Convergence Theorem (DCT).

If tfn : X Ñ Cu8
n“1 is a sequence of measurable functions such that fn Ñ f a.e. and

there is some g P L1 such that |fn| ď g a.e. for all n, then f P L1 and
ż

f “ lim
nÑ8

ż

fn.

Proof. Note f P L1 since otherwise |fpxq| ě g for all x in some set of positive measure, so
since fn Ñ f a.e. we also have |fnpxq| ě g for large enough n, contradicting the hypothesis.
We may assume f is real-valued, since we can show convergence in real and imaginary
parts. Since |fn| ď g implies ´g ď fn ď g, that is, ´fn ď g and fn ď ´g, we obtain

lim supnÑ8

ż

fn
p42pbqq

ď

ż

lim supnÑ8 fn “

ż

f “

ż

lim infnÑ8 fn
p42paqq

ď

ż

lim infnÑ8

ż

fn,

so limnÑ8

ş

fn exists and equals
ş

f .

Exercise 2.44: Folland Exercise 2.19.

Suppose tfnu8
n“1 Ă L1 and fn Ñ f uniformly.

(a) If µpXq ă 8, then f P L1 and
ş

fn Ñ
ş

f .
(b) If µpXq “ 8, then the conclusions of (a) can fail.

Solution. (a) If fn Ñ f a.e., then for all sufficiently large n we have |fn ´ f | ă 1, and
hence that |fn| ď |f | ` 1, |f | ď |fn| ` 1, so f P L1. And 1 P L1 because

ş

|1| “ µpXq ă 8,
so |fn| ď |f | ` 1 P L1. Then by the DCT, f P L1 and

ş

fn Ñ f .
(b) If fn “ χr0,ns{n. Then fn Ñ 0 uniformly, but limnÑ8

ş

fn “ limnÑ8 1 “ 1 ‰ 0.

Exercise 2.45: Folland Exercise 2.26.

Let m be the Lebesgue measure on R. If f P L1pmq, then

F pxq “

ż x

´8

fptq dt

is continuous on R.

Solution. Let xn Ñ x. Then |fχp´8,xns| ď |f | P L1pmq and fχp´8,xns Ñ fχp´8,xs a.e, so
by the DCT we have

lim
jÑ8

F pxnq “ lim
jÑ8

ż

fχp´8,xns “

ż

fχp´8,xs “ F pxq.

Hence F is continuous.
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Exercise 2.46: Folland Exercise 2.20: Generalized DCT.

If g P L1, fn Ñ f a.e., gn Ñ g a.e., |fn| ď gn, and
ş

gn Ñ
ş

g, then f P L1 and

lim
nÑ8

ż

fn “

ż

f.

Solution. Since |fn| ď gn, tgn`fnu8
n“1, tgn´fnu8

n“1 Ă L1 XL`. Applying Fatou’s Lemma
to both, we obtain

ż

g `

ż

f ď lim infnÑ8

ż

pgn ` fnq “

ż

g ` lim infnÑ8

ż

fn,
ż

g ´

ż

f ď lim infnÑ8

ż

pgn ´ fnq “

ż

g ´ lim supnÑ8

ż

fn.

Since g P L1, we can subtract
ş

g from both sides to obtain

lim supnÑ8

ż

fn ď

ż

f ď lim infnÑ8

ż

fn.

Thus limnÑ8

ş

fn “
ş

f .

Exercise 2.47: Folland Exercise 2.21.

Suppose fn, f P L1 and fn Ñ f a.e. Then
ż

|fn ´ f | Ñ 0 ðñ

ż

|fn| Ñ

ż

|f |.

(In other words, if fn, f P L1 and fn Ñ f a.e., then fn Ñ f in L1 if and only if
ş

|fn| Ñ
ş

|f |.)

Solution. If
ş

|fn ´ f | Ñ 0, then by the triangle inequality 0 ď
ş

|fn|´
ş

|f | ď
ş

|fn ´ f | Ñ 0,
so

ş

|fn| Ñ
ş

|f | by the squeeze theorem. (Note the a.e. convergence hypothesis was not
used).

Conversely, if
ş

|fn| Ñ
ş

|f |, then gn – |f | ` |fn| ě 0 and hn – |fn ´ f | satisfy
• hn, gn P L1,
• |hn| “ |fn ´ f | ď |fn| ` |f | “ gn, and
•
ş

gn “
ş

|fn| `
ş

|f | Ñ 2
ş

|f | P L1 (by hypothesis),
so by Folland Exercise 2.20 we conclude

ş

hn Ñ
ş

limnÑ8 hn “
ş

0 “ 0, that is,
ş

|fn ´ f | Ñ

0.

Theorem 2.48: 2.25: DCT for Series.

Suppose that tfnu is a sequence in L1 such that
ř8

n“1

ş

|fn| ă 8. Then
ř8

n“1 fn
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converges a.e. to a function in L1, and
ż

ÿ8

n“1
fn “

ÿ8

n“1

ż

fn.

Proof. By Theorem 26,
ş
ř8

1 |fj| “
ř8

1

ş

|fj| ă 8, so the function g “
ř8

1 |fj| is in L1. In
particular, by Proposition 32

ř8

1 |fjpxq| is finite for a.e. x, and for each such x the series
ř8

1 fjpxq converges. Moreover, |
řn

1 fj| ď g for all n, so we can apply the DCT to the
sequence of partial sums to obtain

ş
ř8

1 fj “
ř8

1

ş

fj.

Theorem 2.49: 2.26.

(a) The integrable simple functions are dense in L1 in the L1 metric. More precisely,
if f P L1pµq and ε ą 0, there is an integrable simple function ϕ “

řn
j“1 ajχEj

such that
ş

|f ´ ϕ| ă ε.
(b) If µ is a Lebesgue-Stieltjes measure on R, the sets Ej in the definition of ϕ can

be taken to be finite unions of open intervals; moreover, there is a continuous
function g that vanishes outside a bounded interval such that

ş

|f ´ g|dµ ă ε.

Proof. Let tϕnu be as in Theorem 18(b); then
ş

|ϕn ´ f | ă ε for n sufficiently large by
the DCT, since |ϕn ´ f | ď 2|f |. If ϕn “

ř

ajχE, where the Ej are disjoint and the aj
are nonzero, we observe that µpEjq “ |aj|

´1 ş

Ej
|ϕn| ď |aj|

´1 ş
|f | ă 8. Moreover, if E

and F are measurable sets, we have µpE△F q “
ş

|χE ´ χF |. Thus if µ is a Lebesgue-
Stieltjes measure on R, by Proposition 47 we can approximate χEj arbitrarily closely in
the L1 metric by finite sums of functions χIk where the Iks are open intervals. Finally, if
Ik “ pa, bq we can approximate χIk in the L1 metric by continuous functions that vanish
outside pa, bq. (For example, given ε ą 0, take g to be the continuous function that equals
0 on p´8, as and rb,8q, equals 1 on ra` ε, b´ εs, and is linear on ra, a` εs and rb´ ε, bs.)
Putting these facts together, we obtain the desired assertions.

The next theorem gives a criterion, less restrictive than those found in most advanced
calculus books, for interchanging limits or derivatives with integrals.

Theorem 2.50: 2.27.

Suppose for each t P ra, bs (´8 ă a ă b ă 8), ft : X Ñ C is L1.
(a) (Interchanging integrals with limits). If for all t, |ft| ď g P L1pµq, then

lim
tÑt0

ż

ft “

ż

lim
tÑt0

ft,

whenever limtÑt0 ft “ ft0 .
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(b) (Interchanging integrals with derivatives). If for all t, |Bft{Bt| ď g P L1pµq, then
d

dt

ż

ft “

ż

Bft
Bt
,

whenever Bf{Bt exists.

Proof. For (a), apply the DCT to fnpxq “ fpx, tnq where ttnu is any sequence in ra, bs
converging to t0. For (b), observe that

Bf

Bt
px, t0q “ limhnpxq where hnpxq “

fpx, tnq ´ fpx, t0q

tn ´ t0
,

ttnu again being any sequence converging to t0. It follows that Bf{Bt is measurable, and
by the mean value theorem,

|hnpxq| ď suptPra,bs

ˇ

ˇ

ˇ

ˇ

Bf

Bt
px, tq

ˇ

ˇ

ˇ

ˇ

ď gpxq,

so the DCT can be invoked again to give

F 1
pt0q “ lim

F ptnq ´ F pt0q

tn ´ t0
“ lim

ż

hnpxqdµpxq “

ż

Bf

Bt
px, tqdµpxq

Note that the device of using sequences converging to t0 in this proof is technically
necessary because the DCT deals only with sequences of functions. However, in such
situations we shall usually just say “let t Ñ t0” with the understanding that sequential
convergence is underlying the argument.

It is important to note that in Theorem 50 the interval ra, bs on which the estimates
on f or Bf{Bt hold might be a proper subinterval of an open interval I (perhaps R itself)
on which fpx, ¨q is defined. If the hypotheses of (a) or (b) hold for all ra, bs Ă I, perhaps
with the dominating function g depending on a and b, one obtains the continuity or
differentiability of the integrated function F on all of I, as these properties are local in
nature.

Example 51 (Folland Exercise 2.28). We will compute the limits
(b) limnÑ8

ş1

0
1`nx2

p1`x2q´n dx and

(c) limnÑ8

ş8

0
n sinpx{nq

xp1`x2q
dx.

For (b), note that by the Bernoulli inequality we have p1`x2qn ě 1`nx2, so p1`nx2q{p1`

x2q ď 1 P L1pm, r0, 1sq. Then by the DCT,

lim
nÑ8

ż 1

0

1 ` nx2

p1 ` x2qn
dx “

ż 1

0

ˆ

lim
nÑ8

1 ` nx2

p1 ` x2qn

˙

“

ż 1

0

0 dx “ 0.

For (c), first estimate by writing
ˇ

ˇ

ˇ

ˇ

n sinpx{nq

xp1 ` x2q

ˇ

ˇ

ˇ

ˇ

ď
1

1 ` x2
and

ż 8

0

dx

1 ` x2
“
π

2
ă 8,
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(where the first inequality is for all sufficiently large n) so by the DCT

lim
nÑ8

ż 8

0

n sinpx{nq

xp1 ` x2q
dx “

ż 8

0

lim
nÑ8

n sinpx{nq

xp1 ` x2q
dx “

ż 8

0

dx

1 ` x2
dx “

π

2
.

2.4.1 Comparing the Riemann and Lebesgue Integrals

In the special case where the measure µ is Lebesgue measure m on R, the integral we
have developed is called the Lebesgue integral. Let ra, bs be a compact interval in R. A
partition of ra, bs is a finite sequence P “ ttju

n
j“0 such that a “ t0 ă t1 ă ¨ ¨ ¨ ă tn “ b.

Let f be an arbitrary bounded real-valued function on ra, bs. For each partition P we
define

SPf “
ÿn

1
Mjptj ´ tj´1q and sPf “

ÿn

1
mjptj ´ tj´1q,

where Mj and mj are the supremum and infimum of f on rtj´1, tjs. Then we define
I
b

apfq “ inf
P
SPf and Ibapfq “ supP sPf

where the infimum and supremum are taken over all partitions P . If Ibapfq “ Ibapfq, their
common value is the Riemann integral

şb

a
fpxq dx, and f is called Riemann integrable.

Theorem 2.52: 2.28.

Let f : ra, bs Ñ R be any bounded function.

(a) If f is Riemann integrable, then f is Lebesgue measurable (and hence integrable
on ra, bs since it is bounded), and

ż b

a

fpxq dx “

ż

ra,bs

f dm.

(b) f is Riemann integrable if and only if the set
Dpfq “ tx P ra, bs | f is discontinuous at xu

has Lebesgue measure zero.

Proof. We adopt the notation from above. Suppose f is Riemann integrable. For each
partition P of ra, bs, define simple functions

GP “
ÿn

j“1
Mjχptj´1,tjs and gP “

ÿn

1
mjχptj´1,tjs,

so that SPf “
ş

GP dm and sPf “
ş

gP dm. There is a sequence tPku of partitions whose
mesh (i.e., maxjptj ´ tj´1q) tends to zero, each of which includes the preceding one (so
that gPk increases with k while GPk decreases), such that SPkf and sPkf converge to
şb

a
fpxq dx. Let G “ limkÑ8 GPk and g “ limkÑ8 gPk . Then g ď f ď G, and by the DCT,

ş

Gdm “
ş

g dm “
şb

a
fpxq dx. Hence

ş

pG ´ gq dm “ 0, so by Proposition 27 G “ g a.e.,
and thus G “ f a.e. Since G is measurable (being the limit of a sequence of simple
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functions) and m is complete, f is measurable and
ş

ra,bs
f dm “

ş

Gdm “
şb

a
fpxq dx. This

proves (a).
To prove (b), we first prove the following lemma.

Lemma 2.53: Folland Exercise 2.23.

Given a bounded function f : ra, bs Ñ R, the following hold for the functions given by
Hpxq “ lim

δÑ0
sup|y´x|ďδ fpyq and hpxq “ lim

δÑ0
inf

|y´x|ďδ
fpyq.

(i) Hpxq “ hpxq if and only if f is continuous at x.
(ii) In the notation of the proof of part (a) above, H “ G a.e. and h “ g a.e.
(iii) H and h are Lebesgue measurable, and

ş

ra,bs
H dm “ I

b

apfq and
ş

ra,bs
h dm “

Ibapfq.

Proof. To prove (i), suppose ε ą 0. Since f is continuous at x, there exists δ ą 0 such
that fpxq ´ ε ď fpyq ď fpyq ` ε whenever |x ´ y| ă δ. Thus

fpxq ´ ε ď inf
|x´y|ăδ

fpyq ď fpxq ď sup|x´y|ăδ ď fpyq ` ε.

Sending ε Ñ 0 (and hence we may assume δ Ñ 0), we obtain
Hpxq “ lim

δÑ0
sup|x´y|ăδ fpyq “ fpxq “ lim

δÑ0
inf

|x´y|ăδ
fpyq “ hpxq,

as desired. Conversely, suppose Hpxq “ hpxq. Then

lim
δÑ0

´

sup|x´y|ăδ fpyq ´ inf
|x´y|ăδ

fpyq

¯

“ 0,

so given ε ą 0, there exists δ0 ą 0 such that for all |x ´ y| ă δ0,
p|fpxq ´ fpyq| ďq sup|x´y|ăδ0 fpyq ´ inf

|x´y|ăδ0
fpyq ă ε.

Since ε ą 0 was arbitrary, we conclude f is continuous at x. This proves (i).
The proof of (ii) goes as follows, and can be found here. Consider the sequence of

partitions tPku used in the proof of part (a) above. Now set E “ tpoints of Pk for all ku.
Since each Pk has a finite number of points, E is countable and hence has Lebesgue
measure zero.

We will show that H “ G in ra, bs ∖E. If x P ra, bs ∖E, then GPkpxq ě Hpxq, since if
x P ptj´1, tjq we have GPkpxq “ supyPptj´1,tjs fpyq ě Hpxq. Hence Gpxq ě Hpxq.

If Hpxq ă Gpxq, choose a P R such that Hpxq ă a ă Gpxq. By definition of H, there
exists δ0 ą 0 such that if 0 ă δ ă δ0 we have fpyq ă a if |y ´ x| ă δ. But since the mesh
of the partitions Pk tends to zero, for large k, x P ptj´1, tjq and tj ´ tj´1 ă δ, hence

GPkpxq “ Mj “ supyPptj´1,tjs fpyq ď a

Since the sequence tGPku is decreasing, we have Gpxq ď GPkpxq ď a ă Gpxq, which
gives us a contradiction, hence H “ G in ra, bs ∖ E, therefore H “ G a.e. The proof that
h “ g a.e. is similar.
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It remains to prove (iii). Since G and g are measurable, H “ G, h “ g a.e. and since
m is a complete measure, H and h are measurable. Moreover,

ż

ra,bs

H dm “

ż

ra,bs

Gdm “ lim

ż

ra,bs

GPk dm “ limSPkf “ I
b

apfq,

and
ż

ra,bs

h dm “

ż

ra,bs

g dm “ lim

ż

ra,bs

gPk dm “ lim sPkf “ Ibapfq.

We can now prove part (b) of the theorem. If f is Riemann integrable, then by Folland
Exercise 2.23,

ż

ra,bs

H dm “

ż b

a

fpxq dx “

ż

ra,bs

h dm.

Hence H “ h a.e. by Proposition 39. Thus the set of discontinuity points of f has zero
Lebesgue measure by Folland Exercise 2.23.

Conversely, if Dpfq has zero Lebesgue measure, H “ h a.e. by Folland Exercise 2.23(i)
and Folland Exercise 2.23(ii). Then by Proposition 39 and Folland Exercise 2.23(iii), we
obtain

I
b

apfq “

ż

ra,bs

H dm “

ż

ra,bs

h dm “ Ibapfq,

so f is Riemann integrable.

The (proper) Riemann integral is thus subsumed in the Lebesgue integral. Some
improper Riemann integrals (the absolutely convergent ones) can be interpreted directly
as Lebesgue integrals, but others still require a limiting procedure. For example, if f
is Riemann integrable on r0, bs for all b ą 0 and Lebesgue integrable on r0,8q, then
ş

r0,8q
f dm “ limbÑ8

şb

0
fpxq dx (by the DCT), but the limit on the right can exist even

when f is not integrable. (Example: f “
ř8

1 n
´1p´1qnχpn,n`1s.)

Notation 54. Henceforth we shall tend to use the notation
şb

a
fpxq dx for Lebesgue

integrals.

The Lebesgue theory offers two real advantages over the Riemann theory.
(1) First, much more powerful convergence theorems, such as the monotone and DCTs,

are available. These not only yield results previously unobtainable but also reduce
the labor in proving classical theorems.

(2) Second, a wider class of functions can be integrated. For example, if R is the
set of rational numbers in r0, 1s, χR is not Riemann integrable, being everywhere
discontinuous on r0, 1s, but it is Lebesgue integrable, and

ş

χR dm “ 0. (Actually,
this is in some sense a trivial example since χR agrees a.e. with the constant function
0. For a more interesting example, see Folland Exercise 2.25.)
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2.5 Modes of Convergence

If X is a measure space, one can speak of a.e. convergence or convergence in L1. Of
course, uniform convergence implies pointwise convergence, which in turn implies a.e.
convergence (and not conversely, in general), but these modes of convergence do not imply
L1 convergence or vice versa. It will be useful to keep in mind the following examples on
R (with Lebesgue measure):

fn – 1
n
χr0,ns, gn – χpn,n`1q, hn – nχr0,1{ns, kn “ χrj{2k,pj`1q{2ks

pwhere n “ 2k ` j
and 0ďjă2kq

.

Ò Ò Ò Ò
uniformly

flattens to 0
“floating carpet”

flying into the distance
spikes to

infinity at 0
“wanders” around

the unit interval r0,1s

pŒ0 uniformly and in L1q pŒ0 pointwise and in L1q pŒ0 a.e. and in L1q
pŒ0 in measure and in L1

but not a.e. or uniformly)

Note fn Ñ 0 uniformly, gn Ñ 0 pointwise, and hn Ñ 0 a.e. (namely, everywhere except
zero), but none of these converge to 0 in L1. In fact

ş

fn “
ş

gn “
ş

hn “ 1 for all n for all
n. But kn Ñ 0 in L1 since

ş

|kn| “ 2´k for 2k ď n ă 2k`1, but knpxq does not converge at
any x P r0, 1s, since there are infinitely many n for which knpxq “ 0 and infinitely many
for which knpxq “ 1.

On the other hand, if fn is arbitrary, fn Ñ f a.e. and |fn| ď g P L1 for all n, then
fn Ñ f in L1. (This is clear from the DCT since |fn ´ f | ď 2g.) Also, we shall see
below that if fn Ñ f in L1 then some subsequence converges to f a.e. Another mode of
convergence that is frequently useful is convergence in measure. We say that a sequence
tfnu of measurable complex-valued functions on pX,M, µq is Cauchy in measure if for
every ε ą 0,

µpt|fnpxq ´ fmpxq| ě εuq Ñ 0 as m,n Ñ 8,

and that tfnu converges in measure to f if for every ε ą 0,
µpt|fnpxq ´ fpxq| ě εuq Ñ 0 as n Ñ 8.

For example, the sequences the spike fn, hn, and kn above converge to zero in measure,
but gn is not Cauchy in measure.

Proposition 2.55: 2.29.

If fn Ñ f in L1, then fn Ñ f in measure.

Proof. Let En,ε “ t|fn ´ f | ě εu. Then
ż

|fn ´ f | ě

ż

En,ε

|fn ´ f | ě εµpEn,εq,

so

0 ď µpEn,εq ď
1

ε

ż

|fn ´ f | Ñ 0 as n Ñ 8,

so µpEn,εq Ñ 0 as ν Ñ 8.
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The converse of Proposition 55 is false, as examples fn (which uniformly flattens to 0
everywhere) and hn (which spikes to infinity at x “ 0) show.

Theorem 2.56: 2.30.

• A sequence tfnu8
n“1 that is Cauchy in measure converges in measure to some

(measurable) function in measure, and that limit is unique up to null sets.
• If fn Ñ f in measure, then there exists a subsequence fnj such that fnj Ñ f a.e.

Proof. This proof can be found here. Since tfnu is Cauchy in measure, we can find n1

such that
µpt|fn ´ fn1 | ě 1{2uq ď 1{2 for all n,m ě n1. (2.56.1)

Set g1 – fn1 . Likewise, we can choose n2 ě n1 such that µpt|fn ´ fm| ě 1{4uq ď 1{4
for all n,m ě n2. Set g2 “ fn2 and E1 “ tg1pxq ´ g2| ě 1{2u. Then by Equa-
tion (2.56.1) we have µpE1q ď 2´1. Inductively we can choose nj`1 ě nj, gj “ fnj

and Ej “ tx P X | |gjpxq ´ gj`1pxq| ě 2´ju with µpEjq ď 2´j.
Now for each k, set Fk “

Ť8

j“k Ej then µpFkq ď
ř8

j“k 2
´j “ 21´k, and for x R Fk and

i ě j ě k we have

|gjpxq ´ gipxq| ď
ÿi´1

p“j
|gppxq ´ gp`1pxq| ď

ÿi´1

p“j
2´p

ď 21´j, (2.56.2)

and thus tgju is pointwise Cauchy on F c
k . If F “

Ş8

k“1 Fk “ lim supEj, then µpF q “

limjÑ8 µpEjq “ 0, and tgju is pointwise Cauchy on F c. Set fpxq “ lim gjpxq for x P F c

and fpxq “ 0 for x P F (by Folland Exercise 2.3,Folland Exercise 2.5, f is measurable).
Hence gj Ñ f a.e.

Using Equation (2.56.2) and sending Ñ 8 for each x P F c
k , we have |gjpxq ´ fpxq| ď

21´j and since µpFkq Ñ 0 as k Ñ 8, gj Ñ f in measure. Now
tx P X | |fnpxq ´ fpxq| ě εu Ą tx P X | |fnpxq ´ gjpxq| ě ε{2u Y tx P X | |gjpxq ´ fpxq| ě ε{2u.

and thus fn Ñ f in measure, since the measure of both sets on the right side converge to
zero as n, j Ñ 8. Now assume that fn Ñ g in measure and fix k P Zě0. We have
tx P X|fpxq ´ gpxq|ě k´1

u

Ă tx P X | |fpxq ´ fnpxq| ě k´1
{2u Y tx P X | |fnpxq ´ gpxq| ě k´1

{2u

for all n, an d making n Ñ 8 we obtain µptx P X | |fpxq ´ gpxq| ě k´1uq “

0. Thus, since tx P X | fpxq ‰ gpxqu “
Ş8

n“1tx P X | |fpxq ´ gpxq| ě k´1u, we have
µptx P X | fpxq ‰ gpxquq “ 0 and hence f “ g a.e.

Exercise 2.57: Folland Exercise 2.32.

Suppose µpXq ă 8. If f, g : X Ñ C are measurable functions. Define

ρpf, gq “

ż

up|f ´ g|q dµ,
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where u : R Ñ R via upxq “ x{p1 ` xq. Then ρ is a metric on the space of measurable
functions on X where we identify functions f and g if f “ g a.e., and fn Ñ f with
respect to ρ if and only if fn Ñ f in measure.

Proof. We only show fn Ñ f with respect to ρ if and only if fn Ñ f in measure. Suppose
ρpfn, fq Ñ 0, ε ą 0, and E “ t|fn ´ f | ě εu. Then |fn ´ f | ě ε ùñ upεq ď up|fn ´ f |q

since u is increasing, so

upεqµpEq “

ż

E

upεq ď

ż

E

up|fn ´ f |q “ ρpfn, fq Ñ 0,

so µpEq Ñ 0 as n Ñ 8. Hence fn Ñ f in measure.
Conversely, suppose fn Ñ f in measure. Since |fn ´ f | ě up|fn ´ f |q, we can write

up|fn ´ f |q ě ε ùñ |fn ´ f | ě ε, which implies tup|fn ´ f |q ě εu Ă t|fn ´ f | ě εu, so
µptup|fn ´ f |q ě εuq ď µpEq.

ρpfn, fq “

ż

up|fn ´ f |q

“

ż

tup|fn´f |qăεu

up|fn ´ f |q `

ż

tup|fn´f |qěεu

up|fn ´ f |q

ď εµpXq `

ż

tup|fn´f |qěεu

ε

1 ` |fn ´ f |

ď εµpXq ` εµptup|fn ´ f |q ě εuq
Ñ0 as nÑ8, since
fnÑf in measure

.

ď εµpXq ` εµpEq.

Since ε ą 0 was arbitrary, we conclude ρpfn, fq Ñ 0 as n Ñ 8.

Exercise 2.58: Folland Exercise 2.33.

If fn P Zě0 and fn Ñ f in measure, then
ş

f ď lim infnÑ8

ş

fn

Solution. The limit infimum of a sequence is a limit point of that sequence by definition,
so there exists a subsequence fnk of fn such that

ş

fnk Ñ lim inf
ş

fn. Then fnk Ñ f in
measure, so there is a subsubsequence fnkj

Ñ f a.e. Since f ě 0, by Fatou’s Lemma,
ż

f “

ż

lim infjÑ8 fnkj
ď lim infjÑ8

ż

fnkj
“ lim infjÑ8

ż

fn.

In general, if fn Ñ f a.e. does not imply fn Ñ f in measure. However, if µpXq ă 8,
then this does hold.
Definition 59. If tf : X Ñ Cu is a sequence of measurable functions such that for all
ε ą 0, there exists E Ă X such that µpEq ă ε and fn Ñ f uniformly on µpEcq, then we
say fn Ñ f almost uniformly.
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Exercise 2.60: Folland Exercise 2.39.

If fn Ñ f almost uniformly, then fn Ñ f a.e. and in measure.

Solution.
• fn Ñ f in measure: Let ε ą 0. Since fn Ñ f almost uniformly, there exists
E P M such that µpEq ă ε and fn Ñ f uniformly on Ec. This means given ε1 ą 0,
|fn ´ f | ă ε1 for all sufficiently large n. But this means t|fn ´ f | ě εu Ă E, so
µpt|fn ´ f | ě εuq ď µpEq ă ε. Thus fn Ñ f in measure.

• fn Ñ f a.e.: Let ε ą 0 and let F “ tx P X | fnpxq Û fpxqu. Since fn Ñ f
almost uniformly, there exists E P M such that µpEq ă ε and fn Ñ f uniformly on
Ec. Since uniform convergence implies a.e. convergence, Ec Ă F c. Thus F Ă E.
Hence µpF q Ă µpEq ă ε. Since ε was arbitrary and independent of F , we conclude
µpF q “ 0. Thus fn Ñ f a.e.

Theorem 2.61: 2.33: Egoroff’s Theorem.

If µpXq ă 8 and tfn : X Ñ Cu8
n“1 is a sequence of measurable functions converging

a.e. to f , then fn Ñ f almost uniformly.

Proof. This proof can be found here. Assume first that fn Ñ f pointwise on X. For
k, n P Zě0 define

Enpkq “
ď8

j“n
tx P X | |fjpxq ´ fpxq| ě k´1

u

If k is fixed, then tEnpkqun is a decreasing sequence and since fjpxq Ñ fpxq as j Ñ 8

for each x P X, we have
Ş8

n“1Enpkq “ ∅. Since µpXq ă 8, from the continuity from
above, we have µpEnpkqq Ñ 0 as n Ñ 8. Given ε ą 0 and k P Zě0, choose nk such that
µpEnkpkqq ă ε2´k and let E “

Ť8

k“1Enkpkq. Then µpEq ă ε and |fnpxq ´ fpxq| ă k´1 for
n ě nk and x R E. Thus fn Ñ f uniformly on Ec.

Now if fn Ñ f a.e., let F Ă X be the set with µpF q “ 0 such that fn Ñ f everywhere
on F c. Thus, from the previous result (with F c instead of X), given ε ą 0 there exists a
set E Ă F c with µpEq ă ε and fn Ñ f uniformly on Ec. Thus taking A “ E Y F then
µpAq “ µpEq ` µpF q “ µpEq ă ε and Ac “ Ec X F c “ Ec, hence fn Ñ f uniformly on
Ac.

Exercise 2.62: Folland Exercise 2.40: Strengthened Egoroff’s Theorem.

If tfn : X Ñ Cu8
n“1 is a sequence of measurable functions such that fn Ñ f a.e. and

there exists g P L1 X L` such that |fn| ď g for all n, then fn Ñ f almost uniformly.

Solution. This proof can be found here. From the DCT
ş

|f | ď
ş

g and f P L1pµq. As in
the proof of Egoroff’s Theorem, we can assume without loss of generality that fn Ñ f
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pointwise, and we set
Enpkq “

ď8

j“n
tx P X | |fjpxq ´ fpxq| ě k´1

u.

If we can prove that µpE1pkqq ă 8 for all k, then as in the proof of Egoroff’s Theorem,
it will follow that µpEnpkqq Ñ 0 as n Ñ 8 and the rest of the proof remains unchanged.
Now, if x P E1pkq then there exists j P Zě0 such that |fjpxq ´ fpxq| ě k´1. Hence

µpE1pkqq “

ż

χE1pkqdµ “

ż

E1pkq

dµ ď k

ż

E1pkq

|fjpxq ´ fpxq|dµ

ď k

ż

E1pkq

p|fjpxq| ` |fpxq|qdµ ď 2k

ż

E1pkq

g dµ ď 2k

ż

g dµ ă 8,

since g P L1pµq. Therefore the result follows.

The following corollary is then immediate.

Corollary 2.63.

If tfnu8
n“1 is a sequence of measurable functions and there exists g P L1 XL` such that

|fn| ď g a.e. and fn Ñ f a.e., then fn Ñ f in measure.

Exercise 2.64: Folland Exercise 2.38.

If tfnu8
n“1 and tgnu8

n“1 are sequences of measurable functions such that fn Ñ f and
gn Ñ g in measure, then the following hold.
(1) |fn| Ñ |f | in measure.
(2) fn ` gn Ñ f ` g in measure.
(3) f 2

n Ñ f 2 in measure if µpXq ă 8.
(4) fngn Ñ fg in measure if µpXq ă 8, but not necessarily if µpXq “ 8.

Solution.
(1) Fix ε, ε1 ą 0. We want some N such that for all n ě N , µpt||fn| ´ |f || ě εuq ă ε1.

Since fn Ñ f in measure, there exists N0 such that for all n ě N0,
µpt|fn ´ f | ě εuq ă ε1.

Since |fn ´ f | ě ||fn| ´ |f ||, if ||fnpxq| ´ |fpxq|| ě ε then |fnpxq ´ fpxq| ě ε. Hence
t||fn| ´ |f || ě εu Ă t|fn ´ f | ě εu, so µpt||fn| ´ |f || ě εuq ď µpt|fn ´ f | ě εuq.
Since the left-hand side of this inequality is nonnegative and the right-hand side
vanishes as n Ñ 8, the left-hand side also vanishes, so |fn| Ñ |f | in measure.

(2) Fix ε, ε1 ą 0. Since |fn ` gn ´ f ´ g| ď |fn ´ f | ` |gn ´ g|, we can write p|fn ` gn ´

f ´ g| ě εq Ă t|fn ´ f | ě εu and t|gn ´ g| ě εu. Thus for all sufficiently large n,
µpt|fn ` gn ´ f ´ g| ě εuq ď µpt|fn ´ f | ě εuq ` µpt|gn ´ g| ě εuq

ă ε1
{2 ` ε1

{2 “ ε1.
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(3) To see this, first suppose fn Ñ f in measure and let ε, ε1,M ą 0. Now
µt|f 2

n ´ f 2
| ě εu “ µt|fn ´ f | ¨ |fn ` f | ě εu

“ µt|fn ´ f | ¨ |fn ` f | ě ε and |fn ` f | ě Mu

` µt|fn ´ f | ¨ |fn ` f | ě ε and |fn ` f | ă Mu

(by disjont additivity of µ)
ď µt|fn ´ f | ¨ |fn ` f | ě ε and |fn ` f | ě Mu ` µt|fn ´ f | ě ε{Mu,

where the last step is by monotonicity of µ because |fn ` f | ď M and |fn ´ f | ¨

|fn ` f | ě ε together imply k|fn ´ f | ě ε, and hence that |fn ´ f | ě ε{M . Since
fn Ñ f in measure, there exists N0 such that for all n ě N0, µt|fn ´ f | ě ε{Mu ă

ε1{2. We now claim that there existsN1 such that for all n ě N1, µt|fn ´ f |¨|fn ` f | ě

ε and |fn ` f | ě Mu ă ε1{2, which will complete the proof since then by the above
we can conclude µt|f 2

n ´ f | ě εu ă ε1 for all n ě maxtN0, N1u. To see why such an
N1 exists, note that since f is complex valued,

č8

M“1
t|fn ´ f | ě Mu “ H.

Thus
0 “ µ

´

č8

M“1
t|fn ` f | ě Mu

¯

“ lim
MÑ8

µpt|fn ´ f | ě Mu
l jh n

–En,M

q

where we used continuity of µ from above (noting there is no issue with any set here
being measurable), as

µpEn,1q “ µt|fn ´ f | ě 1u ď µpXq ă 8.

Then in particular, there exists an N1 such that for all n ě N1, µpEn,Mq ă ε1{2.
Since

µt|fn ´ f |, |fn ` f | ě ε and |fn ` f | ě Mu Ă En,M ,

we conclude by monotonicity of µ that
µpt|fn ´ f | ¨ |fn ` f | ě ε and |fn ` f |uq ě Mu ď µpEn,Mq ă ε1

{2,

which proves f 2
n Ñ f in measure, and hence completes the proof by our previous

remarks.
(4) We first provide a counterexample to the statement of (3) in the case µpXq “ 8.

Consider the Lebesgue measure space pR,L,mq and the nonnegative measurable
functions fn, gn : R Ñ R given by fnpxq “ x ` 1{n and gnpxq “ x. Then the fn, gn
are nonnegative measurable functions, fnpxq, gnpxq Ñ x in measure (so in this case
fpxq “ gpxq “ x, fpxqgpxq Ñ x2 in measure, but fnpxqgnpxq “ x2 ` x{n, which does
not converge to x2 in measure: indeed, |x2 ` x{n ´ x2| “ |x{n| ą ε1 for all x with
|x| ě nε1; since the Lebesgue measure of all such x is infinite, fngn does not converge
to fg in measure.
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Now instead assume µpXq ă 8. By writing

fg “
1

2
ppf ` gq

2
´ f 2

´ g2q,

we observe that

|fngn ´ fg| “

ˇ

ˇ

ˇ

ˇ

1

2
ppfn ` gnq

2
´ f 2

n ´ g2nq ´
1

2
ppf ` gq

2
´ f 2

´ g2q

ˇ

ˇ

ˇ

ˇ

ď
1

2
|pfn ` gnq

2
´ pf ` gq

2
| `

1

2
|f 2
n ´ f 2

| `
1

2
|g2n ´ g2|.

Since fn ` gn Ñ f ` g in measure by (2), it suffices to show that fn Ñ f in measure
implies f 2

n Ñ f 2 in measure. But this is (3), so we are done.

Exercise 2.65: Folland Exercise 2.34.

If |fn| ď g P L1 and fn Ñ f in measure, then
(a)

ş

f “ limnÑ8

ş

fn and
(b) fn Ñ f in L1.

Solution.
(a) Suppose

ş

fn Û
ş

f . Then there exists ε ą 0 and a subsequence
␣ş

fnk

(8

k“1
such that

ż

|fnk ´ f | ě

ˇ

ˇ

ˇ

ˇ

ż

fn ´

ż

f

ˇ

ˇ

ˇ

ˇ

ě ε. (2.65.1)

But fn Ñ f in measure, so fnk Ñ f in measure, so there exists a subsequence
tfnkℓ

u8
ℓ“1 converging a.e to f . But |fnkℓ

| ď g P L1 for all ℓ, so by the DCT f P L1

and
ş

fnkℓ
Ñ

ş

f , contradicting Equation (2.65.1).
(b) By Folland Exercise 2.21, it suffices to show

ş

|fn| Ñ
ş

|f |. Since fn Ñ f in measure,
|fn| Ñ |f | in measure by Folland Exercise 2.38. Then by part (a),

ş

|fn| Ñ
ş

|f |, as
desired.

2.6 Product Measures

Let pX,M, µq and pY,N, νq be measure spaces. We define a (measurable) rectangle
to be a set of the form AˆB, where A P M and B P N. Note that

pAˆBq X pEˆF q “ pA X EqˆpB X F q and pAˆBq
c

“ pXˆBc
q Y pAcˆBq,

so by Proposition 7 the collection A of finite disjoint unions of rectangles is an algebra.
The σ-algebra it generates is M b N.

Suppose AˆB is a rectangle that is a countable disjoint union of rectangles tAj ˆ

Bju
8
j“1 Ă MˆN. Then for any x P X and y P Y ,

χApxqχBpyq “ χÂ Bpx, yq “
ÿ8

j“1
χAj B̂jpx, yq “

ÿ8

j“1
χAjpxqχBjpyq.
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If we integrate with respect to x and apply the MCT for series (Theorem 26), we obtain

µpAqχBpyq “

ż

χApxqχBpyq dµpxq “
ÿ8

j“1

ż

χAjpxqχBjpyq dµpxq “
ÿ8

j“1
µpAjqχBjpyq.

Similarly, integration with respect to y yields
µpAqνpBq “

ÿ8

j“1
µpAjqνpBjq.

It follows that if E P A is the finite disjoint union of rectangles A1ˆB1, . . . , AnˆBn, and
we define

πpEq –
ÿn

j“1
µpAjqνpEjq

(with the usual convention that 0 ¨ 8 “ 0), then π is well-defined on A since any two
representations of E as a finite disjoint union of rectangles have a common refinement, and
π is a premeasure on A. According to Theorem 33, therefore, π generates an outer measure
on XˆY whose restriction to MˆN is a measure that extends π. We call this measure
the product of µ and ν and denote it by µˆν. Moreover, if µ and ν are σ-finite—say,
X “

Ť8

1 Aj and Y “
Ť8

1 Bk with µpAjq, νpBkq ă 8—then XˆY “
Ť8

j,k“1AjˆBk and
µˆνpAjˆBkq ă 8, so µˆν is also σ-finite. In this case, by Theorem 33, µˆν is the
unique measure on M b N such that µˆνpAˆBq “ µpAqνpBq for all rectangles AˆB.

The same construction works for any finite number of factors. That is, suppose
pXj,Mj, µjq are measure spaces for j “ 1, . . . , n. If we define a rectangle to be a set of
the form A1 ˆ¨ ¨ ¨ˆAn with Aj P Mj, then the collection A of finite disjoint unions of
rectangles is an algebra, and the same procedure as above produces a measure µ1ˆ¨ ¨ ¨ˆµn
on M1 b ¨ ¨ ¨ b Mn such that

µ1ˆ¨ ¨ ¨ˆµnpA1ˆ¨ ¨ ¨ˆAnq “
źn

1
µjpAjq.

Moreover, if the µjs are σ-finite so that the extension from A to
Ân

j“1Mj is uniquely
determined, the obvious associativity properties hold. For example, if we identify X1ˆ

X2 ˆX3 with pX1ˆX2qˆX3, we have M1 b M2 b M3 “ pM1 b M2q b M3 (the former
being generated by sets of the form A1 ˆA2 ˆA3 with Aj P Mj, and the latter by sets
of the form BˆA3 with B P M1 b M2 and A3 P M3), and µ1 ˆµ2 ˆµ3 “ pµ1ˆµ2qˆµ3

(since they agree on sets of the form A1ˆA2ˆA3, and hence in general by uniqueness).
Details are left to the reader (Folland Exercise 2.45). All of our results below have obvious
extensions to products with n factors, but we shall stick to the case n “ 2 for simplicity.

Definition 66. Let pX,M, µq and pY,N, νq be any two measure spaces. For any E Ă XˆY
and any x P X and y P Y we define the x-section of E, and y-section of E, denoted
Ex and Ey, respectively, by

Ex “ ty P Y | px, yq P Eu and Ey
“ tx P X | px, yq P Eu.

Also, if f is a function on XˆY we define the x-section of f and the y-section of f ,
denoted fx and f y, respectively, by

fxpyq “ f ypxq “ fpx, yq.

Version of April 30, 2024 at 11pm EST Page 79 of 368

https://www.greysonwesley.com/home


Greyson C. Wesley §2.6: Product Measures

Example 67. We can write pχEqx “ χEx and pχEq
y

“ χEy .

Proposition 2.68: 2.34.

(a) If E P M b N, then Ex P N for all x P X and Ey P M for all y P Y .
(b) If f is M b N-measurable, then fx is N-measurable for all x P X and f y is

M-measurable for all y P Y .

Proof. Let R be the collection of all subsets E of XˆY such that Ex P N for all x and
Ey P M for all y. Then R obviously contains all rectangles (e.g., pAˆBqx “ B if x P A,
and pAˆBqx “ ∅ otherwise). Since p

Ť8

1 Ejqx “
Ť8

1 pEjqx and pEcqx “ pExq
c, and likewise

for y-sections, R is a σ-algebra. Therefore R Ą M b N, which proves (a). (b) follows from
(a) because pfxq

´1
pBq “ pf´1pBqqx and pf yq´1

pBq “ pf´1pBqq
y.

Before proceeding further we need a technical lemma. We define a monotone class on
a space X to be a subset C of PpXq that is closed under countable increasing unions and
countable decreasing intersections (that is, if Ej P C and E1 Ă E2 Ă ¨ ¨ ¨ , then

Ť

E P C,
and likewise for intersections). Clearly every σ-algebra is a monotone class. Also, the
intersection of any family of monotone classes is a monotone class, so for any P Ă PpXq

there is a unique smallest monotone class containing P, called the monotone class
generated by P.

Theorem 2.69: 2.35: The Monotone Class Lemma.

If A is an algebra of subsets of X, then the monotone class C generated by A coincides
with the σ-algebra M generated by A.

Proof. Since M is a monotone class, we have C Ă M; and if we can show that C is a
σ-algebra, we will have M Ă C. To this end, for E P C let us define

CpEq “ tF P C | E ∖ F, F ∖ E, and E X F are in Cu.

Clearly ∅ and E are in CpEq, and E P CpF q if and only if F P CpEq. Also, it is easy to
check that CpEq is a monotone class. If E P A, then F P CpEq for all F P A because A is
an algebra; that is, A Ă CpEq, and hence C Ă CpEq. Therefore, if F P C, then F P CpEq

for all E P A. But this means that E P CpF q for all E P A, so that A Ă CpF q and hence
C Ă CpF q. Conclusion: If E,F P C, then E ∖ F and E X F are in C. Since X P A Ă C,C
is therefore an algebra. But then if tEju

8

1 Ă C, we have
Ťn

1 Ej P C for all n, and since C

is closed under countable increasing unions it follows that
Ť8

1 Ej P C. In short, C is a
σ-algebra, and we are done.

We now come to the main results of this section, which relates integrals on XˆY to
integrals on X and Y .
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Theorem 2.70: 2.36.

Suppose pX,M, µq and pY,N, νq are σ-finite measure spaces. If E P M b N, then the
functions x ÞÑ νpExq and y ÞÑ µpEyq are measurable on X and Y , respectively, and

µˆνpEq “

ż

X

νpExq dµpxq “

ż

Y

µpEy
q dνpyq.

Proof.

• Case 1: µ and ν are finite. Let C be the set of all E P M b N for which the
conclusions of the theorem are true. If E “ AˆB, then νpExq “ χApxqνpBq and
µpEyq “ µpAqχBpyq, so E P C. By countable additivity it follows that finite disjoint
unions of rectangles are in C, so by Theorem 69 it will suffice to show that C is a
monotone class. If tEnu is an increasing sequence in C and E “

Ť8

1 En, then the
functions fnpyq “ µppEnq

y
q are measurable and increase pointwise to fpyq “ µpEyq.

Hence f is measurable, so by the MCT,
ż

µpEy
q dνpyq “ lim

nÑ8

ż

µppEnq
y
qdνpyq “ lim

nÑ8
µˆνpEnq “ µˆνpEq.

Likewise µ̂ νpEq “
ş

νpExqdµpxq, so E P C. Similarly, if tEnu is a decreasing sequence
in C and

Ş8

1 En, the function y ÞÑ µppE1q
y
q is in L1pνq because µppE1q

y
q ď µpXq ă 8

and νpY q ă 8, so the DCT can be applied to show that E P C. Thus C is a monotone
class, and the proof is complete for the case of finite measure spaces.

• Case 2: µ and ν are σ-finite. Then we can write XˆY as the union of an increasing
sequence tXjˆYju of rectangles of finite measure. If E P M b N, the preceding
argument applies to E X pXjˆYjq for each j to give

µˆνpE X pXjˆYjqq “

ż

χXjpxqνpEx X Yjqdµpxq “

ż

χYjpyqµpEy
X Xjqdνpyq,

and a final application of the MCT then yields the desired result.

Theorem 2.71: 2.37: The Fubini-Tonelli Theorem.

Suppose that pX,M, µq and pY,N, νq are σ-finite measure spaces.
(a) (Tonelli) If f P L`pXˆY q, then the functions gpxq “

ş

fx dν and hpyq “
ş

f y dµ
are in L`pXq and L`pY q, respectively, and

ż

f dpµˆνq “

ż
„
ż

fpx, yq dνpyq

ȷ

dµpxq “

ż
„
ż

fpx, yq dµpxq

ȷ

dνpyq. (2.71.1)

(b) (Fubini) If f P L1pµˆνq, then fx P L1pνq for a.e. x P X,, f y P L1pµq for a.e.
y P Y , the a.e-defined functions gpxq “

ş

fx dν and hpxq “
ş

f y dν are in L1pµq

and L1pνq, respectively, and Equation (2.71.1) holds.

Proof. Tonelli’s theorem reduces to Theorem 70 in case f is a characteristic function, and
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it therefore holds for nonnegative simple functions by linearity. If f P L`pXˆY q, let tfnu

be a sequence of simple functions that increase pointwise to f as in Theorem 18. The
MCT implies, first, that the corresponding gn and hn increase to g and h (so that g and
h are measurable), and, second that

ż

g dµ “ lim

ż

gn dµ “ lim

ż

fndpµˆνq “

ż

fdpµˆνq,
ż

h dν “ lim

ż

hn dν “ lim

ż

fndpµˆνq “

ż

fdpµˆνq,

which is Equation (2.71.1). This establishes Tonelli’s theorem and also shows that if f P

L`pXˆY q and
ş

fdpµˆνq ă 8, then g ă 8 a.e. and h ă 8 a.e., that is, fx P L1pνq

for a.e. x and f y P L1pµq for a.e. y. If f P L1pµˆνq, then, the conclusion of Fubini’s
theorem follows by applying these results to the positive and negative parts of the real
and imaginary parts of f .

Notation 72. We shall usually omit the brackets in the iterated integrals in Equa-
tion (2.71.1), thus:

ż
„
ż

fpx, yqdµpxq

ȷ

dνpyq “

ĳ

fpx, yqdµpxqdνpyq “

ĳ

f dµ dν.

A few remarks are in order:
• The hypothesis of σ-finiteness is necessary; see Folland Exercise 2.46.
• The hypothesis f P L`pXˆY q or f P L1pµˆνq is necessary in the following two

ways.
(i) First, it is possible for fx and f y to be measurable for all x, y and for the iterated

integrals
ť

f dµ dν and
ť

f dν dµ to exist even if f is not M b N-measurable.
However, the iterated integrals need not then be equal; see Folland Exercise
2.47.

(ii) Second, if f is not nonnegative, it is possible for fx and f y to be integrable
for all x, y and for the iterated integrals

ť

f dµ dν and
ť

f dν dµ to exist even
if
ş

|f |dpµˆνq “ 8. But again, the iterated integrals need not be equal; see
Folland Exercise 2.48

• The Fubini and Tonelli theorems are frequently used in tandem. Typically one wishes
to reverse the order of integration in a double integral

ť

f dµ dν. First one verifies that
ş

|f |dpµˆνq ă 8 by using Tonelli’s theorem to evaluate this integral as an iterated
integral; then one applies Fubini’s theorem to conclude that

ť

f dµ dν “
ť

f dν dµ.
For examples, see the exercises in Folland Section 2.6.

• Even if µ and ν are complete, µˆν is almost never complete. Indeed, suppose
that there is a nonempty A P M with µpAq “ 0 and that N ‰ PpY q. (This is the
case with µ “ ν “ Lebesgue measure on R, for example.) If E P PpY q ∖ N, then
AˆE R M b N by Proposition 68, but AˆE Ă AˆY , and µˆνpAˆY q “ 0.
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Notice that we did not assume νpY q ă 8, hence, we employed the convention that
0 ¨ p˘8q “ 0 in measure theory (unless stated otherwise). In fact, this convention needs to
be taken in order to call µˆν a measure as the following elementary observation regarding
continuity from below shows:

Consider X “ Y “ R and the Lebesgue measure, m, on each space. Then in the above
example, let E “ t0u and choose any nonmeasurable subset of r´1, 1s (note that this
subset will not be a subset of a null set since m is complete). Then we clearly have that

EˆN Ă Eˆr´n, ns Ă EˆR, for each n P Zě0.

As each Eˆ r´n, ns is a rectangle, we have mˆmpEˆ r´n, nsq “ 0 ¨ p2nq “ 0 for
each n P Zě0. Furthermore, En “ Eˆ r´n, ns is a increasing, nested set such that
YnPZě0En “ EˆR, and continuity from below applied to the measure mˆm “ λ shows
that we must have

λpEˆRq “ λpYnPZě0Enq “ lim
nÑ8

λpEnq “ lim
nÑ8

mˆmpEˆr´n, nsq “ lim
nÑ8

0 “ 0.

As continuity from below holds for all measures, if we took any other convention than
0 ¨ p˘8q “ 0 in this setting, the product measure would not be a measure!

Although the σ-finite assumption is needed for Tonelli (see Folland Exercise 2.46), it
turns out that is not needed for Fubini (see Tao’s Remark 1.7.22 in his notes on measure
theory). But by Proposition 32 the support of an L1 function is σ-finite, so there is no
harm in assuming σ-finiteness in general. (But this is not true in general for f P L` only.)
Nevertheless, the hypotheses f P L` or f P L1 is needed (see Folland Exercise 2.47,Folland
Exercise 2.48).

If one wishes to work with complete measures, of course, one can consider the comple-
tion of µˆν. In this setting the relationship between the measurability of a function on
XˆY and the measurability of its x-sections and y-sections is not so simple. However,
the Fubini-Tonelli theorem is still valid when suitably reformulated:

Theorem 2.73: 2.39: The Fubini-Tonelli Theorem for Complete Measures.

Let pX,M, µq and pY,N, νq be complete, σ-finite measure spaces, and let pXˆY,L, λq

be the completion of pXˆY,M b N, µˆνq. If f is L-measurable and either (a) f ě 0
or (b) f P L1pλq, then fx is N-measurable for a.e. x and f y is M-measurable for a.e.
y, and in case pbqfx and f y are also integrable for a.e. x and y. Moreover, x ÞÑ

ş

fx dν
and y ÞÑ

ş

f y dµ are measurable, and in case (b) also integrable, and
ż

f dλ “

ĳ

fpx, yq dµpxq dνpyq “

ĳ

fpx, yq dνpyq dµpxq.

This theorem is a fairly easy corollary of Theorem 71; the proof is outlined in Folland
Exercise 2.49.
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Exercise 2.74: Folland Exercise 2.45.

If pXj,Mjq is a measurable space for j “ 1, 2, 3, then b3
1Mj “ pM1 b M2qb M3.

Moreover, if µj is a σ-finite measure on pXj,Mjq, then µ1ˆµ2ˆµ3 “ pµ1ˆµ2qˆµ3.

Exercise 2.75: Folland Exercise 2.46.

Let X “ Y “ r0, 1s,M “ N “ Br0,1s, µ “ Lebesgue measure, and ν “ counting measure.
If D “ tpx, xq | x P r0, 1su is the diagonal in XˆY , then

ť

χD dµ dν,
ť

χD dν dµ, and
ş

χDdpµˆνq are all unequal. (To compute
ş

χDdpµˆνq “ µˆνpDq, go back to the
definition of µˆν.)

Solution. First we note that D is measurable. Indeed, given n P Zě0, define In,k “
“

k
n
, k`1

n

‰

for k “ 0, ¨ ¨ ¨ , n ´ 1 and En “
Ťn´1
k“0pIn,kˆIn,kq. Thus D “

Ş8

n“1En P M b M. We have
ĳ

χDdµdν “

ż

r0,1s

ż 1

0

χDpx, yqdxdνpyq,

but for each fixed y P r0, 1s, we have χDpx, yq “ 0 if x ‰ y and χDpx, yq “ 1 if x “ y,
hence χDp¨, yq “ 0µ-a.e., and thus

ĳ

χDdµdν “

ż

r0,1s

0dνpyq “ 0 ¨ νpr0, 1sq “ 0 ¨ 8 “ 0.

Now since νptxuq “ 1 for each x P r0, 1s we have
ĳ

χDdνdµ “

ż 1

0

ż

r0,1s

χDpx, yqdνpyqdx “

ż 1

0

1dx “ 1.

To compute µˆ νpDq, we will use the outer measure π˚, the restriction of which to
M b N we recall is the definition of µˆ ν. Assume that D Ă

Ť8

j“1pAjˆBjq where
Aj, Bj P Br0,1s for all j. Since D “

Ť8

j“1D X pAjˆBjq, then given x P r0, 1s we have
px, xq P pAjˆBjq for some j, that is, x P Aj X Bj, and hence

Ť8

j“1Aj X Bj “ r0, 1s.
Therefore there exists j P Zě0 such that µpAj X Bjq ą 0, thus µpAjq ě µpAj X Bjq ą 0
and µpBjq ě µpAj X Bjq ą 0, and in particular, νpBjq “ 8 (since if νpBjq ă 8 implies
that µpBjq “ 0q. Hence µˆνpAjˆBjq “ 8, and thus

ř8

j“1 µˆνpAjˆBjq “ 8. Since
this is true for any cover of D by rectangles, we have µˆνpDq “ 8.

Exercise 2.76: Folland Exercise 2.47.

Let X “ Y be an uncountable linearly ordered set such that for each x P X,
ty P X | y ă xu is countable. (Example: the set of countable ordinals.) Let M “ N

be the σ-algebra of countable or co-countable sets, and let µ “ ν be defined
on M by µpAq “ 0 if A is countable and µpAq “ 1 if A is co-countable. Let
E “ tpx, yq P XˆX | y ă xu. Then Ex and Ey are measurable for all x, y, and
ť

χE dµ dν and
ť

χE dν dµ exist but are not equal. (If one believes in the continuum
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hypothesis, one can take X “ r0, 1s [with a nonstandard ordering] and thus obtain a
set E Ă r0, 1s2 such that Ex is countable and Ey is co-countable [in particular, Borel]
for all x, y, but E is not Lebesgue measurable.)

Exercise 2.77: Folland Exercise 2.48.

Let X “ Y “ Zě0,M “ N “ PpZě0q, µ “ ν “ counting measure. Define fpm,nq “ 1 if
m “ n, fpm,nq “ ´1 if m “ n`1, and fpm,nq “ 0 otherwise. Then

ş

|f | dpµˆνq “ 8,
and

ť

f dµ dν and
ť

f dν dµ exist and are unequal.

Exercise 2.78: Folland Exercise 2.49.

Prove Theorem 73 by using Theorem 71 and Proposition 22, together with the following
lemmas.
(a) If E P M b N and µˆνpEq “ 0, then νpExq “ µpEyq “ 0 for a.e. x and y.
(b) If f is L-measurable and f “ 0 λ-a.e., then fx and f y are integrable for a.e. x

and y, and
ş

fx dν “
ş

f y dµ “ 0 for a.e. x and y. (Here the completeness of µ
and ν is needed.)

Exercise 2.79: Folland Exercise 2.50.

Suppose pX,M, µq is a σ-finite measure space and f P L`pXq. Let
Gf “ tpx, yq P Xˆr0,8s | y ď fpxqu.

Then Gf is MˆBR-measurable and µˆmpGf q “
ş

f dµ. The same is also true if
the inequality y ď fpxq in the definition of Gf is replaced by y ă fpxq. (To show
measurability of Gf , note that the map px, yq ÞÑ fpxq ´ y is the composition of
px, yq ÞÑ pfpxq, yq and pz, yq ÞÑ z ´ y.)

This is the definitive statement of the familiar theorem from calculus which states
the integral of a function is the area under its graph.

Solution. Gf is measurable because the map px, yq ÞÑ pfpxq, yq ÞÑ fpxq´y is a composition
of measurable functions, under which Gf is the preimage of the measurable set r0,8q (or
p0,8q in the case of ‘ă’ instead of ‘ď’). Then χGf P L`pµˆmq, so by Tonelli’s Theorem
we have

µˆmpGf q “

ż

χGf dpµˆmq “

ż

X

ˆ
ż 8

0

χxGg
pyq dy

˙

dµpxq “

ż

X

fpxq dµpxq,

as desired.
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Exercise 2.80: Folland Exercise 2.51.

Let pX,M, µq and pY,N, νq be arbitrary measure spaces (not necessarily σ-finite).
(a) If f : X Ñ C is M-measurable, g : Y Ñ C is N-measurable, and hpx, yq “

fpxqgpyq, then h is M b N-measurable.
(b) If f P L1pµq and g P L1pνq, then h P L1pµˆνq, and

ż

h dpµˆνq “

ˆ
ż

f dµ

˙ˆ
ż

g dν

˙

.

Solution.
(a) h is the composition px, yq ÞÑ pfpxq, gpyqq ÞÑ fpxqgpyq, which is a composition of

measurable functions, and hence measurable.
(b) If f “ χA and g “ χB for A P M and B P M, then h “ χAˆχB “ χÂ B, so

ż

h dpµˆνq “ µˆνpAˆBq

“ µpAqˆνpBq “

ˆ
ż

χA dµ

˙ˆ
ż

χB dν

˙

“

ˆ
ż

f dµ

˙ˆ
ż

g dν

˙

.

where we used that µˆνpAˆBq “ µpAqˆνpBq by definition of the product measure.
Now suppose f is a simple nonnegative function f “

řn
i“1 ciχAi and g “ χB.

Then h “
řn
i“1 ciχAî B and thus

ż

hdpµˆνq “
ÿn

i“1
ciµˆνpAiˆBq “

ÿn

i“1
ciµpAiqνpBq “

ˆ
ż

fdµ

˙ˆ
ż

gdν

˙

.

Now suppose th f and g are M and M measurable (respectively) simple nonnega-
tive functions. Then g “

řm
k“1 dkχBk and we set hk “ dkfχBk for each k “ 1, ¨ ¨ ¨ ,m.

Then by the previous case, we have
ż

hkdpµˆνq “ dk

ż

fχBkdpµˆνq “ dk

ˆ
ż

fdµ

˙ˆ
ż

χBkdν

˙

“

ˆ
ż

f

˙ˆ
ż

dkχBkdν

˙

.

Summing over k P t1, . . . ,mu, we obtain the result.
Now suppose f P L`pXq, g P L`pY q. Then there exist sequences tsnu and trnu of

nonnegative simple M and M-measurable functions that increase pointwise to f and
g respectively. Then hn – fngn P L`pXˆY q as a product of measurable functions,
and thnu increases to fg. Then by the MCT,
ż

hdpµˆνq “ lim
nÑ8

ż

hndpµˆνq “ lim
nÑ8

ˆ
ż

fndµ

˙ˆ
ż

gndµ

˙

“

ˆ
ż

fdµ

˙ˆ
ż

gdν

˙

.

For f P L1pµq and g P L1pνq real functions, the result follows by applying the previous
case to f`g`, f`g´, f´g`and f´g´. For complex functions, just apply the real L1

case to Re f Re g,Re f Im g, Im f Re g and Im f Im g.
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Exercise 2.81: Folland Exercise 2.52.

The Fubini-Tonelli theorem is valid when pX,M, µq is an arbitrary measure space and
Y is a countable set, N “ PpY q, and ν is counting measure on Y . (See Theorems 26
and 48.)

2.7 The n-Dimensional Lebesgue Integral

The n-dimensional Lebesgue measure mn on Rn is the completion of the n-fold
product of Lebesgue measure on R with itself, that is, the completion of mˆ¨ ¨ ¨ˆm on
BR b ¨ ¨ ¨ b BR “ Bn

R, or equivalently the completion of mˆ¨ ¨ ¨ˆm on L b ¨ ¨ ¨ b L of mn

is the class of Lebesgue measurable sets in Rn; we will denote this complete σ-algebra
by Ln. (Sometimes we shall also consider mn as a measure on the smaller domain LRn .)
When there is no danger of confusion, we shall usually omit the superscript n and write
m for mn, and as in the case n “ 1, we shall usually write

ş

fpxq dx for
ş

f dm.
We begin by establishing the extensions of some of the results in Folland Section 1.5

to the n-dimensional case. In what follows, if E “
śn

1 Ej is a rectangle in Rn, we shall
refer to the sets Ej Ă R as the sides of E.

Theorem 2.82: 2.40.

Suppose E P Ln.
(a) We can write

mpEq “ inftmpUq | U is an open set containing Eu

“ suptmpKq | K is a compact set inside Eu.

(b) E “ A1 Y N1 “ A2 ∖ N2 where A1 is an Fσ set, A2 is a Gδ set, and mpN1q “

mpN2q “ 0.
(c) If mpEq ă 8, for any ε ą 0 there is a finite collection tRju

N
1 of disjoint rectangles

whose sides are intervals such that mpE△
ŤN

1 Rjq ă ε.

Proof. By the definition of product measures, if E P Ln and ε ą 0 there is a countable
family tTju of rectangles such that E Ă

Ť8

1 Tj and
ř8

1 mpTjq ď mpEq ` ε. For each
j, by applying Theorem 45 to the sides of Rj we can find a rectangle Uj Ą Fj whose
sides are open sets such that mpUjq ă mpTjq ` ε2´j. If U “

Ť8

1 Uj, then U is open and
mpUq ď

ř8

1 mpUjq ď mpEq ` 2ε. This proves the first equation in part (a); the second
one, and part (b), then follow as in the proofs of Theorems 45 and 46. Next, if mpEq ă 8,
then mpUjq ă 8 for all j. Since the sides of Uj are countable unions of open intervals, by
taking suitable finite subunions we obtain rectangles Vj Ă Uj whose sides are finite unions
of intervals such that mpVjq ě mpUjq ´ ε2´j. If N is sufficiently large, then, we have

m
´

E ∖
ďN

1
Vj

¯

ď m
´

ďN

1
Uj ∖ Vj

¯

` m
´

ď8

N`1
Uj

¯

ă 2ε
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and
m
´

ďN

1
Vj ∖ E

¯

ď m
´

ď8

1
Uj ∖ E

¯

ă ε,

so that mpE△
ŤN

1 Vjq ă 3ε. Since
ŤN

1 Vj can be expressed as a finite disjoint union of
rectangles whose sides are intervals, we have proved (c).

Theorem 2.83: 2.41.

If f P L1pmq and ε ą 0, there is a simple function ϕ “
řN

1 ajχRj , where each Rj is a
product of intervals, such that

ş

|f ´ ϕ| ă ε, and there is a continuous function g that
vanishes outside a bounded set such that

ş

|f ´ g| ă ε.

Proof. We first sketch the argument we will give. As in the proof of Theorem 49, we
can approximate f by simple functions. We will then use Theorem 82(c) to approximate
the latter by functions ϕ of the desired form. Finally, we will approximate such ϕs by
continuous functions by applying an obvious generalization of the argument in the proof
of Theorem 49.

We now give the argument. Fix ε ą 0. By Theorem 18, there exists a sequence of
simple functions tϕju

8

j“1 such that |ϕj| Õ |f | and ϕj Ñ f pointwise as j Ñ 8. Since
|ϕj ´ f | ď |ϕj| ` |f | ď 2|f | P L1pmq for each j, we can apply the dominated convergence
theorem to obtain limjÑ8

ş

|ϕj ´ f | “
ş

0 “ 0. Thus there exists a simple function
ϕ0 such that |ϕ0| ď |f | and

ş

|f ´ ϕ0| ă ε{2. Write ϕ0 in its standard representation
ϕ0 “

řn
j“1 ajχEj , where aj P C and the Ej P M are disjoint. We may assume aj ‰ 0, since

it makes no difference in the proof, as will be seen. First note that the Ej are m-finite,
because

ÿn

j“1
|aj|µpEjq “

ż

|ϕ0| ď

ż

|f | `

ż

|ϕ0 ´ f | ă ε{2 `

ż

|f | ă `8.

Then by Theorem 82(c), for each Ej there exists a finite disjoint union of measurable
rectangles Fj “

ŤNj

k“1R
j
k, where the Rj are have interval sides, such that mpEj△Fjq ă

ε
2|aj |n

. Note χFj “
řNj

k“1 χRj
k

since the Rj
k are disjoint. Now define

ϕ “
ÿn

j“1
ajχFj “

ÿn

j“1

ÿNj

k“1
ajχRj

k
“
ÿ

j,k
ajχRk

j
.

Then ϕ is a simple function, and
ż

|ϕ0 ´ ϕ| “

ż

ˇ

ˇ

ˇ

ÿn

j“1
ajχEj ´

ÿn

j“1
ajχFj

ˇ

ˇ

ˇ
ď
ÿn

j“1
|aj|

ż

|χEj ´ χFj |.

p˚q
“

ÿn

j“1
|aj|

ż

χEj△Fj “
ÿn

j“1
|aj|mpEj△Fjq ă

ÿn

j“1

|aj|ε

2|aj|n
“
ε

2
,

where the equality at p˚q is because for any subsets A,B Ă X, we have |χA ´χB| “ χA△B.
(This can be seen by showing equality on each of A∖ B, B ∖ A, A X B, and pA Y Bqc.
On A ∖ B, we have |χA ´ χB| “ |1 ´ 0| “ 1 “ χA△B. On B ∖ A, we have |χA ´ χB| “
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|0 ´ 1| “ 1 “ χA△B. On A X B, we have we have |χA ´ χB| “ |1 ´ 1| “ 0 “ χA△B. And
on pA Y Bqc, we have |χA ´ χB| “ |0 ´ 0| “ 0 “ χA△B.) We can now write

ż

|f ´ ϕ| ď

ż

|f ´ ϕ0| `

ż

|ϕ0 ´ ϕ| ă ε{2 ` ε{2 “ ε,

so ϕ is the desired simple function.
For the second point of the statement, we use the fact we have just proved. Since there

exists a simple function ϕ “
řN
k“1 akχRk such that each Rk is a rectangle with interval

sides, ak ‰ 0, and
ş

|ϕ´ f | ă ε{2. Now, for each index 1 ď k ď N , let αk be a continuous
map satisfying |χRk ´ αk| ă ε{p2|ak|Nq. (Recall from basic analysis of a single variable
functions that such a map αk exists, as we can connect the intervals on which χRk is
constant by steeper and steeper slopes.) Then the function g defined by g “

řN
k“1 akαk.

Then g is continuous as a finite linear combination of continuous functions, and we can
write

ż

|f ´ g| ď

ż

|f ´ ϕ| `

ż

|ϕ ´ g| ă ε{2 `

ż

ˇ

ˇ

ˇ

ÿN

k“1
akχRk ´

ÿN

k“1
akαk

ˇ

ˇ

ˇ

ď
ε

2
`
ÿN

1
|ak|

ż

|χRk ´ αk| ď
ε

2
`
ÿN

k“1

|ak|ε

2|ak|N
“ ε{2 ` ε{2 “ ε,

so g is the desired continuous function.

Theorem 2.84: 2.42.

The Lebesgue measure is translation-invariant. More precisely, for a P Rn define
τa : Rn Ñ Rn by τapxq “ x ` a.
(a) If E P Ln, then τapEq P Ln and mpτapEqq “ mpEq.
(b) If f : Rn Ñ C is Lebesgue measurable, then so is f ˝ τα. Moreover, if either f ě 0

or f P L1pmq, then
ş

pf ˝ τaq dm “
ş

f dm.

Proof. Since τa and its inverse τ´a are continuous, they preserve the class of Borel sets. The
formula mpτapEqq “ mpEq follows easily from the one-dimensional result (Theorem 48) if
E is a rectangle, and it then follows for general Borel sets since m is determined by its
action on rectangles (the uniqueness in Theorem 33). In particular, the collection of Borel
sets E such that mpEq “ 0 is invariant under τa. Assertion (a) now follows immediately.

If f is Lebesgue measurable and B is a Borel set in C, we have f´1pBq “ EYN where
E is Borel and mpNq “ 0. But τ´1

a pEq is Borel and mpτ´1
a pNqq “ 0, so pf ˝ τaq

´1
pBq P Ln

and f is Lebesgue measurable. The equality
ş

pf ˝ τaqdµ “
ş

f dµ reduces to the equality
mpτ´apEqq “ mpEq when f “ χE. It is then true for simple functions by linearity, and
hence for nonnegative measurable functions by the definition of the integral. Taking positive
and negative parts of real and imaginary parts then yields the result for f P L1pmq.

Let us now compare Lebesgue measure on Rn to the more naïve theory of n-dimensional
volume usually found in advanced calculus books. In this discussion, a cube in Rn is a
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Cartesian product of n closed intervals whose side lengths are all equal.
Given k P Z, let Qk be the collection of cubes of side length 1{2k with vertices in the

lattice
`

1
2k
Z
˘n. (That is,

śn
1 raj, bjs P Qk if and only if 2kaj and 2kbj are integers and

bj ´ aj “ 2´k for all j.) Note that any two cubes in Qk have disjoint interiors, and that
the cubes in Qk`1 are obtained from the cubes in Qk by bisecting the sides.

If E Ă Rn, we define the inner approximation and outer approximation to E by
the grid of cubes Qk to be

ApE, kq “
ď

tQ P Qk | Q Ă Eu and ApE, kq “
ď

tQ P Qk | Q X E ‰ ∅u,

respectively. The measure of ApE, kq (in either the naïve geometric sense or the Lebesgue
sense) is just 2´nk times the number of cubes in Qk that lie in ApE, kq, and we denote it
by mpApE, kqq; likewise for mpApE, kqq. Also, the sets ApE, kq increase with k while the
sets ApE, kq decrease, because each cube in Qk is a union of cubes in Qk`1. Hence the
limits

κpEq “ lim
kÑ8

mpApE, kqq, κpEq “ lim
kÑ8

mpApE, kqq

exist. They are called the inner content and outer content of E, and if they are equal,
their common value κpEq is the Jordan content of E.

Remark 85. We make two remarks. First, Jordan content is usually defined using general
rectangles whose sides are intervals rather than our dyadic cubes, but the result is the
same. Second, although all the definitions above make sense for arbitrary E Ă Rn, the
theory of Jordan content is meaningful only if E is bounded, for otherwise κpEq always
equals 8.

Let
ApEq “

ď8

1
ApE, kq and ApEq “

č8

1
ApE, kq.

Then ApEq Ă E Ă ApEq, ApEq and ApEq are Borel sets, and κpEq “ mpApEqq and
κpEq “ mpApEqq. Thus the Jordan content of E exists if and only if mpApEq∖ApEqq “ 0,
which implies that E is Lebesgue measurable and mpEq “ κpEq.

To clarify further the relationship between Lebesgue measure and the approximation
process leading to Jordan content, we establish the following lemma. (The second part of
the lemma will be used later.)

Lemma 2.86: 2.43.

If U Ă Rn is open, then U “ ApUq. Moreover, U is a countable union of cubes with
disjoint interiors.

Proof. If x P U , let δ “ inft|y ´ x| | y R Uu, which is positive since U is open. If Q is a
cube in Qk that contains x, then every y P Q is at a distance at most 2´k

?
n from x (the

worst case being when |xj ´ yj| “ 2´k for all j), so we will have Q Ă U provided k is large
enough so that 2´k

?
n ă δ. But then x P ApU, kq Ă ApUq.
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This shows that ApUq “ U , and the second assertion follows by writing ApUq “

ApU, 0q Y
Ť8

1 rApU, kq ∖ ApU, k ´ 1qs ¨ ApU, 0q is a (countable) union of cubes in Q0, and
for k ě 1, the closure of ApU, kq∖ApU, k´1q is a (countable) union of cubes in Ωk. These
cubes all have disjoint interiors, and the result follows.

Lemma 86 immediately implies that the Lebesgue measure of any open set is equal
to its inner content. On the other hand, suppose that F Ă Rn is compact. We can find
a large cube, say Q0 “ tx | max|xj| ď 2Mu, whose interior intpQ0q contains F . If Q P Qk

and Q Ă Q0 then either QXF ‰ ∅ or Q Ă pQ0 ∖ F q, so mpApF, kqq`mpApQ0 ∖ F, kqq “

mpQ0q. Letting k Ñ 8, we see that κpF q` κpQ0 ∖ F q “ mpQ0q. But Q0∖F is the union
of the open set int pQ0q ∖ F and the boundary of Q0, which has content zero, so that
κpQ0 ∖ F q “ κplntpQ0q ∖ F q “ mpQ0 ∖ F q. It follows that the Lebesgue measure of any
compact set is equal to its outer content.

Combining these results with Theorem 82(a), we can see exactly how Lebesgue measure
compares to Jordan content. The Jordan content of E is defined by approximating E
from the inside and the outside by finite unions of cubes. The Lebesgue measure of E, on
the other hand, is given by a two-step approximation process: First one approximates E
from the outside by open sets and from the inside by compact sets, and then approximates
the open sets from the inside and the compact sets from the outside by finite unions of
cubes. The Lebesgue measurable sets are precisely those for which these outer-inner and
inner-outer approximations give the same answer in the limit. (See Folland Exercise 1.19).

We now investigate the behavior of the Lebesgue integral under linear transformations.
We identify a linear map T : Rn Ñ Rn with the matrix pTijq “ pei ¨ Tejq, where teju is the
standard ordered basis for Rn. We denote the determinant of this matrix by detT and
recall that detpT ˝ Sq “ pdetT qpdetSq. Furthermore, we employ the standard notation
GLnpRq (the “general linear” group) for the group of invertible linear transformations of
Rn. We shall need the fact from elementary linear algebra that every T P GLnpRq can
be written as the product of finitely many transformations of the three elementary linear
maps given by

T1px1, . . . , xj, . . . , xnq “ px1, . . . , cxj, . . . , xnq (c ‰ 0),
T2px1, . . . , xj, . . . , xnq “ px1, . . . , xj ` cxk, . . . , xnq, (k ‰ j),

T3px1, . . . , xj, . . . , xk, . . . , xnq “ px1, . . . , xk, . . . , xj, . . . , xnq.

That every invertible transformation is a product of transformations of these three types is
simply the fact that every nonsingular matrix can be row-reduced to the identity matrix.

Theorem 2.87: 2.44.

Suppose T P GLnpRq.
(a) If f is a Lebesgue measurable function on Rn, so is f ˝ T . If f ě 0 or f P L1pmq,
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then
ż

fpxq dx “ | detT |

ż

f ˝ T pxq dx. (2.87.1)

(b) If E P Ln, then T pEq P Ln and mpT pEqq “ | detT |mpEq.

First suppose that f is Borel measurable. Then f ˝ T is Borel measurable since T is
continuous. If Equation (2.87.1) is true for the transformations T and S, it is also true
for T ˝ S, since

ż

fpxq dx “ | detT |

ż

f ˝ T pxq dx “ | detT || detS|

ż

pf ˝ T q ˝ Spxq dx

“ | detpT ˝ Sq|

ż

f ˝ pT ˝ Sqpxq dx.

Hence is suffices to prove Equation (2.87.1) when T is of the types T1, T2, T3 described
above. But this is a simple consequence of the Fubini-Tonelli theorem. For T3 we
interchange the order of integration in the variables xj and xk, and for T1 and T2 we
integrate first with respect to xj and use the one-dimensional formulas

ż

fptq dt “ |c|

ż

fpctq dt,

ż

fpt ` aq dt “

ż

fptq dt,

which follow from Theorem 48. Since it is easily verified that detT1 “ c, detT2 “ 1, and
detT3 “ ´1, Equation (2.87.1) is proved. Moreover, if E is a Borel set, so is T pEq (since
T´1 is continuous), and by taking f “ χT pEq, we obtain mpT pEqq “ | detT |mpEq. In
particular, the class of Borel null sets is invariant under T and T´1, and hence so is Ln.
The result for Lebesgue measurable functions and sets now follows as in the proof of
Theorem 84.

Corollary 2.88: 2.46.

The Lebesgue measure is invariant under rotations.

Proof. Rotations are linear maps satisfying TT ˚ “ I where T ˚ is the transpose of T .
Since detT “ detT ˚, this condition implies that | detT | “ 1.

Next we shall generalize Theorem 87 to differentiable maps. Let G “ pg1, . . . , gnq

be a map from an open set Ω Ă Rn into Rn whose components gj are of class C1, i.e.,
have continuous first-order partial derivatives. We denote by DxG the linear map defined
by the matrix ppBgi{Bxjqpxqq of partial derivatives at x. (Observe that if G is linear,
then DxG “ G for all x.) G is called a C1-diffeomorphism if G is injective and DxG
is invertible for all x P Ω. In this case, the inverse function theorem guarantees that
G´1 : GpΩq Ñ Ω is also a C1 diffeomorphism and that DxpG´1q “ rDG´1pxqGs

´1 for all
x P GpΩq.
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Theorem 2.89: 2.47.

Suppose that Ω is an open set in Rn and G : Ω Ñ Rn is a C1 diffeomorphism.
(a) If f is a Lebesgue measurable function on GpΩq, then f ˝G is Lebesgue measurable

on GpΩq, and
ż

GpΩq

fpxq dx “

ż

Ω

f ˝ Gpxq|detDxG| dx.

(b) If E Ă Ω and E P Ln, then GpEq P Ln and mpGpEqq “
ş

E
|detDxG| dx.

Proof. It suffices to consider Borel measurable functions and sets. Since G and G´1 are
both continuous, there are no measurability problems in this case, and the general case
follows as in the proof of Theorem 84. A bit of notation: For x P Rn and T “ pTijq P

GLnpRq, we set

}x} “ max
1ďjďn

|xj|, }T } “ max
1ďiďn

ÿn

j“1
|Tij|

We then have }Tx} ď }T }}x}, and tx | }x ´ a} ď hu is the cube of side length 2h
centered at a.

Let Q be a cube in Ω, say Q “ tx | }x ´ a} ď hu. By the mean value theorem,
gjpxq ´ gjpaq “

ř

jpxj ´ ajqpBg{Bxjqpyq for some y on the line segment joining x and a, so
that for x P Q, }Gpxq ´Gpaq} ď hpsupyPQ}DyG}q. In other words, GpQq is contained in a
cube of side length supyPQ}DyG} times that of Q, so that by Theorem 87, mpGpQqq ď

psupyPQ}DyG}q
nmpQq. If T P GLnpRq, we can apply this formula with G replaced by

T´1 ˝ G together with Theorem 87 to obtain
mpGpQqq “ |detT |mpT´1

pGpQqqq ď |detT |psupyPQ}T´1DyG}q
nmpQq.

Since DyG is continuous in y, for any ε ą 0 we can choose δ ą 0 so that
}pDzGq

´1DyG}
n

ď 1 ` ε if y, z P Q and }y ´ z} ď δ. Let us now subdivide Q into
subcubes Q1, . . . QN whose interiors are disjoint, whose side lengths are at most δ, and
whose centers are x1, . . . xN . Applying Section 2.7 with Q replaced by Qj and with
T “ DxjG, we obtain

mpGpQqq ď
ÿN

1
mpGpQjqq

ď
ÿN

j“1
|detDxjG|psupyPQj

}pDxjGq
´1DyG}q

nmpQjq

ď p1 ` εq
ÿN

1
|detDxjG|mpQjq

This last sum is the integral of
řN

1 |detDx, G|χQjpxq, which tends uniformly on Q to
|detDxG| as δ Ñ 0 since DxG is continuous. Thus, letting δ Ñ 0 and ε Ñ 0, we find that

mpGpQqq ď

ż

Q

|detDxG| dx.

We claim that this estimate holds with Q replaced by any Borel set in Ω. Indeed, if
U Ă Ω is open, by Lemma 86 we can write U “

Ť8

1 Qj where the Qjs are cubes with
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disjoint interiors. Since the boundaries of the cubes have Lebesgue measure zero, we have

mpGpUqq ď
ÿ8

1
mpGpQjqq ď

ÿ8

1

ż

Qj

|detDxG| dx “

ż

U

|detDxG| dx.

Moreover, if E Ă Ω is any Borel set of finite measure, by Theorem 82 there is a decreasing
sequence of open sets Uj Ă Ω of finite measure such that E Ă

Ş8

1 Uj and mp
Ş8

1 Uj ∖ Eq “

0. Hence by the DCT,

mpGpEqq ď m
´

G
´

č8

1
Uj

¯¯

“ limmpGpUjqq

ď lim

ż

Ui

|detDxG| dx “

ż

E

|detDxG| dx

Finally, since m is σ-finite, it follows from this that mpGpEqq ď
ş

E
|detDxG| dx for any

Borel set E Ă Ω. If f “
ř

ajχAj is a nonnegative simple function on GpΩq, we therefore
have

ż

GpΩq

fpxq dx “
ÿ

ajmpAjq ď
ÿ

aj

ż

G´1pAjq

|detDxG| dx

“

ż

Ω

f ˝ Gpxq|detDxG| dx.

Theorem 18 and the MCT then imply that
ż

GpΩq

fpxq dx ď

ż

Ω

f ˝ Gpxq|detDxG| dx

for any nonnegative measurable f . But the same reasoning applies with G replaced by
G´1 and f replaced by f ˝ G, so that

ż

Ω

f ˝ Gpxq|detDxG| dx

ď

ż

GpΩqq

f ˝ G ˝ G´1
pxq|detDG´1pxqG||detDxG

´1
| dx “

ż

GpΩq

fpxq dx.

This establishes (a) for f ě 0, and the case f P L1 follows immediately. Since (b) is just
the special case of (a) where f “ χGpEq, the proof is complete.

Exercise 2.90: Folland Exercise 2.53.

Fill in the details of the proof of Lemma 86.

Exercise 2.91: Folland Exercise 2.54.

How much of Theorem 87 remains valid if T is not invertible?
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Exercise 2.92: Folland Exercise 2.55.

Let E “ r0, 1ŝ r0, 1s. Investigate the existence and equality
ş

E
f dm2,

ş1

0

ş1

0
fpx, yq dx dy,

and
ş1

0

ş1

0
fpx, yq dy dx for the following f .

(a) fpx, yq “ px2 ´ y2qpx2 ` y2q´2.
(b) fpx, yq “ p1 ´ xyq´apa ą 0q.
(c) fpx, yq “

`

x ´ 1
2

˘´3 if 0 ă y ă
ˇ

ˇx ´ 1
2

ˇ

ˇ, fpx, yq “ 0 otherwise.

Solution. (a) Note that
d

dx

ˆ

x

x2 ` y2

˙

“
x2 ` y2 ´ 2x2

px2 ` y2q2
“

y2 ´ x2

px2 ` y2q2

so we have
ż 1

0

ż 1

0

x2 ´ y2

px2 ` y2q2
dxdy “ ´

ż 1

0

x

x2 ` y2

ˇ

ˇ

ˇ

ˇ

1

0

dy “ ´

ż 1

0

1

1 ` y2
dy “ ´ tan´1

p1q ` tan´1
p0q “ ´π{4

ż 1

0

ż 1

0

x2 ´ y2

px2 ` y2q2
dxdy “ ´

ż 1

0

ż 1

0

y2 ´ x2

px2 ` y2q2
dxdy “ π{4

Since the integrals are not equal, f R L1pE; dm2q and the first integral above does not
exist. Alternatively, we can prove that f R L1pE; dm2q directly using Tonelli’s:

ż

E

|f |dm2
“

ż 1

0

ż x

0

x2 ´ y2

px2 ` y2q
2dxdy ´

ż 1

0

ż y

0

x2 ´ y2

px2 ` y2q2
dydx “ 2

ż 1

0

dx

x
“ 8

where we have used the fact that for x, y ě 0, x2 ´ y2 “ px ´ yqpx ` yq ą 0 if and only if
x ą y. (b) Note that f P L`on E, so Tonelli’s applies and shows the three integrals are
equal for all α ą 0. For those interested, direct calculation yields

ż 1

0

ż 1

0

p1 ´ xyq
´αdxdy “

#

ş1

0
p1´yq1´α´1
ypα´1q

dy, α ‰ 1
ş1

0
logp1´yq

´y
dy, α “ 1

both of which need special functions to explicitly calculate (the first needs hypergeometric
functions and the second is a polylogrithm).

Exercise 2.93: Folland Exercise 2.56.

If f is Lebesgue integrable on p0, aq and gpxq “
şa

x
t´1fptq dt, then g is integrable on

p0, aq and
şa

0
gpxq dx “

şa

0
fpxq dx.

Exercise 2.94: Folland Exercise 2.57.

Show that
ş8

0
e´sxx´1 sinx dx “ arctanps´1q for s ą 0 by integrating e´sxy sinx with

respect to x and y. (It may be useful to recall that tan
`

π
2

´ θ
˘

“ ptan θq´1. (See
Folland Exercise 2.31(d).)
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Exercise 2.95: Folland Exercise 2.58.

Show that
ş

e´sxx´1 sin2 x dx “ 1
4
logp1 ` 4s´2q for s ą 0 by integrating e´sx sin 2xy

with respect to x and y.

Exercise 2.96: Folland Exercise 2.59.

Let fpxq “ x´1 sinx.
(a) Show that

ş8

0
|fpxq| dx “ 8.

(b) Show that limbÑ8

şb

0
fpxq dx “ 1

2
π by integrating e´xy sinx with respect to x and

y. (In view of part (a), some care is needed in passing to the limit as b Ñ 8.)

Exercise 2.97: Folland Exercise 2.60.

ΓpxqΓpyq{Γpx ` yq “
ş1

0
tx´1p1 ´ tqy´1 dt for x, y ą 0, where Γ is defined in Folland

Section 2.3. (Write ΓpxqΓpyq as a double integral and use the argument of the
exponential as a new variable of integration.)

Solution. Recall

Γpxq “

ż 8

0

ux´1e´u du, Repxq ą 0.

By Folland Exercise 2.51, if f P L1pµq, g P L1pνq, and hpx, yq “ fpxqgpxq, then f P L1pµ̂ νq

and
ż

h dpµˆνq “

ˆ
ż

fdµ

˙ˆ
ż

gdν

˙

Hence we can write

ΓpxqΓpyq “

ż 8

0

ż 8

0

ux´1e´uvy´1e´vdudv

Now define G : p0,8qˆp0, 1q Ñ p0,8qˆp0,8q, Gps, tq “ pst, sp1 ´ tqq, noting that the
Jacobian determinant of G is

det

ˆ

BG1

Bs
BG1

Bt
BG2

Bs
BG2

Bt

˙

“ det

ˆ

t s
1 ´ t ´s

˙

“ ´st ´ sp1 ´ tq “ ´s

Therefore, by the change of variables theorem we have

ΓpxqΓpyq “

ż 1

0

ż 8

0

pstqx´1e´st
rsp1 ´ tqs

y´1e´sp1´tqsdsdt

“

ż 1

0

ż 8

0

sx`y´1e´s
p1 ´ tqy´1dsdt

“ Γpx ` yq

ż 1

0

tx´1
p1 ´ tqy´1dt, x, y ą 0,

where we have applied Folland Exercise 2.51 once again.
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Exercise 2.98: Folland Exercise 2.61.

If f is continuous on r0,8q, for α ą 0 and x ě 0 let

Iαfpxq “
1

Γpαq

ż x

0

px ´ tqα´1fptq dt.

Iαf is called the αth fractional integral of f .
(a) Iα`βf “ IαpIβfq for all α, β ą 0. (Use Folland Exercise 2.60.)
(b) If n P Zě0, Inf is an nth-order antiderivative of f .

Solution. By definition,

IαpIβfqpxq “
1

Γpαq

ż x

0

px ´ tqα´1Iβfptqdt

“
1

ΓpαqΓpβq

ż x

0

px ´ tqα´1

ż t

0

pt ´ sqβ´1fpsqdsdt

“
1

ΓpαqΓpβq

ż x

0

ż t

0

px ´ tqα´1
pt ´ sqβ´1fpsqdsdt, α, β ą 0, x ě 0.

As we cannot integrate f directly, reversing the order of integration is needed. Note that
f is continuous on r0,8q so it is bounded above by some positive constant on r0, ts, and
the remainder of the integrand is nonnegative. Thus to apply Fubini’s Theorem, it suffices
to consider for α, β ą 0,

ż x

0

ż t

0

px ´ tqα´1
pt ´ sqβ´1dsdt “

1

β

ż x

0

px ´ tqα´1tβdt ă 8,

where we conclude the integral is less than infinity as convergence near 0 requires β ą ´1
whereas convergence near x requires α ´ 1 ą ´1. Hence, we apply Fubini to interchange
the order of integration (being mindful of the variables in the bounds of integration) as
follows:

IαpIβfqpxq “
1

ΓpαqΓpβq

ż x

0

ż t

0

px ´ tqα´1
pt ´ sqβ´1fpsqdsdt

“
1

ΓpαqΓpβq

ż x

0

ż x

s

px ´ tqα´1
pt ´ sqβ´1fpsqdtds, α, β ą 0, x ě 0.

In order to integrate with respect to t, we will need to perform a substitution. We first
recall what was proven in Folland Exercise 2.60 regarding the beta function:

Bpx, yq “
ΓpxqΓpyq

Γpx ` yq
“

ż 1

0

vx´1
p1 ´ vq

y´1 dv, x, y ą 0.

Comparing this result with we are proving, we notice we need the limits of integration
to change from s and x to 0 and 1. This results in the substitution u “ pt ´ sq{px ´ sq
where upxq “ 1, upsq “ 0, and dt “ px ´ sqdu. Hence, we compute

IαpIβfqpxq “
1

ΓpαqΓpβq

ż x

0

ż x

s

px ´ tqα´1
pt ´ sqβ´1fpsqdtds

Version of April 30, 2024 at 11pm EST Page 97 of 368

https://www.greysonwesley.com/home


Greyson C. Wesley §2.8: Integration in Polar Coordinates

“
1

ΓpαqΓpβq

ż x

0

ż 1

0

px ´ upx ´ sq ´ sqα´1
px ´ sqβ´1uβ´1fpsqpx ´ sqduds

“
1

ΓpαqΓpβq

ż x

0

ż 1

0

p1 ´ uq
α´1

px ´ sqα´1
px ´ sqβuβ´1fpsqduds

“
1

Γpα ` βq

ż 1

0

px ´ sqα`β´1fpsqds “ Iα`βfpxq, α, β ą 0, x ě 0,

where we used Proposition 2 in the last line.
(b) Since

I1fpxq “

ż x

0

fptqdt, x ě 0,

it is clear that I1f is an antiderivative of f , and recall that the Lebesgue integral is
continuous (see Folland Exercise 2.26). The result now follows by induction and applying
what was proven in (a): Assume that Inf, n P Zě0 is an n th-order antiderivative of f noting
that the integral is continuous once again, then write pIn`1fq

pn`1q
“ rpInpI1fqq

pnq
s

1
“

pI1fq
1

“ f .

2.8 Integration in Polar Coordinates

The most important nonlinear coordinate systems in R2 and R3 are polar coordinates
px “ r cos θ, y “ r sin θ) and spherical coordinates px “ r sinϕ cos θ, y “ r sinϕ sin θ, z “

r cosϕ). Theorem 89, applied to these coordinates, yields the familiar formulas (loosely
stated) dxdy “ rdrdθ and dxdydz “ r2 sinϕdrdθdϕ. Similar coordinate systems exist in
higher dimensions, but they become increasingly complicated as the dimension increases.
(See Exercise 109.) For most purposes, however, it is sufficient to know that Lebesgue
measure is effectively the product of the measure rn´1dr on p0,8q and a certain “surface
measure” on the unit sphere pdθ for n “ 2, sinϕdθdϕ for n “ 3).

Our construction of this surface measure is motivated by a familiar fact from plane
geometry. Namely, if Sθ is a sector of a disc of radius r with central angle θ (i.e., the region
in the disc contained between the two sides of the angle), the area mpSθq is proportional to
θ; in fact, mpSθq “ 1

2
r2θ. This equation can be solved for θ and hence used to define the

angular measure θ in terms of the area mpSθq. The same idea works in higher dimensions:
We shall define the surface measure of a subset of the unit sphere in terms of the Lebesgue
measure of the corresponding sector of the unit ball.

We shall denote the unit sphere tx P Rn | |x| “ 1u by Sn´1. If x P Rnzt0u, the polar
coordinates of x are

r “ |x| P p0,8q, x1
“

x

|x|
P Sn´1

The map Φpxq “ pr, x1q is a continuous bijection from Rnzt0u to p0,8q ˆSn´1 whose
(continuous) inverse is Φ´1pr, x1q “ rx1. We denote bym˚ the Borel measure on p0,8q̂ Sn´1

induced by Φ from Lebesgue measure on Rn, that is, m˚pEq “ mpΦ´1pEqq. Moreover, we
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define the measure ρ “ ρn on p0,8q by ρpEq “
ş

E
rn´1dr.

Theorem 2.99.

There is a unique Borel measure σ “ σn´1 on Sn´1 such that m˚ “ ρˆσ. If f is Borel
measurable on Rn and f ě 0 or f P L1pmq, then

ż

Rn

fpxqdx “

ż 8

0

ż

Sn´1

fprx1
qrn´1dσpx1

qdr. (2.99.1)

Proof. Equation (2.99.1), when f is a characteristic function of a set, is merely a restate-
ment of the equation m˚ “ ρˆσ, and it follows for general f by the usual linearity and
approximation arguments. Hence we need only to construct σ.

If E is a Borel set in Sn´1, for a ą 0 let
Ea “ Φ´1

pp0, asˆEq “ trx1
| 0 ă r ď a, x1

P Eu

If Equation (2.99.1) is to hold when f “ χE1 , we must have

mpE1q “

ż 1

0

ż

E

rn´1dσpx1
qdr “ σpEq

ż 1

0

rn´1dr “
σpEq

n
.

We therefore define σpEq to be n ¨ mpE1q. Since the map E ÞÑ E1 takes Borel sets to
Borel sets and commutes with unions, intersections, and complements, it is clear that σ is
a Borel measure on Sn´1. Also, since Ea is the image of E1 under the map x ÞÑ ax, it
follows from Theorem 87 that mpEaq “ anmpE1q, and hence, if 0 ă a ă b,

m˚ppa, bsˆEq “ mpEbzEaq “
bn ´ an

n
σpEq “ σpEq

ż b

a

rn´1dr

“ ρˆσppa, bsˆEq.

Fix E P BSn´1 and let AE be the collection of finite disjoint unions of sets of the
form pa, bs ˆE. By Proposition 7, AE is an algebra on p0,8q ˆE that generates the
σ-algebra ME “ tAˆE | A P Bp0,8qu. By the preceding calculation we have m˚ “ ρˆσ
on AE, and hence by the uniqueness assertion of Theorem 33, m˚ “ ρˆσ on ME. But
Ť

tME | E P BSn´1u is precisely the set of Borel rectangles in p0,8qˆSn´1, so another
application of the uniqueness theorem shows that m˚ “ ρˆσ on all Borel sets.

Of course, Equation (2.99.1) can be extended to Lebesgue measurable functions by
considering the completion of the measure σ. Details are left to the reader.

Corollary 2.100.

If f is a measurable function on Rn, nonnegative or integrable, such that fpxq “ gp|x|q

for some function g on p0,8q, then
ż

fpxqdx “ σpSn´1
q

ż 8

0

gprqrn´1dr.
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Corollary 2.101.

Let c and C denote positive constants, and let B “ tx P Rn | |x| ă cu. Suppose that f
is a measurable function on Rn.
(a) If |fpxq| ď C|x|´a on B for some a ă n, then f P L1pBq. However, if |fpxq| ě

C|x|´n on B, then f R L1pBq.
(b) If |fpxq| ď C|x|´a on Bc for some a ą n, then f P L1pBcq. However, if |fpxq| ě

C|x|´n on Bc, then f R L1pBcq.

Proof. Apply Corollary 100 to |x|´aχB and |x|´aχBc .

We shall compute σpSn´1q shortly. Of course, we know that σpS1q “ 2π; this is just
the definition of 2π as the ratio of the circumference of a circle to its radius. Armed with
this fact, we can compute a very important integral.

Proposition 2.102: 2.53.

If a ą 0,
ż

Rn

expp´a|x|
2
qdx “

´π

a

¯n{2

Proof. Denote the integral on the left by In. For n “ 2, by Corollary 100 we have

I2 “ 2π

ż 8

0

re´ar2dr “ ´

´π

a

¯

e´ar2
ˇ

ˇ

ˇ

8

0
“
π

a

Since expp´a|x|2q “
śn

1 expp´ax2jq, Tonelli’s theorem implies that In “ pI1q
n. In particu-

lar, I1 “ pI2q
1{2, so In “ pI2q

n{2
“ pπ{aqn{2.

Once we know this result, the device used in its proof can be turned around to compute
σpSn´1q for all n in terms of the gamma function introduced in §2.3.

Proposition 2.103: 2.54.

σpSn´1q “ 2πn{2

Γpn{2q
.

Proof. By Corollary 100, Proposition 102, and the substitution s “ r2,

πn{2
“

ż

Rn

e´|x|2dx “ σpSn´1
q

ż 8

0

rn´1e´r2dr

“
σpSn´1q

2

ż 8

0

spn{2q´1e´sds “
σpSn´1q

2
Γ
´n

2

¯

.

Version of April 30, 2024 at 11pm EST Page 100 of 368

https://www.greysonwesley.com/home


Greyson C. Wesley §2.8: Integration in Polar Coordinates

Corollary 2.104: 2.55.

If Bn “ tx P Rn | |x| ă 1u, then mpBnq “ πn{2

Γp 1
2
n`1q

.

Proof. mpBnq “ n´1σpSn´1q by definition of σ, and 1
2
nΓ

`

1
2
n
˘

“ Γ
`

1
2
n ` 1

˘

by the func-
tional equation for the gamma function.

We observed in §2.3 that Γpnq “ pn ´ 1q!. The following proposition shows that we
can also evaluate the gamma function at the half-integers.

Proposition 2.105: 2.56.

Γ
`

n ` 1
2

˘

“
`

n ´ 1
2

˘`

n ´ 3
2

˘

¨ ¨ ¨
`

1
2

˘?
π.

Proof. We have Γ
`

n ` 1
2

˘

“
`

n ´ 1
2

˘`

n ´ 3
2

˘

¨ ¨ ¨
`

1
2

˘

Γ
`

1
2

˘

by the functional equation, and
by Proposition 102 and the substitution s “ r2,

Γ

ˆ

1

2

˙

“

ż 8

0

s´1{2e´sds “ 2

ż 8

0

e´r2dr “

ż 8

´8

e´r2dr “
?
π

An amusing consequence of Proposition 105 and the formula Γpnq “ pn ´ 1q! is that the
surface measure of the unit sphere and the Lebesgue measure of the unit ball in Rn are
always rational multiples of integer powers of π, and the power of π increases by 1 when
n increases by 2.

Exercise 2.106: Folland Exercise 2.62.

The measure σ on Sn´1 is invariant under rotations.

Exercise 2.107: Folland Exercise 2.63.

The technique used to prove Proposition 103 can also be used to integrate any polyno-
mial over Sn´1. In fact, suppose fpxq “

śn
1 x

αj
j pαj P N Y t0uq is a monomial. Then

ş

fdσ “ 0 if any αj is odd, and if all αj’s are even,
ż

fdσ “
2Γpβ1q ¨ ¨ ¨Γpβnq

Γpβ1 ` ¨ ¨ ¨ ` βnq
, where βj “

αj ` 1

2
.

Exercise 2.108: Folland Exercise 2.64.

For which real values of a and b is |x|a| log |x||b integrable over
␣

x P Rn
ˇ

ˇ |x| ă 1
2

(

?
Over tx P Rn | |x| ą 2u?
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Exercise 2.109: Folland Exercise 2.65.

Define G : Rn Ñ Rn by Gpr, ϕ1, . . . , ϕn´2, θq “ px1, . . . , xnq, where
x1 “ r cosϕ1, x2 “ r sinϕ1 cosϕ2, x3 “ r sinϕ1 sinϕ2 cosϕ3, . . . ,

xn´1 “ r sinϕ1 ¨ ¨ ¨ sinϕn´2 cos θ, xn “ r sinϕ1 ¨ ¨ ¨ sinϕn´2 sin θ.

(a) G maps Rn onto Rn, and |Gpr, ϕ1, . . . , ϕn´2, θq| “ |r|.
(b) detDpr,ϕ1,...,ϕn´2,θqG “ rn´1 sinn´2 ϕ1 sin

n´3 ϕ2 ¨ ¨ ¨ sinϕn´2.
(c) Let Ω “ p0,8q ˆ p0, πqn´2 ˆ p0, 2πq. Then G | Ω is a diffeomorphism and

mpRnzGpΩqq “ 0.
(d) Let F pϕ1, . . . , ϕn´2, θq “ Gp1, ϕ1, . . . , ϕn´2, θq and Ω1 “ p0, πqn´2ˆ p0, 2πq. Then

pF | Ω1q
´1 defines a coordinate system on Sn´1 except on a σ-null set, and the

measure σ is given in these coordinates by
dσpϕ1, . . . ϕn´2, θq “ sinn´2 ϕ1 sin

n´3 ϕ2 ¨ ¨ ¨ sinϕn´2dϕ1 ¨ ¨ ¨ dϕn´2dθ.

3 Signed Measures and Differentiation

The principal theme of this chapter is the concept of differentiating a measure ν with
respect to another measure µ on the same σ-algebra. We do this first on the abstract level,
then obtain a more refined result when µ is Lebesgue measure on Rn. When the latter
is specialized to the case n “ 1, it joins with classical real-variable theory to produce a
version of the fundamental theorem of calculus for Lebesgue integrals.

In developing this program it is useful to generalize the notion of measure so as to
allow measures to assume negative values. In applications such “signed measures” can
represent things such as electric charge that can be either positive or negative.

3.1 Signed Measures

Let pX,Mq be a fixed measurable space.

Definition 1. A signed measure on pX,Mq is a function ν : M Ñ r´8,8s such that
• νp∅q “ 0;
• ν assumes at most one of the values ˘8;
• if tEju is a sequence of disjoint sets in M, then νp

Ť8

1 Ejq “
ř8

1 νpEjq, where the
latter sum converges absolutely if νp

Ť8

1 Ejq is finite.

Thus every measure is a signed measure; for emphasis we shall sometimes refer to a
measure as a positive measure.

Example 2. First, if µ1, µ2 are measures on M and at least one of them is finite, then
ν “ µ1 ´ µ2 is a signed measure. Second,
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Example 3. if µ is a measure on M and f : X Ñ r´8,8s is a measurable function such
that at least one of

ş

f`dµ and
ş

f´dµ is finite (in which case we shall call f extended
µ-integrable), then the set function ν defined by νpEq “

ş

E
f dµ is a signed measure.

In fact, we shall see shortly that these are really the only examples: Every signed
measure can be represented in either of these two forms.

Proposition 3.4: 3.1.

Let ν be a signed measure on pX,Mq.
(i) If tEju is an increasing sequence in M, then νp

Ť8

1 Ejq “ limjÑ8 νpEjq.
(ii) If tEju is a decreasing sequence in M and νpE1q is finite, then νp

Ş8

1 Ejq “

limjÑ8 νpEjq.

The proof is essentially the same as for positive measures (Theorem 14) and is left to
the reader (Folland Exercise 3.1).

If ν is a signed measure on pX,Mq, a set E P M is called positive for ν (resp.
negative for ν, null for ν) for ν if νpF q ě 0 (resp. νpF q ď 0, νpF q “ 0) for all F P M

such that F Ă E. (Thus, in the example νpEq “
ş

E
f dµ described above, E is positive,

negative, or null precisely when f ě 0, f ď 0, or f “ 0µ-a.e. on E.)

Lemma 3.5: 3.2.

Any measurable subset of a positive set is positive, and the union of any countable
family of positive sets is positive.

Proof. The first assertion follows from the definition of positivity. If P1, P2, . . . are positive
sets, let Qn “ Pn∖

Ťn´1
1 Pj . Then Qn Ă Pn, so Qn is positive. Hence if E Ă

Ť8

1 Pj , then
νpEq “

ř8

1 νpE X Qjq ě 0, as desired.

Theorem 3.6: 3.3: The Hahn Decomposition Theorem.

If ν is a signed measure on pX,Mq, there exist a positive set P and a negative set
N for ν such that P Y N “ X and P X N “ ∅. If P 1, N 1 is another such pair, then
P△P 1p“ N△N 1q is null for ν.

Proof. Without loss of generality, we assume that ν does not assume the value ´8.
(Otherwise, consider ´ν.) Let m be the supremum of νpEq as E ranges over all positive
sets; thus there is a sequence tPju of positive sets such that νpPjq Ñ m. Let P “

Ť8

1 Pj.
By Lemma 5 and Proposition 4, P is positive and νpP q “ m; in particular, m ă 8. We
claim that N “ X ∖ P is negative. To this end, we assume that N is nonnegative and
derive a contradiction.
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First, notice that N cannot contain any nonnull positive sets. Indeed, if E Ă N is
positive and νpEq ą 0, then E Y P is positive and νpE Y P q “ νpEq ` νpP q ą m, which
is impossible.

Second, if A Ă N and νpAq ą 0, there exists B Ă A with νpBq ą νpAq. Indeed, since
A cannot be positive, there exists C Ă A with νpCq ă 0; thus if B “ A ∖ C we have
νpBq “ νpAq ´ νpCq ą νpAq.

If N is not negative, then, we can specify a sequence of subsets tAju of N and a
sequence tnju of positive integers as follows: n1 is the smallest integer for which there
exists a set B Ă N with νpBq ą n´1

1 , and A1 is such a set. Proceeding inductively, nj is
the smallest integer for which there exists a set B Ă Aj´1 with νpBq ą νpAj´1q ` n´1

j ,
and Aj is such a set.

Let A “
Ş8

1 Aj. Then 8 ą νpAq “ lim νpAjq ą
ř8

1 n
´1
j , so nj Ñ 8 as j Ñ 8.

But once again, there exists B Ă A with νpBq ą νpAq ` n´1 for some integer n. For j
sufficiently large we have n ă nj , and B Ă Aj´1, which contradicts the construction of nj
and Aj. Thus the assumption that N is not negative is untenable.

Finally, if P 1, N 1 is another pair of sets as in the statement of the theorem, we have
P ∖ P 1 Ă P and P ∖ P 1 Ă N 1, so that P ∖ P 1 is both positive and negative, hence null;
likewise for P 1 ∖ P .

The decomposition X “ P Y N if X as the disjoint union of a positive set and a
negative set is called a Hahn decomposition for ν. It is usually not unique (ν-null sets
can be transferred from P to N or from N to P ), but it leads to a canonical representation
of ν as the difference of two positive measures.

To state this result we need a new concept: We say that two signed measures µ and ν
on pX,Mq are mutually singular, or that ν is singular with respect to µ, or vice
versa, if there exist E,F P M such that E X F “ ∅, E Y F “ X,E is null for µ, and F is
null for ν. Informally speaking, mutual singularity means that µ and ν “live on disjoint
sets.” We express this relationship symbolically with the perpendicularity sign, namely
µ K ν.

Theorem 3.7: 3.4: The Jordan Decomposition Theorem.

If ν is a signed measure, there exist unique positive measures ν` and ν´ such that
ν “ ν` ´ ν´ and ν` K ν´.

Proof. Let X “ P YN be a Hahn decomposition for ν, and define ν`pEq “ νpEXP q and
ν´pEq “ ´νpE X Nq. Then clearly ν “ ν` ´ ν´ and ν` K ν´. If also ν “ µ` ´ µ´ and
µ` K µ´, let E,F P M be such that E X F “ ∅, E Y F “ X, and µ`pF q “ µ´pEq “ 0.
Then X “ E Y F is another Hahn decomposition for ν, so P△E is ν-null. Therefore,
for any A P M, µ`pAq “ µ`pA X Eq “ νpA X Eq “ νpA X P q “ ν`pAq, and likewise
ν´ “ µ´.
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Definition 8. The measures ν` and ν´ are called the positive variation of ν and
negative variation of ν, respectively, and ν “ ν` ´ ν´ is called the Jordan decompo-
sition of ν, by analogy with the representation of a function of bounded variation on R
as the difference of two increasing functions (see Folland Section 3.5). Furthermore, we
define the total variation of ν to be the measure |ν| defined by

|ν| – ν`
` ν´.

Exercise 3.9: Folland Exercise 3.2.

If ν is a signed measure,
E is ν-null ðñ |ν|pEq “ 0.

Also, if ν and µ are signed measures, then
ν K µ ðñ |ν| K µ ðñ ν`

K µ and ν´
K µ.

Solution. Suppose E is ν-null and X “ P YN is a Hahn decomposition of X for ν. Then
|ν|pEq “ |ν|pE X Xq “ ν`

pE X P q ` ν´
pE X Nq.

If |ν|pEq ą 0, either ν`pE X P q ą 0 or ν´pE X Nq ą 0. Without loss of generality,
assume ν`pE X P q ą 0. Then

νpE X P q “ ν`
pE X P q ´ ν´

pE X P X Nq “ ν`
pE X P q ą 0.

However, E X P Ă E with E is ν-null, so we must have νpE X P q “ 0, a contradiction.
Suppose |ν|pEq “ 0. Then |ν|pAq “ 0 for all measurable A Ă E since |ν| is positive.
Hence,

0 “ |ν|pAq “ ν`
pAq ` ν´

pAq ðñ ν`
pAq “ 0 “ ν´

pAq,

so that νpAq “ ν`pAq ´ ν´pAq “ 0 for all measurable A Ă E. Thus, E is ν-null. The
second assertion is by definition:

ν K µ ðñ there exists tP,Nu such that P is µ-null, N is ν-null
ðñ |ν| K µ ðñ ν`

K µ and ν´
K µ.

We observe that if ν omits the value 8 then ν`pXq “ νpP q ă 8, so that ν` is a finite
positive measure and ν is bounded above by ν`pXq; similarly if ν omits the value ´8. In
particular, if the range of ν is contained in R, then ν is bounded. We observe also that ν
is of the form νpEq “

ş

E
f dµ, where µ “ |ν| and f “ χP ´ χN , X “ P YN being a Hahn

decomposition for ν.
Integration with respect to a signed measure ν is defined in the obvious way: We set

L1
pνq “ L1

pν`
q X L1

pν´
q,

ż

f dν “

ż

f dν`
´

ż

f dν´
pf P L1

pνqq.
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Definition 10. A finite signed measure (resp. σ-finite signed measure) is a signed
measure ν such that |ν| is finite (resp. σ-finite).

Exercise 3.11: Folland Exercise 3.1.

Prove Proposition 4.

Exercise 3.12: Folland Exercise 3.3.

Let ν be a signed measure on pX,Mq.
(a) L1pνq “ L1p|ν|q.
(b) If f P L1pνq, then

ˇ

ˇ

ş

f dν
ˇ

ˇ ď
ş

|f |d|ν|.
(c) If E P M, |ν|pEq “ sup

␣
ˇ

ˇ

ş

E
f dν

ˇ

ˇ

ˇ

ˇ |f | ď 1
(

.

Solution.
(a) Let X “ P Y N be a Hahn decomposition of X for ν, and let ν “ ν` ´ ν´ be the

corresponding Jordan decomposition of ν. Since |ν| “ ν` ` ν´ ě ν` ´ ν´ “ ν, for
any nonnegative simple function ϕ “

řn
j“1 ajχEj we can write

ż

ϕ d|ν| “
ÿn

j“1
aj|ν|pEjq “

ÿn

j“1
ajν

`
pEjq `

ÿn

j“1
ajν

´
pEjq

ě
ÿn

j“1
ajν

`
pEjq ´

ÿn

j“1
ajν

´
pEjq “

ÿn

j“1
ajνpEjq “

ż

ϕ dν.

Taking the supremum of both sides over all simple functions ϕ satisfying 0 ď ϕ ď |f |,
we obtain

ş

|f | d|ν| ě
ş

|f | dν. Now f P L1p|ν|q implies
ş

|f | dν ď
ş

|f | d|ν| ă 8,
which in turn implies f P L1pνq, so L1p|ν|q Ă L1pνq. On the other hand, suppose
f P L1pνq, so that

ş

|f | dν`,
ş

|f | dν´ ă 8. Then
ş

|f | d|ν| “
ş

|f | dν` `
ş

|f | dν´ ă 8,
so f P L1p|ν|q. Hence L1pνq “ L1p|ν|q. [Note that the equality

ş

|f | d|ν| “
ş

|f | dν` `
ş

|f | dν´ holds for simple functions as above and so by the monotone convergence
theorem it holds for |f |.]

(b) Let f P L1pνq. Then
ˇ

ˇ

ˇ

ˇ

ż

f dν

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż

f dν`
´

ż

f dν´

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ż

f dν`

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ż

f dν´

ˇ

ˇ

ˇ

ˇ

ď

ż

|f | dν`
`

ż

|f | dν´
“

ż

|f | d|ν|,

as desired.
(c) Let E P M. If |ν|pEq “ 8 then the equality |ν|pEq “ sup

␣ˇ

ˇ

ş

E
f dν

ˇ

ˇ

ˇ

ˇ |f | ď 1
(

holds
as sup

␣ˇ

ˇ

ş

E
f dν

ˇ

ˇ

ˇ

ˇ |f | ď 1
(

“ 8 (see inequality below which forces this). Thus we
may assume |ν|pEq ă 8. Let f be a measurable function with |f | ď 1. Then
fχE P L1pνq, since

ş

|fχE| dν ď
ş

E
1 dν “ νpEq ď |ν|pEq ă 8, so we can apply part
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(b) as follows:

|ν|pEq “

ż

χE d|ν| ě

ż

|fχE| d|ν|
(b)
ě

ˇ

ˇ

ˇ

ˇ

ż

fχE dν

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż

E

f dν

ˇ

ˇ

ˇ

ˇ

.

Taking the supremum of both sides over all such f , we obtain |νpEq| ě

sup
␣ˇ

ˇ

ş

E
f dν

ˇ

ˇ

ˇ

ˇ |f | ď 1
(

.
Conversely (this does not assume |ν|pEq finite),

|ν|pEq “

ż

χE d|ν| “

ż

χE dν
`

`

ż

χE dν
´

“

ż

χEXP dν ´

ż

χEXN dν

“

ż

E

pχP ´ χNq dν ď

ˇ

ˇ

ˇ

ˇ

ż

E

pχP ´ χNq dν

ˇ

ˇ

ˇ

ˇ

ď sup

"ˇ

ˇ

ˇ

ˇ

ż

E

f dν

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

|f | ď 1

*

where the last inequality is because χP ´χN is a measurable function whose absolute
value is at most 1. This proves the reverse inequality, so we conclude

|ν|pEq “ sup

"ˇ

ˇ

ˇ

ˇ

ż

E

f dν

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

|f | ď 1

*

.

Exercise 3.13: Folland Exercise 3.4.

If ν is a signed measure and λ, µ are positive measures such that ν “ λ ´ µ, then
λ ě ν` and µ ě ν´.

Solution. Consider a Hahn decomposition X “ P Y N and notice for all E P M,
ν`

pEq “ νpE X P q “ λpE X P q ´ µpE X P q ď λpE X P q ď λpEq,

ν´
pEq “ ´νpE X Nq “ ´pλpE X Nq ´ µpE X Nqq ď µpE X Nq ď µpEq.

Exercise 3.14.

If µ and ν are signed measures and λ “ µ ` ν, is it true that λ` “ µ` ` ν`?

Solution. No, not in general unless pµ` ` ν`q K pµ´ ` ν´q. For example, consider the
finite signed measures µ “ δx ´ δy and ν “ δy ´ δz, where δx is the point mass at x. Then
λ “ δx ´ δz and

µ`
“ δx, ν`

“ δy, λ`
“ δx ‰ δx ` δy “ µ`

` ν`.

Exercise 3.15: Folland Exercise 3.5.

If ν1, ν2 are signed measures that both omit the value `8 or ´8, then |ν1 ` ν2| ď

|ν1| ` |ν2|. (Use Folland Exercise 3.4.)

Solution. Consider the Jordan decomposition λ “ ν1`ν2 “ λ` ´λ´, ν1`ν2 “ pν`
1 ` ν`

2 q´

pν´
1 ` ν´

2 q, noting that ν`
1 ` ν`

2 and ν´
1 ` ν´

2 are positive measures. By Folland Exercise
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3.4,
ν`
1 ` ν`

2 ě λ` and ν´
1 ` ν´

2 ě λ´,

so
|ν1 ` ν2| “ λ`

` λ´
ď |ν1| ` |ν2|.

Exercise 3.16: Folland Exercise 3.6.

Suppose νpEq “
ş

f dµ where µ is a positive measure and f is an extended µ-integrable
function. Describe the Hahn decompositions of ν and the positive, negative, and total
variations of ν in terms of f and µ.

Exercise 3.17: Folland Exercise 3.7.

Suppose that ν is a signed measure on pX,Mq and E P M.
(a) ν`pEq “ suptνpF q | E P M, F Ă Eu and ν´pEq “ ´ inftνpF q | F P M, F Ă Eu.
(b) |ν|pEq “ supt

řn
1 |νpEjq| | n P Zě0, E1, . . . , En are disjoint, and

Ťn
1 Ej “ Eu.

3.2 The Lebesgue Decomposition and the Radon-Nikodym Derivative

Suppose that ν is a signed measure and µ is a positive measure on pX,Mq. We say
that ν is absolutely continuous with respect to µ and write ν ! µ if νpEq “ 0 for
every E P M for which µpEq “ 0. It is easily verified that ν ! µ if and only if |ν| ! µ if
and only if ν` ! µ and ν´ ! µ (Folland Exercise 3.8).

Absolute continuity is in a sense the antithesis of mutual singularity. More precisely,
if ν K µ and ν ! µ, then ν “ 0, for if E and F are disjoint sets such that E YF “ X and
µpEq “ |ν|pF q “ 0, then the fact that ν ! µ implies that |ν|pEq “ 0, whence |ν| “ 0 and
ν “ 0. One can extend the notion of absolute continuity to the case where µ is a signed
measure (namely, ν ! µ if and only if ν ! |µ|q, but we shall have no need of this more
general definition.

The term “absolute continuity” is derived from real-variable theory; see Folland Section
3.5. For finite signed measures it is equivalent to another condition that is obviously a
form of continuity.

Theorem 3.18: 3.5.

Let ν be a finite signed measure and µ a positive measure on pX,Mq. Then ν ! µ if
and only if for every ε ą 0 there exists δ ą 0 such that |νpEq| ă ε whenever µpEq ă δ.

Proof. Since ν ! µ if and only if |ν| ! µ and |νpEq| ď |ν|pEq, it suffices to assume that
ν “ |ν| is positive. Clearly the ε-δ condition implies that ν ! µ. On the other hand,
if the ε-δ condition is not satisfied, there exists ε ą 0 such that for all n P Zě0 we can
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find En P M with µpEnq ă 2´n and νpEnq ě ε. Let Fk “
Ť8

k En and F “
Ş8

1 Fk. Then
µpFkq ă

ř8

k 2´n “ 21´k, so µpF q “ 0; but νpFkq ě ε for all k and hence, since ν is finite,
νpF q “ lim νpFkq ě ε. Thus it is false that ν ! µ.

If µ is a measure and f is an extended µ-integrable function, the signed measure ν
defined by νpEq “

ş

E
f dµ is clearly absolutely continuous with respect to µ; it is finite if

and only if f P L1pµq. For any complex-valued f P L1pµq, the preceding theorem can be
applied to Re f and Im f , and we obtain the following useful result:

Corollary 3.19: 3.6.

If f P L1pµq, for every ε ą 0 there exists δ ą 0 such that
ˇ

ˇ

ş

E
f dµ

ˇ

ˇ ă ε whenever
µpEq ă δ.

We shall use the following notation to express the relationship νpEq “
ş

E
f dµ:

dν “ f dµ.

Sometimes, by a slight abuse of language, we shall refer to the signed measure f dµ.
Given a measure, µ, one can construct a new (signed/complex) measure, ν, by defining

ż

E

dν “ νpEq “

ż

E

fdµ,

for µ-measurable f . In other words, we can use a measure that we know about (the
reference measure µ) to define a new measure pνq that acts by integration of a measurable
function with respect to the reference measure.

What about the opposite direction? That is, if you want to learn about a measure
that you do not know about, can you now write it as ’almost’ a measure you know about
in the sense of the above integration of a measurable function with respect to the known
reference measure? If we can do this, it would make using this measure much easier!

The Lebesgue-Radon-Nikodym Theorem answers how to do this by using the Lebesgue
decomposition of the σ-finite signed measure ν “ µs ` µac where µs K µ and µac ! µ for
µ a σ-finite positive measure (the reference measure we know about), with all measures
understood on the same measurable space pX,Mq.

In general, we only have the above decomposition and there will be a singular part, µs,
which will need to be contended with. However, since ν “ µac ` µs with µs K µ, µac ! µ,
if we further assume that ν ! µ, then µs ! µ. But this implies that µs “ 0 (singular and
absolutely continuous), so the representation simply becomes dν “ fdµ. If this is the
case, we then call f the Radon-Nikodym derivative of ν with respect to µ and denote
it by dν{dµ.

We now come to the main theorem of this section, which gives a complete picture of
the structure of a signed measure relative to a given positive measure. First, a technical
lemma.
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Lemma 3.20: 3.7.

Suppose that ν and µ are finite measures on pX,Mq. Either ν K µ, or there exist
ε ą 0 and E P M such that µpEq ą 0 and ν ě εµ on E (that is, E is a positive set for
ν ´ εµ).

Proof. Let X “ Pn YNn be a Hahn decomposition for ν ´ n´1µ, and let P “
Ť8

1 Pn and
N “

Ş8

1 Nn “ P c. Then N is a negative set for ν ´ n´1µ for all n, i.e., 0 ď νpNq ď

n´1µpNq for all n, so νpNq “ 0. If µpP q “ 0, then ν K µ. If µpP q ą 0, then µpPnq ą 0
for some n, and Pn is a positive set for ν ´ n´1µ.

Theorem 3.21: 3.8: The Lebesgue-Radon-Nikodym Theorem.

Let ν be a σ-finite signed measure and µ a σ-finite positive measure on pX,Mq. There
exist unique σ-finite signed measures νs, νac on pX,Mq such that

νs K µ, νac ! µ, and ν “ νs ` νac.

Moreover, there is an extended µ-integrable function dνac
dµ

: X Ñ R, called the Radon-
Nikodym derivative of νac with respect to µ, such that for all E P M,

νacpEq “

ż

E

dνac
dµ

dµ,

and any two such functions are equal µ-a.e.

Proof. For the proof we use Folland’s notation νs “ ρ and νac “ λ.
Case I: Suppose that ν and µ are finite positive measures. Let

ℱ “

"

f : X Ñ r0,8s

ˇ

ˇ

ˇ

ˇ

ż

E

f dµ ď νpEq for all E P M

*

.

ℱ is nonempty since 0 P ℱ. Also, if f, g P ℱ, then h “ maxpf, gq P ℱ, for if A “

tx | fpxq ą gpxqu, for any E P M we have
ż

E

h dµ “

ż

EXA

f dµ `

ż

E∖A
g dµ ď νpE X Aq ` νpE ∖ Aq “ νpEq.

Let a “ sup
␣ş

f dµ
ˇ

ˇ f P ℱ
(

, noting that a ď νpXq ă 8, and choose a sequence tfnu Ă ℱ
such that

ş

fn dµ Ñ a. Let gn “ maxpf1, . . . , fnq and f “ supn fn. Then gn P ℱ, gn
increases pointwise to f , and

ş

gn dµ ě
ş

fn dµ. It follows that lim
ş

gn dµ “ a and hence,
by the MCT, that f P ℱ and

ş

f dµ “ a. (In particular, f ă 8 a.e., so we may take f to
be real-valued everywhere.)

We claim that the measure dλ “ dν ´ f dµ (which is positive since f P H) is singular
with respect to µ. If not, by Lemma 20 there exist E P M and ε ą 0 such that µpEq ą 0
and λ ě εµ on E. But then εχE dµ ď dλ “ dν ´ f dµ, that is, pf ` eχEqdµ ď dν, so
f ` εχE P ℱ and

ş

pf ` εχEqdµ “ a ` εµpEq ą a, contradicting the definition of a.
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Thus the existence of λ, f , and dρ “ f dµ is proved. As for uniqueness, if also
dν “ dλ1 ` f 1dµ, we have dλ ´ dλ1 “ pf 1 ´ fqdµ. But λ ´ λ1 K µ (see Folland Exercise
3.9), while pf 1 ´ fqdµ ! dµ; hence dλ ´ dλ1 “ pf 1 ´ fqdµ “ 0, so that λ “ λ1 and (by
Proposition 39) f “ f 1µ-a.e. Thus we are done in the case when µ and ν are finite
measures.

Case II: Suppose that µ and ν are σ-finite measures. Then X is a countable disjoint
union of µ-finite sets and a countable disjoint union of ν-finite sets; by taking intersections
of these we obtain a disjoint sequence tAju Ă M such that µpAjq and νpAjq are finite for all
j and X “

Ť8

1 Aj . Define µjpEq “ µpE X Ajq and νjpEq “ νpE X Ajq. By the reasoning
above, for each j we have dνj “ dλj ` fj dµj where λj K µj. Since µjpAcjq “ νjpA

c
jq “ 0,

we have λjpAcjq “ νjpA
c
jq ´

ş

Ac
j
f dµj “ 0, and we may assume that fj “ 0 on Acj. Let

λ “
ř8

1 λj and f “
ř8

1 fj. Then dν “ dλ ` f dµ, λ K µ (see Folland Exercise 3.9), and
dλ and f dµ are σ-finite, as desired. Uniqueness follows as before.

The General Case: If ν is a signed measure, we apply the preceding argument to ν`

and ν´ and subtract the results.

The decomposition ν “ λ ` ρ where λ K µ and ρ ! µ is called the Lebesgue
decomposition of ν with respect to µ. In the case where ν ! µ, Theorem 21 says that
dν “ f dµ for some f . This result is usually known as the Radon-Nikodym theorem,
and f is called the Radon-Nikodym derivative of ν with respect to µ. We denote
it by dν{dµ:

dν “
dν

dµ
dµ.

(Strictly speaking, dν{dµ should be construed as the as the class of functions µ-a.e. equal
to f .) The formulas suggested by the differential notation dµ{dν are generally correct.
For example, it is obvious that dpν1 ` ν2q{dµ “ pdν1{dµq ` pdν2{dµq, and we also have
the chain rule:

Proposition 3.22: 3.9.

Suppose that ν is a σ-finite signed measure and µ, λ are σ-finite measures on pX,Mq

such that ν ! µ and µ ! λ.
(a) If g P L1pνq, then g ¨ dν

dµ
P L1pµq and

ż

g dν “

ż

g
dν

dµ
dµ

(b) We have ν ! λ, and
dν

dλ
“
dν

dµ

dµ

dλ
λ-a.e.

Proof. By considering ν` and ν´separately, we may assume that ν ě 0. The equation
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ş

g dν “
ş

gpdν{dµqdµ is true when g “ χE by definition of dν{dµ. It is therefore true for
simple functions by linearity, then for nonnegative measurable functions by the MCT,
and finally for functions in L1pνq by linearity again. Replacing ν, µ by µ, λ and setting
g “ χEpdν{dµq, we obtain

νpEq “

ż

E

dν

dµ
dµ “

ż

E

dν

dµ

dµ

dλ
dλ

for all E P M, whence pdν{dλq “ pdν{dµqpdµ{dλqλ-a.e. by Proposition 39.

Corollary 3.23: 3.10.

If µ ! λ and λ ! µ, then pdλ{dµqpdµ{dλq “ 1 a.e. (with respect to either λ or µ).

Example 24. Non-example: Let µ be Lebesgue measure and ν the point mass at 0 on
pR,BRq. Clearly ν K µ. The nonexistent Radon-Nikodym derivative dν{dµ is popularly
known as the Dirac δ-function.

We conclude this section with a simple but important observation, whose proof is
straightforward:

Proposition 3.25: 3.11.

If µ1, . . . , µn are measures on pX,Mq, there is a measure µ such that µj ! µ for all
j—namely, µ “

řn
1 µj.

Exercise 3.26: Folland Exercise 3.9.

Suppose tνju is a sequence of positive measures. If νj K µ for all j, then
ř8

1 νj K µ;
and if νj ! µ for all j, then

ř8

1 νj ! µ.

Exercise 3.27: Folland Exercise 3.10.

Theorem 18 may fail when ν is not finite. (Consider dνpxq “ dx{x and dµpxq “ dx on
p0, 1q, or ν is a counting measure and µpEq “

ř

nPE 2´n on Zě0.)

Example 28. If µ K ν and ν K λ, is it true that µ K λ? Of course not, since if µ “ λ
then this would mean µ K µ, and if µ then this fails.

Example 29. Even if µ ‰ λ in Example 28, we still cannot say µ K λ. Indeed, we can
just take λ ‰ 0 supported on any subset of the support of µ. Then ν K λ, but µ and λ are
not mutually singular.

Remark 30. There is a connection to calculus: Thinking about this new notion of an
abstract derivative seems to be difficult at first, so let’s convince ourselves we have seen it
before without knowing so.
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• In single-variable calculus, the Radon-Nikodym derivative appears when performing a
change of variables since we ‘pay the price’ of a new function times the differential
when doing substitution: dx become gpuq du. This g is indeed the Radon-Nikodym
derivative telling us how the Lebesgue measures rates of change compare in each
situation.

• If we consider multi-variable calculus change of variables, we see that the Radon-
Nikodym derivative is the Jacobian determinant! Hence, this derivative is an abstract
generalization of the change of variables from calculus.

Remark 31 (Connection to Probability Theory). The Radon-Nikodym derivative gives
the density, f , with respect to a reference measure µ, associated to the random variable
X in the measurable space pX,Xq, defined by

PpX P Aq –

ż

A

f dµ.

In the continuous univariate setting, the reference measure for the probability density
function is taken as the Lebesgue measure. For discrete random variables, the probability
mass function is the density with respect to the counting measure over the sample space
(usually Z,Zě0, or some subset).

Example 32.
In µ “ m (the Lebesgue measure) and ν is measure assigning twice the Lebesgue

measure, then
dν

dm
“ 2

since

νpEq “

ż

E

2 dm.

Example 33. If µ “ m ` δ0, ν “ m, then ν ! µ and
dν

dµ
“ χp0,1s

since we need to remove zero from being measured by µ:

1 “ νpr0, 1sq “

ż

r0, 1sχp0,1sdµ ‰

ż

r0,1s

dµ “ 1 ` 1 “ 2.

Exercise 3.34: Folland Exercise 3.11.

Let µ be a positive measure. A collection of functions tfαuαPA Ă L1pµq is called
uniformly integrable if for every ε ą 0 there exists δ ą 0 such that

ˇ

ˇ

ş

E
fα dµ

ˇ

ˇ ă ε
for all α P A whenever µpEq ă δ.
(a) Any finite subset of L1pµq is uniformly integrable.
(b) If tfnu is a sequence in L1pµq that converges in the L1 metric to f P L1pµq, then
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tfnu is uniformly integrable.

Solution.
(a) Let tf1, . . . , fnu be a finite subset of L1pµq and fix δ ą 0. Given j P t1, . . . , nu, by

absolute continuity of the integral we can choose εj ą 0 such that
ˇ

ˇ

ş

E
fj dµ

ˇ

ˇ ă εj
whenever µpEq ă δ. Then choose ε “ mintε1, . . . , εnu.

(b) Fix ε ą 0 and suppose fn Ñ f in L1. Then for all sufficiently large n,
ż

|fn ´ f | ă ε.

Then there exists a finite subset tfn1 , . . . , fnku such that for all j P t1, . . . , ku,
ż

|fnj ´ f | ě ε.

Applying part (a) to the finite subset t|fnj ´ f |ukj“1, there exists δ ą 0 such that
ş

E
|fnj ´ f | ă ε1 whenever µpEq ă δ. Then

ż

E

|fnj ´ f | ă ε

for each j P t1, . . . , ku. Since these were the only exceptions, we conclude any
L1-convergent sequence in L1 is uniformly integrable.

Exercise 3.35: Folland Exercise 3.12.

For j “ 1, 2, let µj, νj be σ-finite measures on pXj,Mjq such that νj ! µj. Then
ν1ˆν2 ! µ1ˆµ2 and

dpν1ˆν2q

dpµ1ˆµ2q
px1, x2q “

dν1
dµ1

px1q
dν2
dµ2

px2q. (3.35.1)

Solution. As µj, νj are σ-finite for j P t1, 2u, we know that µ1ˆµ2, ν1ˆν2 are σ-finite.
We first show ν1ˆν2 ! µ1ˆµ2. Suppose µ1ˆµ2pEq “ 0. Then χE P L`pµ1ˆµ2q, so

by Tonelli’s Theorem,

0 “ µ1ˆµ2pEq “

ż

χEdpµ1ˆµ2q “

ż

µ1pEx2qdµ2.

Hence µ1pE
x2q “ 0, µ2-a.e. Since νj ! µj, j “ 1, 2, this implies ν1pEx2q “ 0 ν2-a.e.

Therefore,

ν1ˆν2pEq “

ż

χEdpν1ˆν2q “

ż

ν2pE
x2qdν2 “ 0,

showing ν1ˆν2 ! µ1ˆµ2.
To show Equation (3.35.1) holds, first note for j P t1, 2u that dνj{dµj ě 0 µj-a.e.,
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since if dνj{dµj ă 0 on some F with µjpF q ą 0, then

νjpF q “

ż

F

dνj
dµj

dµj ă 0

contradicting νj is a positive measure. Then by Folland Exercise 2.51(a), dν1
dµ1

px1q¨ dν2
dµ2

px2q P

L`pM1ˆM2q, so by Tonelli’s Theorem (applying the Radon-Nikodym Theorem twice),

ν1ˆν2pEq “

ż

E

dpν1ˆν2q “

ż
ˆ
ż

χEdν1

˙

dν2 “

ż
ˆ
ż

χE
dν1
µ1

dµ1

˙

dν2
dµ2

dµ2

“

ż

χE
dν1
µ1

px1q
dν2
dµ2

px2qdpµ1ˆµ2q “

ż

E

dν1
µ1

px1q
dν2
dµ2

px2qdpµ1ˆµ2q

whenever E P M1ˆM2 Therefore,
dpν1ˆν2q

dpµ1ˆµ2q
px1, x2q “

dν1
dµ1

px1q
dν2
dµ2

px2q, pµ1ˆµ2q-a.e.

by Propositions 22 and 39 as the result holds for all E P M1ˆM2.

Exercise 3.36: Folland Exercise 3.13.

Let X “ r0, 1s,M “ Br0,1s,m “ Lebesgue measure, and µ “ counting measure on M.
(a) m ! µ but dm ‰ f dµ for any f .
(b) µ has no Lebesgue decomposition with respect to m.

Solution.
(a) If µpEq “ 0 then E “ ∅, so mpEq “ mp∅q “ 0. On the other hand, if dm “ f dµ

for some extended µ-integrable function f : r0, 1s Ñ R, then

0 “ mptxuq “

ż

txu

fptq dµptq “ fpxq.

Thus f ” 0. But then

1 “ mpr0, 1sq “

ż

r0,1s

0 dµ “ 0,

a contradiction.
(b) Suppose there exist signed measures µs, µac such that µs K m, µac ! m, and

µ “ µs ` µac. Since µs K m, there exists E P Lpr0, 1sq such that for all F Ă E,
mpF q “ 0 and for all F Ă Ec, µpF q “ 0. But µs ! m, so µspF q “ 0 too. Since µ
is the counting measure, any x P F has mptxuq “ 0, so µsptxuq “ 1, which means
F “ ∅.

But then µ “ µac, contradicting µptxuq “ 1, since µptxuq “ µacptxuq “ 0 (because
µac ! m and mptxuq “ 0 ùñ µacptxuq “ 0).
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Exercise 3.37: Folland Exercise 3.16.

Suppose that µ, ν are measures on pX,Mq with ν ! µ, and let λ “ µ`ν. If f “ dν{dλ,
then 0 ď f ă 1 µ-a.e. and dν{dµ “ f{p1 ´ fq.

Solution. f “ dν{dλ, then 0 ď f ă 1µ-a.e. and dν{dµ “ f{p1´fq. µ, ν positive measures,

so µ ` ν “ 0 ñ ν “ µ “ 0, so r ! λ, µ ! λ. Also λ ! µ, because µ “ 0
because
λ!µ
ùñ ν “ 0,

which in turn implies λ “ µ ` ν “ 0. Hence dν{dµ, dλ{dµ, dν{dλ, and dλ{dν exist.
Since λ “ µ ` ν, by additivity and the chain rule we have

f “
dν

dλ
“
dν

dµ

dµ

dλ
“
dν

dµ

´

1 ´
dν

dλ
“f

¯

,

so dν{dµ “ 1{p1 ´ fq. Then 0 ď f ă 1 a.e., since if f ě 1 on a positive measure set then
dν{dµ is undefined on a positive measure set, contradicting Section 3.2, and if f ă 1 on a
positive measure set E, then

0 ă νpEq “

ż

E

dµ

dµ
dµ ă 0,

a contradiction.

Exercise 3.38: Folland Exercise 3.17.

Let pX,M, µq be a σ-finite measure space, N a σ-finite σ-subalgebra of M, and ν “ µ|N.
If f P L1pµq, there exists g P L1pνq (thus g is N-measurable) such that

ş

E
f dµ “

ş

E
g dν

for all E P N; if g1 is another such function then g “ g1 ν-a.e. (In probability theory, g
is called the conditional expectation of f on N.)

Solution. ν “ µ|N, so µ ! ν. On the other hand, define λ : N Ñ r´8,8s by

λpEq –

ż

E

f dµ.

Then λ is finite since f P L1pµq, so λ is σ-finite. And λ ! ν, since

νpEq “ 0 ùñ µpEq “ 0 ùñ λpEq “

ż

E

f dµ ď ����*0
µpEq supxPE |fpxq| “ 0.

Thus the Radon-Nikodym derivative g – dλ{dν exists ν-a.e., so for all E P N,
ż

E

f dµ “ λpEq “

ż

E

g dν,

as desired. And if g1 is another such function, then by the Radon-Nikodym Theorem
g1 “ g ν-a.e.
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3.3 Differentiation Theory on Euclidean Space

The Radon-Nikodym theorem provides an abstract notion of the “derivative” of a
signed measure ν with respect to a measure µ. In this section we analyze more deeply
the special case where pX,M, µq is the Lebesgue measure space pRn,BRnq. Here one can
define a pointwise derivative of ν with respect to m in the following way. Let Brpxq be
the open ball of radius r about x in Rn; then one can consider the limit

F pxq “ lim
rÑ0

νpBrpxqq

mpBrpxqq

when it exists. One can also replace the balls Brpxq by other sets which, in a suitable
sense, shrink to x in a regular way; we shall examine this point later.)

Remark 39. If ν ! m, so that dν “ f dm, then νpBrpxqq{mpBrpxqq is simply the average
value of f on Brpxq.

By Note 39, one would hope that F “ f m-a.e. This turns out to be the case, provided
that νpBrpxqq ă 8 for all r and x. From the point of view of the function f , this may be
regarded as a generalization of the fundamental theorem of calculus: The derivative of
the indefinite integral of f (namely, ν) is f .

For the remainder of this section, terms such as “integrable” and “almost everywhere”
refer to the Lebesgue measure unless otherwise specified. We begin our analysis with a
technical lemma that is of interest in its own right.

Lemma 3.40: 3.15.

Let C be a collection of open balls in Rn, and let U “
Ť

BPCB. If c ă mpUq, there
exist disjoint B1, . . . , Bk P C such that

řk
1mpBjq ą 3´nc.

Proof. If c ă mpUq, by Theorem 82 there is a compact K Ă U with mpKq ą c, and
finitely many of the balls in C—say, A1, . . . , Am—cover K. Let B1 be the largest of the
Ajs (that is, choose B1 to have maximal radius), let B2 be the largest of the Ajs that are
disjoint from B1, let B3 be the largest of the Ajs that are disjoint from B1 and B2, and
so on, until the list of Ajs is exhausted. According to this construction, if Ai is not one of
the Bjs, there is some j such that Ai XBj ‰ ∅, and if j is the smallest integer with this
property, the radius of Ai is at most that of Bj. Hence Ai Ă B˚

j , where B˚
j is the ball

concentric with Bj whose radius is three times that of Bj. But then K Ă
Ťk

1 B
˚
j , so

c ă mpKq ď
ÿk

1
mpB˚

j q “ 3n
ÿk

1
mpBjq.

Definition 41. A measurable function f : Rn Ñ C is called locally integrable (with
respect to the Lebesgue measure) if

ş

K
|fpxq| dx ă 8 for every bounded measurable

set K Ă Rn.
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We denote the space of locally integrable functions by L1
loc. If f P L1

loc, x P Rn, and
r ą 0, we define Arfpxq to be the average value of f on Brpxq:

Arfpxq “
1

mpBrpxqq

ż

Brpxq

fpyq dy.

Lemma 3.42: 3.16.

If f P L1
loc, Arfpxq is jointly continuous in r and xpr ą 0, x P Rnq.

Proof. From the results in Folland Section 2.7, we know that mpBrpxqq “ crn where c “

mpB1p0qq, and mpSpr, xqq “ 0 where Spr, xq “ ty | |y ´ x| “ ru. Moreover, as r Ñ r0
and x Ñ x0, χBrpxq Ñ χBpr0,x0q pointwise on Rn ∖ Spr0, x0q. Hence χBrpxq Ñ χBpr0,x0q a.e.,
and |χBrpxq| ď χBpr0`1,x0q if r ă r0 ` 1

2
and |x ´ x0| ă 1

2
. By the DCT, it follows that

ş

Brpxq
fpyq dy is continuous in r and x, and hence so is Arfpxq “ c´1r´n

ş

Brpxq
fpyq dy.

Definition 43. If f P L1
loc, we define its Hardy-Littlewood maximal function Hf by

Hfpxq “ suprą0Ar|f |pxq.

Hf is measurable, for pHfq´1ppa,8qq “
Ť

rą0pAr|f |q
´1

ppa,8qq is open for any a P R,
by Lemma 42.

Theorem 3.44: 3.17: The Maximal Theorem.

There exists a constant C ą 0 such that for all f P L1 and all α ą 0,

mptHf ą αuq ď
C

α

ż

|fpxq| dx.

Proof. Let Eα “ tHf ą αu. For each x P Eα, we can choose rx ą 0 such that Arx |f |pxq ą

α. The balls Brxpxq cover Eα, so by Lemma 40, if c ă mpEαq there exist x1, . . . , xk P Eα
such that the balls Bj – Brxj pxjq are disjoint and

řk
1mpBjq ą 3´ne. But then

c ă 3n
ÿk

1
mpBjq ď

3n

α

ÿk

1

ż

Bj

|fpyq| dy ď
3n

α

ż

Rn

|fpyq| dy.

Letting c Ñ mpEαq, we obtain the desired result.

With this tool in hand, we now present three successively sharper versions of the
fundamental differentiation theorem. In the proofs we shall use the notion of limit
superior for real-valued functions of a real variable,

lim suprÑR ϕprq “ lim
εÑ0

sup0ă|r´R|ăε ϕprq “ inf
εą0

sup0ă|r´R|ăε ϕprq,

and the easily verified fact that
lim
rÑR

ϕprq “ c ðñ lim suprÑR |ϕprq ´ c| “ 0.

(This is shown in disguise in Folland Exercise 2.23.)
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Theorem 3.45: 3.18.

If f P L1
loc, then limrÑ0Arfpxq “ fpxq for a.e. x P Rn.

Proof. It suffices to show that for N P Zě0, Arfpxq Ñ fpxq for a.e. x with |x| ď N . But
for |x| ď N and r ď 1 the values Arfpxq depend only on the values fpyq for |y| ď N ` 1,
so by replacing f with fχBN`1p0q we may assume that f P L1.

Given ε ą 0, by Theorem 83 we can find a continuous integrable function g such that
ş

|gpyq ´ fpyq| dy ă ε. Continuity of g implies that for every x P Rn and δ ą 0 there exists
r ą 0 such that |gpyq ´ gpxq| ă δ whenever |y ´ x| ă r, and hence

|Argpxq ´ gpxq| “
1

mpBrpxqq

ˇ

ˇ

ˇ

ˇ

ż

Brpxq

rgpyq ´ gpxqs dy

ˇ

ˇ

ˇ

ˇ

ă δ.

Therefore Argpxq Ñ gpxq as r Ñ 0 for every x, so
lim suprÑ0|Arfpxq ´ fpxq| “ lim suprÑ0|Arpf ´ gqpxq ` pArg ´ gqpxq ` pg ´ fqpxq|

ď Hpf ´ gqpxq ` 0 ` |f ´ g|pxq.

Hence, if
Eα “ tlim suprÑ0|Arf ´ f | ą αu and Fα “ t|f ´ g| ą αu,

then
Eα Ă Fα{2 Y tHpf ´ gq ą α{2u.

But pα{2qmpFα{2q ď
ş

Fα{2
|fpxq ´ gpxq| dx ă ε, so by the maximal theorem,

mpEαq ď
2ε

α
`

2Cε

α
.

Since ε is arbitrary, mpEαq “ 0 for all α ą 0. But limrÑ0Arfpxq “ fpxq for all
x R

Ť8

1 E1{n, so we are done.

This result can be rephrased as follows: If f P L1
loc,

lim
rÑ0

1

mpBrpxqq

ż

Brpxq

rfpyq ´ fpxqs dy “ 0 for a.e. x. (3.45.1)

Actually, something stronger is true: Equation (3.45.1) remains valid if one replaces
the integrand by its absolute value. That is, let us define the Lebesgue set Lf of f to be

Lf “

"

x P X

ˇ

ˇ

ˇ

ˇ

lim
rŒ0

1

mpBrpxqq

ż

Brpxq

|fpyq ´ fpxq| dy “ 0

*

.

Then the following theorem holds.

Theorem 3.46: 3.20.

If f P L1
loc, then mppLf q

c
q “ 0.
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Proof. For each c P C we can apply Theorem 45 to gcpxq “ |fpxq ´ c| to conclude that,
except on a Lebesgue null set Ec, we have

lim
rÑ0

1

mpBrpxqq

ż

Brpxq

|fpyq ´ c| dy “ |fpxq ´ c|.

Let D be a countable dense subset of C, and let E “
Ť

cPD Ec. Then mpEq “ 0, and if
x R E, for any ε ą 0 we can choose c P D with |fpxq ´ c| ă ε, so that |fpyq ´ fpxq| ă

|fpyq ´ c| ` ε, and it follows that

lim suprÑ0

1

mpBrpxqq

ż

Brpxq

|fpyq ´ fpxq| dy ď |fpxq ´ c| ` ε ă 2ε.

Since ε is arbitrary, the desired result follows.

Finally, we consider families of sets more general than balls.

Definition 47. A family tErurą0 of Borel subsets of Rn is said to shrink nicely to
x P Rn if

• Er Ă Brpxq for each r;
• there exists a constant α ą 0 such that mpErq ą αmpBrpxqq.

Remark 48. The sets Er in Definition 47 need not contain x itself. For example, if U
is any Borel subset of B1p0q such that mpUq ą 0, and Er “ tx ` ry | y P Uu, then tEru
shrinks nicely to x.

Here, then, is the final version of the differentiation theorem.

Theorem 3.49: 3.21: The Lebesgue Differentiation Theorem (LDT).

Suppose f P L1
loc. For every x in the Lebesgue set of f—in particular, for m-a.e.

x P Rn—we have

lim
rÑ0

1

mpErq

ż

Er

|fpyq ´ fpxq| dy “ 0 and lim
rÑ0

1

mpErq

ż

Er

fpyq dy “ fpxq

for every family tErurą0 that shrinks nicely to x.

Proof. For some α ą 0 we have
1

mpErq

ż

Er

|fpyq ´ fpxq| dy ď
1

mpErq

ż

Brpxq

|fpyq ´ fpxq| dy

ď
1

αmpBrpxqq

ż

Brpxq

|fpyq ´ fpxq| dy.

The first equality therefore follows from Theorem 46, and one sees immediately that it
implies the second one by writing the latter in the form Equation (3.45.1).

We now return to the study of measures.

Definition 50. A Borel measure ν on Rn will be called regular if
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(i) νpKq ă 8 for every compact K;
(ii) νpEq “ inftνpUq | U open, E Ă Uu for every E P BRn.

Remark 51. Condition (ii) is actually implied by condition (i). For n “ 1 this follows
from Theorems 43 and 45, and the proof of this for arbitrary n can be found in Folland
Section 7.2. For the time being, we assume (ii) explicitly.

We observe that by (i), every regular measure is σ-finite. A signed Borel measure ν
will be called regular if |ν| is regular.

Proposition 3.52.

If f P L`pRnq, the measure
f dm is regular ðñ f P L1

loc.

Proof. Indeed, the condition f P L1
loc is clearly equivalent to (i) in Definition 50. If

this holds, (ii) in Definition 50 may be verified directly as follows. Suppose that E is a
bounded Borel set. Given δ ą 0, by Theorem 82 there is a bounded open U Ą E such that
mpUq ă mpEq ` δ and hence mpU ∖Eq ă δ. But then, given ε ą 0, by Corollary 19 there
is an open U Ą E such that

ş

U∖E fdm ă ε and hence
ş

U
fdm ă

ş

E
fdm ` ε. The case of

unbounded E follows easily by writing E “
Ť8

1 Ej where Ej is bounded and finding an
open Uj Ą Ej such that

ş

Uj∖Ej
f dm ă ε2´j.

Theorem 3.53: 3.22.

Let ν be a regular signed or complex Borel measure on Rn, and let dν “ dνs ` f dm
be its Lebesgue-Radon-Nikodym representation. Then for m-almost every x P Rn.

lim
rÑ0

νpErq

mpErq
“ fpxq

for every family tErurą0 that shrinks nicely to x.

Proof. It is easily verified that d|ν| “ d|νs| ` |f |dm, so the regularity of ν implies the
regularity of both νs and f dm (Folland Exercise 3.26). In particular, f P L1

loc by
Proposition 52, so in view of Theorem 49, it suffices to show that if νs is regular and
νs K m, then for m-almost every x, νspErq{mpErq Ñ 0 as r Ñ 0 when Er shrinks nicely
to x. It also suffices to take Er “ Brpxq and to assume that νs is positive, since for some
α ą 0 we have

ˇ

ˇ

ˇ

ˇ

νspErq

mpErq

ˇ

ˇ

ˇ

ˇ

ď
|νs|pErq

mpErq
ď

|νs|pBrpxqq

mpErq
ď

|νs|pBrpxqq

αmpBrpxqq
.

Assuming νs ě 0, then, let A be a Borel set such that νspAq “ mpAcq “ 0, and let

Fk “

"

x P A

ˇ

ˇ

ˇ

ˇ

lim suprÑ0

νspBrpxqq

mpBrpxqq
ą

1

k

*

.
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We shall show that mpFkq “ 0 for all k, and this will complete the proof.
The argument is similar to the proof of the maximal theorem. By regularity of νs,

given ε ą 0 there is an open Uε Ą A such that νspUεq ă ε. Each x P Fk is the center
of a ball Bx Ă Uε such that νspBxq ą k´1mpBxq. By Lemma 40, if Vε “

Ť

xPFk
Bx and

c ă mpVεq there exist x1, . . . , xJ such that Bx1 , . . . , BxJ are disjoint and

c ă 3n
ÿJ

1
mpBxjq ď 3nk

ÿJ

1
νspBxjq ď 3nkνspVεq ď 3nkννspUεq ď 3nkε.

We conclude that mpVεq ď 3nkε, and since Fk Ă Vε and ε is arbitrary, mpFkq “ 0.

Exercise 3.54: Folland Exercise 3.22.

If f P L1pRnq, f ‰ 0, there exist C,R ą 0 such that Hfpxq ě C|x|´n for |x| ą R.
Hence mptHf ą αuq ě C 1{α when α is small, so the estimate in the maximal theorem
is essentially sharp. a

aHint: estimate pA2|x||f |qpxq.

Solution. Since f ‰ 0, there exists R ą 1 such that
ż

BRp0q

|fpyq| dy ą ε ą 0

for some ε. Then for all |x| ě R,

Hfpxq ě A2|x||f |pxq ě
1

mpB2|x|pxqq

ż

B2|x|p0q

|fpyq| dy

ě
1

mpB2|x|pxqq

ż

BRp0q

|fpyq| dy

ąε

ą
ε

p2|x|qnmpB1p0qq
“

ε

2nmpB1p0qq

—C

|x|
´n.

Thus Hfpxq ě C|x|´n for |x| ą R.
This shows the estimate in the maximal theorem is essentially sharp, because for

sufficiently small positive α we have

mtHf ą αu ě mtx P Rn
| C|x|

´n
ą αu “ m

"

x P Rn

ˇ

ˇ

ˇ

ˇ

|x| ă

ˆ

C

α

˙1{n*

“
C

α
mpB1p0qq.

Exercise 3.55: Folland Exercise 3.23.

A useful variant of the Hardy-Littlewood maximal function is

H˚fpxq “ sup

"

1

mpBq

ż

B

|fpyq| dy

ˇ

ˇ

ˇ

ˇ

B is a ball and x P B

*

.
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Show that Hf ď H˚f ď 2nHf .

Solution. Fix x P Rn, let S be the collection of open balls containing x, let let T be the
collection of open balls centered at x, and for all Lebesgue measurable subsets E of Rn

define

AE|f | –
1

mpEq

ż

E

|fpyq| dy.

Then T Ă S, so then
Hfpxq “ supEPT AE|f | ď supEPS AE|f | “ H˚fpxq.

For the other inequality, let Br be any ball containing x, say of radius r. Then B Ă B2rpxq,
so

1

mpBrq

ż

Br

|fpyq| dy ď
mpB2rpxqq

mpBrq

1

mpB2rpxqq

ż

B2rpxq

|fpyq|dy ď 2nHfpxq

Since B was any ball containing x, taking the supremum over all such balls shows that
H˚fpxq ď 2nHfpxq.

Exercise 3.56: Folland Exercise 3.24.

If f P L1
loc and f is continuous at x, then x is in the Lebesgue set of f .

Solution. Let ε ą 0. Since f is continuous, we can choose δ ą 0 such that }fpxq ´ fpyq} ă

ε whenever }x ´ y} ă δ. Then for all y P Bδpxq,
1

mpBrpxqq

ż

Brpxq

}fpyq ´ fpxq} dy ă
εmpBrpxqq

mpBrpxqq
“ ε.

Since ε was arbitrary, 1
mpBrpxqq

ş

Brpxq
}fpyq ´ fpxq} dy Ñ 0 as r Œ 0. Hence x is in the

Lebesgue set of f .

Exercise 3.57: Folland Exercise 3.25.

If E is a Borel set in Rn, the density DEpxq of E at x is defined as

DEpxq “ lim
rÑ0

mpE X Brpxqq

mpBrpxqq

whenever the limit exists.
(a) Show that DEpxq “ 1 for a.e. x P E and DEpxq “ 0 for a.e. x P Ec.
(b) Find examples of E and x such that DEpxq is a given number α P p0, 1q, or such

that DEpxq does not exist.

Solution. We only solve (a) and leave (b) as an exercise. Since E P BRn , χE is measurable,
so χE P L1

loc. (Indeed, if K is any compact set of Rn then
ş

K
χE dm “ mpK X Eq ď
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mpKq ă 8). Then by the LDT, we have for a.e. x P Rn that

lim
rŒ0

ArχEpxq “ χEpxq “

#

0 if x P Ec,

1 if x P E,

so since the left-hand side is just the definition of DE, we are done.

3.4 Functions of Bounded Variation

All functions in this section are to be assumed Lebesgue measurable unless otherwise
stated. The theorems of the preceding section apply in particular on the real line, where,
because of the correspondence between regular Borel measures and increasing functions
that we established in Folland Section 1.5, they yield results about differentiation and
integration of functions. As in Folland Section 1.5, we adopt the notation that if F is
an increasing, right continuous function on R, µF is the Borel measure determined by
the relation µF ppa, bsq “ F pbq ´ F paq. Also, throughout this section the term “almost
everywhere” will always refer to the Lebesgue measure.

Our first result uses the Lebesgue differentiation theorem to prove the a.e. differentia-
bility of increasing functions.

Theorem 3.58: 3.23.

Let F : R Ñ R be increasing, and let Gpxq “ F px`q.
(a) The set of points at which F is discontinuous is countable.
(b) F and G are differentiable a.e., and F 1 “ G1 a.e.

Proof. Since F is increasing, the intervals pF px´q, F px`qqpx P Rq are disjoint, and for
|x| ă N they lie in the interval pF p´Nq, F pNqq. Hence

ÿ

|x|ăN
rF px`q ´ F px´qs ď F pNq ´ F p´Nq ă 8,

which implies that tx P p´N,Nq | F px`q ‰ F px´qu is countable. As this is true for all
N , (a) is proved.

Next, we observe that G is increasing and right continuous, and G “ F except perhaps
where F is discontinuous. Moreover,

Gpx ` hq ´ Gpxq “

#

µGppx, x ` hsq if h ą 0,

´µGppx ` h, xsq if h ă 0,

and the families tpx ´ r, xsu and tpx, x ` rsu shrink nicely to x as r “ |h| Ñ 0. Thus, an
application of Theorem 53 to the measure µG (which is regular by Theorem 45) shows
that G1pxq exists for a.e. x. To complete the proof, it remains to show that if H “ G´F ,
then H 1 exists and equals zero a.e.

Let txju be an enumeration of the points at which H ‰ 0. Then Hpxjq ą 0, and as
above we have

ř

tj | |xj |ăNu
Hpxjq ă 8 for any N . Let δj be the point mass at xj and
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µ “
ř

j Hpxjqδj . Then µ finite on compact sets by the preceding sentence, and hence µ is
regular by Theorems 43 and 45; also, µ K m sincempEq “ µpEcq “ 0 where E “ txju

8

1 .
But then

ˇ

ˇ

ˇ

ˇ

Hpx ` hq ´ Hpxq

h

ˇ

ˇ

ˇ

ˇ

ď
Hpx ` hq ` Hpxq

|h|
ď 4

µppx ´ 2|h|, x ` 2|h|qq

4|h|
,

which tends to zero as h Ñ 0 for a.e. x, by Theorem 53. Thus H 1 “ 0 a.e., and we are
done.

As positive measures on R are related to increasing functions, complex measures on R
are related to so-called functions of bounded variation. The definition of the latter concept
is a bit technical, so some motivation may be appropriate. Intuitively, if F ptq represents the
position of a particle moving along the real line at time t, the “total variation” of F over the
interval ra, bs is the total distance traveled from time a to time b, as shown on an odometer.
If F has a continuous derivative, this is just the integral of the “speed,”

şb

a
|F 1ptq|dt. To

define the total variation without any smoothness hypotheses on F requires a different
approach; namely, one partitions ra, bs into subintervals rtj´1, tjs and approximates F on
each subinterval by the linear function whose graph joins ptj´1, F ptj´1qq to ptj, F ptjqq, and
then passes to a limit.

In making this precise, we begin with a slightly different point of view, taking a “ ´8

and considering the total variation as a function of b.

Definition 59. If f : R Ñ R and x P R, we define the total varition function of F by

TF pxq – sup
!

ÿn

1
|F pxjq ´ F pxj´1q|

ˇ

ˇ

ˇ
n P Zě0,´8 ă x0 ă ¨ ¨ ¨ ă xn “ x

)

.

Define the collection of functions of bounded variation on R by

BV –

!

set functions F : R Ñ C
ˇ

ˇ

ˇ
lim
xÑ8

TF pxq ă 8

)

.

If a ă b, we call the quantity TF paq ´ TF pbq the total variation of F on ra, bs, that is,

TF pbq ´ TF paq “ sup
!

ÿn

j“1
|F pxjq ´ F pxj´1q|

ˇ

ˇ

ˇ
n P Zě0, a “ x0 ă ¨ ¨ ¨ ă xn “ b

)

.

It depends only on the values of F on ra, bs, so we may define BVpra, bsq to be the set
of all functions on ra, bs whose total variation on ra, bs is finite.

If F P BV, the restriction of F to ra, bs is in BVpra, bsq for all a, b; indeed, its total
variation on ra, bs is nothing but TF pbq ´ TF paq. Conversely, if F P BVpra, bsq and we set
F pxq “ F paq for x ă a and F pxq “ F pbq for x ą b, then F P BV. By this device the
results that we shall prove for BV can also be applied to BVpra, bsq.

Example 60 (3.25).
(a) If F : R Ñ R is bounded and increasing, then F P BV (in fact, TF pxq “ F pxq ´

F p´8q).
(b) If F,G P BV and a, b P C, then aF ` bG P BV.
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(c) If F is differentiable on R and F 1 is bounded, then F P BVpra, bsq for ´8 ă a ă b ă

8 (by the mean value theorem).
The verification of these examples is left as an exercise (Folland Exercise 3.27).

Exercise 3.61.

If F pxq “ sinx, then F P BVpra, bsq for ´8 ă a ă b ă 8, but F R BV.

Solution. F P BVpra, bsq by the mean value theorem and Exercise 61, since F 1pxq “ cosx
is bounded. To see F R BV, let xn “ πp2n`1q{2, n P Zě0 to see

řN
n“1|sinxn`1 ´ sinxn| “

2N . Hence, TF pxq ě 2N for all x P R, N P Zě0, showing that limxÑ8 TF pxq “ 8.

Exercise 3.62: Folland Exercise 3.27.

Verify the assertions in Example 60.

Solution. Suppose F is continuous on ra, bs and F 1 is bounded on ra, bs. Then there exists
M such that |F | ď M on ra, bs. By the mean value theorem, for all rx, ys Ă ra, bs, there
exists c P pa, bq such that

M ě F 1
pcq “

F pxq ´ F pyq

x ´ y
.

Thus F pxq ´ F pyq ď M |x ´ y|. Then any partition of the real line has
ÿn

1
|F pxjq ´ F pxj´1q| ď |M |

ÿn

1
|xj ´ xj´1| “ |M |pb ´ aq,

Taking the supremum of both sides over all partitions of pa, bq, we conclude TF ď

Mpb ´ aq ă 8, so F P BV. The rest of the verifications are left as exercises.

Lemma 3.63: 3.26.

If F P BV is real-valued, then TF ` F and TF ´ F are increasing.

Proof. If x ă y and ε ą 0, choose x0 ă ¨ ¨ ¨ ă xn “ x such that
ÿn

1
|F pxjq ´ F pxj´1q| ě TF pxq ´ ε.

Then
řn

1 |F pxjq ´ F pxj´1q| ` |F pyq ´ F pxq| is an approximating sum for TF pyq, and
F pyq “ rF pyq ´ F pxqs ` F pxq, so

TF pyq ˘ F pyq ě

´

ÿn

1
|F pxjq ` F pxj´1q|

¯

` |F pyq ´ F pxq| ˘ rF pyq ´ F pxqs ˘ F pxq

ěTF pxq ´ ε ˘ F pxq.

Since ε is arbitrary, TF pyq ˘ F pyq ě TF pxq ˘ F pxq, as desired.
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Theorem 3.64: 3.27.

(a) F P BV if and only if ReF P BV and ImF P BV.
(b) If f : R Ñ R, then F P BV if and only if F is the difference of two bounded

increasing functions; for F P BV these functions may be taken to be 1
2
pTF ` F q

and 1
2
pTF ´ F q.

(c) If F P BV, then F px`q “ limyŒx F pyq and F px´q “ limyÕx F pyq exist for all
x P R, as do F p˘8q “ limyÑ˘8 F pyq.

(d) If F P BV, the set of points at which F is discontinuous is countable. In particular,
any F P BV is Lebesgue integrable.

(e) If F P BV and Gpxq “ F px`q, then F 1 and G1 exist and are equal a.e.

Proof. (a) is obvious. For (b), the “if” implication is easy (see Example 60(a,b)). To prove
“only if,” observe that by Lemma 63, the equation F “ 1

2
pTF ` F q´ 1

2
pTF ´ F q expresses

F as the difference of two increasing functions. Also, the inequalities
TF pyq ˘ F pyq ě TF pxq ˘ F pxq py ą xq

imply that
|F pyq ´ F pxq| ď TF pyq ´ TF pxq ď TF p8q ´ TF p´8q ă 8,

so that F , and hence TF ˘ F , is bounded. Finally, (c), (d), and (e) follow from (a), (b),
and Theorem 58.

The representation F “ 1
2
pTF ` F q ´ 1

2
pTF ´ F q of a real-valued F P BV is called the

Jordan decomposition of F , and 1
2
pTF ` F q and 1

2
pTF ´ F q are called the positive

variation of F and the negative variation of F , respectively . Since x` “ maxpx, 0q “
1
2
p|x| ` xq and x´ “ maxp´x, 0q “ 1

2
p|x| ´ xq for x P R, we have

1

2
pTF ˘ F qpxq “ sup

!

ÿn
rF pxjq ´ F pxj´1qs

˘
ˇ

ˇ

ˇ
x0 ă ¨ ¨ ¨ ă xn “ x

)

˘
1

2
F p´8q,

so Theorem 64(a,b) leads to the connection between BC and the space of complex Borel
measures on R. To that end, we need the following definition:

Definition 65. Define the collection of normalized functions of bounded variation
on R by

NBV “

!

F : R Ñ C
ˇ

ˇ

ˇ
F P BV, F is right continuous, and lim

xÑ´8
F pxq “ 0

)

.

Remark 66. If F P BV, then the function G defined by Gpxq “ F px`q ´ F p´8q is in
NBV and G1 “ F 1 a.e. (That G P BV follows easily from Theorem 64(a,b): if F is real
and F “ F1 ´ F2 where F1, F2 are increasing, then Gpxq “ F1px`q´ rF2px`q ` F p´8qs,
which is again the difference of two increasing functions.)
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Lemma 3.67: 3.28.

If F P BV, then TF p´8q “ 0. If F is also right continuous, then so is TF .

Proof. If ε ą 0 and x P R, choose x0 ă ¨ ¨ ¨ ă xn “ x so that
ÿn

1
|F pxjq ´ F pxj´1q| ě TF pxq ´ ε.

From ?? we see that TF pxq ´ TF px0q ě TF pxq ´ ε, and hence TF pyq ď ε for y ď x0. Thus
TF p´8q “ 0.

Now suppose that F is right continuous. Given x P R and ε ą 0, let α “ TF px`q ´

TF pxq, and choose δ ą 0 so that |F px ` hq ´ F pxq| ă ε and TF px ` hq´ TF px`q ă ε
whenever 0 ă h ă δ. For any such h, by ?? there exist x0 ă ¨ ¨ ¨ ă xn “ x ` h such that

ÿn

1
|F pxjq ´ F pxj´1q| ě

3

4
rTF px ` hq ´ TF pxqs ě

3

4
α,

and hence
ÿn

2
|F pxjq ´ F pxj´1q| ě

3

4
α ´ |F px1q ´ F px0q| ě

3

4
α ´ ε.

Likewise, there exist x “ t0 ă ¨ ¨ ¨ ă tm “ x1 such that
řn

1 |F ptjq ´ F ptj´1q| ě 3
4
α, and

hence
α ` ε ą TF px ` hq ´ TF pxq

ě
ÿm

1
|F ptjq ´ F ptj´1q| `

ÿn

2
|F pxjq ´ F pxj´1q|

ě
3

2
α ´ ε

Thus α ă 4ε, and since ε is arbitrary, α “ 0.

Theorem 3.68: 3.29.

There is a bijective correspondence between real- (resp. complex-)valued functions in
NBV and signed- (resp. complex-)Borel measures on pR,BRq given by

NBV ÐÑ

!

complex
measures on

pR,BRq

)

,

F1pxq ` iF2pxq “ F pxq ÞÝÑ µF – pµ`
F1

´ µ´
F1

q ` ipµ`
F2

´ µ´
F2

q,

µpp´8, xsq — Fµpxq ÞÝÑµ.

Moreover, |µF | “ µTF .

Proof. If µ is a complex measure, we have µ “ µ`
1 ´ µ´

1 ` ipµ`
2 ´ µ´

2 qwhere the µ˘
j are

finite measures. If F˘
j pxq “ µ˘

j pp´8, xsq, then F˘
j is increasing and right continuous,

F˘
j p´8q “ 0, and F˘

j p8q “ µ˘
j pRq ă 8. By Theorem 64(a,b) the function F “ F`

1 ´

F´
1 ` ipF`

2 ´ F´
2 qis in NBV. Conversely, by Theorem 64 and Lemma 67, any F P NBV can

be written in this form with the F˘
j increasing and in NBV. Each F˘

j gives rise to a measure
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µ˘
j according to Theorem 43, so F pxq “ µF pp´8, xsq where µF “ µ`

1 ´ µ´
1 ` ipµ`

2 ´ µ´
2 q.

The proof that |µF | “ µTF is outlined in Folland Exercise 3.28.

The next obvious question is: Which functions in NBV correspond to measures µ such
that µ K m or µ ! m? One answer is the following:

Proposition 3.69: 3.30.

If F P NBV, then F 1 P L1pmq, and
µF K m ðñ F 1

“ 0 a.e.,
and

µF ! m ðñ F pxq “

ż x

´8

F 1
ptq dt.

Proof. We have merely to observe that F 1pxq “ limrÑ0 µF pErq{mpErq where Er “ px, x`

rq or px ´ r, xs and apply Theorem 53. (The measure µF is automatically regular by
Theorem 45.)

The condition µF ! m can also be expressed directly in terms of F , as follows.

Definition 70. A function f : R Ñ R is called absolutely continuous, denoted f P AC,
if for every ε ą 0 there exists δ ą 0 such that for any finite set of disjoint intervals
pa1, b1q, . . . , paN , bNq,

ÿN

j“1
pbj ´ ajq ă δ ùñ

ÿN

j“1
|F pbjq ´ F pajq| ă ε. (3.70.1)

More generally, F is said to be absolutely continuous on ra, bs, denoted f P ACpra, bsq,
if this condition is satisfied whenever the intervals paj, bjq all lie in ra, bs.

Remark 71. Clearly, if F is absolutely continuous, then F is uniformly continuous (take
N “ 1 in Equation (3.70.1)). On the other hand, if F is everywhere differentiable and F 1

is bounded, then F is absolutely continuous, for |F pbjq ´ F pajq| ď pmax|F 1|qpbj ´ ajq by
the mean value theorem.

Example 72. Consider

fkpxq “

"

0, x “ 0,
xk sinp1{xq, x ‰ 0,

k “ 0, 1, 2,

on ra, bs with a ď 0 ă b or a ă 0 ď b. Then, f0, f1 R BVpra, bsq, hence, f0, f1 R ACpra, bsq,
but f2 P BVpra, bsq. (Look at the graphs to analyze the difference in behaviors here.)

Proposition 3.73: 3.32.

If F P NBV, then
F P AC ðñ µF ! m.
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Proof. If µF ! m, the absolute continuity of F follows by applying Theorem 18 to the sets
E “

ŤN
1 paj, bjq. To prove the converse, suppose that E is a Borel set such that mpEq “ 0.

If ε and δ are as in the definition of absolute continuity of F , by Theorem 45 we can find
open sets U1 Ą U2 Ą ¨ ¨ ¨ Ą E such that mpU1q ă δ (and thus µpUjq ă δ for all j) and
µF pUjq Ñ µF pEq. Each Uj is a disjoint union of open intervals pakj , b

k
j q, and

ÿN

k“1
|µF ppakj , b

k
j qq| ď

ÿN

k“1
|F pbkj q ´ F pakj q| ă ε

for all N . Letting N Ñ 8, we obtain |µF pUjq| ă ε and hence |µF pEq| ď ε. Since ε is
arbitrary, µF pEq “ 0, which-shows that µF ! m.

Corollary 3.74: 3.33.

There is a bijective correspondence between L1pmq and ACXNBV, given by
L1

pmq ÐÑ ACXNBV,

fpxq ÞÝÑ F pxq –

ż x

´8

fptq dt,

F 1
pxq ÞÝÑF pxq.

Proof. This follows immediately from Propositions 69 and 73

If we consider functions on bounded intervals, this result can be refined a bit.

Lemma 3.75: 3.34.

ACpra, bsq Ă BVpra, bsq.

Proof. Let F : R Ñ C be absolutely continuous on ra, bs. Let δ be as in the definition of
absolute continuity, corresponding to ε ‰ 1, and let N be the greatest integer less than
δ´1pb´ aq ` 1. If a “ x0 ă ¨ ¨ ¨ ă xn “ b, by inserting more subdivision points if necessary,
we can collect the intervals pxj´1, xjq into at most N groups of consecutive intervals such
that the sum of the lengths in each group is less than δ. The sum

ř

|F pxjq ´ F pxj´1q|

over each group is at most 1, and hence the total variation of F on ra, bs is at most N .

Theorem 3.76: 3.35: The Fundamental Theorem of Calculus for Lebesgue
Integrals.

If ´8 ă a ă b ă 8 and F : ra, bs Ñ C, the following are equivalent:
(a) F P ACpra, bsq.
(b) F pxq ´ F paq “

şx

a
fptq dt for some f P L1pra, bs,mq.

(c) F is differentiable a.e. on ra, bs, F 1 P L1pra, bs,mq, and F pxq ´ F paq “
şx

a
F 1ptq dt.
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Proof. To prove that (a) implies (c), we may assume by subtracting a constant from F
that F paq “ 0. If we set F pxq “ 0 for x ă a and F pxq “ F pbq for x ą b, then F P NBV
by Lemma 75, so (c) follows from Corollary 74. That (c) implies (b) is trivial. Finally, (b)
implies (a) by setting fptq “ 0 for t R ra, bs and applying Corollary 74.

The short form of the above theorem is the following:

Corollary 3.77.

If ra, bs is a compact interval and F : ra, bs Ñ C, then

F P ACpra, bsq ðñ F 1 exists a.e. on ra, bs and
ż x

a

F 1
ptq dt “ F pxq ´ F paq.

The following decomposition of Borel measures on Rn is sometimes important. A
complex Borel measure µ on Rn is called discrete if there is a countable set txju Ă Rn

and complex numbers cj such that
ř

|cj| ă 8 and µ “
ř

cjδxj , where δx is the point
mass at x. On the other hand, µ is called continuous if µptxuq “ 0 for all x P Rn. Any
complex measure µ can be written uniquely as µ “ µd ` µc where µd is discrete and µc
is continuous. Indeed, let E “ tx | µptxuq ‰ 0u. For any countable subset F of E the
series

ř

xPF µptxuq converges absolutely to µpF qq, so tx P E | |µptxuq| ą k´1u is finite for
all k, and it follows that E itself is countable. Hence µdpAq “ µpA X Eq is discrete and
µcpAq “ µpA∖ Eq is continuous.

Obviously, if µ is discrete, then µ K m; and if µ ! m, then µ is continuous. Thus, by
Theorem 53, any (regular) complex Borel measure on Rn can be written uniquely as

µ “ µd ` µac ` µsc

where µd is discrete, µac is absolutely continuous with respect to m, and µsc is a “singular
continuous” measure, that is, µsc is continuous but µsc K m.

The existence of nonzero singular continuous measures in Rn is evident enough when
n ą 1; the surface measure on the unit sphere discussed in Folland Section 2.7 is one
example. Their existence when n “ 1 is not quite so obvious; they correspond via
Theorem 68 to nonconstant functions F P NBV such that F is continuous but F 1 “ 0 a.e.
One such function is the Cantor function constructed in Folland Section 1.5 (extended to
R by setting F pxq “ 0 for x ă 0 and F pxq “ 1 for x ą 1). More surprisingly, there exist
strictly increasing continuous functions F such that F 1 “ 0 a.e.; see Folland Exercise 3.40.

Notation 78. If F P NBV, it is customary to denote the integral of a function g with
respect to the measure µF by

ş

g dF or
ş

gpxqdF pxq; that is,
ż

g dF –

ż

g dµF .

Integrals of these form are called Lebesgue-Stieltjes integrals.
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We conclude by presenting an integration-by-parts formula for Lebesgue-Stieltjes
integrals; other variants of this result can be found in Folland Exercise 3.34,Folland
Exercise 3.35.

Theorem 3.79: 3.36.

If F and G are in NBV and at least one of them is continuous, then for all ´8 ă a ă

b ă 8,
ż

pa,bs

F dG `

ż

pa,bs

G dF “ F pbqGpbq ´ F paqGpaq.

Proof. F andG are linear combinations of increasing functions in NBV by Theorem 64(a,b),
so a simple calculation shows that it suffices to assume F and G increasing. Suppose for
the sake of definiteness that G is continuous, and let Ω “ tpx, yq | a ă x ď y ď bu. We
use Fubini’s theorem to compute µF ˆµGpΩq in two ways:

µF ˆµGpΩq “

ż

pa,bs

ż

pa,ys

dF pxqdGpxq “

ż

pa,bs

rF pyq ´ F paqsdGpyq

“

ż

pa,bs

FdG ´ F paqrGpbq ´ Gpaqs

and since Gpxq “ Gpx´q,

µF ˆµGpΩq “

ż

pa,bs

ż

rx,bs

dGpyqdF pxq “

ż

pa,bs

rGpbq ´ GpxqsdF pxq

“ GpbqrF pbq ´ F paqs ´

ż

pa,bs

GdF

Subtracting these two equations, we obtain the desired result.

Exercise 3.80: Folland Exercise 3.28.

If F P NBV, let Gpxq “ |µF |pp´8, xsq. Prove that |µF | “ µTF by showing that G “ TF
via the following steps.
(a) From the definition of TF , TF ď G.
(b) |µF pEq| ď µTF pEq when E is an interval, and hence when E is a Borel set. c.

|µF | ď µTF , and hence G ď TF . (Use Folland Exercise 3.21.)

Exercise 3.81: Folland Exercise 3.29.

If F P NBV is real-valued, then µ`
F “ µP and µ´

F “ µN where P and N are the positive
and negative variations of F . (Use Lemma 67.)
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Exercise 3.82: Folland Exercise 3.30.

Construct an increasing function on R whose set of discontinuities is R.

Exercise 3.83: Folland Exercise 3.31.

Let F pxq “ x2 sinpx´1q and Gpxq “ x2 sinpx´2q for x ‰ 0, and F p0q “ Gp0q “ 0.
(a) F and G are differentiable everywhere (including x “ 0).
(b) F P BVpr´1, 1sq, but G R BVpr´1, 1sq.

Exercise 3.84: Folland Exercise 3.32.

If F1, F2, . . . , F P NBV and Fj Ñ F pointwise, then TF ď lim inf TFj .

Exercise 3.85: Folland Exercise 3.33.

If F : R Ñ C is increasing, then

F pbq ´ F paq ě

ż b

a

F 1
ptq dt.

Solution. By a previous Folland Exercise F increasing on R ùñ F measurable and
bounded on ra, bs. By Theorem 58, F 1 exists m-a.e. By Theorem 58, the increasing right
continuous function Gpxq – F px`q is also differentiable a.e. and bounded on ra, bs, and
F 1 “ G1 a.e., so it suffices to show F pbq ´ F paq ě

şb

a
G1ptq dt.

As G is an increasing right continuous function R Ñ R, by Theorem 43 there exists
a unique Borel measure µG on R such that µGppx, ysq “ Gpxq ´ Gpyq for all x, y P R. In
particular, this shows µG ! m.

As pR,BR, µGq and pR,BR,mq are σ-finite, by the Radon-Nikodym theorem there
exists a unique m-measurable function g – dµG{dm. By a corollary to the LDT, gpxq “

limyÑx
µGppx,ysq

mppx,ysq
´ limyÑx

Gpxq´Gpyq

x´y
“ G1pxq. Hence

F pbq ´ F paq ě Gpbq ´ Gpaq ě µGppa, bsq “

ż

pa,bs

g dm “

ż b

a

G1
ptq dt “

ż b

a

F 1
ptq dt.

Exercise 3.86: Folland Exercise 3.34.

Suppose F,G P NBV and ´8 ă a ă b ă 8.
(a) By adapting the proof of Theorem 79, show that

ż

ra,bs

F pxq ` F px´q

2
dGpxq `

ż

ra,bs

Gpxq ` Gpx´q

2
dF pxq

“ F pbqGpbq ´ F pa´qGpa´q.
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(b) If there are no points in ra, bs where F and G are both discontinuous, then
ż

ra,bs

FdG `

ż

ra,bs

GdF “ F pbqGpbq ´ F pa´qGpa´q.

Exercise 3.87: Folland Exercise 3.35.

If F,G P ACpra, bsq, then so is FG, and
ż b

a

pFG1
` GF 1

qpxqdx “ F pbqGpbq ´ F paqGpaq.

Exercise 3.88: Folland Exercise 3.36.

Let G be a continuous increasing function on ra, bs.
(a) If E Ă rc, ds is a Borel set, then mpEq “ µGpG´1pEqq. (First consider the case

where E is an interval.)
(b) If f is a Borel measurable and integrable function on rc, ds, then

ż Gpbq

Gpaq

fpyq dy “

ż b

a

fpGpxqq dGpxq.

In particular, if G is absolutely continuous, then
ż Gpbq

Gpaq

fpyq dy “

ż b

a

fpGpxqqG1
pxq dx.

(c) The validity of (b) may fail if G is merely right continuous rather than continuous.

Exercise 3.89: Folland Exercise 3.37.

Suppose f : R Ñ R. There is a constant M such that |F pxq ´F pyq| ď M |x´ y| for all
x, y P R (that is, F is Lipschitz continuous) if and only if F is absolutely continuous
and |F 1| ď M a.e.

Solution.
(ñ) Suppose |F pxq ´ F pyq| ď M |x ´ y| for all x, y P R and ε ą 0. Then

ÿn

1
|F pxjq ´ F pxj´1q| ď M

´

ÿn

1
|x; j ´ xj´1|

¯

,

so we can choose δ – ε{M . Then
řn

1 |xj ´ xj´1| ă δ ùñ
řn

1 |F pxjq ´ F pxj´1q| ă ε,
so F is absolutely continuous. Also,

F 1
pxq “ lim

xÑy

|fpxq ´ fpyq|

|x ´ y|
ď lim

xÑy

M |x ´ y|

|x ´ y|
“ M.

(ð) Suppose F is absolutely continuous and |F 1| ď M a.e. Then by the mean value
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theorem, for all px, yq Ă ra, bs, there exists c P px, yq such that

M ě |F 1
pcq| “

|F pxq ´ F pyq|

|x ´ y|
,

so |F pxq ´ F pyq| ď M |x ´ y|. Hence F is Lipschitz.

Exercise 3.90: Folland Exercise 3.38.

If f : ra, bs Ñ R, consider the graph of f as a subset of R, namely, tt ` ifptq | t P

ra, bsu. The length L of this graph is by definition the supremum of the lengths of all
inscribed polygons. (An “inscribed polygon” is the union of the line segments joining
tj´1 ` ifptj´1q to tj ` ifptjq, 1 ď j ď n, where a “ t0 ă ¨ ¨ ¨ ă tn “ b.)
(a) Let F ptq “ t ` ifptq; then L is the total variation of F on ra, bs.
(b) If f is absolutely continuous, L “

şb

a
r1 ` f 1ptq2s

1{2dt.

Exercise 3.91: Folland Exercise 3.39.

If tFju is a sequence of nonnegative increasing functions on ra, bs such that F pxq “
ř8

1 Fjpxq ă 8 for all x P ra, bs, then F 1pxq “
ř8

1 F
1
jpxq for a.e. x P ra, bs. (It suffices

to assume Fj P NBV. Consider the measures µFj .)

Solution. Without loss of generality Fj is right continuous, since otherwise consider
Gjpxq “ Fjpx`q. Also we may assume Fjpxq Ñ 0 as x Ñ ´8 since we only care about
Fj on ra, bs, so we may assume Fj P NBV. Then µFj satisfies

µFjpp´8, xsq “ Fjpxq ´ Fjp´8q
l jh n

“0

“ Fj P NBV,

which then implies F pxq P NBV, so

F pxq “
ÿ8

1
Fjpxq “

ÿ8

1
µFjpp´8, xsq

“
ÿ8

1

ż x

´8

F 1
j

“

ż x

´8

ÿ8

1
F 1
j (by MCT for series since Fj P L`pmq)

On the other hand, since F is also right continuous and increasing,

µF ppa, bsq “ F pbq ´ F paq has b ´ a “ 0 ùñ F pxq ´�����:0
F p´8q “

ż x

´8

F 1
ptq dt

so by uniqueness of the Radon-Nikodym derivative we conclude
ř8

1 F
1
j “ F 1.
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Exercise 3.92: Folland Exercise 3.40.

Let F denote the Cantor function on r0, 1s (see Σ1.5q, and set F pxq “ 0 for x ă 0 and
F pxq “ 1 for x ą 1. Let tran, bnsu be an enumeration of the closed subintervals of r0, 1s

with rational endpoints, and let Fnpxq “ F ppx ´ anq{pbn ´ anqq. Then G “
ř8

1 2´nFn
is continuous and strictly increasing on r0, 1s, and G1 “ 0 a.e. (Use Folland Exercise
3.39.)

Exercise 3.93: Folland Exercise 3.41.

Let A Ă r0, 1s be a Borel set such that 0 ă mpA X Iq ă mpIq for every subinterval I
of r0, 1s (Folland Exercise 1.33).

(a) Let F pxq “ mpr0, xsXAq. Then F is absolutely continuous and strictly increasing
on r0, 1s, but F 1 “ 0 on a set of positive measure.

(b) Let Gpxq “ mpr0, xs X Aq ´ mpr0, xs ∖ Aq. Then G is absolutely continuous on
r0, 1s, but G is not monotone on any subinterval of r0, 1s.

Exercise 3.94: Folland Exercise 3.42.

A function F : pa, bq Ñ R p´8 ď a ă b ď 8q is called convex if
F pλs ` p1 ´ λqtq ď λF psq ` p1 ´ λqF ptq

for all s, t P pa, bq and λ P p0, 1q. (Geometrically, this says that the graph of F over
the interval from s to t lies underneath the line segment joining ps, F psqq to pt, F ptqq.)
(a) F is convex if and only if for all s, t, s1, t1 P pa, bq such that s ď s1 ă t1 and

s ă t ď t1.
F ptq ´ F psq

t ´ s
ď
F pt1q ´ F ps1q

t1 ´ s1
.

(b) F is convex if and only if F is absolutely continuous on every compact subinterval
of pa, bq and F 1 is increasing (on the set where it is defined).

(c) If F is convex and t0 P pa, bq, there exists β P R such that F ptq´F pt0q ě βpt ´ t0q
for all t P pa, bq.

(d) (Jensen’s Inequality) If pX,M, µq is a measure space with µpXq “ 1, g : X Ñ pa, bq
is in L1pµq, and F is convex on pa, bq, then

F

ˆ
ż

g dµ

˙

ď

ż

F ˝ g dµ.

(Let t0 “
ş

gdµ and t “ gpxq in (c), and integrate.)
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4 Point-Set Topology

4.1 Topological Spaces

The concepts of limit, convergence, and continuity are central to all of analysis, and
it is useful to have a general framework for studying them that includes the classical
manifestations as special cases. One such framework, which has the advantage of not
requiring many ideas beyond those occurring in analysis on Euclidean space, is that of
metric spaces. However, metric spaces are not sufficiently general to describe even some
very classical modes of convergence, for example, pointwise convergence of functions on R.
A more flexible theory can be built by taking the open sets, rather than a metric, as the
primitive data, and it is this theory that we shall explore in the present chapter.

Let X be a nonempty set.

Definition 1. A topology on X is a family 𝒯 of subsets of X that contains ∅ and
X and is closed under arbitrary unions and finite intersections (i.e., if tUαuαPA Ă 𝒯
then

Ť

αPA Uα P 𝒯 , and if U1, . . . , Un P 𝒯 then
Şn

1 Uj P 𝒯). The pair pX,𝒯 q is called a
topological space. If 𝒯 is understood, we shall simply refer to the topological space X.

Example 2. Let us examine a few examples:
(1) If X is any nonempty set, PpXq and t∅, Xu are topologies on X. They are called

the discrete topology and the trivial (or indiscrete) topology, respectively.
(2) If X is an infinite set, tU Ă X | U “ ∅ or U c is finiteu is a topology on X, called

the cofinite topology.
(3) If X is a metric space, the collection of all open sets with respect to the metric is a

topology on X.
(4) If pX,𝒯 q is a topological space and Y Ă X, then 𝒯Y “ tU X Y | U P 𝒯u is a topology

on Y , called the relative topology induced by 𝒯 .

We now present the basic terminology concerning topological spaces. Most of these
concepts are already familiar in the context of metric spaces. Until further notice, pX,𝒯 q

will be a fixed topological space.
The members of 𝒯 are called open sets, and their complements are called closed

sets. If Y Ă X, the open (resp. closed) subsets of Y in the relative topology are called
relatively open (resp. relatively closed). We observe that, by DeMorgan’s laws, the
family of closed sets is closed under arbitrary intersections and finite unions.

If A Ă X, the union of all open sets contained in A is called the interior of A, and
the intersection of all closed sets containing A is called the closure of A. We denote the
interior and closure of A by A˝ and A, respectively. Observe that A˝ is the largest open
set contained in A and A is the smallest closed set containing A, and we have pAoqc “ Ac

and pAqc “ pAcqo. The difference AzAo “ A X Ac is called the boundary of A and is
denoted by BA. If A “ X, A is called dense in X. On the other hand, if pAq˝ “ ∅, A is
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called nowhere dense. (This name comes from the fact that if pAq˝ were some nonempty
subset E of X, then in the subspace E the set A is dense, hence A dense “somewhere”. If
E were empty, then E is dense “nowhere”.)

If x P X (resp. E Ă X), a neighborhood of x (resp. of E) is a set A Ă X such
that x P A˝ (or E Ă A˝). Thus, a set A is open if and only if it is a neighborhood of
itself. (Some authors require neighborhoods to be open sets; Folland does not, and to
be precise we will sometimes opt for the more common term “open neighborhood” to
mean a neighborhood that is open, where neighborhood here is as in Folland’s definition
above.) A point x is called an accumulation point of A if A X pUztxuq ‰ ∅ for every
neighborhood U of x. (Other terms sometimes used for the same concept are “cluster
point” and “limit point.” We shall use “cluster point” to mean something a bit different
below.)

Proposition 4.3: 4.1.

If A Ă X, let AccpAq be the set of accumulation points of A. Then A “ A Y AccpAq,
and A is closed if and only if AccpAq Ă A.

Proof. If x R A, then Ac is a neighborhood of x that does not intersect A, so x R AccpAq;
thus A Y AccpAq Ă A. If x R A Y AccpAq, there is an open U containing x such that
U XA “ ∅, so that A Ă U c and x R A. Thus A Ă AYAccpAq. Finally, A is closed if and
only if A “ A, and this happens if and only if AccpAq Ă A.

If 𝒯1 and 𝒯2 are topologies on X such that 𝒯1 Ă 𝒯2, we say that 𝒯1 is weaker (or
coarser) than 𝒯2, or that 𝒯2 is stronger (or finer) than 𝒯1.

Clearly the trivial topology is the weakest topology on X, while the discrete topology
is the strongest. If E Ă EpXq, there is a unique weakest topology 𝒯 pEq on X that contains
E, namely the intersection of all topologies on X containing E. It is called the topology
generated by E, and E is sometimes called a subbase for 𝓣 pEq.

Definition 4. If 𝒯 is a topology on X, a neighborhood base for 𝒯 at x P X is a family
N Ă 𝒯 such that

• x P V for all V P N;
• if x P U P 𝒯 , there exists V P N such that x P V Ă U .

A base for 𝒯 is a family B Ă 𝒯 that contains a neighborhood base for 𝒯 at each x P X.
(So, a neighborhood base really is a base for any neighborhood of U .)

. For example, if X is a metric space, the collection of open balls centered at x is a
neighborhood base for the metric topology at x, and the collection of all open balls in X
is a base.
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Proposition 4.5: 4.2.

If pX,𝒯 q is a topological space and E Ă 𝒯 , then E is a base for 𝒯 if and only if every
nonempty set U P 𝒯 is the union of elements of E.

Proof. Suppose E is a base for 𝒯 . Then for x P U , there exists Vx P E such that
x P Vx Ă U . Then

Ť

xPU Vx “ U . Conversely, suppose U “
Ť

V PE V . Then tv P E | x P V u

is a neighborhood base for x, so E is a base.

Proposition 4.6: 4.3.

If E Ă EpXq, in order for E to be a base for a topology on X it is necessary and
sufficient that the following two conditions be satisfied:
(a) each x P X is contained in some V P E;
(b) if U, V P E and x P U X V , there exists W P E with x P W Ă pU X V q.

Proof. The necessity is clear, since if U, V are open, then so is U X V . To prove the
sufficiency, let

𝒯 “ tU Ă X | for every x P U, there exists V P E with x P V Ă Uu.

Then X P 𝒯 by condition (a) and ∅ P 𝒯 trivially, and 𝒯 is obviously closed under unions.
If U1, U2 P 𝒯 and x P U1 X U2, there exist V1, V2 P E with x P V1 Ă U1 and x P V2 Ă U2,
and by condition (b) there exists W P E with x P W Ă pV1 X V2q. Thus U1 X U2 P 𝒯 , so
by induction 𝒯 is closed under finite intersections. Therefore 𝒯 is a topology, and E is
clearly a base for 𝒯 .

Proposition 4.7: 4.4.

If E Ă EpXq, the topology 𝒯 pEq generated by E consists of ∅, X, and all unions of
finite intersections of members of E.

Proof. The family of finite intersections of sets in E, together with X, satisfies the
conditions of Proposition 6, so by Proposition 5 the family of all unions of such sets,
together with ∅, is a topology. It is obviously contained in 𝒯 pEq, hence equal to 𝒯 pEq.

Note how the simplicity of this proposition contrasts with the corresponding result for
σ-algebras (Proposition 60). What makes life easier here is that only finite intersections
are involved.

The concept of topological space is general enough to include a great profusion of
interesting examples, but—by the same token—too general to yield many interesting
theorems. To build a reasonable theory one must usually restrict the class of spaces under
consideration. The remainder of this section is devoted to a discussion of two types of
restrictions that are commonly made, the so-called countability and separation axioms.
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Definition 8. A topological space pX,𝒯 q satisfies the first axiom of countability, or
is first countable, if there is a countable neighborhood base for 𝒯 at every point of X.

Definition 9. The space pX,𝒯 q satisfies the second axiom of countability, or is
second countable, if 𝒯 has a countable base.

Definition 10. The space pX,𝒯 q is separable if X has a countable dense subset.

It is useful to observe that if X is first countable, then for every x P X there is a
neighborhood base tUju

8

1 at x such that Uj Ą Uj`1 for all j. Indeed, if tVju
8

1 is any
countable neighborhood base at x, we can take Uj “

Şj
1 Vi.

Every metric space is first countable (the balls of rational radius about x are a
neighborhood base at x), and a metric space is second countable if and only if it is
separable (Folland Exercise 4.5). The latter fact can be partly generalized:

Proposition 4.11: 4.5.

Every second countable space is separable, but not conversely (see Folland Exercise
4.6).

Proof. Let X be a second countable space and tUnunPZě1
be a countable base for the

topology. For each Un, pick any element xn P Un, discarding any empty Un. Then we
need only show that A “ txn | xn P Unu is dense in X:

Take any nonempty open set E. Then Un Ă E for some n, hence, xn P E for some n.
But xn P A, so E X A ‰ H for all E, so A is dense.

Note that the above proof relies on the Axiom of Countable Choice, and in fact, the
previous proposition can be shown to be equivalent to the Axiom of Countable Choice.

Definition 12. A sequence txju in a topological space X converges to x P X (in symbols:
xj Ñ x) if for every neighborhood U of x there exists J P Zě0 such that xj P U for all
j ą J .

First countable spaces have the pleasant property that such things as closure and
continuity can be characterized in terms of sequential convergence—which is not the case
in more general spaces, as we shall see. For example, see the following proposition.

Proposition 4.13: 4.6.

If X is first countable and A Ă X, then x P A if and only if there is a sequence txju in
A that converges to x.

Equivalent characterization of denseness is that any open set intersects it nontrivially.

Proof. Let tUju be a countable neighborhood base at x with Uj Ą Uj`1 for all j. If
x P A, then Uj X A ‰ ∅ for all j. Pick xj P Uj X A; since Uk Ă Uj for k ą j and every
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neighborhood of x contains some Uj, it is clear that xj Ñ x. On the other hand, if x R A
and txju is any sequence in A, then pAqc is a neighborhood of x containing no xj, so
xj Û x.

Lastly, we discuss the separation axioms. These are properties of a topological
space, labeled T0, . . . , T4, that guarantee the existence of open sets that separate points
or closed sets from each other. If X has the property Tj, we say that X is a Tj space or
that the topology on X is Tj.

Axiom Definition
T0 (Kolmogorov) If x ‰ y, there exists an open set containing x but not y or an open set containing y but not x.

T1 (Fréchet) If x ‰ y, there is an open set containing y but not x.

T2 (Hausdorff) If x ‰ y, there are disjoint open sets U, V with x P U and y P V .

T3 (Regular) X is T1 and for any closed A Ă X and any x P Ac there are disjoint open sets U, V with x P U and A Ă V .

T4 (Normal) X is T1 and for any disjoint closed A,B in X there are disjoint open sets U, V with A Ă U and B Ă V .

There is also an additional useful separation condition, intermediate between T3 and T4,
that we will discuss in Folland Section 4.2.

Warning 4.14.

Note that some authors do not require regular and normal spaces to be T1.

The following characterization of T1 spaces is useful. It shows in particular that every
normal space is regular and that every regular space is Hausdorff.

Proposition 4.15: 4.7.

X is a T1 space if and only if txu is closed for every x P X.

Proof. If X is T1 and x P X, for each y ‰ x there is an open Uy containing y but not x;
thus txuc “

Ť

y‰x Uy is open and txu is closed. Conversely, if txu is closed, then txuc is
an open set containing every y ‰ x.

The vast majority of topological space that arise in practice are Hausdorff, or become
Hausdorff after simple modifications. (This last phrase refers to spaces such as the space
of integrable functions on a measure space, which becomes a Hausdorff space with the
L1 metric when we identify two functions that are equal a.e.) However, two classes of
usually non-Hausdorff topologies are of sufficient importance to warrant special mention:
the quotient topology on a space of equivalence classes, discussed in Folland Exercise
4.28,Folland Exercise 4.29, and the Zariski topology on an algebraic variety. Without
attempting to give the definition of an algebraic variety, we now describe the Zariski
topology on a vector space.

Version of April 30, 2024 at 11pm EST Page 141 of 368

https://www.greysonwesley.com/home


Greyson C. Wesley §4.1: Topological Spaces

Example 16 (Zariski Topology on a Vector Space). Let k be a field, and let krX1, . . . , Xns

be the ring of polynomials in n variables over x. Each P P krX1, . . . , Xns determines a
polynomial map p : kn Ñ k by substituting elements of k for the formal indeterminates
X1, . . . , Xn. The correspondence P Ñ p is one-to-one precisely when k is infinite. The
collection of all sets p´1pt0uq in kn, as p ranges over all polynomial maps, is closed
under finite unions, since p´1pt0uq Y q´1pt0uq “ ppqq´1pt0uq, and it contains kn itself
(take p “ 0). Hence, by Propositions 5 and 6, the collection of all sets of the form
Ş

αPA p
´1
α pt0uq (pα being a polynomial map for each α) is the collection of closed sets for a

topology on kn, called the Zariski topology. The Zariski topology is T1 by Proposition 15,
for if a “ pa1, . . . , anq P kn then tau “

Şn
1 p

´1
j pt0uq where pjpX1, . . . , Xnq “ Xj ´ aj. If

k is finite the Zariski topology is discrete, but if k is infinite the Zariski topology is not
Hausdorff; in fact, any two nonempty open sets have nonempty intersection. This is just
a restatement of the fact that krX1, . . . , Xns is an integral domain, that is, if P and Q are
nonzero polynomials, then PQ is nonzero. (For n “ 1, the Zariski topology is the cofinite
topology.)

Exercise 4.17: Folland Exercise 4.1.

If cardpXq ě 2, then there exists a topology on X that is T0 but not T1.

Exercise 4.18: Folland Exercise 4.2.

If X is an infinite set, the cofinite topology on X is T1 but not T2, and is first countable
if and only if X is countable.

Exercise 4.19: Folland Exercise 4.3.

Every metric space is normal. (If A,B are closed sets in the metric space pX, ρq,
consider the sets of points x where ρpx,Aq ă ρpx,Bq or ρpx,Aq ą ρpx,Bq.)

Solution. Let X “ pX, ρq be a metric space and x ‰ y in X.
• X is T1: If x ‰ y then there exists an open subset contaiinng y but not x, namely
Ux “ tz P X | ρpx, zq ą 0u. This is open in X because for all z P Ux, ρpx, zq — r ą 0,
the open ball Brpxq Ă Ux: indeed, if z1 P Brpxq, then ρpz1, xq ` ρpz, z1q ě ρpx, zq “ r,
so ρpz1, xq ě ρpx, zq

“r

´ ρpz, z1
q

ăr

ą 0 by the triangle inequality, so z1 P Ux.

• Now suppose A,B are disjoint closed neighborhoods of x and y, respectively. Then
let

Ux “ tz P X | ρpz, Aq ă ρpz,Bqu and Vy “ tz P X | ρpz, Aq ą ρpz,Bqu.

Then Ux, Vy are disjoint because if z P Ux then ρpz, Aq ă ρpz,Bq, hence ρpz,Bq is
not greater then ρpz, Aq; and Ux, Vy are operation because if z P Ux then ρpz, Aq ´
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ρpz,Bq — r ą 0, so again by the triangle inequality we conclude Brpzq Ă Ux.
Showing Vy is open is similar.

Exercise 4.20: Folland Exercise 4.4.

Let X “ R, and let 𝒯 be the family of all subsets of R of the form U Y pV X Rq where
U, V are open in the usual sense. Then 𝒯 is a topology that is Hausdorff but not
regular. (In view of Folland Exercise 4.3, this shows that a topology stronger than a
normal topology need not be normal or even regular.)

Exercise 4.21: Folland Exercise 4.5.

Every separable metric space is second countable.

Solution. Let pX, ρq be separable metric spaces, say with countable dense subset Q. Then
take the countable base to be ℬ “ tBrpqqurPQą0,qPQ. This is a base: If U ‰ ∅ is open in X,
then for all q P U there exists rq P Qą0 such that Brqpqq P U ; we claim U “

Ť

qPUXQBrqpqq.
Indeed, if x P U then for all rx P Qą0 (where r0 is the guaranteed positive rational numbers
such that Br0 Ă U), there exists q P Q such that q P Br{2pxqor equivalently, x P Br{2pqq,
which is true in the union.

The previous proposition proves the forward direction. On the other hand, let A be
countable and dense in the separable metric space X. Consider the collection B of balls
Bpx, 1{nq, x P A, n P Zě1. Take any open set E and consider y P E. Then Bpy, 1{mq Ă E
for some m. As A is dense, A X Bpy, p2mq´1q ‰ H, so we can choose an x P A with
dpx, yq ă p2mq´1. Thus,

y P Bpx, p2mq
´1

q Ă Bpy,m´1
q Ă E,

so E is the union of elements of B that it contains. Thus B is a base for X (as E was
arbitrary) and B is countable since A and Zě1 are.

Exercise 4.22: Folland Exercise 4.6.

Let E “ tpa, bs | ´8 ă a ă b ă 8u.
(a) E is a base for a topology 𝒯 on R in which the members of E are both open and

closed.
(b) 𝒯 is first countable but not second countable. (If x P R, every neighborhood base

at x contains a set whose supremum is x.)
(c) Q is dense in Q with respect to 𝒯 . (Thus the converse of Proposition 11 is false.)
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Exercise 4.23: Folland Exercise 4.7.

If X is a topological space, a point x P X is called a cluster point of the sequence txju
if for every neighborhood U of x, xj P U for infinitely many j. If X is first countable,
x is a cluster point of txju if and only if some subsequence of txju converges to x.

Solution. Let txju
8
j“1 be a sequence in a first countable space X, and fix x P X. Since X is

first countable, there exists a countable neighborhood base tVju
8
j“1 at x. Let Uj –

Şj
ℓ“1 Vℓ.

Then tUju is an countable neighborhood base for x, and moreover U1 Ą U2 Ą ¨ ¨ ¨ .
Given a sequence txnu8

n“1, if a subsequence txnku8
k“1 converges to x, then for any

neighborhood U of x, there exists N P Zě1 such that xnk P U whenever k ě N . Hence x
is a cluster point of txnu8

n“1.
Conversely, if x is a cluster point of txnu8

n“1 in a first countable space X, there exists
a countable nested neighborhood base tUnu8

n“1 at x. Inductively choose nk ą nk´1 such
that xnk P Uk. For any neighborhood U of x, UN Ď U for some N , ensuring xnk P U for
all k ě N . Thus, the subsequence pxnkq8

k“1 converges to x.

Exercise 4.24: Folland Exercise 4.8.

If X is an infinite set with the cofinite topology and txju is a sequence of distinct
points in X, then xj Ñ x for every x P X.

Solution. Let U be an open neighborhood of x P X. Then U c must finite, hence U
is infinite. Since txju

8
j“1 is an infinite collection of distinct points, there must be some

J P Zě1 such that xj P U whenever j ě J . Since U was arbitrary, we conclude xj Ñ x.

Exercise 4.25: Folland Exercise 4.9.

If X is a linearly ordered set, the topology 𝒯 generated by the sets tx | x ă au and
tx | x ą au ranging over each a P X is called the order topology .
(a) If a, b P X and a ă b, there exist U, V P 𝒯 with a P U, b P V , and x ă y for all

x P U and y P V . The order topology is the weakest topology with this property.
(b) If Y Ă X, the order topology on Y is never stronger than, but may be weaker

than, the relative topology on Y induced by the order topology on X.
(c) The order topology on R is the usual topology.

Exercise 4.26: Folland Exercise 4.10.

A topological space X is called disconnected if there exist nonempty open sets U, V
such that U X V “ ∅ and U Y V “ X; otherwise X is connected. When we speak of
connected or disconnected subsets of X, we refer to the relative topology on them.
(a) X is connected if and only if ∅ and X are the only subsets of X that are both
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open and closed.
(b) If tEαuαPA is a collection of connected subsets of X such that

Ş

αPAEα ‰ ∅, then
Ť

αPAEα is connected.
(c) If A Ă X is connected, then A is connected.
(d) Every point x P X is contained in a unique maximal connected subset of X, and

this subset is closed. (It is called the connected component of x.)

Solution. (a) p ùñ q Suppose there exists a clopen E Ă X. The obvious choice is E “ U
and Ec “ V ; since E is clopen we have E,Ec are nonempty disjoint open sets that union
to X, hence X is disconnected. p ðù q Suppose X is disconnected. We want some clopen
E Ă X. Since X is disconnected, there exist nonempty disjoint open U, V Ă X such that
U Y V “ X. The obvious choice here is E “ U ; indeed, U is open and U c “ V is open,
hence V c “ U is closed, so U is clopen.

(b) Define E –
Ť

αPAEα. For non-empty open sets U, V Ď E covering E, choose
x P

Ş

αPAEα with x P U , and y P V such that y P Eα for some α P A. Then, U X Eα and
V X Eα are non-empty open sets in Eα covering it. Since Eα is connected, U X V ‰ ∅,
proving E is connected.

(c) For disjoint open sets U, V Ď A covering A, write U “ U 1 XA and V “ V 1 XA for
open sets U 1, V 1 Ď X. Then U 1 X A and V 1 X A are disjoint open sets in A covering A.
If A is connected, U 1 X A “ ∅. This implies U 1 X AccpAq “ ∅, leading to U 1 X A “ ∅.
Thus, A is connected.

(d) Let x P X and define C – tA Ď X | A is connected and x P Au. Then, C –
Ť

C

is connected by part (b). If A Ď X is connected with C Ď A, then x P A implies A P C,
leading to A Ď C. Thus, C is maximal. For any maximal connected set C 1 Ď X containing
x, C 1 P C implies C 1 Ď C, and maximality of C 1 gives C 1 “ C. Hence, C is unique. Since C
is connected (by part (c)) and contains C, it follows that C “ C, showing C is closed.

Exercise 4.27: Folland Exercise 4.11.

If E1, . . . , En are subsets of a topological space, the closure of
Ťn

1 Ej is
Ťn

1 Ej.

Exercise 4.28: Folland Exercise 4.12.

Let X be a set. A Kuratowski closure operator on X is a map A ÞÑ A˚ from
PpXq to itself satisfying (i) ∅˚ “ ∅, (ii) A Ă A˚ for all A, (iii) pA˚q

˚
“ A˚ for all A,

and (iv) pA Y Bq˚ “ A˚ Y B˚ for all A,B.
(a) If X is a topological space, the map A ÞÑ A is a Kuratowski closure operator.

(Use Folland Exercise 4.11.)
(b) Conversely, given a Kuratowski closure operator, let ℱ “ tA Ă X | A “ A˚u and

𝒯 “ tU Ă X | U c P ℱu. Then 𝒯 is a topology, and for any set A Ă X,A˚ is its
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closure with respect to 𝒯 .

Exercise 4.29: Folland Exercise 4.13.

If X is a topological space, U is open in X, and A is dense in X, then U “ U X A.

Solution. We use the fact that in any topological space X, for any subset E of X, a point
x P X has x P E if and only if every open neighborhood intersects E.

U X A Ă U since U XA Ă U , so suffices to show U Ă U X A. If x P U then every open
neighborhood of x intersects U . But x P A “ X too, so every open neighborhood of x also
intersects A. Hence every open neighborhood of x intersects U X A, so x P U X A.

4.2 Continuous Maps

Topological spaces are the natural setting for the concept of continuity, which can be
described in either global or local terms as follows.

Definition 30. Let X and Y be topological spaces and f a map from X to Y .
Then f is called continuous if f´1pV q is open in X for every open V Ă Y . (Since

f´1pAcq “ rf´1pAqs
c, an equivalent condition is that f´1pAq is closed in X for every

closed A Ă Y .)
If x P X, f is called continuous at x if for every neighborhood V of fpxq there is a

neighborhood U of x such that fpUq Ă V , or equivalently, if f´1pV q is a neighborhood of
x for every neighborhood V of fpxq.

Exercise 4.31.

Show the equivalence of the above two definitions of continuity at a point.

Clearly, if f : X Ñ Y and g : Y Ñ Z are continuous (or f is continuous at x and g is
continuous at fpxq), then g ˝ f is continuous (at x).

Notation 32. We shall denote the set of continuous maps from X to Y by CpX, Y q.

Proposition 4.33: 4.8.

The map f : X Ñ Y is continuous if and only if f is continuous at every x P X.

Proof. If f is continuous and V is a neighborhood of fpxq, f´1pV ˝q is an open set containing
x, so f is continuous at x. Conversely, suppose that f is continuous at each x P X. If
V Ă Y is open, V is a neighborhood of each of its points, so f´1pV q is a neighborhood of
each of its points. Thus f´1pV q is open, so f is continuous.
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Proposition 4.34: 4.9.

If the topology on Y is generated by a family of sets E, then f : X Ñ Y is continuous
if and only if f´1pV q is open in X for every V P E.

Proof. This is clear from Proposition 7 and the fact that the set mapping f´1 commutes
with unions and intersections.

Definition 35. If f : X Ñ Y is bijective and f and f´1 are both continuous, f is called
a homeomorphism, and X and Y are said to be homeomorphic.

In the case f : X Ñ Y is homeomorphism, the set mapping f´1 is a bijection from the
open sets in Y to the open sets in X, so X and Y may be considered identical as far as
their topological properties go.

The following provides an example of a homeomorphism between familiar spaces,
which can also show how some properties are easily recognized as not being topological of
nature.

Example 36. The tangent function is a homeomorphism between p´π{2, π{2q and R (with
the usual topologies) and thus preserves topological structures. Properties like boundedness
then are not topological in nature.

Definition 37. If f : X Ñ Y is injective but not surjective, and f : X Ñ fpXq is a
homeomorphism when fpXq Ă Y is given the relative topology, f is called an embedding.

Definition 38. If X is any set and tfα : X Ñ YαuαPA is a family of maps from X into
some topological spaces Yα, there is a unique weakest topology 𝒯 on X that makes all the
fα continuous; it is called the weak topology generated by tfαuαPA, or the initial
topology generated by tfαuαPA. Namely, 𝒯 is the topology generated by sets of the
form f´1

α pUαq where α P A and Uα is open in Yα.
Thus the initial topology generated by tfαuαPA is 𝒯 ptf´1

α pUαq | α P Auq.

Example 39 (Cartesian Product). The most important example of this construction is the
Cartesian product of topological spaces. If tXαuαPA is any family of topological spaces, the
product topology on X “

ś

αPAXα is the weak topology generated by the coordinate maps
πα : X Ñ Xα. When we consider a Cartesian product of topological spaces, we always
endow it with the product topology unless we specify otherwise. By Proposition 7, a base for
the product topology is given by the sets of the form

Şn
1 π

´1
αj

pUαjq where n P Zě0 and Uαj

is open in Xαj for 1 ď j ď n. These sets can also be written as
ś

αPA Uα where Uα “ Xα

if α ‰ α1, . . . , αn. Notice, in particular, that if A is infinite, a product of nonempty open
sets

ś

αPA Uα is open in
ś

αPAXα if and only if Uα “ Xα for all but finitely many α.

Proposition 4.40: 4.10.

If Xα is Hausdorff for each α P A, then X “
ś

αPAXα is Hausdorff.
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Proof. If x and y are distinct points of X, we must have παpxq ‰ παpyq for some α. Let
U and V be disjoint neighborhoods of παpxq and παpyq in Xα. Then π´1

α pUq and π´1
α pV q

are disjoint neighborhoods of x and y in X.

Proposition 4.41: 4.11.

If tXαuαPA and Y are topological spaces and X “
ś

αPAXα, then f : Y Ñ X is
continuous if and only if πα ˝ f is continuous for each α.

Proof. If πα ˝ f is continuous for each α, then f´1pπ´1
α pUαqq is open in Y for each open

Uα in Xα. By Proposition 34, f is continuous. The converse is obvious.

If the spaces Xα are all equal to some fixed space X, the product
ś

αPAXα is just
the set XA of mappings from A to X, and the product topology is just the topology of
pointwise convergence. More precisely:

Proposition 4.42: 4.12.

If X is a topological space, A is a nonempty set, and tfnu is a sequence in XA, then
fn Ñ f in the product topology if and only if fn Ñ f pointwise.

Proof. The sets

NpU1, . . . , Ukq “
čk

1
π´1
αj

pUjq “ tg P XA
| gpαjq P Uj for 1 ď j ď ku,

where k P Zě0 and Uj is a neighborhood of fpαjq in X for each j, form a neighborhood
base for the product topology at f . If fn Ñ f pointwise, then fnpαjq P Uj for n ě Nj

and hence fn P NpU1, . . . , Ukq for n ě maxpN1, . . . , Nkq; therefore fn Ñ f in the product
topology. Conversely, if fn Ñ f in the product topology, α P A, and U is a neighborhood
of fpαq, then fn P NpUq “ π´1

α pUq for large n; hence fnpαq P U for large n, and so
fnpαq Ñ fpαq.

We shall be particularly interested in real- and complex-valued functions on topological
spaces. If X is any set, we denote by BpX,Rq (resp. BpX,Rq) the space of all bounded
real- (resp. complex-)valued functions on X. If X is a topological space, we also have the
spaces CpX,Rq and CpX,Rq of continuous functions on X, and we define

BCpX,F q “ BpX,F q X CpX,F q pF “ R or Rq.

Notation 43. In speaking of complex-valued functions we shall usually omit the C and
simply write BpXq, CpXq, and BCpXq.

Since addition and multiplication are continuous from CˆC to C, CpXq and BCpXq

are complex vector spaces.
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Definition 44. If f P BpXq, we define the uniform norm of f to be
}f}u “ supt|fpxq| | x P Xu.

The function ρpf, gq “ }f ´g}u is easily seen to be a metric on BpXq, and convergence
with respect to this metric is simply uniform convergence on X.BpXq is obviously complete
in the uniform metric: If tfnu is uniformly Cauchy, then tfnpxqu is Cauchy for each x,
and if we set fpxq “ limn fnpxq, it is easily verified that }fn ´ f}u Ñ 0.

Proposition 4.45: 4.13.

If X is a topological space, BCpXq is a closed subspace of BpXq in the uniform metric;
in particular, BCpXq is complete.

Proof. Suppose tfnu Ă BCpXq and }fn ´ f}u Ñ 0. Given ε ą 0, choose N so large that
}fn ´ f}u ă ε{3 for n ą N . Given n ą N and x P X, since fn is continuous at x there is
a neighborhood U of x such that |fnpyq ´ fnpxq| ă ε{3 for y P U . But then

|fpyq ´ fpxq| ď |fpyq ´ fnpyq| ` |fnpyq ´ fnpxq| ` |fnpxq ´ fpxq| ă ε,

so f is continuous at x. By Proposition 33, f is continuous.

For a given topological space X it may happen that CpXq consists only of constant
functions. This is obviously the case, for example, if X has the trivial topology, but it can
happen even when X is regular. Normal spaces, however, always have plenty of continuous
functions, as the following fundamental theorems show.

Lemma 4.46: 4.14.

Suppose that A and B are disjoint closed subsets of the normal space X, and let
∆ “ tk2´n | n P Zě1, 0 ă k ă 2nu be the set of dyadic rational numbers in p0, 1q. There
is a family tUr | r P ∆u of open sets in X such that A Ă Ur Ă Bc for all r P ∆ and
U r Ă Us for r ă s.

Proof. By normality, there exist disjoint open sets V,W such that A Ă V , B Ă W . Let
U1{2 “ V . Then since W c is closed,

A Ă U1{2 Ă U1{2 Ă W c
Ă Bc.

We now select Ur for r “ k2´n by induction on n. Suppose that we have chosen Ur for
r “ k2´n when 0 ă k ă 2n and n ď N ´1. To find Ur for r “ p2j`1q2´N p0 ď j ă 2N´1q,
observe that U j21´N and pUpj`1q21´N q

c are disjoint closed sets (where we set U0 “ A and
U c
1 “ B), so as above we can choose an open Ur with

A Ă U j21´N Ă Ur Ă U r Ă Upj`1q21´N Ă Bc.

These Urs have the desired properties.
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Theorem 4.47: 4.15: Urysohn’s Lemma.

Let X be a normal space. If A and B are disjoint closed sets in X, there exists
f P CpX, r0, 1sq such that f “ 0 on A and f “ 1 on B.

Proof. Let Ur be as in Lemma 46 for r P ∆, and set U1 “ X. For x P X, define
fpxq “ inftr | x P Uru. Since A Ă Ur Ă Bc for 0 ă r ă 1, we clearly have fpxq “ 0 for
x P A and fpxq “ 1 for x P B, and 0 ď fpxq ď 1 for all x P X. It remains to show that f
is continuous. To this end, observe that fpxq ă α if and only if x P Ur for some r ă α if
and only if x P

Ť

răα Ur, so f´1pp´8, αqq “
Ť

răα Ur is open. Also fpxq ą α if and only
if x R Ur for some r ą α if and only if x R U s for some s ą α (since U s Ă Ur for s ă rq if
and only if x P

Ť

sąα

`

U s

˘c, so f´1ppa,8qq “
Ť

sąα

`

U s

˘c is open. Since the open half-lines
generate the topology on R, f is continuous by Proposition 34.

The proof of Urysohn’s lemma may seem somewhat opaque at first, but there is a
simple geometric intuition behind it. If one pictures X as the plane R2 and the sets Ur as
regions bounded by curves, the curves BUr form a “topographic map” of the function f :

Theorem 4.48: 4.16: The Tietze Extension Theorem.

Let X be a normal space. If A is a closed subset of X and f P CpA, ra, bsq, there exists
F P CpX, ra, bsq such that F |A “ f .

Proof. Replacing f by pf ´ aq{pb ´ aq, we may assume that ra, bs “ r0, 1s. We claim
that there is a sequence tgnu of continuous functions on X such that 0 ď gn ď 2n´1{3n

on X and 0 ď f ´
řn

1 gj ď p2{3qn on A. To begin with, let B “ f´1pr0, 1{3sq and
C “ f´1pr2{3, 1sq. These are closed subsets of A, and since A itself is closed, they are
closed in X. By Urysohn’s Lemma there is a continuous g1 : X Ñ r0, 1{3s with g1 “ 0 on
B and g1 “ 1{3 on C; it follows that 0 ď f ´ g1 ď 2{3 on A. Having found g1, . . . , gn´1,
by the same reasoning we can find gn : X Ñ r0, 2n´1{3ns such that gn “ 0 on the set
where f ´

řn´1
1 gj ď 2n´1{3n and gn “ 2n´1{3n on the set where f ´

řn´1
1 gj ě p2{3qn.

Let F “
ř8

1 gn. Since }gn}u ď 2n´1{3n, the partial sums of this series converge uniformly,
so F is continuous by Proposition 45. Moreover, on A we have 0 ď f ´ F ď p2{3qn for all
n, whence F “ f on A.

Corollary 4.49: 4.17.

If X is normal, A Ă X is closed, and f P CpAq, there exists F P CpXq such that
F |A “ f .

Proof. By considering real and imaginary parts separately, it suffices to assume that f is
real-valued. Let g “ f{p1` |f |q. Then g P CpA, p´1, 1qq, so there exists G P CpX, r´1, 1sq
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with G|A “ g. Let B “ G´1pt´1, 1uq. By Urysohn’s lemma there exists h P CpX, r0, 1sq

with h “ 1 on A, h “ 0 on B. Then hG “ G on A and |hG| ă 1 everywhere, so
F “ hG{p1 ´ |hG|q does the job.

Definition 50. A topological space X is called completely regular if X is T1 and for
each closed A Ă X and each x R A there exists f P CpX, r0, 1sq such that fpxq “ 1 and
f “ 0 on A. Completely regular spaces are also called Tychonoff or T31{2 .

The latter terminology is justified, for every completely regular space is T3 (if A, x, f
are as above, then f´1

``

1
2
,8

˘˘

and f´1
``

´8, 1
2

˘˘

are disjoint neighborhoods of x and
A), and Urysohn’s lemma shows that every T4 space is completely regular.

Exercise 4.51: Folland Exercise 4.14.

If X and Y are topological spaces, f : X Ñ Y is continuous if and only if fpAq Ă fpAq

for all A Ă X if and only if f´1pBq Ă f´1pBq for all B Ă Y .

Solution. Proof. Suppose f is continuous and consider any A Ă X. Then f´1pfpAqq is a
closed set in X. Since A Ă f´1pfpAqq Ă f´1pfpAqq, one concludes that A Ă f´1pfpAqq

as the latter is a closed set and the former is the smallest closed set containing A. Finally,
this allows one to see that for every A Ă X,

fpAq Ă f
”

f´1
pfpAqq

ı

Ă fpAq.

(Note that the inclusions used regarding images and preimages are in general strict unless
more assumptions are made on the map f .)

Next, suppose fpAq Ă fpAq for all A Ă X. Given B Ă Y, f´1pBq Ă X and one can
write

f
´

f´1pBq

¯

Ă fpf´1pBqq Ă B.

Taking the inverse image on both sides and using the fact that f´1pBq Ă

f´1
”

f
´

f´1pBq

¯ı

yields

f´1pBq Ă f´1
”

f
´

f´1pBq

¯ı

Ă f´1
pBq.

For the final implication, suppose f´1pBq Ă f´1pBq for all B Ă Y . Given a closed set
D Ă Y one can then write

f´1pDq Ă f´1
pDq “ f´1

pDq Ă f´1pDq,

so that f´1pDq “ f´1pDq, that is, f´1pDq is closed in X for every closed set D Ă Y .
Therefore f is continuous.
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Exercise 4.52: Folland Exercise 4.15.

If X is a topological space, A Ă X is closed, and g P CpAq satisfies g “ 0 on BA, then
the extension of g to X defined by gpxq “ 0 for x P Ac is continuous.

Solution. Let rg “ 0 on Ac and g on A. Let U be open in R. Since g P CpAq, we may
assume 0νU since otherwise rg´1pt0uq Ă A, hence rg´1pt0uq “ g´1pt0uq, hence closed by
continuity of g (and the fact t0u is closed in C since C is T1). So assume 0 P U . Then
rg´1pt0uq “ Ac Y BA

“pAcq˝“closed

Y g´1
pt0uq

closed

, which is closed. Hence rg is continuous.

Exercise 4.53: Folland Exercise 4.16.

Let X be a topological space, Y a Hausdorff space, and f, g continuous maps from X
to Y .
(a) tx | fpxq “ gpxqu is closed.
(b) If f “ g on a dense subset of X, then f “ g on all of X.

Exercise 4.54: Folland Exercise 4.17.

If X is a set, ℱ a collection of real-valued functions on X, and 𝒯 the weak topology
generated by ℱ, then 𝒯 is Hausdorff if and only if for every x, y P X with x ‰ y there
exists f P ℱ with fpxq ‰ fpyq.

Exercise 4.55: Folland Exercise 4.18.

If X and Y are topological spaces and y0 P Y , then X is homeomorphic to Xˆty0u
where the latter has the relative topology as a subset of XˆY .

Exercise 4.56: Folland Exercise 4.19.

If tXαu is a family of topological spaces, X “
ś

αXα (with the product topology) is
uniquely determined up to homeomorphism by the following property: There exist
continuous maps πα : X Ñ Xα such that if Y is any topological space and fα P CpY,Xαq

for each α, there is a unique F P CpY,Xq such that fα “ πα ˝ F . (Thus X is the
category-theoretic product of the Xαs in the category of topological spaces.)

Exercise 4.57: Folland Exercise 4.20.

If A is a countable set and Xα is a first (resp. second) countable space for each α P A,
then

ś

αPAXα is first (resp. second) countable.
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Exercise 4.58: Folland Exercise 4.21.

If X is an infinite set with the cofinite topology, then every f P CpXq is constant.

Solution. Proof. First, we will show that if X is any infinite set equipped with the
cofinite topology, then no two nonempty open sets are disjoint (this property is called
hyperconnected). To see this, consider two open sets U and U 1 which can be written
as U “ F c and U 1 “ pF 1q

c for some finite sets F, F 1 in this topology. As F Y F 1 is also a
finite set, the set pF Y F 1q

c is an open set, and any point in this set is also in both U and
U 1, that is, U X U 1 ‰ H.

Now, suppose that f is continuous but not constant. Then it takes on at least two
distinct values, say p, q P C. Hence we can find ε ą 0 such that Bεppq X Bεpqq “ H. As
these sets are disjoint nonempty open sets in C, the preimage of the sets would be disjoint
nonempty open sets in X which cannot happen by the previous paragraph. Thus f must
be constant.

Exercise 4.59: Folland Exercise 4.22.

Let X be a topological space, pY, ρq a complete metric space, and tfnu a sequence in
Y X such that supxPX ρpfnpxq, fmpxqq Ñ 0 as m,n Ñ 8. There exists a unique f P Y X

such that supxPX ρpfnpxq, fpxqq Ñ 0 as n Ñ 8. If each fn is continuous, so is f .

Exercise 4.60: Folland Exercise 4.23.

Give an elementary proof of the Tietze extension theorem for the case X “ R.

Exercise 4.61: Folland Exercise 4.24.

A Hausdorff space X is normal if and only if X satisfies the conclusion of Urysohn’s
lemma if and only if X satisfies the conclusion of the Tietze extension theorem.

Exercise 4.62: Folland Exercise 4.25.

If pX,𝒯 q is completely regular, then 𝒯 is the weak topology generated by CpXq.

Exercise 4.63: Folland Exercise 4.26.

Let X and Y be topological spaces.
(a) If X is connected (see Folland Exercise 4.10) and f P CpX, Y q, then fpXq is

connected.
(b) X is called arcwise connected if for all x0, x1 P X there exists f P Cpr0, 1s, Xq

with fp0q “ x0 and fp1q “ x1. Every arcwise connected space is connected.
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(c) Let X “ tp0, 0qu Y tps, tq P R2 | t “ sinp1{squ, with the relative topology induced
from R2. Then X is connected but not arcwise connected.

Exercise 4.64: Folland Exercise 4.27.

If Xα is connected for each α P A (see Folland Exercise 4.10), then X “
ś

αPAXα is
connected. (Fix x P X and let Y be the connected component of x in X. Show that
Y includes ty P X | παpyq “ παpxq for all but finitely many αu and that the latter set
is dense in X. Use Folland Exercise 4.10,Folland Exercise 4.18.)

Exercise 4.65: Folland Exercise 4.28.

Let X be a topological space equipped with an equivalence relation, rX the set of
equivalence classes, π : X Ñ rX the map taking each x P X to its equivalence class,
and 𝒯 “

!

U Ă rX
ˇ

ˇ

ˇ
π´1pUq is open in X

)

.

(a) 𝒯 is a topology on rX. (It is called the quotient topology.)
(b) If Y is a topological space, f : rX Ñ Y is continuous if and only if f ˝ π is

continuous.
(c) rX is T1 if and only if every equivalence class is closed.

Exercise 4.66: Folland Exercise 4.29.

If X is a topological space and G is a group of homeomorphisms from X to itself, G
induces an equivalence relation on X, namely, x „ y if and only if y “ gpxq for some
g P G. Let X “ R2; describe the quotient space rX and the quotient topology on it (as
in Folland Exercise 4.28) for each of the following groups of invertible linear maps. In
particular, show that in (a) the quotient space is homeomorphic to r0,8q; in (b) it is
T1 but not Hausdorff; in (c) it is T0 but not T1, and in (d) it is not T0. (In fact, in (d)
rX is uncountable, but there are only six open sets and there are points p P rX such
that tpu “ rX.)

(a)
"ˆ

cos θ ´ sin θ
sin θ cos θ

˙
ˇ

ˇ

ˇ

ˇ

θ P R
*

(b)
"ˆ

1 a
0 1

˙
ˇ

ˇ

ˇ

ˇ

a P R
*

(c)
"ˆ

a b
0 1

˙
ˇ

ˇ

ˇ

ˇ

a ą 0, b P R
*

(d)
"ˆ

a 0
0 b

˙ ˇ

ˇ

ˇ

ˇ

a, b P Q∖ t0u

*

.
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4.3 Nets

As we have hinted above, sequential convergence does not play the same central
role in general topological spaces as it does in metric spaces. The reasons for this may
be illustrated by the following example. Consider the space CC of all complex-valued
functions on C, with the product topology (i.e., the topology of pointwise convergence),
and its subspace CpCq. On the one hand, by Corollary 11, if tfnu Ă CpCq and fn Ñ f
pointwise, then f is Borel measurable, so the set of limits of convergent sequences in CpCq

is a proper subset of CC. Nonetheless, CpCq is dense in CC. Indeed, if f P CC, the sets
tg P CC

| |gpxjq ´ fpxjq| ă ε for j “ 1, . . . , nu where n P Zě0, x1, . . . , xn P C, ε ą 0,

form a neighborhood base at f , and each of these sets clearly contains continuous functions.
There is, however, a generalization of the notion of sequence that works well in arbitrary

topological spaces; the key idea is to use index sets more general than Zě0. The precise
definitions are as follows.
Definition 67. A directed set is a set A equipped with a binary relation À such that

• α À α for all α P A;
• if α À β and β À γ then α À γ;
• for any α, β P A there exists γ P A such that α À γ and β À γ.

If α À β, we shall also write β Á α.
Definition 68. A net in a set X is a mapping α ÞÑ xα from a directed set A into X. We
shall usually denote such a mapping by xxαyαPA, or just by xxαy if A is understood, and
we say that xxαy is indexed by A.
Example 69. Here are some examples of directed sets:
(i) The set of positive integers Zě0, with j À k if and only if j ď k.
(ii) The set R∖ taupa P Rq, with x À y if and only if |x ´ a| ě |y ´ a|.
(iii) The set of all partitions txju

n
0 of the interval ra, bs (i.e., a “ x0 ă ¨ ¨ ¨ ă xn “ bq, with

txju
n
0 À tyku

m
0 if and only if maxpxj ´ xj´1q ě maxpyk ´ yk´1q.

(iv) The set N of all neighborhoods of a point x in a topological space X, with U À V if
and only if U Ą V . (We say that N is directed by reverse inclusion.)

(v) The Cartesian product AˆB of two directed sets, with pα, βq À pα1, β1q if and only if
α À α1 and β À β1. (This is always the way we make AˆB into a directed set.)

Examples (i)-(iii) occur in elementary analysis: A net indexed by Zě0 is just a sequence,
and the nets indexed by the sets in (ii) and (iii) occur in defining limits of real variables
and Riemann integrals. Example (iv) is of fundamental importance in topology, and we
shall see several uses of the construction in (v).
Definition 70. Let X be a topological space and E a subset of X.

A net xxαyαPA is eventually in E if there exists α0 P A such that xα P E for all
α Á α0, and xxαy is frequently in E if for every α P A there exists β Á α such that
xβ P E.
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A point x P X is a limit of xxαy (or xxαy converges to x, or xα Ñ x) if for every
neighborhood U of x, xxαy is eventually in U , and x is a cluster point of xxαy if for
every neighborhood U of x, xxαy is frequently in U .

The next three propositions show that nets are a good substitute for sequences.

Proposition 4.71: 4.18.

If X is a topological space, E Ă X, and x P X, then the following hold.
x P AccpEq ðñ there exists a net in E ∖ txu that converges to x.

x P E ðñ there exists a net in E that converges to x.

Proof. If x is an accumulation point of E, let N be the set of neighborhoods of x, directed
by reverse inclusion. For each U P N, pick xU P pU ∖ txuq XE. Then xU Ñ x. Conversely,
if xα P E ∖ txu and xα Ñ x, then every punctured neighborhood of x contains some xα,
so x is an accumulation point of E. Likewise, if xα Ñ x where xα P E, then x P E, and
the converse follows from Proposition 3.

Proposition 4.72: 4.19.

If X and Y are topological spaces, f : X Ñ Y , and x P X, then
f is continuous at x ðñ for every net xxαy converging to x, xfpxαqy converges to fpxq.

Proof. If f is continuous at x and V is a neighborhood of fpxq, then f´1pV q is a neighbor-
hood of x. Hence, if xα Ñ x then xxαy is eventually in f´1pV q, so xfpxαqy is eventually in
V , and thus fpxαq Ñ fpxq. On the other hand, if f is not continuous at x, there is a neigh-
borhood V of fpxq such that f´1pV q is not a neighborhood of x, that is, x R pf´1pV qq

˝,
or equivalently, x P f´1pV cq. By Proposition 71, there is a net xxαy in f´1pV cq that
converges to x. But then fpxαq R V , so fpxαq Û fpxq.

Definition 73. A subnet of a net xxαyαPA is a net xyβyβPB together with a map β ÞÑ αβ
from B to A satisfying the following properties.

• For every α0 P A there exists β0 P B such that αβ Á α0 whenever β Á β0.
• yβ “ xαβ .
Clearly if xxαy converges to a point x, then so does any subnet xxαβy.

Warning 4.74.

The name “subnet” is used because subnets perform much the same functions as
subsequences, but it should not be taken too literally, as the mapping β ÞÑ αβ need
not be injective. In particular, the index set B may well have larger cardinality than
the index set A, and a subnet of a sequence need not be a subsequence.
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The following example demonstrates how different subnets can be from subsequences.

Example 75. Consider txnunPZě1
, xn “ n. Then p1, 1, 2, 2, 3, 3, . . .) is a subnet of

txnunPZě1
(but not a subsequence) defined by tsϕpnqu where ϕpnq “ tpn ` 1q{2u.

Proposition 4.76: 4.20.

If xxαyαPA is a net in a topological space X and x P X, then
x is a cluster point of xxαy ðñ xxαy has a subnet converging to x.

Proof. If xyβy “ xxαβy is a subnet converging to x and U is a neighborhood of x, choose
β1 P B such that yβ P U for β Á β1. Also, given α P A, choose β2 P B such that αβ Á α
for β Á β2. Then there exists β P B with β Á β1 and β Á β2, and we have αβ Á α and
xαβ “ yβ P U . Thus xxαy is frequently in U , so x is a cluster point of xxαy. Conversely, if
x is a cluster point of xxαy, let N be the set of neighborhoods of x and make NˆA into
a directed set by declaring that pU, αq À pU 1, α1q if and only if U Ą U 1 and α À α1. For
each pU, γq P NˆA we can choose αpU,γq P A such that αpU,γq Á γ and xαpU,γq

P U . Then if
pU 1, γ1q Á pU, γq we have αpU 1,γ1q Á γ1 Á γ and xαpU 1,γ1q

P U 1 Ă U , whence it follows that
xxαpU,γq

y is a subnet of xxαy that converges to x.

Exercise 4.77: Folland Exercise 4.30.

If A is a directed set, a subset B of A is called cofinal in A if for each α P A there
exists β P B such that α À β.

(a) If B is cofinal in A and xxαyαPA is a net, the inclusion map B Ñ A makes xxβyβPB

a subnet of xxαyαPA.
(b) If xxαyαPA is a net in a topological space, then xxαy converges to x if and only if

for every cofinal B Ă A there is a cofinal C Ă B such that xxγyγPC converges to
x.

Exercise 4.78: Folland Exercise 4.31.

Let xxnynPZě0
be a sequence.

(a) If k Ñ nk is a map from Zě0 to itself, then xxnkykPZě0
is a subnet of xxny if and

only if nk Ñ 8 as k Ñ 8, and it is a subsequence (as defined in Folland Section
0.1) if and only if nk is strictly increasing in k.

(b) There is a natural one-to-one correspondence between the subsequences of xxny

and the subnets of xxny defined by cofinal sets as in Folland Exercise 4.30.
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Exercise 4.79: Folland Exercise 4.32.

A topological space X is Hausdorff if and only if every net in X converges to at most
one point. (If X is not Hausdorff, let x and y be distinct points with no disjoint
neighborhoods, and consider the directed set NxˆNy where Nx,Ny are the families of
neighborhoods of x, y.)

Exercise 4.80: Folland Exercise 4.33.

Let xxαyαPA be a net in a topological space, and for each α P A let Eα “ txβ | β Á αu.
Then x is a cluster point of xxαy if and only if x P

Ş

αPAEα.

Exercise 4.81: Folland Exercise 4.34.

If X has the weak topology generated by a family ℱ of functions, then xxαy converges
to x P X if and only if xfpxαqy converges to fpxq for all f P ℱ. (In particular, if
X “

ś

iPI Xi, then xα Ñ x if and only if πipxαq Ñ πipxq for all i P I.)

Exercise 4.82: Folland Exercise 4.35.

Let X be a set and A the collection of all finite subsets of X, directed by inclusion.
Let f : X Ñ R be an arbitrary function, and for A P A, let zA “

ř

xPA fpxq. Then the
net xzAy converges in R if and only if tx | fpxq ‰ 0u is a countable set txnunPZě0

and
ř8

1 |fpxnq| ă 8, in which case zA Ñ
ř8

1 fpxnq. (Cf. Folland Proposition 21.)

Exercise 4.83: Folland Exercise 4.36.

Let X be the set of Lebesgue measurable complex-valued functions on r0, 1s. There is
no topology 𝒯 on X such that a sequence xfny converges to f with respect to 𝒯 if and
only if fn Ñ f a.e. (Use ?? and Folland Exercise 2.30,Folland Exercise 2.31(b).)

Remark 84. The theory of nets is sometimes called the Moore-Smith theory of convergence,
after its originators. Another general theory of convergence, invented by H. Cartan and
publicized by Bourbaki, is based on the notion of filters. A filter in a set X is a family
F Ă FpXq with the following properties:

If X is a topological space, a filter F in X converges to x P X if every neighborhood
of x belongs to F. Filters and nets are related as follows. If xxαyαPA is a net in X, its
derived filter is the collection of all E Ă X such that xxαy is eventually in E. On the
other hand, if F is a filter, then F is a directed set under reverse inclusion, and a net
xxF yFPF indexed by F is said to be associated to F if xF P F for all F P F. It is then easy
to verify that a net xxαy converges to x if and only if its derived filter converges to x, and
a filter F converges to x if and only if all of its associated nets converge to x.
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4.4 Compact Spaces

In Folland Section 0.6 there are three equivalent characterizations of compactness
for metric spaces: the Heine-Borel property, the Bolzano-Weierstrass property, and
completeness plus total boundedness. Only the first two of these make sense for general
topological spaces, and it is the first one that turns out to be the most useful.

Definition 85. We call a topological space X compact if whenever tUαuαPA is an open
cover of X—that is, a collection of open sets such that X “

Ť

αPA Uα—there exists a
finite subset B of A such that X “

Ť

αPB Uα.
A subset Y of a topological space X is called compact if it is compact in the relative

topology; thus Y Ă X is compact if and only if whenever tUαuαPA is a collection of open
subsets of X with Y Ă

Ť

αPA Uα, there is a finite B Ă A with Y Ă
Ť

αPB Uα. Furthermore,
Y is called precompact if its closure is compact.

To be brief (although somewhat sylleptic, since the adjectives “open” and “finite” refer
to different things), we say “X is compact if every open cover of X has a finite subcover.”

DeMorgan’s laws lead to the following characterization of compactness in terms of
closed sets.

Definition 86. A family tFαuαPA of subsets of X is said to have the finite intersection
property if

Ş

αPB Fα ‰ ∅ for all finite B Ă A.

Proposition 4.87: 4.21.

A topological space X is compact if and only if for every family tFαuαPA of closed sets
with the finite intersection property,

Ş

αPA Fα ‰ ∅.

Proof. Let Uα “ pFαq
c. Then Uα is open,

Ş

αPA Fα ‰ ∅ if and only if
Ť

αPA Uα ‰ X, and
tFαu has the finite intersection property if and only if no finite subfamily of tUαu covers
X. The result follows.

We now list several basic facts about compact spaces.

Proposition 4.88: 4.22.

A closed subset of a compact space is compact.

Proof. If X is compact, F Ă X is closed, and tUαuαPA is a family of open sets in X with
F Ă YαPAUα, then tUαuαPA Y tF cu is an open cover of X. It has a finite subcover, so by
discarding F c from the latter if necessary, we obtain a finite subcollection of tUαuαPA that
covers F .
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Proposition 4.89: 4.23.

If F is a compact subset of a Hausdorff space X and x R F , there are disjoint open
sets U, V such that x P U and F Ă V .

Proof. For each y P F , choose disjoint open Uy and Vy with x P Uy and y P Vy. tVyuyPF is
an open cover of F , so it has a finite subcover tVyju

n
1 . Then U “

Şn
1 Uyj and V “

Ťn
1 Vyj

have the desired properties.

Proposition 4.90: 4.24.

Every compact subset of a Hausdorff space is closed.

Proof. According to Proposition 89, if F is compact then F c is a neighborhood of each of
its points,and hence is open.

Warning 4.91.

In a non-Hausdorff space, compact sets need not be closed (for example, every subset
of a space with the trivial topology is compact), and the intersection of compact sets
need not be compact; see Folland Exercise 4.37.

Remark 92. Despite Warning 91, in a Hausdorff space the intersection of any family of
compact sets is compact by Propositions 88 and 90. Moreover, in an arbitrary topological
space a finite union of compact sets is always compact. (If K1, . . . Kn are compact and
tUαu is an open cover of

Ťn
1 Kj, choose a finite subcover of each Kj and combine them.)

Proposition 4.93: 4.25.

Every compact Hausdorff space is normal.

Proof. Suppose that X is compact Hausdorff and E,F are disjoint closed subsets of X.
By Proposition 89, for each x P E there exist disjoint open sets Ux, Vx with x P Ux, F Ă Vx.
By Proposition 88, E is compact, and tUxuxPE is an open cover of E, so there is a finite
subcover tUxju

n
1 . Let U “

Ťn
1 Uxj and V “

Şn
1 Vxj . Then U and V are disjoint open sets

with E Ă U and F Ă V .

Proposition 4.94: 4.26.

If X is compact and f : X Ñ Y is continuous, then fpXq is compact.

Proof. Let tVαu be an open cover of fpXq in Y . Then tf´1pVαqu is an open cover of X,
so it has a finite subcover tf´1pVαjqu, and tVαju is then a finite subcover of fpXq.
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Corollary 4.95: 4.27.

If X is compact, then CpXq “ BCpXq.

Proposition 4.96: 4.28.

If X is compact and Y is Hausdorff, then any continuous bijection f : X Ñ Y is a
homeomorphism.

Proof. If E Ă X is closed, then E is compact, hence fpEq is compact, hence fpEq is
closed, by Propositions 88, 90 and 94. This means that f´1 is continuous, so f is a
homeomorphism.

We now show that a version of the Bolzano-Weierstrass property holds for compact
topological spaces. As one might suspect, it is merely necessary to replace sequences by
nets.

Theorem 4.97: 4.29.

If X is a topological space, the following are equivalent.
(a) X is compact.
(b) Every net in X has a cluster point.
(c) Every net in X has a convergent subnet.

Proof. The equivalence of (b) and (c) follows from Proposition 76. If X is compact and
xxαy is a net in X, let Eα “ txβ | β Á αu. Since for any α, β P A there exists γ P A
with γ Á α and γ Á β, the family tEαuαPA has the finite intersection property, so by
Proposition 87,

Ş

αPAEα ‰ ∅. If x P
Ş

αPAEα and U is a neighborhood of x, then U
intersects each Eα, which means that xxαy is frequently in U , so x is a cluster point of
xxαy. On the other hand, if X is not compact, let tUβuβPB be an open cover of X with no
finite subcover. Let A be the collection of finite subsets of B, directed by inclusion, and
for each A P A let xA be a point in p

Ť

βPA Uβq
c. Then xxAyAPA is a net with no cluster

point. Indeed, if x P X, choose β P B with x P Uβ. If A P A and A Á tβu then xA R Uβ,
so x is not a cluster point of xxAy.

We conclude by mentioning two other useful concepts related to compactness.

Definition 98. Let X be a topological space.
• We call X countably compact if every countable open cover of X has a finite

subcover.
• We call X sequentially compact if every sequence in X has a convergent subse-

quence.
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Of course, every compact space is countably compact, and for metric spaces com-
pactness and sequential compactness are equivalent. However, in general there is no
relation between compactness and sequential compactness. See Exercises Folland Exercise
4.39,Folland Exercise 4.40,Folland Exercise 4.41,Folland Exercise 4.42,Folland Exercise
4.43 for further results and examples.

Exercise 4.99: Folland Exercise 4.37.

Let 01 denote a point that is is not an element of p´1, 1q, and let X “ p´1, 1qY t01u.
Let 𝒯 be the topology on X generated by the sets p´1, aq, pa, 1q, rp´1, bq∖ t0us Y t01u,
and rpc, 1q ∖ t0us Y t01u where ´1 ă a ă 1, 0 ă b ă 1, and ´1 ă c ă 0. (One should
picture X as p´1, 1q with the point 0 split in two.)
(a) Define f, g : p´1, 1q Ñ X by fpxq “ x for all x, gpxq “ x for x ‰ 0, and gp0q “ 01.

Then f and g are homeomorphisms onto their ranges.
(b) X is T1 but not Hausdorff, although each point of X has a neighborhood that is

homeomorphic to p´1, 1q (and hence is Hausdorff).
(c) The sets

“

´1
2
, 1
2

‰

and
`“

´1
2
, 1
2

‰

∖ t0u
˘

Y t01u are compact but not closed in X, and
their intersection is not compact.

Exercise 4.100: Folland Exercise 4.38.

Suppose that pX,𝒯 q is a compact Hausdorff space and 𝒯 1 is another topology on X.
If 𝒯 1 is strictly stronger than 𝒯 , then pX,𝒯 1q is Hausdorff but not compact. If 𝒯 1 is
strictly weaker than 𝒯 , then pX,𝒯 1q is compact but not Hausdorff.

Solution. If 𝒯 is strictly stronger than 𝒯 but is compact then pX,𝒯 1q Ñ pX,𝒯 q via
x ÞÑ x is a continuous bijection of a compact space onto a Hausdorff space, hence is
a homeomorphism. But then f is a bijection of 𝒯 onto 𝒯 1, a contradiction. But 𝒯 1 is
Hausdorff, since the same separating sets from 𝒯 Ă 𝒯 1 are available for use.

If 𝒯 1 is strictly weaker then 𝒯 , then pX,𝒯 q Ñ pX,𝒯 1q via x ÞÑ x is a continuous
bijection of a compact space onto a Hausdorff space, hence is a homeomorphism, so we
reach the same contradiction as above. But pX,𝒯 1q is compact, since any open cover of X
in 𝒯 1 is an open cover of X in 𝒯 , which by compactness of pX,𝒯 q means there exists a
finite subcover.

Exercise 4.101: Folland Exercise 4.39.

Every sequentially compact space is countably compact.

Solution. Suppose for a contradiction X is sequentially compact but not countably
compact, so there exists a countable open cover tUju

8
j“1 of X without a finite subcover.
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For all j, pick

xj P X ∖
´

ďj´1

r“1
Ur

¯

.

Since X is sequentially compact, there exists a subsequence txjju
8
k“1 converging to some

x P X. But then x is not in any of the Uj , since if x P Uℓ for some ℓ then so are xjj for all
k Ï 0 (by definition of convergence), contradicting xjk`1 P X ∖ p

Ťjk´1
r“1 Urq Ă U c

k (since
then xjk P U and xjk P U c

k).

Exercise 4.102: Folland Exercise 4.40.

If X is countably compact, then every sequence in X has a cluster point. If X is also
first countable, then X is sequentially compact.

Exercise 4.103: Folland Exercise 4.41.

A T1 space X is countably compact if and only if every infinite subset of X has an
accumulation point.

Exercise 4.104: Folland Exercise 4.42.

The set of countable ordinals (see Folland Section 0.4) with the order topology (Propo-
sition 34) is sequentially compact and first countable but not compact. (To prove
sequential compactness, use Folland Proposition 20.)

Exercise 4.105: Folland Exercise 4.43.

For x P r0, 1q, let
ř8

1 anpxq2´n, where anpxq P t0, 1u be the base-2 decimal expansion
of x. (If x is a dyadic rational, choose the expansion such that anpxq “ 0 for n large.)
Then the sequence xany in t0, 1ur0,1q has no pointwise convergent subsequence. Hence
t0, 1ur0,1q, with the product topology arising from the discrete topology on t0, 1u, is
not sequentially compact. (It is, however, compact, as we shall show in next section.)

Exercise 4.106: Folland Exercise 4.44.

If X is countably compact and f : X Ñ Y is continuous, then fpXq is countably
compact.

Solution. Note that the proof of this result is the same as the classical result for compact
spaces, after replacing “open cover” with “countable open cover.” But for the sake of
completeness, we give the proof here. Consider any countable open cover, tUnunPZě1

, of
fpXq. Since f is continuous, f´1pUnq is open for each n P Zě1 so that tf´1pUnqunPZě1

is a countable open cover of X. But since X is countably compact, there exists a finite
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subcover tf´1pUnkqu
m
k“1 such that

X Ă
ďm

k“1
f´1

pUnkq “ f´1
´

ďm

k“1
Unk

¯

.

This implies that

fpXq Ă f
´

f´1
´

ďm

k“1
Unk

¯¯

Ă
ďm

k“1
Unk

hence, the finite collection tUnku
m
k“1 also covers fpXq, finishing the proof.

Exercise 4.107: Folland Exercise 4.45.

If X is normal, then X is countably compact if and only if CpXq “ BCpXq. (Use
Folland Exercise 4.40 and Folland Exercise 4.44. If xxny is a sequence in X with no
cluster point, then txn | n P Zě0u is closed, and Corollary 49 applies.)

4.5 Locally Compact Hausdorff Spaces

Definition 108.
A topological space is called locally compact if every point has a compact neighbor-

hood.

We shall be mainly concerned with locally compact Hausdorff spaces, which we call
LCH spaces.

Proposition 4.109: 4.30.

If X is an LCH space, U Ă X is open, and x P U , there is a compact neighborhood N
of x such that N Ă U .

Proof. We may assume U is compact; otherwise, replace U by U X F ˝ where F is a
compact neighborhood of x. By Proposition 89, there are disjoint relatively open sets
V,W in U with x P V and BU Ă W . Then V is open in X since V Ă U , and V is a closed
and hence compact subset of U ∖W . Thus we may take N “ V .

Proposition 4.110: 4.31.

If X is an LCH space and K Ă U Ă X where K is compact and U is open, there exists
a precompact open V such that K Ă V Ă V Ă U .

Proof. By Proposition 109, for each x P K we can choose a compact neighborhood Nx of
x with Nx Ă U . Then tN˝

xuxPK is an open cover of K, so there is a finite subcover tN˝
xju

n
1 .

Let V “
Ťn

1 N
˝
xj ; then K Ă V and V “

Ťn
1 Nxj is compact and contained in U .
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Lemma 4.111: 4.32: Urysohn’s Lemma—Locally Compact Version.

If X is an LCH space and K Ă U Ă X where K is compact and U is open, there exists
f P CpX, r0, 1sq such that f “ 1 on K and f “ 0 outside a compact subset of U .

Proof. Let V be as in Proposition 110. Then V is normal by Proposition 93, so by
Urysohn’s lemma (Theorem 47) there exists f P CpV , r0, 1sq such that f “ 1 on K and
f “ 0 on BV . We extend f to X by setting f “ 0 on V

c. Suppose that E Ă r0, 1s

is closed. If 0 R E we have f´1pEq “ pf |V q´1pEq, and if 0 P E we have f´1pEq “

pf |V q´1pEq Y V
c

“ pf |V q´1pEq Y V c since pf |V q´1pEq Ą BV . In either case, f´1pEq is
closed, so f is continuous.

Corollary 4.112: 4.33.

Every LCH space is completely regular.

Theorem 4.113: 4.34: Tietze Extension Theorem—Locally Compact Version.

Suppose that X is an LCH space and K Ă X is compact. If f P CpKq, there exists
F P CpXq such that F |K “ f . Moreover, F may be taken to vanish outside a compact
set.

The proof is similar to that of Lemma 111; details are left to the reader (Folland
Exercise 4.46).

The preceding results show that LCH spaces have a rich supply of continuous functions
that vanish outside compact sets. Let us introduce some terminology:

Definition 114. If X is a topological space and f P CpXq, the support of f , denoted
by supppfq, is the smallest closed set outside of which f vanishes, that is, the closure of
tx P X | fpxq ‰ 0u. If supppfq is compact, we say that f is compactly supported, and
we define

CcpXq “ tf P CpXq | f is compactly supportedu.

Definition 115. If f P CpXq, we say that f vanishes at infinity if for every ε ą 0 the
set tx P X | |fpxq| ě εu is compact, and we define

C0pXq “ tf P CpXq | f vanishes at infinityu.

Clearly CcpXq Ă C0pXq. Moreover, C0pXq Ă BCpXq, because for f P C0pXq the
image of the set tx | |fpxq| ě εu is compact, and |f | ă ε on its complement.

Proposition 4.116: 4.35.

If X is an LCH space, C0pXq is the closure of CcpXq in the uniform metric.

Version of April 30, 2024 at 11pm EST Page 165 of 368

https://www.greysonwesley.com/home


Greyson C. Wesley §4.5: Locally Compact Hausdorff Spaces

Proof. If tfnu is a sequence in CcpXq that converges uniformly to f P CpXq, for each
ε ą 0 there exists n P Zě0 such that }fn ´ f}u ă ε. Then |fpxq| ă ε if x R supppfnq, so
f P C0pXq. Conversely, if f P C0pXq, for n P Zě0 let Kn “ tx | |fpxq| ě n´1u. Then Kn

is compact, so by Lemma 111 there exists gn P CcpXq with 0 ď gn ď 1 and gn “ 1 on Kn.
Let fn “ gnf . Then fn P CcpXq and }fn ´ f}u ď n´1, so fn Ñ f uniformly.

If X is a noncompact LCH space, it is possible to make X into a compact space by
adding a single point “at infinity” in such a way that the functions in C0pXq are precisely
those continuous functions f such that fpxq Ñ 0 as x approaches the point at infinity.
More precisely, let 8 denote a point that is not an element of X, let X˚ “ X Y t8u, and
let 𝒯 be the collection of all subsets of X˚ such that either (i) U is an open subset of X,
or (ii) 8 P U and U c is a compact subset of X.

Proposition 4.117: 4.36.

If X,X˚, and 𝒯 are as above, then pX˚,𝒯 q is a compact Hausdorff space, and the
inclusion map i : X Ñ X˚ is an embedding. Moreover, if f P CpXq, then f extends
continuously to X˚ if and only if f “ g ` c where g P C0pXq and c is a constant, in
which case the continuous extension is given by fp8q “ c.

The proof is straightforward and is left to the reader (Folland Exercise 4.47).

Definition 118. The space X˚ is called the one-point compactification or Alexan-
droff compactification of X.

If X is a topological space, the space CX of all complex-valued functions on X can
be topologized in various ways. One way, of course, is the product topology, that is, the
topology of pointwise convergence. Another is the topology of uniform convergence, which
is generated by the sets

tg P CX
| supxPX |gpxq ´ fpxq| ă n´1

u pn P Zě0, f P CX
q.

The proof of Proposition 45 shows that CpXq is a closed subspace of CX in the
topology of uniform convergence. Intermediate between these two topologies is the
following topology.

Definition 119. If X is a topological space, then the topology of uniform convergence
on compact sets on CX is the topology generated by the sets

tg P CX
| supxPK |gpxq ´ fpxq| ă 1{n, n P Zě0, f P CX , K Ă X compactu

We shall now examine this topology in the case where X is an LCH space.

Lemma 4.120: 4.37.

If X is an LCH space and E Ă X, then E is closed if and only if E X K is closed for
every compact K Ă X.

Version of April 30, 2024 at 11pm EST Page 166 of 368

https://www.greysonwesley.com/home


Greyson C. Wesley §4.5: Locally Compact Hausdorff Spaces

Proof. If E is closed, then E X K is closed by Propositions 88 and 90. If E is not closed,
pick x P E ∖ E and let K be a compact neighborhood of x. Then x is an accumulation
point of E X K but is not in E X K, so by Proposition 3 E X K is not closed.

Proposition 4.121: 4.38.

If X is an LCH space, CpXq is a closed subspace of CX in the topology of uniform
convergence on compact sets.

Proof. If f is in the closure of CpXq, then f is a uniform limit of continuous functions
on each compact K Ă X, so f | K is continuous. If E Ă C is closed, f´1pEq X K “ pf |

Kq´1pEq is thus closed for each compact K, so by Lemma 120 f´1pEq is closed, whence
f is continuous.

A topological space X is called σ-compact if it is a countable union of compact sets.
To appreciate the significance of the next two propositions, see Folland Exercise 4.54.

Proposition 4.122: 4.39.

If X is a σ-compact LCH space, there is a sequence tUnu of precompact open sets such
that Un Ă Un`1 for all n and X “

Ť8

1 Un.

Proof. Suppose X “
Ť8

1 Kn where each Kn is compact. Every compact subset of X
has a precompact open neighborhood by Proposition 110. Thus we may take U1 to be a
precompact open neighborhood of K1, and then, proceeding inductively, take Un to be a
precompact open neighborhood of Un´1 Y Kn.

Proposition 4.123: 4.40.

If X is a σ-compact LCH space and tUnu is as in Proposition 122, then for each f P CX

the sets
tg P CX

| sup |gpxq ´ fpxq| ă 1{mu pm,n P Zě0q

form a neighborhood base for f in the topology of uniform convergence on compact
sets. Hence this topology is first countable, and fj Ñ f uniformly on compact sets if
and only if fj Ñ f uniformly on each Un.

Proof. These assertions follow easily from the observation that if K Ă X is compact, then
tUnu

8

1 is an open cover of K and hence K Ă Un for some n. Details are left to the reader.
(Folland Exercise 4.48).

We close this section with a construction that is useful in a number of situations.
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Definition 124. If X is a topological space and E Ă X, a partition of unity on E is a
collection thαuαPA of functions in CpX, r0, 1sq such that

• each x P X has a neighborhood on which only finitely many hαs are nonzero, and
•
ř

αPA hαpxq “ 1 for x P E.
A partition of unity thαu is subordinate to an open cover U of E if for each α there
exists U P U with suppphαq Ă U .

Proposition 4.125: 4.41.

Let X be an LCH space, K a compact subset of X, and tUju
n
1 an open cover of

K. There is a partition of unity on K subordinate to tUju
n
1 consisting of compactly

supported functions.

Proof. By Proposition 109, each x P K has a compact neighborhood Nx such that Nx Ă Uj
for some j. Since tN˝

xu is an open cover of K, there exist x1, . . . , xm such that K Ă
Ťm

1 Nxk .
Let Fj be the union of those Nxks that are subsets of Uj. Then Fj is a compact subset
of Uj, so by Urysohn’s lemma there exist g1, . . . , gn P CcpX, r0, 1sq with gj “ 1 on Fj and
supppgjq Ă Uj. Since the Fjs cover K we have

řn
1 gk ě 1 on K, so by Urysohn again

there exists f P CcpX, r0, 1sq with f “ 1 on K and supppfq Ă tx |
řn

1 gkpxq ą 0u. Let
gn`1 “ 1 ´ f , so that

řn`1
1 gk ą 0 everywhere, and for j “ 1, . . . , n let hj “ gj{

řn`1
1 gk.

Then suppphjq “ supppgjq Ă Uj and
řn

1 hj “ 1 on K.

A generalization of this result may be found in Folland Exercise 4.57.

Exercise 4.126: Folland Exercise 4.46.

Prove Theorem 113.

Exercise 4.127: Folland Exercise 4.47.

Prove Proposition 117. Also, show that if X is Hausdorff but not locally compact,
Proposition 117 remains valid except that X˚ is not Hausdorff.

Exercise 4.128: Folland Exercise 4.48.

Complete the proof of Proposition 123.

Exercise 4.129: Folland Exercise 4.49.

Let X be a compact Hausdorff space and E Ă X.
(a) If E is open, then E is locally compact in the relative topology.
(b) If E is dense in X and locally compact in the relative topology, then E is open.
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(Use Folland Exercise 4.13.)
(c) E is locally compact in the relative topology if and only if E is relatively open in

E.

Solution. (a) Let x P X. Since X is an LCH space and E is open in X, by Proposition 109
x has a compact neighborhood K in E. Since a compact subspace is compact in the whole
space, K is compact in X, so E is locally compact.

(b) Let x P E. Since E is locally compact in the subspace topology, there exists a
compact neighborhood K of x in E. Then K is compact in X (again since a compact
subspace is compact in the whole space). Note x P K˝ and K˝ is open in the subspace
topology E, so there exists an open set U in X such that K˝ “ U X E. K is a compact
subset of a Hausdorff space X, hence is closed in X. Then by the density of E and

x P K “ K˝ “ U X E
p29q
“ U,

so x P U Ă E, hence U is open.
(c) If E is a locally compact subspace then E is dense in E by definition, so by part

(b) E is open in E. Conversely, if E is open in E, then since E is a CH space, by part (a)
E is a locally compact subspace.

Exercise 4.130: Folland Exercise 4.50.

Let U be an open subset of a compact Hausdorff space X and U˚ its one-point
compactification (see Folland Exercise 4.49(a)). If ϕ : X Ñ U˚ is defined by ϕpxq “ x
if x P U and ϕpxq “ 8 if x P U c, then ϕ is continuous.

Exercise 4.131: Folland Exercise 4.51.

If X and Y are topological spaces, ϕ P CpX, Y q is called proper if ϕ´1pKq is compact
in X for every compact K Ă Y . Suppose that X and Y are LCH spaces and X˚ and
Y ˚ are their one-point compactifications. If ϕ P CpX, Y q, then ϕ is proper if and only
if ϕ extends continuously to a map from X˚ to Y ˚ by setting ϕp8Xq “ 8Y .

Exercise 4.132: Folland Exercise 4.52.

The one-point compactification of Rn is homeomorphic to the n-sphere tx P Rn`1 |

|x| “ 1u.

Exercise 4.133: Folland Exercise 4.53.

Lemma 120 remains true if the assumption that X is locally compact is replaced by
the assumption that X is first countable.
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Exercise 4.134: Folland Exercise 4.54.

Let Q have the relative topology induced from Q.
(a) Q is not locally compact,
(b) Q is σ-compact (it is a countable union of singleton sets), but uniform convergence

on singletons (i.e pointwise convergence) does not imply uniform convergence on
compact subsets of Q.

Exercise 4.135: Folland Exercise 4.55.

Every open set in a second countable LCH space is σ-compact.

Exercise 4.136: Folland Exercise 4.56.

Define Φ: r0,8s Ñ r0, 1s by Φptq “ t{pt ` 1q for t P r0,8q and Φp8q “ 1.
(a) Φ is strictly increasing and Φpt ` sq ď Φptq ` Φpsq.
(b) If pY, ρq is a metric space, then Φ ˝ ρ is a bounded metric on Y that defines the

same topology as ρ.
(c) If X is a topological space, the function ρpf, gq “ ΦpsupxPX |fpxq ´ gpxq|q is a

metric on CX whose associated topology is the topology of uniform convergence.
(d) If X is a σ-compact LCH space and tUnu

8

1 is as in Proposition 122, the function

ρpf, gq “
ÿ8

1
2´nΦpsupxPUn

|fpxq ´ gpxq|q

is a metric on CX whose associated topology is the topology of uniform convergence
on compact sets.

Exercise 4.137: Folland Exercise 4.57.

An open cover U of a topological space X is called locally finite if each x P X has a
neighborhood that intersects only finitely many members of U . If U, v are open covers
of X, V is a refinement of U if for each V P V there exists U P U with V Ă U . A
topological space X is called paracompact if every open cover of X has a locally
finite refinement.
(a) If X is a σ-compact LCH space, then X is paracompact. In fact, every open

cover U has locally finite refinements tVαu, tWαu such that V α is compact
and Wα Ă Vα for all α. (Let tUnu

8

1 be as in Proposition 122. For each n,
␣

E X
`

Un`2 ∖ Un´1

˘ ˇ

ˇ E Ă U
(

is an open cover of Un`1 ∖ Un. Choose a finite
subcover to obtain tVαu and mimic the beginning of the proof of Proposition 71
to obtain tWαu.)

(b) If X is a σ-compact LCH space, for any open cover U of X there is a partition of
unity on X subordinate to U and consisting of compactly supported functions.
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4.6 Two Compactness Theorems

The geometric objects on which one does analysis (Euclidean spaces, manifolds, and
so on) tend to be compact or locally compact. However, in infinite-dimensional spaces
such as spaces of functions, compactness is a rather rare phenomenon and is to be greatly
prized when it is available. Almost all compactness results in such situations are obtained
via two basic theorems, Tychonoff’s theorem and the Arzelà-Ascoli theorem, which we
present in this section.

Tychonoff’s theorem has to do with compactness of Cartesian products. To prepare
for it, we introduce some notation. Recall that an element x of X “

ś

αPAXα is, strictly
speaking, a mapping from A into

Ť

αPAXα; namely, xpαq P Xα is the αth coordinate of x,
which we generally denote by παpxq. If B Ă A, there is a natural map πB : X Ñ

ś

αPBXα;
namely, πBpxq is the restriction of the map x to B. (In particular, πtαu is essentially
identical to πα, and we shall not distinguish between them.) If p P

ś

αPBXα and
q P

ś

αPC Xα, we shall say that q is an extension of p if q extends p as a mapping, that is,
if B Ă C and ppαq “ qpαq for α P B.

Theorem 4.138: 4.42: Tychonoff’s Theorem.

If tXαuαPA is any family of compact topological spaces, then X “
ś

αPAXα (with the
product topology) is compact.

Proof. By Theorem 97, it is enough to show that any net xxiyiPI in X has a cluster point.
We shall do this by examining cluster points of the nets xπBpxiqy in the subproducts of X.
To wit, let

P “
ď

BĂA

!

p P
ź

αPB
Xα

ˇ

ˇ

ˇ
p is a cluster point of xπBpxiqy

)

P is nonempty, because each Xα is compact and so xπBpxiqy has cluster points when
B “ tαu. Moreover, P is partially ordered by extension; that is, p ď q if q is an extension
of p as defined above.

Suppose that tpl | l P Lu is a linearly ordered subset of P, where pl P
ś

αPBl
Xα. Let

B˚ “
Ť

lPLBl, and let p˚ be the unique element of
ś

αPB˚ Xα that extends every pl. We
claim that p˚ P P. Indeed, from the definition of the product topology, any neighborhood
of p˚ contains a set of the form

ś

αPB˚ Uα where each Uα is open in Xα and Uα “ Xα for all
but finitely many α, say α1, . . . , αn. Each of these αjs belongs to some Bl, so by linearity
of the ordering they all belong to a single Bl. But then

ś

αPBl
Uα is a neighborhood of pl,

so xπBlpxiqy is frequently in
ś

αPBl
Uα; hence xπB˚pxiqy is frequently in

ś

αPB˚ Uα, so p˚

is a cluster point of xπB˚pxiqy. Therefore p˚ is an upper bound for tplu in P.
By Zorn’s lemma, then, P has a maximal element p P

ś

αPBXα. We claim that B “ A.
If not, pick γ P A∖B. By Proposition 76 there is a subnet xπBpxipjqqyjPJ of xπBpxiqy that
converges to p, and since Xγ is compact, there is a subnet xπγpxipjpkqqqykPK of xπγpxipjqqy

that converges to some pγ P Xγ . Let q be the unique element of
ś

αPBYtγu
Xα that extends
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both p and pγ; then the net xπBYtγupxipjpkqqqykPK converges to q and hence q is a cluster
point of xπBYtγupxiqy, contradicting the maximality of p. Therefore p is a cluster point of
xxiy, and we are done.

We now turn to the Arzelà-Ascoli theorem, which has to do with compactness in
spaces of continuous mappings. There are several variants of this result; the theorems
below are two of the most useful ones. See also Folland Exercise 4.61.

Definition 139. If X is a topological space, x P X, and let ℱ be any subset of CpXq.
• ℱ is called equicontinuous at x if for every ε ą 0 there is a neighborhood U

of x such that |fpyq ´ fpxq| ă ε for all y P U and all f P ℱ, and ℱ is called
equicontinuous if it is equicontinuous at each x P X.

• ℱ is said to be pointwise bounded if tfpxq | f P ℱu is a bounded subset of C for
each x P X.

Theorem 4.140: 4.43: Arzelà-Ascoli Theorem I.

Let X be a compact Hausdorff space. If ℱ is an equicontinuous, pointwise bounded
subset of CpXq, then ℱ is totally bounded in the uniform metric, and the closure of ℱ
in CpXq (with respect to the uniform metric) is compact.

Proof. Suppose ε ą 0. Since ℱ is equicontinuous, for each x P X there is an open
neighborhood Ux of x such that |fpyq ´ fpxq| ă ε{4 for all y P Ux and all f P ℱ. Since
X is compact, we can choose x1, . . . , xn P X such that

Ťn
1 Uxj “ X. Then by pointwise

boundedness, tfpxjq | f P ℱ, 1 ď j ď nu is a bounded subset of C, so there is a finite set
tz1, . . . , zmu Ă C that is ε{4-dense in it—that is, each fpxjq is at a distance less than ε{4
from some zk. Let A “ tx1, . . . , xnu and B “ tz1, . . . , zmu; then the set BA of functions
from A to B is finite. For each ϕ P BA, let

ℱϕ “ tf P ℱ | |fpxjq ´ ϕpxjq| ă ε{4 for 1 ď j ď nu.

Then clearly
Ť

ϕPBA ℱϕ “ ℱ, and we claim that each ℱϕ has diameter at most ε, so we
obtain a finite ε-dense subset of ℱ by picking one f from each nonempty ℱϕ. To prove the
claim, suppose f, g P ℱϕ. Since |f ´ϕ| ă ε{4 and |g´ϕ| ă ε{4 on A, we have |f ´g| ă ε{2
on A. If x P X, we have x P Uxj for some j, and then

|fpxq ´ gpxq| ď |fpxq ´ fpxjq| ` |fpxjq ´ gpxjq| ` |gpxjq ´ gpxq| ă ε.

This shows that ℱ is totally bounded. Since the closure of a totally bounded set is totally
bounded and CpXq is complete, the theorem is proved.

Theorem 4.141: 4.44: Arzelà-Ascoli Theorem II.

Let X be a σ-compact LCH space. If tfnu is an equicontinuous, pointwise bounded
sequence in CpXq, there exist f P CpXq and a subsequence of tfnu that converges to
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f uniformly on compact sets.

Proof. By Proposition 122 there is a sequence tUku of precompact open sets such that
Uk Ă Uk`1 and X “

Ť8

1 Uk. By Theorem 140 there is a subsequence tfnju
8

j“1 of tfnu

that is uniformly Cauchy on U1; we denote it by tf 1
j u

8

j“1. Proceeding inductively, for
k P Zě0 we obtain a subsequence tfkj u

8

j“1 of tfk´1
j u

8

j“1 that is uniformly Cauchy on Uk.
Let gk “ fkk ; then tgku is a subsequence of tfnu which is (except for the first k ´ 1 terms)
a subsequence of tfkj u and hence is uniformly Cauchy on each Uk. Let f “ lim gk. Then
f P CpXq and gk Ñ f uniformly on compact sets by Propositions 121 and 123.

Exercise 4.142: Folland Exercise 4.58.

If tXαuαPA is a family of topological spaces of which infinitely many are noncompact,
then every closed compact subset of

ś

αPAXα is nowhere dense.

Exercise 4.143: Folland Exercise 4.59.

The product of finitely many locally compact spaces is locally compact.

Exercise 4.144: Folland Exercise 4.60.

The product of countably many sequentially compact spaces is sequentially compact.
(Use the “diagonal trick” as in the proof of Theorem 141.)

Exercise 4.145: Folland Exercise 4.61.

Theorem 140 remains valid for maps from a compact Hausdorff space X into a
complete metric space Y provided the hypothesis of pointwise boundedness is replaced
by pointwise total boundedness. (Make this statement precise and then prove it.)

Exercise 4.146: Folland Exercise 4.62.

Rephrase Theorem 141 in a form similar to Theorem 140 by using the metric in Folland
Exercise 4.56(d).

Exercise 4.147: Folland Exercise 4.63.

Let K P Cpr0, 1s ˆ r0, 1sq. For f P Cpr0, 1sq, let Tfpxq “
ş1

0
Kpx, yqfpyqdy. Then

Tf P Cpr0, 1sq, and tTf | }f}u ď 1u is precompact in Cpr0, 1sq.

Solution. If f “ 0 then Tf “ 0 P Cpr0, 1sq. For f ‰ 0, let ε ą 0 and choose δ ą 0 such
that |Kpz1q´Kpz2q| ă ε

}f}u
for all z1, z2 P r0, 1s2 with |z1´z2| ă δ. Then, for x1, x2 P r0, 1s
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satisfying |x1 ´ x2| ă δ,

|Tfpx1q ´ Tfpx2q| ď

ż 1

0

|Kpx1, yq ´ Kpx2, yq||fpyq| dy ď

ż 1

0

ε

}f}u
|fpyq| dy “ ε,

showing Tf P Cpr0, 1sq. For ε ą 0, choose δ ą 0 such that |Kpz1q ´ Kpz2q| ă ε for
|z1 ´ z2| ă δ. Then, for f P Cpr0, 1sq with 0 ă }f}u ď 1,

|Tfpxq| ď

ż 1

0

|Kpx, yq||fpyq| dy ď

ż 1

0

|Kpx, yq| dy,

implying tTf | }f}u ď 1u is pointwise bounded. Hence, by the Arzelà-Ascoli theorem, it
is precompact.

Exercise 4.148: Folland Exercise 4.64.

Let pX, ρq be a metric space. A function f P CpXq is called Hölder continuous of
exponent αpα ą 0q if the quantity

Nαpfq “ supx‰y

|fpxq ´ fpyq|

ρpx, yqα

is finite. If X is compact, tf P CpXq | }f}u ď 1 and Nαpfq ď 1u is compact in CpXq.

Solution. We will use the Arzelà-Ascoli theorem. Let α ą 0 and ℱ “

tf P CpXq | }f}u ď 1, Nαpfq ď 1u.
• ℱ is pointwise bounded: This is immediate because }f}u ď 1 for all f P ℱ.
• ℱ is equicontinuous: Let ε ą 0. We want δ ą 0 such that for all f P ℱ,

|fpxq ´ fpyq| ă ε whenever ρpx, x0q ă δ. For all x ‰ x0 and all f P ℱ, we have
|fpxq ´ fpx0q|

ρpx, x0qα
ď Nαpfq ď 1 ùñ |fpxq ´ fpx0q| ď ρpx, x0q

α,

so choosing δ “ ε1{α works.
Hence by Arzelà-Ascoli ℱ is precompact in CpXq with respect to the uniform norm, so it
suffices (since pCpXq, }´}uq is a metric space) to show any uniform limit of elements of ℱ
is in ℱ.

To that end suppose tfnu
8

n“1 Ă ℱ and fn Ñ f uniformly. Now f P CpXq as a uniform
limit of continuous functions, so we need to show }f}u, Nαpfq ď 1. Let ε ą 0. For all
n Ï 0 }f}u ď }fn}u ` ε “ 1 ` ε by the triangle inequality, hence }f}u ď 1.

It remains to show Nαpfq ď 1. For all sufficiently large n, by the triangle inequality
we have for all x ‰ y that

|fpxq ´ fpyq| ď |fpxq ´ fnpxq| ` |fnpxq ´ fnpyq| ` |fnpyq ´ fpyq|

ă ε{2 ` |fnpxq ´ fnpyq| ` ε{2 “ |fnpxq ´ fnpyq| ` ε ď ρpx, x0q
α

` ε,

so |fpxq ´ fpyq|{ρpx, x0q
α ď 1. Taking the supremum over all x ‰ y, we conclude

Nαpfq ď 1, hence f P ℱ. ℱ is closed with respect to the uniform norm, so since ℱ is
precompact we conclude ℱ is compact.
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Exercise 4.149: Folland Exercise 4.65.

Let U be an open subset of C, and let tfnu be a sequence of holomorphic functions
on U . If tfnu is uniformly bounded on compact subsets of U , there is a subsequence
that converges uniformly to a holomorphic function on compact subsets of U . (Use
the Cauchy integral formula to obtain equicontinuity.)

4.7 The Stone-Weierstrass Theorem

In this section we prove a far-reaching generalization of the well-known theorem of
Weierstrass to the effect that any continuous function on a compact interval ra, bs is the
uniform limit of polynomials on ra, bs. Throughout this section, X will denote a compact
Hausdorff space, and we equip the space CpXq with the uniform metric.

Definition 150. A subset A of CpX,Rq or CpXq is said to separate points if for every
x, y P X with x ‰ y there exists f P A such that fpxq ‰ fpyq.

A is called an algebra if it is a real (resp. complex) vector subspace of CpX,Rq (resp.
CpXq) such that fg P A whenever f, g P A.

If A Ă CpX,Rq,A is called a lattice if maxpf, gq and minpf, gq are in A whenever
f, g P A.

Since the algebra and lattice operations are continuous, one easily sees that if A is an
algebra or a lattice, so is its closure A in the uniform metric.

Theorem 4.151: 4.45: The Stone-Weierstrass Theorem.

Let X be a compact Hausdorff space. If A is a closed subalgebra of CpX,Rq that
separates points, then either A “ CpX,Rq or A “ tf P CpX,Rq | fpx0q “ 0u for some
x0 P X. The first alternative holds if and only if A contains the constant functions.

Before proving Theorem 151, it will be helpful to demonstrate some of its applications.

Exercise 4.152.

If f is a continuous function on r0, 1s such that
ż 1

0

xnfpxqdx “ 0, n “ 0, 1, . . . ,

then fpxq “ 0 for all x P r0, 1s.

Solution. Note first that for any polynomial, pn, that converges uniformly to f (Stone-
Weierstrass), we have that tpnfu converges to f 2 and by the DCT,

ż 1

0

f 2
pxqdx “ lim

nÑ8

ż 1

0

pnpxqfpxqdx “ 0
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by our assumption. Hence we can conclude that fpxq “ 0 for all x P r0, 1s.
We can prove a similar result for bounded, continuous functions on r1,8q with

ż 8

1

x´nfpxqdx “ 0, n “ 2, 3, 4, . . .

using the change of variables x “ u´1.

Note that the form of Stone-Weierstrass presented as Corollary 161 below is useful for
certain applications.

Exercise 4.153.

The algebra generated by r1, x2s is dense in Cpr0, 1sq.

Solution. This follows from Stone-Weierstrass since the algebra contains the constant
functions and x2 separates points in r0, 1s.

Remark 154. This is not true if we replace r0, 1s with r´1, 1s as the algebra no longer
separates points.

Exercise 4.155.

Let X be a compact subset of R. Show that CpXq is a separable metric space.

Solution. The polynomials with rational coefficients form a countable set that is dense in
the real coefficient polynomials, hence CpXq.

You can generalize this problem as follows:

Exercise 4.156.

If pX, ρq is a compact metric space, then CpXq is a separable metric space.

Solution. Since pX, ρq is a compact metric space, it is a separable metric space. Fix a
countable dense subset txnunPZě1

of X and for each n P Zě1, define fnptq “ ρpt, xnq for
every t P X. To complete the proof, consider the following:
(i) Show fnptq separates points.
(ii) Then the algebra generated by t1, f1ptq, f2ptq, . . .u is dense by Stone-Weierstrass.
(iii) Now approximate using rational coefficients instead of real coefficients.

The proof of Stone-Weierstrass (Theorem 151) will require several lemmas. The first
one, in effect, proves the theorem when X consists of two points, and the second one is
a special case of the classical Weierstrass theorem for X “ r´1, 1s. After these two we
return to the general case.
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Lemma 4.157: 4.46.

Consider R2 as an algebra under coordinate-wise addition and multiplication. Then
the only subalgebras of R2 are R2, tp0, 0qu, and the linear spans of p1, 0q, p0, 1q, and
p1, 1q.

Proof. The subspaces of R2 listed above are evidently subalgebras. If A Ă R2 is a nonzero
algebra and p0, 0q ‰ pa, bq P A, then pa2, b2q P A. If a ‰ 0, b ‰ 0, and a ‰ b, then pa, bq and
pa2, b2q are linearly independent, so A “ R2. The other possibilities—a ‰ 0 “ b, a “ 0 ‰ b,
and a “ b ‰ 0 for all nonzero pa, bq P A—give the other three subalgebras.

Lemma 4.158: 4.47.

For any ε ą 0 there is a polynomial P on R such that P p0q “ 0 and ||x| ´ P pxq| ă ε
for x P r´1, 1s.

Proof. Consider the Taylor series for p1 ´ tq1{2 about the point t “ 0:

p1 ´ tq1{2
“ 1 `

ÿ8

1

ˆ

´
1

2

˙ˆ

1

2

˙

¨ ¨ ¨

ˆ

2n ´ 3

2

˙

tn

n!
“ 1 ´

ÿ8

1
cnt

n,

where cn ą 0. By the ratio test, this series converges for |t| ă 1; a proof that its sum
is actually p1 ´ tq1{2 is outlined in Folland Exercise 4.66. Moreover, by the monotone
convergence theorem (applied to counting measure on Zě0),

ÿ8

1
cn “ lim

tÕ1

ÿ8

1
cnt

n
“ 1 ´ lim

tÕ1
p1 ´ tq1{2

“ 1.

It follows from the finiteness of
ř8

1 cn that the series 1 ´
ř8

1 cnt
n converges absolutely

and uniformly on r´1, 1s, and its sum is p1 ´ tq1{2 there. Therefore, given ε ą 0,
by taking a suitable partial sum of this series we obtain a polynomial Q such that
|p1 ´ tq1{2 ´ Qptq| ă ε{2 for t P r´1, 1s. Setting t “ 1 ´ x2 and Rpxq “ Qp1 ´ x2q, we
obtain a polynomial R such that ||x| ´ Rpxq| ă ε{2 for all x P r´1, 1s. In particular,
|Rp0q| ă ε{2, so if we set P pxq “ Rpxq ´Rp0q, then P is a polynomial such that P p0q “ 0
and ||x| ´ P pxq| ă ε for x P r´1, 1s.

Lemma 4.159: 4.48.

If A is a closed subalgebra of CpX,Rq, then |f | P A whenever f P A, and A is a lattice.

Proof. If f P A and f ‰ 0, let h “ f{}f}u. Then h maps X into r´1, 1s, so if ε ą 0 and
P is as in Lemma 158, we have }|h| ´ P ˝ h}u ă ε. Since P p0q “ 0, P has no constant
term, so P ˝ h P A since A is an algebra. Since A is closed and ε is arbitrary, we have
|h| P A and hence |f | “ }f}u|h| P A. This proves the first assertion, and the second one
follows because

maxpf, gq “
1

2
pf ` g ` |f ´ g|q, minpf, gq “

1

2
pf ` g ´ |f ´ g|q.
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Lemma 4.160: 4.49.

Suppose A is a closed lattice in CpX,Rq and f P CpX,Rq. If for every x, y P X there
exists gxy P A such that gxypxq “ fpxq and gxypyq “ fpyq, then f P A.

Proof. Given ε ą 0, for each x, y P X let Uxy “ tz P X | fpzq ă gxypzq ` εu and
Vxy “ tz P X | fpzq ą gxypzq ´ εu. These sets are open and contain x and Vxy “

tz P X | fpzq ą gxypzq ´ εu. These sets are open and contain x and y. Fix y; then
tUxy | x P Xu covers X, so there is a finite subcover tUxjyu

n
1 . Let gy “ maxpgx1y, . . . , gxnyq;

then f ă gy ` ε on X and f ą gy ´ ε on Vy “
Şn

1 Vxjy, which is open and contains
y. Thus tVyuyPX is another open cover of X, so there is a finite subcover tVyju

m
1 . Let

g “ minpgy1 , . . . , gymq; then }f ´ g}u ă ε. Since A is a lattice, g P A, and since A is closed
and ε is arbitrary, f P A.

Proof of 151. Given x ‰ y P X, let Axy “ tpfpxq, fpyqq | f P Au. Then Axy is a subalge-
bra of R2 as in Lemma 157 because f ÞÑ pfpxq, fpyqq is an algebra homomorphism. If
Axy “ R2 for all x, y, then Lemmas 159 and 160 imply that A “ CpX,Rq. Otherwise,
there exist x, y for which Axy is a proper subalgebra of R2. It cannot be tp0, 0qu or the
linear span of p1, 1q because A separates points, so by Lemma 157 Axy is the linear span
of p1, 0q or p0, 1q. In either case there exists x0 P X such that fpx0q “ 0 for all f P A.
There is only one such x0 since A separates points, so if neither x nor y is x0, we have
Axy “ R2. Lemmas 159 and 160 now imply that A “ tf P CpX,Rq | fpx0q “ 0u. Finally,
if A contains constant functions, there is no x0 such that fpx0q “ 0 for all f P A, so A

must equal CpX,Rq.

We have stated the Stone-Weierstrass theorem in the form that is most natural for the
proof. However, in applications one is typically dealing with a subalgebra B of CpX,Rq

that is not closed, and one applies the theorem to B “ B. The resulting restatement of
the theorem is as follows:

Corollary 4.161: 4.50.

Suppose B is a subalgebra of CpX,Rq that separates points. If there exists x0 P X such
that fpx0q “ 0 for all f P B, then B is dense in tf P CpX,Rq | fpx0q “ 0u. Otherwise,
B is dense in CpX,Rq.

The classical Weierstrass approximation theorem is the special case of this corollary
where X is a compact subset of Rn and B is the algebra of polynomials on Rn (restricted
to X); here B contains the constant functions, so the conclusion is that it is dense in
CpX,Rq.

Version of April 30, 2024 at 11pm EST Page 178 of 368

https://www.greysonwesley.com/home


Greyson C. Wesley §4.7: The Stone-Weierstrass Theorem

Warning 4.162.

The Stone-Weierstrass theorem, as it stands, is false for complex-valued functions, as
the following example shows.

Example 163. The algebra of polynomials in one complex variable is not dense in CpKq

for most compact subsets K of C. (In particular, if K˝ ‰ ∅, any uniform limit of
polynomials on K must be holomorphic on K˝.) Here we shall give a simple proof that
the function fpzq “ z cannot be approximated uniformly by polynomials on the unit circle
teit | t P r0, 2πsu. If P pzq “

řn
0 ajz

j, then
ż 2π

0

fpeitqP peitqdt “
ÿn

0
aj

ż 2π

0

eipj`1qtdt “ 0.

Thus, abbreviating fpeitq and P peitq by f and P , since |f | “ 1 on the unit circle we
have

2π “

ˇ

ˇ

ˇ

ˇ

ż 2π

0

ffdt

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ż 2π

0

pf ´ P qfdt

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ż 2π

0

fPdt

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż 2π

0

pf ´ P qfdt

ˇ

ˇ

ˇ

ˇ

ď

ż 2π

0

|f ´ P |dt ď 2π}f ´ P }u.

Therefore, }f ´ P }u ě 1 for any polynomial P .

There is, however, a complex version of the Stone-Weierstrass theorem.

Theorem 4.164: 4.51: The Complex Stone-Weierstrass Theorem.

Let X be a compact Hausdorff space. If A is a closed subalgebra of CpXq that
separates points and is closed under complex conjugation, then either A “ CpXq or
A “ tf P CpXq | fpx0q “ 0u for some x0 P X.

Proof. Since Re f “ pf ` fq{2 and Im f “ pf ´ fq{2i, the set AR of real and imaginary
parts of functions in A is a subalgebra of CpX,Rq to which the StoneWeierstrass theorem
applies. Since A “ tf ` ig | f, g P ARu, the desired result follows.

There is also a version of the Stone-Weierstrass theorem for noncompact LCH spaces.
We state this result for real functions; the corresponding analogue of Theorem 164 for
complex functions is an immediate consequence.

Theorem 4.165: 4.52.

Let X be a noncompact LCH space. If A is a closed subalgebra of
C0pX,Rqp“ C0pXq X CpX,Rqq that separates points, then either A “ C0pX,Rq or
A “ tf P C0pX,Rq | fpx0q “ 0u for some x0 P X.
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The proof is outlined in Folland Exercise 4.67.

Exercise 4.166.

Let 1 ´
ř8

1 cnt
n be the Maclaurin series for p1 ´ tq1{2.

(a) The series converges absolutely and uniformly on compact subsets of p´1, 1q, as
does the termwise differentiated series ´

ř8

1 ncnt
n´1. Thus, if fptq “ 1´

ř8

1 cnt
n,

then f 1ptq “ ´
ř8

1 ncnt
n´1.

(b) By explicit calculation, fptq “ ´2p1 ´ tqf 1ptq, from which it follows that p1 ´

tq´1{2fptq is constant. Since fp0q “ 1, fptq “ p1 ´ tq1{2.

Exercise 4.167: Folland Exercise 4.67.

Prove Theorem 165. (If there exists x0 P X such that fpx0q “ 0 for all f P A, let
Y be the one-point compactification of X ∖ tx0u; otherwise let Y be the one-point
compactification of X. Apply Proposition 117 and the Stone-Weierstrass theorem on
Y .)

Exercise 4.168: Folland Exercise 4.68.

Let X and Y be compact Hausdorff spaces. The algebra generated by functions of the
form fpx, yq “ gpxqhpyq, where g P CpXq and h P CpY q, is dense in CpXˆY q.

Solution. Let X, Y be CH spaces and let A be the given algebra. We want to apply
Stone-Weierstrass to A.

• A (hence A) contains constant functions, as we can set gpxq – z, hpyq – 1 for any
z P C to get fpx, yq “ z.

• A (hence A) separates points: if px, yq ‰ px1, y1q then without loss of generality
x ‰ x1, so because CH spaces are normal we can apply Urysohn’s lemma to get a
continuous g P CpXq such that gpxq ‰ gpx1q. Then set fpx, yq “ gpxq ¨ 1 (so hpyq

here is the constant function 1), in which case
fpx, yq “ gpxq ‰ gpx1

q “ fpx1, y1
q,

so A separates points.
• A is closed under complex conjugation: Because pCpXˆY q, }´}uq is a metric space,

any f P A takes form f “ limnÑ8

ř

finite zjgn,jhn,j. Since complex conjugation is
continuous,

f “ lim
nÑ8

ÿ

finite
zjgn,jhn,j “ lim

nÑ8

ÿ

finite
zjgn,jhn,j P A,

hence A is closed under complex conjugation.
Therefore, by Stone-Weierstrass, A “ CpXˆY q, so A is dense in CpXˆY q.
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Exercise 4.169: Folland Exercise 4.69.

Let A be a nonempty set, and let X “ r0, 1sA. The algebra generated by the coordinate
maps πα : X Ñ r0, 1s (α P A) and the constant function 1 is dense in CpXq.

Solution. Let A be the algebra generated by the coordinate maps πα : X Ñ r0, 1s (α P A)
and the constant function 1. Note X is compact by Tychonoff (and Hausdorff as a product
of Hausdorff spaces), so we aim to apply Stone-Weierstrass to A.

• A contains constant functions because z ¨ 1 P A for all z P C.
• A separates points: If x – txαuα and y “ tyαuα are distinct, then xα0 ‰ yα0 for

some α0. Hence πα0pxq “ xα0 “ yα0 “ πα0pyq, so since πα0 P A Ă A we know A

separates points.
• A is closed under complex conjugation: Because pCpXq, }´}uq is a metric space, the

general form of an element f P A is a limit of some tfnun“1r
8s Ă A, and each fn

finite linear combination of the form
řkn
j“1 zn,jfn,j where each fn,j is in the generating

set (the map 1 together with the coordinate maps πα), so f “ limnÑ8

řkn
j“1 zn,jfn,j.

Thus

f “ lim
nÑ8

ÿkn

j“1
zn,jfn,j “ lim

nÑ8

ÿkn

j“1

PA

zn,j
PA

fn,j
PA

,

so f P A.
Hence by Stone-Weierstrass, A “ CpXq, hence A is dense in CpXq.

Exercise 4.170: Folland Exercise 4.70.

Let X be a compact Hausdorff space. An ideal in CpX,Rq is a subalgebra J of CpX,Rq

such that if f P J and g P CpX,Rq then fg P J.
(a) If J is an ideal in CpX,Rq, let hpJq “ tx P X | fpxq “ 0 for all f P Ju. Then hpJq

is a closed subset of X, called the hull of J.
(b) If E Ă X, let kpEq “ tf P CpX,Rq | fpxq “ 0 for all x P Eu. Then kpEq is a

closed ideal in CpX,Rq, called the kernel of E.
(c) If E Ă X, then hpkpEqq “ E.
(d) If J is an ideal in CpX,Rq, then kphpJqq “ J. a

(e) The closed subsets of X are in one-to-one correspondence with the closed ideals
of CpX,Rq.

aHint: kphpJqq may be identified with a subalgebra of C0pU,Rq where U “ X ∖ hpJq.
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Exercise 4.171: Folland Exercise 4.71.

(This is a variation on the theme of Folland Exercise 4.70; it does not use the Stone-
Weierstrass theorem.) Let X be a compact Hausdorff space, and let M be the set of all
nonzero algebra homomorphisms from CpX,Rq to R. Each x P X defines an element
px of M by pxpfq “ fpxq.
(a) If ϕ P M , then tf P CpX,Rq | ϕpfq “ 0u is a maximal proper ideal in CpX,Rq.
(b) If J is a proper ideal in CpX,Rq, there exists x0 P X such that fpx0q “ 0 for all

f P J. (Suppose not; construct an f P J with f ą 0 everywhere and conclude
that 1 P J. This requires no deep theorems.)

(c) The map x Ñ px is a bijection from X to M .
(d) If M is equipped with the topology of pointwise convergence, then the map x Ñ px

is a homeomorphism from X to M . (Since M is defined purely algebraically,
it follows that the topological structure of X is completely determined by the
algebraic structure of CpX,Rq.)

5 Elements of Functional Analysis

Functional analysis is the traditional name for the study of infinite-dimensional
vector spaces over R or R and the linear maps between them. What distinguishes this from
mere linear algebra is the importance of topological considerations. On finite-dimensional
vector spaces there is only one reasonable topology, and linear maps are automatically
continuous, but in infinite dimensions things are not so simple. (As we have already
observed, if tfnu is a sequence of functions on R, there are many things one can mean by
the statement “fn Ñ f .”) As our aim in this chapter is only to give a brief introduction
to the subject, we shall restrict attention—except in §5.4—to topologies defined by norms
on vector spaces.

5.1 Normed Vector Spaces

Let K denote either R or C, and let X be a vector space over K.

Notation 1. We denote the zero element of X simply by 0, relying on context to distinguish
it from the scalar 0 P K. In this section we will always write subspace to mean a vector
subspace. If x P X, we denote by Kx the one-dimensional subspace spanned by x. Also, if
M and N are subspaces of x, M ` N denotes the subspace tx ` y | x P M, y P Nu of X.

Definition 2. A seminorm on X is a function x ÞÑ }x} from X to r0,8q such that
(i) }x ` y} ď }x} ` }y} for all x, y P X (the triangle inequality),
(ii) }λx} “ |λ|}x} for all x P X and λ P K.
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The second property implies that }0} “ 0. A seminorm such that }x} “ 0 only when x “ 0
is called a norm, and a vector space equipped with a norm is called a normed vector
space (or normed linear space).

Example 3. If X is a normed vector space, the function ρpx, yq “ }x´ y} is a metric on
X, since

}x ´ z} ď }x ´ y} ` }y ´ z}, }x ´ y} “ }p´1qpx ´ yq} “ }y ´ x}.

The topology it induces is called the norm topology on X.

Definition 4. Two norms } ¨ }1 and } ¨ }2 on X are called equivalent if there exist
C1, C2 ą 0 such that for all x P X,

C1}x}1 ď }x}2 ď C2}x}1.

Equivalent norms define equivalent metrics and hence the same topology and the same
Cauchy sequences.

Definition 5. A normed vector space that is complete with respect to the norm metric is
called a Banach space.

Remark 6. Every normed vector space can be embedded in a Banach space as a dense
subspace. One way to do this is to mimic the construction of R from R via Cauchy
sequences; a simpler way is presented in Folland Section 5.2.

Definition 7. If txnu is a sequence in x, the series
ř8

1 xn is said to converge to x if
řN

1 xn Ñ x as N Ñ 8, and it is called absolutely convergent if
ř8

1 }xn} ă 8.

The following is a useful criterion for completeness of a normed vector space.

Theorem 5.8: 5.1.

A normed vector space X is complete if and only if every absolutely convergent series
in X converges.

Proof. If X is complete and
ř8

1 }xn} ă 8, let SN “
řN

1 xn. Then for N ą M we have

}SN ´ SM} ď
ÿN

M`1
}xn} Ñ 0 as M,N Ñ 8,

so the sequence tSNu is Cauchy and hence convergent. Conversely, suppose that every
absolutely convergent series converges, and let txnu be a Cauchy sequence. We can choose
n1 ă n2 ă ¨ ¨ ¨ such that }xn ´ xm} ă 2´j for m,n ě nj . Let y1 “ xn1 and yj “ xnj ´xnj´1

for j ą 1. Then
řk

1 yj “ xnk , and
ÿ8

1
}yj} ď }y1} `

ÿ8

1
2´j

“ }y1} ` 1 ă 8

so limxnk “
ř8

1 yj exists. But since txnu is Cauchy, it is easily verified that txnu converges
to the same limit as txnku.

Example 9. We have already seen some examples of Banach spaces:
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(1) First, if X is a topological space, BpXq and BCpXq are Banach spaces with the
uniform norm }f}u “ supxPX |fpxq|.

(2) Second, if pX,M, µq is a measure space, L1pµq is a Banach space with the L1 norm
}f}1 “

ş

|f |dµ. (Observe that } ¨ }1 is only a seminorm if we think of L1pµq as
consisting of individual functions, but it becomes a norm if we identify functions that
are equal a.e.) That L1pµq is complete follows from the MCT for series (Theorem 48)
and Theorem 8. Indeed, if

ř8

1 }fn}1 ă 8, MCT for series shows that f “
ř8

1 fn
exists a.e., and

ż

ˇ

ˇ

ˇ
f ´

ÿN

1
fn

ˇ

ˇ

ˇ
dµ ď

ÿ8

N`1

ż

|fn|dµ Ñ 0 as N Ñ 8.

More examples will be found in Folland Exercise 5.8,Folland Exercise 5.9,Folland Exercise
5.10,Folland Exercise 5.11 and in subsequent sections.

Example 10. If X and Y are normed vector spaces, xˆy becomes a normed vector space
when equipped with the product norm

}px, yq} “ maxp}x}, }y}q.

(Here, of course, }x} refers to the norm on x while }y} refers to the norm on y.) Some-
times other norms equivalent to this one, such as }px, yq} “ }x} ` }y} or }px, yq} “

p}x}2 ` }y}2q
1{2, are used instead.

Definition 11. If M is a vector subspace of the vector space X, it defines an equivalence
relation on X as

x „ y ðñ x ´ y P M.

The equivalence class of x P X is denoted by X ` M, and the set of equivalence classes,
or quotient space, is denoted by X{M. X{M is a vector space with vector operations
px ` Mq ` py ` Mq “ px ` yq ` M and λpx ` Mq “ pλxq ` M. If X is a normed vector
space and M is closed, X{M inherits a norm from X called the quotient norm, namely

}x ` M} – inf
yPM

}x ` y}

See Folland Exercise 5.12 for a more detailed discussion.

Definition 12. A linear map T : X Ñ Y between two normed vector spaces is called
bounded if there exists C ě 0 such that

}Tx} ď C}x} for all x P X.

Warning 5.13.

This is different from the notion of boundedness for functions on a set, according to
which T would be bounded if }Tx} ď C for all x. Clearly no nonzero linear map can
satisfy the latter condition, since T pλxq “ λTx for all scalars λ. The present definition
means that T is bounded on bounded subsets of X.
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Proposition 5.14: 5.2.

If X and Y are normed vector spaces and T : X Ñ Y is a linear map, the following
are equivalent:
(a) T is continuous.
(b) T is continuous at 0.
(c) T is bounded.

Proof. That (a) implies (b) is trivial. If T is continuous at 0 P X, there is a neighborhood U
of 0 such that T pUq Ă ty P Y | }y} ď 1u, and U must contain a ball B “ tx P X | }x} ď δu
about 0 ; thus }Tx} ď 1 when }x} ď δ. Since T commutes with scalar multiplication,
it follows that }Tx} ď aδ´1 whenever }x} ď a, that is, }Tx} ď δ´1}x}. This shows that
(b) implies (c). Finally, if }Tx} ď C}x} for all x, then }Tx1 ´ Tx2} “ }T px1 ´ x2q} ď ε
whenever }x1 ´ x2} ď C´1ε, so that T is continuous.

Notation 15. If X and Y are normed vector spaces, we denote the space of all bounded
linear maps from X to Y by LpX, Y q.

It is easily verified that LpX, Y q is a vector space and that the function T ÞÑ }T }

defined by
}T } “ supt}Tx} | }x} “ 1u

“ sup

"

}Tx}

}x}

ˇ

ˇ

ˇ

ˇ

x ‰ 0

*

(5.15.1)

“ inftC | }Tx} ď C}x} for all xu

is a norm on LpX, Y q, called the operator norm Folland Exercise 5.2. We always assume
LpX, Y q to be equipped with this norm unless we specify otherwise.

Proposition 5.16: 5.4.

If Y is complete, so is LpX, Y q.

Proof. Let tTnu be a Cauchy sequence in LpX, Y q. If x P X, then tTnxu is Cauchy in Y
because }Tnx ´ Tmx} ď }Tn ´ Tm}}x}. Define T : X Ñ Y by Tx “ limTnx. We leave it
to the reader (Folland Exercise 5.3) to verify that T P LpX, Y q (in fact, }T } “ lim}Tn})
and that }Tn ´ T } Ñ 0.

Example 17. Another useful property of the operator norm is the following. If T P

LpX,T q and S P LpY, Zq, then for each x P X

}STx} ď }S}}Tx} ď }S}}T }}x},

so that ST P LpX,Zq and }ST } ď }S}}T }. In particular, LpX,Xq is an algebra. If X is
complete, LpX,Xq is in fact a Banach algebra, which is defined as a Banach space that
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is also an algebra, such that the norm of a product is at most the product of the norms.
(Another example of a Banach algebra is BCpXq, where X is a topological space, with
pointwise multiplication and the uniform norm.)

Definition 18. If T P LpX, Y q, T is said to be invertible, or an isomorphism, if T is
bijective and T´1 is bounded (in other words, }Tx} ě C}x} for some C ą 0). T is called
an isometry if }Tx} “ }x} for all x P X.

Warning 5.19.

An isometry is injective but not necessarily surjective; it is, however, an isomorphism
onto its range.

Exercise 5.20: Folland Exercise 5.1.

If X is a normed vector space over Kp“ R or R), then addition and scalar multiplication
are continuous from XˆX and KˆX to X. Moreover, the norm is continuous from
X to r0,8q; in fact, |}x} ´ }y}| ď }x ´ y} for each x, y P X.

Exercise 5.21: Folland Exercise 5.2.

LpX, Y q is a vector space and the function } ¨ } defined by Equation (5.15.1) is a norm
on it. In particular, the three expressions on the right of Equation (5.15.1) are always
equal.

Exercise 5.22: Folland Exercise 5.3.

Complete the proof of Proposition 16.

Exercise 5.23: Folland Exercise 5.4.

If X, Y are normed vector spaces, the map pT, xq ÞÑ Tx is continuous from LpX, Y qˆX
to Y . (That is, if Tn Ñ T and xn Ñ x then Tnxn Ñ Tx.)

Exercise 5.24: Folland Exercise 5.5.

If X is a normed vector space, the closure of any subspace of X is a subspace.

Exercise 5.25: Folland Exercise 5.6.

Suppose that X is a finite-dimensional vector space. Let e1, . . . , en be a basis for X,
and define }

řn
1 ajej}1 “

řn
1 |aj|.

(a) } ¨ }1 is a norm on X.
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(b) The map pa1, . . . , anq ÞÑ
řn

1 ajej is continuous from Kn with the usual Euclidean
topology to X with the topology defined by } ¨ }1.

(c) tx P X | }x}1 “ 1u is compact in the topology defined by } ¨ }1.
(d) All norms on X are equivalent. (Compare any norm to } ¨ }1.)

Solution. Let x, y P X.
(1) We have }x}1 “ 0 ô each |xi| “ 0 ô each xi “ 0. For λ P K, we have that

}λx}1 “
ř

|λxi|ei “
ř

|λ||xi|ei “ |λ|
ř

|xi|ei “ |λ|}x}1; finally, }x ` y}1 “
ř

|xi `

yi|ei ď
ř

|xi|ei `
ř

|yi|ei “ }x}1 ` }y}1.
(2) Let δ “ ε{n. Then max1ďiďn |aj´bj| ď }pa1´b1, . . . , an´bnq} ă ε{n, so

řn
1 |aj´bj| ă

řn
1 ε{n “ ε.

(3) pX, } ¨ }1q is a normed space, so since we’ve shown for normed spaces that a closed
and bounded subset is compact if and only if the space is finite-dimensional, it
suffices to show that Ub – oloneqtx P X | }x}1 “ 1u is closed and bounded in X; Ub
is obviously bounded, so it suffices to show that it is closed. Let y P X be in U c

b .
Then we have that }y}1 ‰ 1, so there’s some ε ą 0 for which }y ´ y1}1 ą ε for each
y1 P Ub. Therefore, there’s an open neighborhood of y also contained in U c

b (since any
x P X has Bεpyq Ñ }y ´ x}1 ă ε Ñ x R Ub Ñ x P U c

b ). It follows that U c
b is open, so

its complement Ub is closed in X, which gives the result per our initial remarks.
(4) Any constant makes the claimed inequality work for x “ 0, so we will only work

with nonzero x P X henceforth. Let } ¨ }2 : X Ñ r0,8q be an arbitrary norm
on X. Notice that }x}2 “ }

řn
1 xjej} ď

řn
1 }xjej} ď

řn
1 |xj|}ej} ď C2}x}1, where

C2 – max1ďiďnt}ei}u. We now need C1 for which C1}x}1 ď }x}2 for all x P X. Any
arbitrary norm } ¨ }2 on X is continuous on X. Indeed, this is clear from settings
δ “ ε{C2 and following the logical progression in (b) to establish continuity of } ¨ }1,
which works because we have established that }¨}2 since }¨}2 ď C2}¨}2. We now define
F : X Ñ r0,8q by F pxq “ }x}2, which is continuous by the above argument. We then
observe that F |Ub is a continuous function on a compact set, so since Ub is compact by
part (c), we have that F |Ub has and achieves its extrema. It follows that there exists
some point q P Ub for which }q}2 ď }u}2 for any u P Ub. Now, fix some arbitrary norm
} ¨ }n and nonzero x P X. Here we will argue that }px{}x}nq}n “ 1. This warrants
justification: observe that }px{}x}nq}n “ |p1{}x}nq|}x}n “ p1{}x}nq}x}n “ 1, as }x}n

is positive (since x ‰ 0 ô }x}n ą 0) and so its reciprocal is positive, warranting
the penultimate equality here. We can therefore conclude that for any x P X,
}px{}x}1q}1 “ 1, and thus x{}x}1 P Ub. We now put everything together. For all
u P Ub we now have two things: (i) }q}1 “ }u}1 “ 1, and (ii) }q}2 ď }u}2. It follows
from (ii) that }u}1}q}2 ď p1q}u}2 “ }u}2, so since for each x P X we have by the
above argument that x{}x}1 P Ub, we conclude that }px{}x}1q}1}q}2 ď }px{}x}1q}2.
But we can multiply both sides by }x}1 ą 0, giving the result }x}1C1 ď }x}2, where
C1 – oloneq}q}2.
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This completes the proof.

Exercise 5.26: Folland Exercise 5.7.

Let X be a Banach space.
(a) If T P LpX,Xq and }I ´ T } ă 1 where I is the identity operator, then T is

invertible; in fact, the series
ř8

0 pI ´ T qn converges in LpX,Xq to T´1.
(b) If T P LpX,Xq is invertible and }S ´ T } ă }T´1}

´1, then S is invertible. Thus
the set of invertible operators is open in LpX,Xq.

Solution.
(1) X is a Banach space, so LpX,Xq is also a Banach space.

ř8

k“0pI ´ T qk is absolutely
convergent because

ÿ8

k“0
}pI ´ T q

k
} ď

ÿ8

k“0
}I ´ T }

k

is a geometric series with ratio }I ´ T }op ă 1 as given. Therefore
ř8

k“0pI ´ T qk

converges to some S P LpX,Xq. Fix ε ą 0. Then for sufficiently large n we have
}S ´

řn
k“0pI ´ T qk} ă ε, and

}S ´ I ´ SpI ´ T q} “ }S ´
ÿN`1

k“0
pI ´ T q

k
`
ÿN`1

k“1
pI ´ T q

k
´ SpI ´ T q}

ď }S ´
ÿN`1

k“0
pI ´ T q

k
} ` }

ÿN`1

k“1
pI ´ T q

k´1
pI ´ T q ´ SpI ´ T q}

ă ε ` }p
ÿN

k“0
pI ´ T q

k
´ SqpI ´ T q}op

ď ε ` ε}I ´ T }op ă 2ε

It follows that }S ´ I ´ SpI ´ T q} “ 0, so S ´ I “ SpI ´ T q “ S ´ ST and hence
ST “ I. Similarly, }S ´ I ´ pI ´ T qS} “ 0, so TS “ I, giving T´1 “ S, S as above,
as claimed.

(2) We have
}I ´ T´1S} “ }T´1S ´ I} “ }T´1S ´ T´1T }

ď }T´1
}}S ´ T } ă }T´1

}}T´1
}

´1
“ 1,

so it follows from part (a) that T´1S is invertible, and in particular that S is invertible,
and tracing back we find where W is the inverse of T´1S that S´1 “ WT´1. Hence
operators in B1{}T´1}pT q are also invertible for all T P LpX,Xq. Thus the set of
invertible T P LpX,Xq is open.

Exercise 5.27: Folland Exercise 5.8.

Let pX,Mq be a measurable space, and let MpXq be the space of complex measures
on pX,Mq. Then }µ} “ |µ|pXq is a norm on MpXq that makes MpXq into a Banach
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space. (Use Theorem 8.)

Exercise 5.28: Folland Exercise 5.9.

Let Ckpr0, 1sq be the space of functions on r0, 1s possessing continuous derivatives up
to order k on r0, 1s, including one-sided derivatives at the endpoints.
(a) If f P Cpr0, 1sq, then f P Ckpr0, 1sq if and only if f is k times continuously

differentiable on p0, 1q and limxŒ0 f
pjqpxq and limxÕ1 f

pjqpxq exist for j ď k. (The
mean value theorem is useful.)

(b) }f} “
řk

0}f pjq}u is a norm on Ckpr0, 1sq that makes Ckpr0, 1sq into a Banach space.
(Use induction on k. The essential point is that if tfnu Ă C1pr0, 1sq, fn Ñ f
uniformly, and f 1

n Ñ g uniformly, then f P C1pr0, 1sq and f 1 “ g. The easy way
to prove this is to show that fpxq ´ fp0q “

şx

0
gptqdt.)

Exercise 5.29: Folland Exercise 5.10.

Let L1
kpr0, 1sq be the space of all f P Ck´1pr0, 1sq such that f pk´1q is absolutely

continuous on r0, 1s (and hence f pkq exists a.e. and is in L1pr0, 1sq). Then }f} “
řk

0

ş1

0
|f pjqpxq|dx is a norm on L1

kpr0, 1sq that makes L1
kpr0, 1sq into a Banach space.

(See Folland Exercise 5.9 and its hint.)

Exercise 5.30: Folland Exercise 5.11.

If 0 ă α ď 1, let Λαpr0, 1sq be the space of Hölder continuous functions of exponent α
on r0, 1s. That is, f P Λαpr0, 1sq if and only if }f}Λα ă 8, where

}f}Λα “ |fp0q| ` supx,yPr0,1s,x‰y

|fpxq ´ fpyq|

|x ´ y|α
.

(a) } ¨ }Λα is a norm that makes Λαpr0, 1sq into a Banach space.
(b) Let λαpr0, 1sq be the set of all f P Λαpr0, 1sq such that

|fpxq ´ fpyq|

|x ´ y|α
Ñ 0 as x Ñ y, for all y P r0, 1s.

If α ă 1, λαpr0, 1sq is an infinite-dimensional closed subspace of Λαpr0, 1sq. If
α “ 1, λαpr0, 1sq contains only constant functions.

Exercise 5.31: Folland Exercise 5.12.

Let X be a normed vector space and M a proper closed subspace of X.
(a) }x ` M} “ inft}x ` y} | y P Mu is a norm on X{M.
(b) For any ε ą 0 there exists x P X such that }x} “ 1 and }x ` M} ě 1 ´ ε.
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(c) The projection map πpxq “ x ` M from X to X{M has norm 1.
(d) If x is complete, so is x{M. (Use Theorem 8.)
(e) The topology defined by the quotient norm is the quotient topology as defined in

Folland Exercise 4.28.

Exercise 5.32: Folland Exercise 5.13.

If } ¨ } is a seminorm on the vector space X, let M “ tx P X | }x} “ 0u. Then M is a
subspace, and the map x ` M ÞÑ }x} is a norm on X{M.

Exercise 5.33: Folland Exercise 5.14.

If X is a normed vector space and M is a non-closed subspace, then }x`M}, as defined
in Folland Exercise 5.12, is a seminorm on X{M. If one divides by its nullspace as in
Folland Exercise 5.13, the resulting quotient space is isometrically isomorphic to x{M.
(See Folland Exercise 5.5.)

Exercise 5.34: Folland Exercise 5.15.

Suppose that X and Y are normed vector spaces and T P LpX, Y q. Let NpT q “

tx P X | Tx “ 0u.
(a) NpT q is a closed subspace of X.
(b) There is a unique S P LpX{NpT q, yq such that T “ S ˝ π where π : X Ñ X{M is

the projection (see Folland Exercise 5.12). Moreover, }S} “ }T }.

Exercise 5.35: Folland Exercise 5.16.

The purpose of this exercise is to develop a theory of integration for functions with
values in a separable Banach space. The integral we will develop is called the Bochner
integral. Let pX,M, µq be a measure space, Y a separable Banach space, and LY
the space of all pM, BY q-measurable maps from X to Y and FY the set of maps
f : X Ñ Y of the form fpxq “

řn
1 χEjpxqyj where n P Zě1, yj P Y , Ej P M, and

µpEjq ă 8. If f P LY , since y ÞÑ }y} is continuous Folland Exercise 5.1, x ÞÑ }fpxq}

is pM,BZě1q-measurable, and we define }f}1 “
ş

}fpxq}dµpxq. Finally, let L1
Y “

tf P Ly | }f}1 ă 8u.
(a) LY is a vector space, FY and L1

Y are subspaces of it, FY Ă L1
Y , and } ¨ }1 is a

seminorm on L1
Y that becomes a norm if we identify two functions that are equal

a.e.
(b) Let tynu

8

1 be a countable dense set in Y . Given ε ą 0, let Bε
n “

ty P Y | }y ´ yn} ă ε}yn}u. Then
Ť8

1 B
ε
n Ą Y ∖ t0u.
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(c) If f P L1
Y , there is a sequence thnu Ă Fy with hn Ñ f a.e. and }hn ´ f}1 Ñ 0.

(With notation as in (b), let Anj “ B1{j
n ∖

Ťn´1
m“1B

1{j
m and Enj “ f´1pAnjq, and

consider gj “
ř8

n“1 ynχEnj .)
(d) There is a unique linear map

ş

: L1
Y Ñ Y such that

ş

yχE “ µpEqy for y P Y and
E P MpµpEq ă 8q, and

›

›

ş

f
›

› ď }f}1.
(e) The dominated convergence theorem: If tfnu is a sequence in L1

Y such that fn Ñ f
a.e., and there exists g P L1 such that }fnpxq} ď gpxq for all n and a.e. x, then
ş

fn Ñ
ş

f .
(f) If Z is a separable Banach space, T P Lpy, Zq, and f P L1

Y , then T ˝ f P L1
z and

ş

T ˝ f “ T
`ş

f
˘

.

5.2 Linear Functionals

Let X be a vector space over K, where K “ R or R. A linear map from X to K
is called a linear functional on X. If X is a normed vector space, the space LpX,Kq

of bounded linear functionals on X is called the dual space of X and is denoted by X˚.
According to Proposition 16„ X˚ is a Banach space with the operator norm.

If X is a vector space over C, it is also a vector space over C, and we can consider
both real and complex linear functionals on X, that is, maps f : X Ñ C that are linear
over C and maps f : X Ñ C that are linear over C. The relationship between the two is
as follows:

Proposition 5.36: 5.5.

Let X be a vector space over C. If f is a complex linear functional on X and u “ Re f ,
then u is a real linear functional, and fpxq “ upxq ´ iupixq for all x P X. Conversely,
if u is a real linear functional on X and f : X Ñ C is defined by fpxq “ upxq ´ iupixq,
then f is complex linear. In this case, if X is normed, we have }u} “ }f}.

Proof. If f is complex linear and u “ Re f, u is clearly real linear and Im fpxq “

´Rerifpxqs “ ´upixq, so fpxq “ upxq ´ iupixq. On the other hand, if u is real
linear and fpxq “ upxq ´ iupixq, then f is clearly linear over R, and fpixq “

upixq ´ iup´xq “ upixq ` iupxq “ ifpxq, so f is also linear over R. Finally, if x is
normed, since |upxq| “ |Re fpxq| ď |fpxq| we have }u} ď }f}. On the other hand, if
fpxq ‰ 0, let α “ sgn fpxq. Then |fpxq| “ αfpxq “ fpαxq “ upαxq (since fpαxq is real),
so |fpxq| ď }u}}αx} “ }u}}x}, whence }f} ď }u}.

It is not obvious that there are any nonzero bounded linear functionals on an arbitrary
normed vector space. The fact that such functionals exist in great abundance is one of
the fundamental theorems of functional analysis. We shall now present this result in a
more general form that has other important applications.
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Definition 37. If X is a real vector space, a sublinear functional on X is a map
p : X Ñ R such that for all x, y P X and all λ ě 0,

• ppx ` yq ď ppxq ` ppyq and
• ppλxq “ λppxq.

For example, every seminorm is a sublinear functional.

Theorem 5.38: 5.6: The Hahn-Banach Theorem.

Let X be a real vector space, p a sublinear functional on X, M a subspace of X, and
f a linear functional on M such that fpxq ď ppxq for all x P M. Then there exists a
linear functional F on X such that F pxq ď ppxq for all x P X and F |M “ f .

Proof. We prove the theorem by induction. Pick x P X ∖M .
• Step 1: Extend f from M to a linear functional on g : M ‘ Rx Ñ R: We have for all
y1, y2 P M that

fpy1q ` fpy2q “ fpy1 ` y2q ď ppy1 ` y2q ď ppy1 ´ xq ` ppx ` y2q.

Note that there’s some α such that
supyPMtfpyq ´ ppy ´ xqu ď α ď inf

yPM
tppx ` yq ´ fpyqu.

Then let g : M ‘ Rx Ñ R by gpy ` λxq – oloneqfpyq ` λα. Clearly g is linear and
extends f .

• Step 2: Show that g preserves the bound: For any λ ą 0 and y P M we have
gpy ` λxq “ λfpy{λq ` λpppx ` y{λq ´ fpy{λqq (since λ ‰ 0), and then multiply
through, cancel, and use positive homogeneity to get that this is “ ppy ` λxq, and
hence ppy ` λxq ď gpy ` λxq for all positive λ.

Similarly, for each λ ă 0 and y P M we have gpy ` λxq “ |λ|fpy{|λ|q ´

|λ|pfpy{|λ|q ´ ppx ` y{|λ|qq, and as we multiply through and cancel to get this is
“ ppy ` λxq, so gpy ` λxq ď ppy ` λxq for negative λ as well. Therefore, for all
y P M ‘ Rx, we have gpyq ď ppyq.

• Step 3: Invoke Zorn’s lemma to get F P X˚ preserving the bound on all of X: Let
ℱ be the family of all linear extensions F of f such that F ď p on the domain of
f . Then equip ℱ with the partial ordering ă such that F1 ă F2 if and only if f2
extends F1. Observe that every linearly ordered subset ℱ0 Ă ℱ is bounded above by
just taking F ˚ with domain

Ť

FPℱ0
pdomain of F q, and F ˚pxq – oloneqF pxq for all

x in the domain of F (where F P ℱ0). We are then done by Kuratowski-Zorn.

If p is a seminorm and f : X Ñ R is linear, the inequality f ď p is equivalent to the
inequality |f | ď p, because |fpxq| “ ˘fpxq “ fp˘xq and pp´xq “ ppxq. In this situation
the Hahn-Banach theorem also applies to complex linear functionals:
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Theorem 5.39: 5.7: The Complex Hahn-Banach Theorem.

Let x be a complex vector space, p a seminorm on X,M a subspace of X, and f a
complex linear functional on M such that |fpxq| ď ppxq for x P M. Then there exists a
complex linear functional F on x such that |F pxq| ď ppxq for all x P X and F |M “ f .

Proof. Let u “ Re f . By ?? there is a real linear extension U of u to X such that
|Upxq| ď ppxq for all x P X. Let F pxq “ Upxq ´ iUpixq as in Proposition 36. Then F is a
complex linear extension of f , and as in the proof of Proposition 36, if α “ sgnF pxq, we
have |F pxq| “ αF pxq “ F pαxq “ Upαxq ď ppαxq “ ppxq.

Warning 5.40.

From now on until Folland Section 5.5, all of our results apply equally to real or
complex vector spaces, but for the sake of definiteness we shall assume that the scalar
field is C.

The principal applications of the Hahn-Banach theorem to normed vector spaces are
summarized in the following theorem.

Theorem 5.41: 5.8.

Let X be a normed vector space.
(a) If M is a closed subspace of X and x P X ∖M, there exists f P X˚ such that

fpxq ‰ 0 and fM “ 0. In fact, if δ “ infyPM }x ´ y}, f can be taken to satisfy
}f} “ 1 and fpxq “ δ.

(b) If x ‰ 0 P X, there exists f P X˚ such that }f} “ 1 and fpxq “ }x}.
(c) The bounded linear functionals on X separate points.
(d) If x P X, define px : X˚ Ñ C by pxpfq “ fpxq. Then the map x ÞÑ px is a linear

isometry from X into X˚˚ (the dual of X˚).

Proof. To prove (a), define f on M ` Cx by fpy ` λxq “ λδpy P M, λ P Cq. Then
fpxq “ δ, fM “ 0, and for λ ‰ 0, |fpy ` λxq| “ |λ|δ ď |λ|}λ´1y ` x} “ }y ` λx}. Thus the
Hahn-Banach theorem can be applied, with ppxq “ }x} and M replaced by M ` Cx. (b)
is the special case of (a) with M “ t0u, and (c) follows immediately: if x ‰ y, there exists
f P X˚ with fpx ´ yq ‰ 0, i.e., fpxq ‰ fpyq. As for (d), obviously px is a linear functional
on X˚ and the map x ÞÑ px is linear. Moreover, |pxpfq| “ |fpxq| ď }f}}x}, so }px} ď }x}.
On the other hand, (b) implies that }px} ě }x}.

With notation as in Theorem 41(d), let pX “ tpx | x P Xu. Since X˚˚ is always complete,
the closure px of px in X˚˚ is a Banach space, and the map x ÞÑ px embeds x into pX as a
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dense subspace. px is called the completion of X. In particular, if X is itself a Banach
space then pX “ pX.

If X is finite-dimensional, then of course pX “ X˚˚, since these spaces have the
same dimension. For infinite-dimensional Banach spaces it may or may not happen that
pX “ X˚˚; if it does, x is called reflexive. The examples of Banach spaces we have examined
so far are not reflexive except in trivial cases where they turn out to be finite-dimensional.
We shall prove some cases of this assertion and present examples of reflexive Banach
spaces in later sections.

Notation 42. Usually we shall identify pX with X and thus regard X˚˚ as a superspace
of X; reflexivity then means that X˚˚ “ X.

Exercise 5.43: Folland Exercise 5.17.

A linear functional f on a normed vector space X is bounded if and only if f´1pt0uq is
closed. (Use Folland Exercise 5.12(b).)

Solution.
ñ A linear function f on a normed F-vector space is bounded if and only if it is

continuous, so f is continuous. Hence, f´1pt0uq is closed since t0u is closed (since
the topological space F is T1).

ð Conversely, let f´1pt0uq be closed. M “ t0u is a closed subspace of X, so by Folland’s
Theorem 41, we have that for any x R M (i.e., x ‰ 0), there’s an fx P X˚ such that
fpxq ‰ 0 and f |M “ 0 (i.e., fp0q “ 0). In fact, if δ “ infyPM }x ´ y} (i.e., δ “ }x}X),
then fx can be taken to satisfy }fx} “ 1 and fxpxq “ δ. By 12(b), there’s an x P X
with unit norm and }x ` f´1pt0uq} ě 1 ´ 1

2
“ 1

2
. Then for any x P X{f´1pt0uq and

any y P X{pf´1pt0uq ‘ Cxq, we have

y “
fpyq

fpxq
x `

ˆ

y ´
fpyq

fpxq
x

˙

P Cx ` f´1
pt0uq “ f´1

pt0uq ‘ Cx,

so X “ f´1pt0uq ‘ Cx. But for any x P X, we already know there’s y P f´1pt0uq

with
|fpλx`yq| “ |λ||fpxq| ď 2|λ|}x`f´1

pt0uq}|fpxq| ď 2|λ|}x`y{λ}|fpxq| “ 2|fpxq|}λx`y},

forcing the boundedness of f as desired.

Exercise 5.44: Folland Exercise 5.18.

Let X be a normed vector space.
(a) If M is a closed subspace and x P X ∖M then M ` Cx is closed. (Use Folland

Exercise 5.8(a).)
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(b) Every finite-dimensional subspace of X is closed.

Exercise 5.45: Folland Exercise 5.19.

Let X be an infinite-dimensional normed vector space.
(a) There is a sequence txju in X such that }xj} “ 1 for all j and }xj ´ xk} ě 1

2

for j ‰ k. (Construct xj inductively, using Folland Exercise 5.12(b) and Folland
Exercise 5.18.)

(b) X is not locally compact.

Exercise 5.46: Folland Exercise 5.20.

If M is a finite-dimensional subspace of a normed vector space X, there is a closed
subspace N such that M X N “ t0u and M ` N “ X.

Exercise 5.47: Folland Exercise 5.21.

If X and Y are normed vector spaces, define α : X˚ ˆY ˚ Ñ pxˆyq˚ by αpf, gqpx, yq “

fpxq `gpyq. Then α is an isomorphism which is isometric if we use the norm }px, yq} “

maxp}x}, }y}q on xˆy, the corresponding operator norm on pxˆyq˚, and the norm
}pf, gq} “ }f} ` }g} on X˚ ˆY ˚.

Exercise 5.48: Folland Exercise 5.22.

Suppose that X and Y are normed vector spaces and T P LpX, Y q.
(a) Define T : : Y ˚ Ñ X˚ by T :f “ f ˝ T . Then T : P LpY ˚, X˚q and }T :} “ }T }.T :

is called the adjoint or transpose of T .
(b) Applying the construction in (a) twice, one obtains T :: P LpX˚˚, y˚˚q. If x and y

are identified with their natural images px and py in X˚˚ and y˚˚, then T :: | x “ T .
(c) T : is injective if and only if the range of T is dense in y.
(d) If the range of T : is dense in X˚, then T is injective; the converse is true if X is

reflexive.

Exercise 5.49: Folland Exercise 5.23.

Suppose that X is a Banach space. If M is a closed subspace of X and N is a closed sub-
space of X˚, let M0 “ tf P X˚ | fM “ 0u and NK “ tx P X | fpxq “ 0 for all f P Nu.
(Thus, if we identify x with its image in X˚˚,NK “ N0 X X.)
(a) M0 and NK are closed subspaces of X˚ and X, respectively.
(b) pM0q

K
“ M and pNKq

0
Ą N. If X is reflexive, pNKq

0
“ N.
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(c) Let π : X Ñ X{M be the natural projection, and define α : pX{Mq˚ Ñ X˚ by
αpfq “ f ˝ π. Then α is an isometric isomorphism from pX{Mq˚ onto M0, where
X{M has the quotient norm.

(d) Define β : X˚ Ñ M˚ by βpfq “ fM; then β induces a map β : X˚{M0 Ñ M˚ as
in Folland Exercise 5.15, and β is an isometric isomorphism.

Solution. (a)M0 and NK are closed subspaces of X˚ and X, respectively. M0 is a subspace
since 0|M “ 0 and if f |M , g|M “ 0 then for any α P C pαf ` gqpMq “ αfpMq ` gpMq “ 0.
Now take a Cauchy sequence tfnu Ă M0. Since C is Banach, so is X˚ by Proposition 16.
Then tfnu Ñ f P X˚. Then f |M “ limnÑ8 fn|M ” 0 so f P M0.

NK is a subspace since 0 P ker f for any f P X˚ and if x, y P NK then for any
α P C, f P N , fpαx ` yq “ αfpxq ` fpyq “ 0 by linearity of f and definition of NK. Now
take Cauchy txnu Ă NK, txnu Ñ x P X since X is Banach. Now since any f P N Ă X˚

is linear fplimxnq “ lim fpxnq ” 0 so x P NK.
(b) First we show pM0qK Ď M . Suppose x P M0K. Then x P XfPM0 kerpfq. If

y P X ∖M then there is some g P X˚ s.t. g|M “ 0 and fpyq “ 1 since M is closed
using Theorem 41(a). But then y R XfPM0 kerpfq, so x P M . Now we show M Ď pM0qK.
Suppose x P M . Then x P XfPM0 kerpfq ” M0K.

We can see by expanding the definition that clearly N Ă NK0
“

tx P X|x P XfPN kerpfqu0 “ tg P X˚ | gpxq “ 0 @ xs.t.x P XfPN kerpfqu since for any f P

N , fpxq “ 0 for every x in its kernel. Now suppose X is reflexive and we work to show
NK0

Ă N . Fix g P NK. For the sake of contradiction suppose g P X˚ ∖N . Then since
N is closed, by Theorem 41(a) there is some px P pX˚q˚ “ X (by reflexivity) such that
px|N “ 0 but pxpgq ‰ 0. Then by the natural isomorphism between X,X˚˚, fpxq “ 0 for
every f P N but gpxq ‰ 0, therefore g R NK0.

(c) We first check that this defines an isomorphism. Given g P im f there is some
f P pX{Mq˚ s.t. g “ f ˝ π and so g|M “ 0 since π|M “ 0 and so g P M0. Given f P M0,
fpx ` Mq “ fpxq ` fpMq “ fpxq by linearity and definition of M0 so f P imα by taking
the the map in pX{Mq˚ agreeing with f on x.

To show isometry, we show that ||αpfq|| “ ||f || for every f P pX{Mq˚. First note that
||π|| “ 1:

||π|| ď
||πpxq||

||x||
“ inf

yPM

||x ` y||

||x||
ď

||x||

||x||
“ 1

Where we used the definition of the quotient norm and the triangle inequality. By definition
of quotient norm if z R M then ||πpzq|| “ ||z|| since z is linearly independent from M ,
thus ||π|| “ 1 since 1 is attained in the supremum of the operator norm.

Now ||αpfq|| “ ||f ˝ π|| ď ||π||||f || “ ||f || by sublinearity of the operator norm. If
f P pX{Mq˚ then for any x̃ “ x ` M P X, x P X{M , we have

||fpxq|| “ ||fpπpx̃qq|| ď ||f ˝ π|| ||x̃||
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by the sublinearity of operator norm. This inequality holds taking the infimum over M in
x̃ and so by the definition of the quotient norm and α, ||fpxq|| ď ||αpfq|| ||x||. Rearranging
we have ||f || “

||fpxq||

||x||
ď ||αpfq|| and thus equality.

Exercise 5.50: Folland Exercise 5.24.

Suppose that X is a Banach space.
(a) Let px, pX˚q be the natural images of x,X˚ in X˚˚, x˚˚˚, and let px0 “

tF P X˚˚˚ | F | pX “ 0u. Then pX˚q X px0 “ t0u and pX˚q
2

` px0 “ x˚˚˚.
(b) x is reflexive if and only if X˚ is reflexive.

Exercise 5.51: Folland Exercise 5.25.

If X is a Banach space and X˚ is separable, then X is separable. (Let tfnu
8

1 be
a countable dense subset of X˚. For each n choose xn P X with }xn} “ 1 and
|fnpxnq| ě 1

2
}fn}. Then the linear combinations of txnu

8

1 are dense in X.) Note:
Separability of X does not imply separability of X˚.

Exercise 5.52: Folland Exercise 5.26.

Let X be a real vector space and let P be a subset of x such that (i) if x, y P P , then
x ` y P P , (ii) if x P P and λ ě 0, then λx P P , (iii) if x P P and ´x P P , then x “ 0.
(Example: If X is a space of real-valued functions, P can be the set of nonnegative
functions in x.)
(a) The relation ď defined by x ď y if and only if y ´ x P P is a partial ordering on

X.
(b) (The Klein Extension Theorem) Suppose that M is a subspace of X such that

for each x P X there exists y P M with x ď y. If f is a linear functional on M

such that fpxq ě 0 for x P M X P , there is a linear functional F on x such that
F pxq ě 0 for x P P and FM “ f . (Consider ppxq “ inftfpyq | y P M and x ď yu.)

5.3 The Baire Category Theorem and its Consequences

In this section we present an important theorem about complete metric spaces and
use it to obtain some fundamental results concerning linear maps between Banach spaces.

If X is a topological space, a set E Ă X is of the first category , or meager, if E is
a countable union of nowhere dense sets (equivalently, a countable intersection of open
dense sets); otherwise E is of the second category . The complement of a meager set is
called generic or residual. It is useful to think of generic sets as corresponding to the
situation of a typical set, and to think of meager sets as the exceptional situation.

Note 53.
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(1) E is closed and nowhere dense if and only if Ec is open and dense.
(2) The countable union of meager sets is a meager set, and the countable intersection

of generic sets is generic.
(3) Any dense open set is generic (for example, interiors) (by (1)).
(4) Thus, the notions of “big” and “small” captured by the Lebesgue measure does not

transfer to meager or generic sets: there are meager (exceptional) subsets of r0, 1s

with Lebesgue measure 1, and in particular uncountable subsets of r0, 1s, and there
exist generic subsets of r0, 1s of Lebesgue measure 0, as the following example shows.

Let txkuk be an enumeration of the rationals in r0, 1s, and consider

E –
č8

k“1

ď8

k“1

ˆ

rk ´
1

2kn
, rk `

1

2kn

˙

open and dense, hence generic

.

Then E is a countable intersection of generic sense, and hence is generic. In addition,
E has Lebesgue measure 0.

The Baire category theorem is often used to prove existence results: One shows that
objects having a certain property exist by showing that the set of objects (within a suitable
complete metric space) is generic. For example, one can prove the existence of nowhere
differentiable continuous functions in this way; see Folland Exercise 5.42.

Theorem 5.54: 5.9: The Baire Category Theorem (BCT).

Let X be a complete metric space.
(a) If tUnu

8

1 is a sequence of open dense subsets of X, then
Ş8

1 Un is dense in X.
(b) X is not a countable union of nowhere dense sets, that is, X is of the second

category in itself.

Proof. For part (a), we must show that if W is a nonempty open set in X, then W
intersects

Ş8

1 Un. Since U1 XW is open and nonempty, it contains a ball Bpr0, x0q, and we
can assume that 0 ă r0 ă 1. For n ą 0, we choose xn P X and rn P p0,8q inductively as
follows: Having chosen xj and rj for j ă n, we observe that UnXBprn´1, xn´1q is open and
nonempty, so we can choose xn, rn so that 0 ă rn ă 2´n andBprn, xnq Ă UnXBprn´1, xn´1q.
Then if n,m ě N , we see that xn, xm P BprN , xNq, and since rn Ñ 0, the sequence txnu

is Cauchy. As X is complete, x “ limxn exists. Since xn P BprN , xNq for n ě N we have
x P BprN , xNq Ă UN X Bpr1, x1q Ă UN X W

for all N , and the proof is complete. As for (b), if tEnu is a sequence of nowhere dense
sets in X, then

␣`

En

˘c( is a sequence of open dense sets. Since X
`

En

˘c
‰ ∅, we have

Ť

En Ă
Ť

En ‰ X.

Note 55 (Strengthenings of Baire Category Theorem).
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• We remark that since the conclusions of the Baire category theorem are purely
topological, it suffices for X to be homeomorphic to a complete metric space. For
example, the theorem applies to X “ p0, 1q, which is not complete with the usual
metric but is homeomorphic to R.

• The Baire category theorem is also true for LCH spaces. (This is Folland Exercise
5.28.) Note that there exist complete metric spaces that are not LCH spaces and
vice versa, so one is not a special case of the other. The proof is almost the same
but part (a) has a slight modification as follows: Let B0 be a nonempty open set in
X, and choose nonempty open sets Bn inductively so that Bn Ă Un X Bn´1. If X is
LCH, then we can take Bn to be compact, and by compactness we have K “

Ş

Bn is
nonempty. Since K Ă Un X Bn for all n, pB0 X

Ş

Unq ‰ ∅.

5.3.1 First Applications of the Baire Category Theorem

Corollary 5.56.

In a complete metric space, generic sets are dense.

Proof. Suppose E is a generic subset that is not dense. Then there exists a closed ball
B Ă Ec “

Ť8

n“1 Fn, where each Fn is nowhere dense. But then B “
Ť8

n“1pFn X Bq is a
countable union of nowhere dense sets, contradicting the Baire category theorem (applied
to B).

Theorem 5.57.

If X is a complete metric space and tfn : X Ñ Cu a sequence of continuous functions
such that limnÑ8 fnpxq “ fpxq for all x P X, then the set E of points in X where f is
continuous is a generic set.

Proof. First, we observe that E is a Gδ-set (a countable intersection of open sets). Fix
x P X and define the oscillation of f at x as

oscf pxq – lim
rŒ0

supy,zPBrpxq|fpyq ´ fpzq|.

This is well-defined, as the limit exists—indeed, supy,zPBrpxq|fpyq ´ fpzq| is nonnegative
(hence bounded below by 0) and decreasing as r decreases.

Note that oscf pxq “ 0 if and only if x P E. Moreover, for every ε ą 0,
tx P X | oscf pxq ă εu is open. Indeed, if oscf pxq ă ε, then there exists r ą 0 such
that |fpyq ´ fpzq| ă ε for all y, z P Brpxq, so by the triangle inequality Bpx, r{2q Ă

tx P X | oscf pxq ă εu. Then E “
Ş8

n“1tx P X | oscf pxq ă 1{nu is a Gδ-set, as claimed.
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Now Ec “
Ť8

n“1 tx P X | oscf pxq ě 1{nu

—Fn

“
Ť8

n“1 Fn. Note that each Fn is closed

(their complements are open). We now show that each Fn has empty interior, so that Ec

is meager.

Lemma 5.58.

For every open ball B Ă X and ε ą 0, there exists an open ball B0 Ă B and some
m P Zě1 such that |fpxq ´ fmpxq| ă ε for all x P B.

Proof. Take a closed ball Y Ă B and let Eℓ “ tx P Y | supj,kěℓ|fjpxq ´ fkpxq| ď εu. Then
Y “

Ť8

ℓ“1Eℓ, since tfkpxqu converges for every x. Since Y is closed it is a complete metric
space, so by the Baire category theorem Em is not nowhere dense. Thus there exists an open
ball B0 Ă Em “ Em, where closure is by continuity of the fks. Thus |fjpxq ´ fkpxq| ď ε
for all x P B whenever j, k ě m. Letting k Ñ 8 yields |fjpxq ´ fpxq| ď ε for all x P B,
j ě m. This proves the lemma.

Finally, we show each Fn above has empty interior. Suppose that some Fn does not
have empty interior, and take an open ball B Ă Fn. Apply the lemma with ε “ 1{4n to
obtain an oen ball B0 Ă B and an integer m ě 1 such that |fpxq ´ fnpxq| ă 1{4n for all
x P B0. By continuity, there exists a ball B1

0 Ă B0 such that |fnpyq ´ fmpzq| ă 1{4n for
all y, z P B1

0 (since fm is continuous). Therefore, if y, z P B1
0, then

|fpyq ´ fpzq| ď |fpyq ´ fmpyq| ` |fmpyq ´ fmpzq| ` |fmpzq ´ fpzq|

ď
1

4n
`

1

4n
`

1

4n
“

3

4n
ă

1

n
.

Thus oscf px1q ă 1{n, where x1 is the center of B1
0. This means x1 R Fn, a contradiction

since x1 P B1
0 Ă B0 Ă B Ă Fn

Example 59. Does there exist a function on R that is
(a) continuous precisely at the irrationals?
(b) continuous precisely at the rationals?

For (a) the answer is yes, and and an example of such a function is the stars over
babylon function, (also called the Thomae function, or the popcorn function),
which is given by

fpxq “

#

1
q

if x “ p{q is rational in lowest terms (with q ą 0) ,
0 otherwise.

For (b) the answer is no: There does not exist a function on R that is continuous precisely
at the rationals, since Q is not a Gδ-set. Indeed, suppose to the contrary that Q “

Ş8

n“1 Un
for open sets Un. Since each Un contains Q (which is dense), each Un is dense; thus by
assumption Q “

Ş8

n“1 is an intersection of dense open sets Un. Then U c
n is closed and
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does not contain any rationals, so U c
n is nowhere dense. Let txnu be an enumeration of

the rationals. Then R “
Ť8

n“1pU c
n Y txnuq is a countable union of nowhere dense sets.

The Baire category theorem can also be used to show that the typical element of
Cpr0, 1sq is nowhere differentiable, in the sense that the set of all such functions is generic:

Theorem 5.60: Banach.

The set of nowhere differentiable functions in Cpr0, 1sq is generic.

Proof. It suffices to show the set
D :“ tf P Cpr0, 1sq | f 1 exists somewhereu

is meager. Define

Cn –

!

f P Cpr0, 1sq

ˇ

ˇ

ˇ

there exists xPr0,1´1{ns such that
|
fpx`hq´fpxq

h |ďn for all hPp0,1{nq

)

.

First we show D Ă
Ť8

2 Cn: Indeed, if this weren’t the case, then there exists some
f P

Ş8

2 C
c
n such that f 1 exists somewhere. But then for each n ě 2 and all x P r0, 1´ 1{ns,

there is some h P p0, 1{nq for which the difference quotient is larger than n, meaning no
real number could be the limit of the difference quotient as h Ñ 0, i.e. f 1 doesn’t exist.
This contradicts the definition of D, so D must be contained in the union

Ť8

2 Cn.
We now show that Cn is closed for each n. Indeed, fix n P N and pick some tfku

8

k“1 Ă Cn
and some f P Cn such that limkÑ8 fk “ f. with respect to the uniform norm } ¨ }8. Now,
because fk Ă Cn for each k, there’s some subsequence of points txku

8

k“1 Ă r0, 1s such that
ˇ

ˇ

ˇ

ˇ

fkpxk ` hq ´ fkpxkq

h

ˇ

ˇ

ˇ

ˇ

ď n

whenever h P p0, 1{nq.
Now, txku

8

k“1 is a sequence of real numbers that are bounded (they’re in the interval
r0, 1sq, so there is some convergent subsequence, say txkmu

8

m“1, that converges to, say
x0 P r0, 1s. Moreover, note that becausefk Ñ f in the uniform norm, we have that
fkm Ñ f in the uniform norm as well.

We now claim that |fpx0 ` hq ´ fpx0q| ď hn for any h P p0, 1{nq: Fix ε ą 0 and
h P p0, 1{nq. Choose m sufficiently large such that

}fkm ´ f}8 ă εh{4,

|fpxkmq ´ fpx0q| ă εh{4,

|fpxkm ` hq ´ fpx0 ` hq| ă εh{4.

Then we have that
|fpx0 ` hq ´ fpx0q| ď |fpx0 ` hq ´ fpxkm ` hq| ` |fpxkm ` hq ´ fkmpxkm ` hq|

` |fkmpxkm ` hq ´ fkmpxkmq| ` |fkmpxkmq ´ fpxkmq|

` |fpxkmq ´ fpx0q|
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ă εh{4 ` εh{4 ` εh{4 ` εh{4 ` nh

“ hpn ` εq,

which goes to nh as ε Œ 0.
Finally, we claim that Cn has empty interior for each n. Fix n P N. Suppose for a

contradiction it wasn’t empty—then there’s some f P Cn and an ε ą 0 such that
B}¨}8

ε pfq Ă Cn.

By Stone-Weierstrass, there’ a polynomial p with }f ´ p}8 ą 0 such that Bδppq Ă

Bqεpfq Ă Cn for some δ ą 0. Now we construct a continuous function φ so that }φ}8 ă δ
and for which φ1

`pxq, the right-hand derivative of φ at x, exists for each x P r0, 1q

and is such that |φ1
`pxq| ą n ` }f 1}8. Then φ ` p P Bδppq, and for all x P r0, 1q we

have |pφ ` pq1
`pxq| “ |φ1

`pxq ` p1
`pxq| ě |φ1

`pxq| ´ }p}8 ą n, which implies φ ` p R Cn,
contradicting that φ` p P BδppqpĂ Cnq. Hence the interior or Cn must be empty for each
n.

From this it follows that D Ă
Ť8

2 Cn is a countable union of nowhere dense sets, so it
is nowhere dense by the Baire category theorem, meaning its complement is generic.

5.3.2 Applications of Baire Category Theorem to Linear Maps

We turn to the applications of the Baire category theorem in the theory of linear maps.
Some terminology:
If X and Y are topological spaces, a map f : X Ñ Y is called open if fpUq is open in

Y whenever U is open in X.
If X and Y are metric spaces, amounts to requiring that if B is a ball centered at

x P X, then fpBq contains a ball centered at fpxq.
If X and Y are in particular normed vector spaces and f is linear, then f commutes

with translations and dilations; it follows that f is open if and only if fpBq contains a
ball centered at 0 in Y when B is the ball of radius 1 about 0 in X.

Theorem 5.61: 5.10: The Open Mapping Theorem.

If X and Y are Banach spaces, then surjective bounded maps T P LpX, Y q are open.

Proof. Let Br denote the (open) ball of radius r about 0 in X. By the preceding remarks,
it will suffice to show that T pB1q contains a ball about 0 in Y . Since X “

Ť8

1 Bn and
T is surjective, we have Y “

Ť8

1 T pBnq. But Y is complete and the map y ÞÑ ny is a
homeomorphism of Y that maps T pB1q to T pBnq, so by Baire’s category theorem T pB1q

cannot be nowhere dense (since complete metric spaces are non-meager—that is, not of
the first category—in themselves). That is, there exist y0 P y and r ą 0 such that the ball
Bp4r, y0q is contained in T pB1q. Pick y1 “ Tx1 P T pB1q

y “ Tx1 ` py ´ y1q P T px1 ` B1q Ă T pB2q.
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Dividing both sides by 2, we conclude that there exists r ą 0 such that if }y} ă r then
y P T pB1q. If we could replace T pB1q by T pB1q, perhaps shrinking r at the same time,
the proof would be complete; we now proceed to accomplish this.

Since T commutes with dilations, it follows that if }y} ă r2´n, then y P and proceeding
inductively, we can find xn P B2´n such that }y ´

řn
1 Txj} ă r2´n´1. Since X is complete,

by Theorem 8 the series
ř8

1 xn converges, say to x. But then }x} ă
ř8

1 2´n “ 1 and
y “ Tx. In other words, T pB1q contains all y with }y} ă r{2, so we are done.

Corollary 5.62: 5.11: The (Bounded) Inverse Mapping Theorem.

If X and Y are Banach spaces and T P LpX, Y q is bijective, then T is an isomorphism;
that is, T´1 P LpY,Xq.

Proof. If T is bijective, continuity of T´1 is equivalent to the openness of T .

For the next results we need some more terminology. If X and Y are normed vector
spaces and T is a linear map from X to Y , we define the graph of T to be

ΓpT q “ tpx, yq P XˆY | y “ Txu

which is a subspace of XˆY . (From a strict set-theoretic point of view, of course, T and
ΓpT q are identical; the distinction is a psychological one.) We say that T is closed if
ΓpT q is a closed subspace of XˆY .

Clearly, if T is continuous, then T is closed, and if X and Y are complete the converse
is also true:

Theorem 5.63: 5.12: The Closed Graph Theorem.

If X and Y are Banach spaces and T : X Ñ Y is a closed linear map, then T is
bounded.

Note 64. Energy is not bounded, but wants to be symmetric, hence not everywhere defined
by uncertainty principle. Unbdd symmetric operators cannot be everywhere defined. Thus
you need unbounded operators such that the domain is not the enetire space but a dense
subspace. And we are kind of forced into that by this theorem.

here. The proof is to write T as a composition of two bounded operators. Let π1 and
π2 be the projections of ΓpT q onto X and Y , that is, π1px, Txq “ x and π2px, Txq “ Tx.
Obviously π1 P LpΓpT q, xq and π2 P LpΓpT q, yq. Since X and Y are complete, so is XˆY ,
and hence so is ΓpT q since T is closed. The map π1 is a bijection from ΓpT q to X, so by
Corollary 62, π´1

1 is bounded. But then T “ π2 ˝ π´1
1 is bounded.

Remark 65. Continuity of a linear map T : X Ñ Y means that if xn Ñ x then Txn Ñ Tx,
whereas closedness means that if xn Ñ x and Txn Ñ Y then y “ Tx. Thus the significance
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of the closed graph theorem is that in verifying that Txn Ñ Tx when xn Ñ x, we may
assume that Txn converges to something, and we need only to show that the limit is the
right thing. This frequently saves a lot of trouble.

The completeness of x and y was used in a crucial way in proving the open mapping
theorem and hence also in proving the closed graph theorem. In fact, the conclusions of
both of these theorems may fail if either x or y is incomplete; see Folland Exercise 5.29,
Folland Exercise 5.30, and Folland Exercise 5.31.

Our final result in this section is a theorem of almost magical power that allows one
to deduce uniform estimates from pointwise estimates in certain situations.

Theorem 5.66: 5.13: The Uniform Boundedness Principle.

Suppose that X and Y are normed vector spaces and A is a subset of LpX, Y q.
(a) If supTPA }Tx} ă 8 for all x in some nonmeager subset ofX, then supTPA }T } “ 8.

8.
(b) If X is a Banach space and supTPA }Tx} ă 8 for all x P X, then supTPA }T } “ 8.

Proof. Let
En “ tx P X | supTPA }Tx} ď nu “

č

TPA
tx P X | }Tx} ď nu.

Then the Ens are closed, so under the hypothesis of (a) some En must contain a nontrivial
closed ball Bpr, x0q. But then E2n Ą Bpr, 0q, for if }x} ď r, then x ´ x0 P En and hence

}Tx} ď }T px ´ x0q} ` }Tx0} ď 2n.

In other words, }Tx} ď 2n whenever T P A and }x} ď r, so supTPA }T } ď 2n{r. This
proves (a), and (b) follows by the Baire category theorem.

Corollary 5.67.

Let X and Y be Banach spaces and tTnu8
n“1 Ă LpX, Y q such that limnÑ8 Tnx exists

for all x P X. Then define T : X Ñ Y by
Tx “ lim

nÑ8
Tnx.

Then T P LpX, Y q.

Proof. The hypothesis of the UBP are satisfied, so there exist M ą 0 (independent
of n such that }Tnx} ď M}X}q for all x P X. Then }Tx} ď }Tx ´ Tnx} ` }Tnx} ď

}Tx ´ Tnx} ` M}x}. Letting n Ñ 8, we obtain }Tx} ď M}x} for all x P X.

Exercise 5.68: Folland Exercise 5.27.

There exist meager subsets of R whose complements have Lebesgue measure zero.
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Exercise 5.69: Folland Exercise 5.28.

The Baire category theorem remains true if X is assumed to be an LCH space rather
than a complete metric space. (The proof is similar; the substitute for completeness is
Proposition 87.)

Solution. [here] See Note 55.

Exercise 5.70: Folland Exercise 5.29.

Let Y “ L1pµq where µ is counting measure on Zě1, and let x “

tf P Y |
ř8

1 n|fpnq| ă 8u, equipped with the L1 norm.
(a) X is a proper dense subspace of Y ; hence X is not complete.
(b) Define T : X Ñ Y by Tfpnq “ nfpnq. Then T is closed but not bounded.
(c) Let S “ T´1. Then S : Y Ñ X is bounded and surjective but not open.

Solution. Let K denote R or C. As µ is the counting measure on Zě1, we can make the
identifications

Y “

!

tanu

ˇ

ˇ

ˇ
an P K and

ÿ8

1
|an| ă 8

)

and
X “

!

tanu

ˇ

ˇ

ˇ
an P K and

ÿ8

1
n|an| ă 8

)

.

(a) – X is properly contained in Y : First noteX is contained in Y , since if
ř8

1 n|an| ă

8 then
ř8

1 n|an| ă 8. The containment is proper, since the sequence an “ 1{n2

has tanu8
n“1 P Y ∖X. Hence X Ĺ Y .

– X is a linear subspace of Y : Let tanu, tbnu P X and λ P K. Then for any
N P Zě1,

ÿN

1
n|an ` λbn| ď

ÿN

1
pn|an| ` n|bn|q `

ÿN

1
n|an| `

ÿN

1
n|bn|.

Sending n Ñ 8, we obtain
ÿ8

1
n|an ` λbn| ď

ÿ8

1
n|an| `

ÿ8

1
n|bn| ă 8,

where the last inequality is because tanu, tbnu P X. Hence tλan ` bnu P X, so
X is a linear subspace.

– X is dense in Y : Since simple functions are dense in Y “ L1pµq, it suffices to
show X contains all simple functions in L1pµq. So let g “ tbnu P L1pµq be a
simple function, that is, g “

řN
1 zjχEj for finitely many Ej P PpZě1q. Note

that there exist at most finitely many n P Zě1 such that bn ‰ 0: indeed, if there
exists k P t1, . . . , Nu such that both zj ‰ 0 and Ek is an infinite set, then

8 “
ÿ8

ℓ“1
ckµpEkq ď

ÿ8

ℓ“1
cℓpEℓq “

ż

g dµ,
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contradicting g P L1pµq. Thus
ş

g “
ř8

n“1 n|bn| is a finite sum, and hence is
finite. It follows that g P Y , so Y is dense in X.

(b) – T is not bounded: Fix an arbitrary m P Zě1 and define fmpnq “ 1 if m “ n
and fmpnq “ 0 otherwise. Then

ř

n n|fmpnq| “ n ă 8, so fm P X. But
}Tfm} “

ř

n n|Tfmpnq| “
ř

n n
2|fmpmq| “ m2 “ m}fn}, so }T }op ď m. But m

was an arbitrary nonnegative integer, so }T }op “ 8. Hence T is not bounded.
– T is closed: Suppose fpnq Ñ f in X and Tfpnq Ñ g in Y . We claim Tf “ g.

First fix ε ą 0. By our assumption, for all sufficiently large N we have
ř8

n“N n|fpnq| ă ε{4,
ř8

n“N |gpnq| ă ε{4, }g ´ Tfn} ă ε{4, and }f ´ fn} ă ε
4N

.
Then for all sufficiently large m and N , we have
ÿ8

n“1
|Tfpnq´Tfmpnq| “

ÿN´1

n“1
|nfpnq´nfmpnq|`

ÿ8

n“N
|nfpnq´Tfmpnq|

ă
ÿN´1

n“1
|fpnq ´ fmpnq| ` ε{4 `

ÿ8

n“N
|Tfmpnq ´ gpnq| `

ÿ8

n“N
|gpnq| ă ε,

so Tfn Ñ Tf in L1. Since Tfpnq Ñ g by assumption, we conclude by uniqueness
of limits in a normed (hence Hausdorff) vector space (namely, L1pµq) that
Tf “ g.

(c) Fix f P Y . Then Sfpnq “ n´1fpnq for any n P Zě1, so

}Sf} “
ÿ8

n“1
n´1

|fpnq| ď
ÿ8

n“1
|fpnq| “ }f}.

Thus }S}op ď 1, so S is bounded. And S is surjective, since any tanu P X is the image
under S of the sequence

␣

an
n

(

(since if
ř

n|an| ă 8 then in particular
ř

1
n

|an| ă 8,
meaning tan

n
u P Y ). Lastly, if S were open, then T “ S´1 is continuous, which

contradicts part (b). Thus S is not an open map, as claimed.

Exercise 5.71: Folland Exercise 5.30.

Let Y “ Cpr0, 1sq and X “ C1pr0, 1sq, both equipped with the uniform norm.
(a) x is not complete.
(b) The map pd{dxq : X Ñ Y is closed (see Folland Exercise 5.9) but not bounded.

Exercise 5.72: Folland Exercise 5.31.

Let X, y be Banach spaces and let S : X Ñ Y be an unbounded linear map (for the
existence of which, see Folland Section 5.6). Let ΓpSq be the graph of S, a subspace of
xˆy.
(a) ΓpSq is not complete.
(b) Define T : X Ñ ΓpSq by Tx “ px, Sxq. Then T is closed but not bounded.
(c) T´1 : ΓpSq Ñ X is bounded and surjective but not open.
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Exercise 5.73: Folland Exercise 5.32.

Let } ¨ }1 and } ¨ }2 be norms on the vector space X such that } ¨ }1 ď } ¨ }2. If X is
complete with respect to both norms, then the norms are equivalent.

Exercise 5.74: Folland Exercise 5.33.

There is no slowest rate of decay of the terms of an absolutely convergent series; that
is, there is no sequence tanu of positive numbers such that

ř

an|cn| ă 8 if and only
if tcnu is bounded. (The set of bounded sequences is the space BpZě1q of bounded
functions on Zě1, and the set of absolutely summable sequences is L1pµq where µ is
counting measure on Zě1. If such an tanu exists, consider T : BpZě1q Ñ L1pµq defined
by Tfpnq “ anfpnq. The set of f such that fpnq “ 0 for all but finitely many n is
dense in L1pµq but not in BpZě1q.)

Solution. The linear operator T : pX, }´}2q Ñ pX, }´}1q defined by Tx – x is bounded,
since by hypothesis }Tx}1 “ }x}1 ď }x}2 for all x P X. Since T is a bijection of sets,
T´1 P LppX, }´}1q, pX, }´}2qq by the bounded inverse mapping theorem. Hence there
exists C2 ą 0 such that }x}2 “ }T´1x}2 ď C}x}1. Thus

}x}1 ď }x}2 ď C}x}1

for all x P X, so }´}1 and }´}2 are equivalent.

Exercise 5.75: Folland Exercise 5.34.

With reference to Folland Exercise 5.9 and Folland Exercise 5.10, show that the
inclusion map of L1

kpr0, 1sq into Ck´1pr0, 1sq is continuous (a) by using the closed graph
theorem, and (b) by direct calculation. (This is to illustrate the use of the closed graph
theorem as a labor-saving device.)

Exercise 5.76: Folland Exercise 5.35.

Let X and Y be Banach spaces, T P LpX, Y q,NpT q “ tx | Tx “ 0u, and M “ range
pT q. Then X{NpT q is isomorphic to M if and only if M is closed. (See Folland Exercise
5.15.)

Exercise 5.77: Folland Exercise 5.36.

Let X be a separable Banach space and let µ be counting measure on Zě1. Suppose
that txnu

8

1 is a countable dense subset of the unit ball of X, and define T : L1pµq Ñ

X by Tf “
ř8

1 fpnqxn.
(a) T is bounded.
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(b) T is surjective.
(c) X is isomorphic to a quotient space of L1pµq. (Use Folland Exercise 5.35.)

Exercise 5.78: Folland Exercise 5.37.

Let X and Y be Banach spaces. If T : X Ñ Y is a linear map such that f ˝ T P X˚

for every f P Y ˚, then T is bounded.

Solution. Suppose xn Ñ x and Txn Ñ y. We claim y “ Tx. On one hand, by continuity
of f we have

lim
nÑ8

f ˝ T pxnq “ f
´

lim
nÑ8

Txn

¯

“ fpyq.

On the other hand, f ˝ T P X˚ by hypothesis, so in particular f ˝ T is continuous; hence

lim
nÑ8

f ˝ T pxnq “ f ˝ T
´

lim
nÑ8

xn

¯

“ f ˝ T pxq.

Thus
fpyq “ f ˝ T pxq for all y P Y ˚. (5.78.1)

It follows that y “ Tx, since otherwise there exists f P Y ˚ such that fpyq ‰ fpTxq

(since by a corollary to the Hahn-Banach theorem X˚ separates points), contradicting
Equation (5.78.1). It then follows that the graph of T is closed, so by the closed graph
theorem T is bounded.

Exercise 5.79: Folland Exercise 5.38.

Let X and Y be Banach spaces, and let tTnu be a sequence in LpX, Y q such that
limTnx exists for every x P X. Let Tx “ limTnx; then T P LpX, Y q.

Exercise 5.80: Folland Exercise 5.39.

Let x, y, z be Banach spaces and let B : xˆy Ñ z be a separately continuous bilinear
map; that is, Bpx, ¨q P Lpy, zq for each x P X and Bp¨, yq P LpX,Zq for each y P Y .
Then B is jointly continuous, that is, continuous from xˆy to z. (Reduce the problem
to proving that }Bpx, yq} ď C}x}}y} for some C ą 0.)

Exercise 5.81: Folland Exercise 5.40: The Principle of Condensation of
Singularities.

Let X and Y be Banach spaces and tTjk | j, k P Zě1u Ă LpX, Y q. Suppose that for
each k there exists x P X such that supt}Tjkx} | j P Nu “ 8. Then there is an x
(indeed, a residual set of xs) such that supt}Tjkx} | j P Zě1u “ 8 for all k.
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Exercise 5.82: Folland Exercise 5.41.

Let X be a vector space of countably infinite dimension (that is, every element is a
finite linear combination of members of a countably infinite linearly independent set).
There is no norm on X with respect to which X is complete. (Given a norm on X,
apply Folland Exercise 5.18(b) and the Baire category theorem.)

Exercise 5.83: Folland Exercise 5.42.

Let En be the set of all f P Cpr0, 1sq for which there exists x0 P r0, 1s (depending on
f) such that |fpxq ´ fpx0q| ď n|x ´ x0| for all x P r0, 1s.
(a) En is nowhere dense in Cpr0, 1sq. (Any real f P Cpr0, 1sq can be uniformly

approximated by a piecewise linear function g whose linear pieces, finite in
number, have slope ˘2n. If }h ´ g}u is sufficiently small, then h R En.)

(b) The set of nowhere differentiable functions is residual in Cpr0, 1sq.

Exercise 5.84.

Assume that T is a bounded linear map on L2pr0, 1sq with the property that Tf is
continuous on r0, 1s whenever f is continuous on r0, 1s. Prove that the restriction of T
to Cpr0, 1sq is a bounded operator on Cpr0, 1sq, where as usual Cpr0, 1sq is equipped
with the uniform norm.

Solution. We will use the closed graph theorem. Suppose both fn Ñ f and Tfn Ñ g
uniformly. We claim Tf “ g. We first state and prove a useful lemma:

Lemma 5.85.

For all f P Cpr0, 1sq and all real numbers p P r1,8q, }f}Lp ď }f}u, where }´}u is the
sup-norm.

Proof. Since f P Cpr0, 1sq, }f}u is finite. Thus

}f}
p
Lp “

ż 1

0

|f |
p dy ď

ż 1

0

}f}
p
u dy “ }f}

p
u.

Taking the pth root of both sides, we obtain the desired inequality }f}Lp ď }f}u.

Since T P LpL2pr0, 1sq, L2pr0, 1sqq, there exists C ą 0 such that
}Tfn ´ Tf}L2 ď C}fn ´ f}L2 ď C}fn ´ f}u,

where the final inequality is by Lemma 85. Since fn Ñ f uniformly, it follows that Tfn Ñ

Tf in L2pr0, 1sq. But also Tfn Ñ g uniformly by assumption, so in particular Tfn Ñ g in
L2pr0, 1sq. And L2pr0, 1sq is Hausdorff as a normed vector space, so by uniqueness of limits
Tf “ g. Thus, by the closed graph theorem, we conclude T P LpCpr0, 1sq, Cpr0, 1sqq.
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5.4 Topological Vector Spaces

It is frequently useful to consider topologies on vector spaces other than those defined
by norms, the only crucial requirement being that the topology should be well behaved
with respect to the vector operations. Precisely, a topological vector space is a vector
space X over the field K (“ R or R) which is endowed with a topology such that the maps
px, yq Ñ x ` y and pλ, xq Ñ λx are continuous from xˆx and Kˆx to x. A topological
vector space is called locally convex if there is a base for the topology consisting of convex
sets (that is, sets A such that if x, y P A then tx ` p1 ´ tqy P A for 0 ă t ă 1). Most
topological vector spaces that arise in practice are locally convex and Hausdorff.

The most common way of defining locally convex topologies on vector spaces is in
terms of seminorms. Namely, if we are given a family of seminorms on X, the “balls” that
they define can be used to generate a topology in the same way that the balls defined by
a norm generate the topology on a normed vector space. The precise result is as follows:

Theorem 5.86: 5.14.

Let tpαuαPA be a family of seminorms on the vector space X. If x P X,α P A, and
ε ą 0, let

Uxαε “ ty P X | pαpy ´ xq ă εu,

and let T be the topology generated by the sets Uxαε.
(a) For each x P X, the finite intersections of the sets Uxαεpα P A, ε ą 0q form a

neighborhood base at x.
(b) If xxiyiPI is a net in X, then xi Ñ x if and only if pαpxi ´ xq Ñ 0 for all α P A.
(c) pX,Tq is a locally convex topological vector space.

Proof. (a) If x P
Şk

1 Uxjαjεj , let δj “ εj ´ pαpx ´ xjq. By the triangle inequality, we have
x P

Şk
1 Uxαjδj Ă

Şk
1 Uxjαjεj . Thus the assertion follows from Proposition 7.

(b) In view of (a), it suffices to observe that pαpxi ´ xq Ñ 0 if and only if xxiy is
eventually in Uxαε for every ε ą 0.

(c) The continuity of the vector operations follows easily from Proposition 72 and part
(b). Indeed, if xi Ñ x and yi Ñ Y , then

pαppxi ` yiq ´ px ` yqq ď pαpxi ´ xq ` pαpyi ´ yq Ñ 0,

so xi ` yi Ñ x ` y. If also λi Ñ λ, then eventually |λi| ď C “ |λ| ` 1, so
pαpλixi ´ λxq ď pαpλipxi ´ xqq ` pαppλi ´ λqxq ď Cpαpxi ´ xq ` |λi ´ λ|pαpxq,

and it follows that λixi Ñ λx. Moreover, the sets Uxαε are convex, for if y, z P Uxαε, then
pαpx ´ rty ` p1 ´ tqzsq ď pαptx ´ tyq ` pαpp1 ´ tqx ` p1 ´ tqzq ă tε ` p1 ´ tqε “ ε.

The local convexity of the topology therefore follows from (a).

In this context there is an analogue of Proposition 14:
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Proposition 5.87: 5.15.

Suppose X and y are vector spaces with topologies defined, respectively, by the
families tpαuαPA and tqβuβPB of seminorms, and T : X Ñ Y is a linear map. Then T
is continuous if and only if for each β P B there exist α1, . . . , αk P A and C ą 0 such
that qβpTxq ď C

řk
1 pαjpxq.

Proof. If the latter condition holds and xxiy is a net converging to x P X, by Theorem 86(b)
we have pαpxi ´ xq Ñ 0 for all α, hence qβpTxi ´ Txq Ñ 0 for all β, hence Txi Ñ Tx. By
Proposition 72, T is continuous. Conversely, if T is continuous, for every β P B there
is a neighborhood U of 0 in X such that qβpTxq ă 1 for x P U . By Theorem 86(a) we
may assume that U “

Şk
1 Uxαjεj . Let ε “ minpε1, . . . , εkq; then qβpTxq ă 1 whenever

pαjpxq ă ε for all j. Now, given x P X, there are two possibilities. If pαjpxq ą 0 for some
j, let y “ εx{

řk
1 pαjpxq. Then pαjpyq ă ε for all j, so

qβpTxq “
ÿk

1
ε´1pαjpxqqβpTyq ď ε´1

ÿk

1
pαjpxq

On the other hand, if pαjpxq “ 0 for all j, then pαjprxq “ 0 for all j and all r ą 0, hence
rqβpTxq “ qβpT prxqq ă 1 for all r ą 0, hence qβpTxq “ 0. Thus qβpTxq ď ε´1

řk
1 pαjpxq

in this case too, and we are done.

The proof of the following proposition is left to the reader (Folland Exercise 5.43).

Proposition 5.88: 5.16.

Let x be a vector space equipped with the topology defined by a family tpαuαPA of
seminorms.
(a) X is Hausdorff if and only if for each x ‰ 0 there exists α P A such that pαpxq ‰ 0.
(b) If X is Hausdorff and A is countable, then X is metrizable with a translation-

invariant metric (i.e., ρpx, yq “ ρpx ` z, y ` zq for all x, y, z P Xq.

If X has the topology defined by the seminorms tpαuαPA, by Proposition 87 a linear
functional f on X is continuous if and only if |fpxq| ď C

řk
1 pαjpxq for some C ą 0 and

α1, . . . , αk P A. Since a finite sum of seminorms is again a seminorm, the HahnBanach
theorem guarantees the existence of lots of continuous linear functionals on x—enough to
separate points, if X is Hausdorff. The set of all such functionals is denoted, as before,
by X˚. There are various ways of making X˚ into a topological vector space, but we
shall not consider this question systematically. The simplest way is to impose the weakest
topology that makes all the evaluation maps f ÞÑ fpxq px P Xq continuous, an idea that
we shall discuss further below.

In a topological vector space X the notion of Cauchy sequence or Cauchy net makes
sense. Namely, a net xxiyiPI in X is called Cauchy if the net xxi ´ xjypi,jqPÎ I converges
to zero. (Here IˆI is directed in the usual way: pi, jq À pi1, j1q if and only if i À i1 and
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j À j1.) Naturally, X is called complete if every Cauchy net converges. Completeness is
of most interest when X is first countable, in which case it is equivalent to the condition
that every Cauchy sequence converges (Folland Exercise 5.44). More particularly, if X
is Hausdorff and its topology is defined by a countable family of seminorms, then this
topology is first countable by Theorem 86(a); indeed, it is given by a translation-invariant
metric ρ by Proposition 88(b), and a sequence is Cauchy according to the definition just
given if and only if it is Cauchy with respect to ρ. A complete Hausdorff topological
vector space whose topology is defined by a countable family of seminorms is called a
Fréchet space.

Let us now consider some interesting examples of topological vector spaces whose
topologies are defined by families of seminorms rather than by single norms. We have
already seen some:

• Let X be an LCH space. On CX , the topology of uniform convergence on compact
sets is defined by the seminorms pKpfq “ supxPK |fpxq| as K ranges over compact
subsets of X. If X is σ-compact and tUnu are as in Propositions 122 and 123, this
topology is defined by the seminorms pnpfq “ supxPUn

|fpxq|. In this case, CX is
easily seen to be complete, so it is a Fréchet space; by Proposition 121, so is CpXq.

• The space L1
locpRnq, defined in Folland Section 3.4, is a Fréchet space with the

topology defined by the seminorms pkpfq “
ş

|x|ďk
|fpxq|dx. (Completeness follows

easily from the completeness of L1.) An obvious generalization of this construction
yields a locally convex topological vector space L1

locpX,µq where X is any LCH space
and µ is a Borel measure on X that is finite on compact sets.

Another class of topological vector spaces arises naturally in connection with the theory
of differential equations. One often wishes to study the operator d{dx, or more complicated
operators constructed from it, acting on various spaces of functions. Unfortunately, it is
virtually impossible to define norms on most infinite-dimensional functions spaces so that
d{dx becomes a bounded operator. Here is one precise result along these lines: There is
no norm on the space C8pr0, 1sq of infinitely differentiable functions on r0, 1s with respect
to which d{dx is bounded. Indeed, if fλpxq “ eλx, then pd{dxqfλ “ λfλ, so }d{dx} ě |λ|

for all λ no matter what norm is used on C8pr0, 1sq.
In view of this difficulty, three courses of action are available. First, one can consider

differentiation as an unbounded operator from x to y where y is a suitable Banach space
and x is a dense subspace of y, as in Folland Exercise 5.30. Second, one can consider
differentiation as a bounded linear map from one Banach space X to a different one y, such
as x “ Ckpr0, 1sq and y “ Ck´1pr0, 1sq in Folland Exercise 5.9. Finally, one can consider
differentiation as a continuous operator on a locally convex space X whose topology is
not given by a norm. All of these points of view have their uses, but it is the last one
that concerns us here. It is easy to construct families of seminorms on spaces of smooth
functions such that differentiation becomes continuous almost by definition. For example,
the seminorms pkpfq “ sup0ăxă1|f pkqpxq|pk “ 0, 1, 2, . . .q make C8pr0, 1sq into a Fréchet
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space (the completeness is proved as in Folland Exercise 5.9q, and d{dx is continuous on
this space by Proposition 87 since pkpf 1q “ pk`1pfq. Other examples are considered in
Folland Folland Exercise 5.45 and in Folland Chapter 9.

One of the most useful procedures for constructing topologies on vector spaces is
by requiring the continuity of certain linear maps. Namely, suppose that X is a vector
space, y is a normed linear space, and tTαuαPA is a collection of linear maps from x to y.
Then the weak topology T generated by tTαu makes X into a locally convex topological
vector space. Indeed, T is just the topology T1 defined by the seminorms pαpxq “ }Tαx}

according to Theorem 86. (T is generated by sets of the form tx | }Tαx ´ y0} ă εu with
y0 P Y , whereas T1 is generated by sets of the form tx | }Tαx ´ Tαx0} ă εu with x0 P X.
If the Tα’s are surjective, these are obviously the same; the general case is left as Folland
Exercise 5.46.) The topology on C8pr0, 1sq in the preceding paragraph is an example of
this construction, with y “ Cpr0, 1sq and Tkf “ f pkq. We now present some more.

First, let X be a normed vector space. The weak topology generated by X˚ is known
simply as the weak topology on X, and convergence with respect to this topology is
known as weak convergence. Thus, if xxαy is a net in X, xα Ñ x weakly if and only if
fpxαq Ñ fpxq for all f P X˚. When X is infinite-dimensional, the weak topology is always
weaker than the norm topology; see Folland Exercise 5.49

Next, let X be a normed vector space, X˚ its dual space. The weak topology on X˚ as
defined above is the topology generated by X˚˚; of more interest is the topology generated
by X (considered as a subspace of X˚˚), which is called the weak* topology (read
“weak star topology”) on X˚. X˚ is a space of functions on X, and the weak* topology
is simply the topology of pointwise convergence: fα Ñ f if and only if fαpxq Ñ fpxq for
all x P X. The weak* topology is even weaker than the weak topology on X˚; the two
coincide precisely when X is reflexive.

Finally, Let X and Y be Banach spaces. The topology on LpX, Y q generated by the
evaluation maps T ÞÑ Txpx P Xq is called the strong operator topology on LpX, Y q, and
the topology generated by the linear functionals T ÞÑ fpTxqpx P X, f P Y ˚q is called the
weak operator topology on LpX, Y q. Again, these topologies are best understood in terms
of convergence: Tα Ñ T strongly if and only if Tαx Ñ Tx in the norm topology of y for
each x P X, whereas Tα Ñ T weakly if and only if Tαx Ñ Tx in the weak topology of y
for each x P X. Thus the strong operator topology is stronger than the weak operator
topology but weaker than the norm topology on LpX, Y q.

The following result concerning strong convergence is almost trivial but extremely
useful:

Proposition 5.89: 5.17.

Suppose tTnu
8

1 Ă LpX, Y q, supn}Tn} ă 8, and T P LpX, Y q. If }Tnx ´ Tx} Ñ 0 for
all x in a dense subset D of X, then Tn Ñ T strongly.
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Proof. Let C “ supt}T }, }T1 | , }T2}, . . .u. Given x P X and ε ą 0, choose x1 P D such
that }x ´ x1} ă ε{3C. If n is large enough so that }Tnx

1 ´ Tx1} ă ε{3, we have
}Tnx ´ Tx} ď }Tnx ´ Tnx

1
} ` }Tnx

1
´ Tx1

} ` }Tx1
´ Tx}

ď 2C}x ´ x1
} `

1

3
ε ă ε,

so that Tnx Ñ Tx.

Our final result in this section is a compactness theorem that is one of the main reasons
for the usefulness of the weak* topology on a dual space.

Theorem 5.90: 5.18: Alaoglu’s Theorem.

If X is a normed vector space, the closed unit ball B˚ “ tf P X˚ | }f} ď 1u in X˚ is
compact in the weak k˚ topology.

Proof. For each x P X let Dx “ tz P C | |z| ď }x}u, and let D “
ś

xPX Dx. Then D is
compact by Tychonoff’s theorem. The elements of D are precisely those complex-valued
functions ϕ on X such that |ϕpxq| ď }x} for all x P X, and B˚ consists of those elements
of D that are linear. Moreover, the relative topologies that B˚ inherits from the product
topology on D and the weak* topology on X˚ both coincide with the topology of pointwise
convergence, so it suffices to see that B˚ is closed in D. But this is easy: If xfαy is a net
in B˚ that converges to f P D, for any x, y P X and a, b P C we have

fpax ` byq “ lim fαpax ` byq “ limrafαpxq ` bfαpyqs “ afpxq ` bfpyq,

so that f P B˚.

Warning 5.91.

Alaoglu’s theorem does not imply that X˚ is locally compact in the weak* topology;
see Folland Exercise 5.49(b).

Exercise 5.92: Folland Exercise 5.43.

Prove Proposition 88. (For part (b), proceed as in Folland Exercise 4.56(d).)

Exercise 5.93: Folland Exercise 5.44.

If X is a first countable topological vector space and every Cauchy sequence in X
converges, then every Cauchy net in X converges.
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Exercise 5.94: Folland Exercise 5.45.

The space C8pRq of all infinitely differentiable functions on R has a Fréchet space
topology with respect to which fn Ñ f if and only if f pkq

n Ñ f pkq uniformly on compact
sets for all k ě 0.

Exercise 5.95: Folland Exercise 5.46.

If X is a vector space, y a normed linear space, T the weak topology on X generated by
a family of linear maps tTα | X Ñ Y u, and T1 the topology defined by the seminorms
tx ÞÑ }Tαx}u, then T “ T1.

Exercise 5.96: Folland Exercise 5.47.

Suppose that X and y are Banach spaces.
(a) If tTnu

8

1 Ă LpX, Y q and Tn Ñ T weakly (or strongly), then supn}Tn} ă 8.
(b) Every weakly convergent sequence in x, and every weak*-convergent sequence in

X˚, is bounded (with respect to the norm).

Exercise 5.97: Folland Exercise 5.48.

Suppose that X is a Banach space.
(a) The norm-closed unit ball B “ tx P X | }x} ď 1u is also weakly closed. (Use

Theorem 41(d).)
(b) If E Ă X is bounded (with respect to the norm), so is its weak closure.
(c) If F Ă X˚ is bounded (with respect to the norm), so is its weak* closure.
(d) Every weak*-Cauchy sequence in X˚ converges. (Use Folland Exercise 5.38.)

Exercise 5.98: Folland Exercise 5.49.

Suppose that X is an infinite-dimensional Banach space.
(a) Every nonempty weakly open set in X, and every nonempty weak*-open set in

X˚, is unbounded (with respect to the norm).
(b) Every bounded subset of x is nowhere dense in the weak topology, and every

bounded subset of x˚ is nowhere dense in the weak* topology. (Use Folland
Exercise 4.48(b,c). )

(c) X is meager in itself with respect to the weak topology, and X˚ is meager in itself
with respect to the weak* topology.

(d) The weak* topology on x˚ is not defined by any translation-invariant metric. (Use
Folland Exercise 5.48(d).)
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Exercise 5.99: Folland Exercise 5.50.

If x is a separable normed linear space, the weak* topology on the closed unit ball in
X˚ is second countable and hence metrizable. (But see Folland Exercise 5.49(d).)

Exercise 5.100: Folland Exercise 5.51.

A vector subspace of a normed vector space X is norm-closed if and only if it is weakly
closed. (However, a norm-closed subspace of X˚ need not be weak*-closed unless x is
reflexive; see Folland Exercise 5.52(d).)

Exercise 5.101: Folland Exercise 5.52.

Let X be a Banach space and let f1, . . . , fn be linearly independent elements of X˚.
(a) Define T : X Ñ Cn by Tx “ pf1pxq, . . . , fnpxqq. If N “ tx | Tx “ 0u and M is

the linear span of f1, . . . , fn, then M “ N0 in the notation of Folland Exercise
5.23 and hence M˚ is isomorphic to pX{Nq˚.

(b) If F P X˚˚, for any ε ą 0 there exists x P X such that F pfjq “ fjpxq for
j “ 1, . . . , n and }x} ď p1 ` εq}F }. pFM can be identified with an element of
pX{Nq˚˚ and hence with an element of X{N since the latter is finite-dimensional.)

(c) If X is considered as a subspace of X ˚ ˚, the relative topology on X induced by
the weak* topology on X˚˚ is the weak topology on x.

(d) In the weak* topology on X˚˚, X is dense in X˚˚ and the closed unit ball in x is
dense in the closed unit ball in X˚˚.

(e) x is reflexive if and only if its closed unit ball is weakly compact.

Exercise 5.102: Folland Exercise 5.53.

Suppose that X is a Banach space and tTnu, tSnu are sequences in LpX,Xq such that
Tn Ñ T strongly and Sn Ñ S strongly.
(a) If txnu Ă X and }xn ´ x} Ñ 0, then }Tnxn ´ Tx} Ñ 0. (Use Folland Exercise

5.47(a).)
(b) TnSn Ñ TS strongly.

5.5 Hilbert Spaces

The most important Banach spaces, and the ones on which the most refined analysis
can be done, are the Hilbert spaces, which are a direct generalization of finite-dimensional
Euclidean spaces. Before defining them, we need to introduce a few concepts.

Definition 103. Let H be a complex vector space. An inner product (or scalar
product) on H is a map px, yq ÞÑ xx|yy from XˆX Ñ C such that:
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(i) xax ` by|zy “ axx|zy ` bxy|zy for all x, y, z P H and a, b P C.
(ii) xy|xy “ xx|yy for all x, y P H.
(iii) xx|xy P p0,8q for all nonzero x P X.

We observe that (i) and (ii) imply that
xx|ay ` bzy “ axx|yy ` bxx|zy for all x, y, z P H and a, b P C.

(One can also define inner products on real vector spaces: xx|yy is then real, a and b are
assumed real in (i), and (ii) becomes xy|xy “ xx|yy.)

Definition 104. A complex vector space equipped with an inner product is called a
pre-Hilbert space. If H is a pre-Hilbert space, for x P H we define

}x} “
a

xx|xy.

Theorem 5.105: 5.19: The Schwarz Inequality.

|xx|yy| ď }x}}y} for all x, y P H, with equality if and only if x and y are linearly
dependent.

Proof. If xx|yy “ 0, the result is obvious. If xx|yy ‰ 0 (and in particular y ‰ 0), let
α “ sgnxx|yy and z “ αy, so that xx|zy “ xz|xy “ |xx|yy| and }z} “ }y}. Then for t P R
we have

0 ď xx ´ tz|x ´ tzy “ }x}
2

´ 2t|xx|yy| ` t2}y}
2.

The expression on the right is a quadratic function of t whose absolute minimum
occurs at t “ }y}´2|xx|yy|. Setting t equal to this value, we obtain

0 ď }x ´ tz}
2

“ }x}
2

´ }y}
´2

|xx|yy|
2

with equality if and only if x ´ tz “ x ´ αty “ 0, from which the desired result is
immediate.

Proposition 5.106: 5.20.

The function x ÞÑ }x} is a norm on H.

Proof. That }x} “ 0 if and only if x “ 0 and that }λx} “ |λ|}x} are obvious from the
definition. As for the triangle inequality, we have

}x ` y}
2

“ xx ` y|x ` yy “ }x}
2

` 2Rexx|yy ` }y}
2,

so by the Schwarz inequality,
}x ` y}

2
ď }x}

2
` 2}x}}y} ` }y}

2
“ p}x} ` }y}q

2,

as desired. A pre-Hilbert space that is complete with respect to the norm }x} “
a

xx|xy is
called a Hilbert space. (One can also consider real Hilbert spaces with real inner products.
However, Hilbert spaces are usually assumed to be complex unless otherwise specified.)
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Example: Let pX,M, µq be a measure space, and let L2pµq be the set of all measurable
functions f : X Ñ C such that

ş

|f |2dµ ă 8 (where, as usual, we identify two functions
that are equal a.e.). From the inequality ab ď 1

2
pa2 ` b2q, valid for all a, b ě 0, we see

that if f, g P L2pµq then |fg| ď 1
2
p|f |2 ` |g|2q, so that fg P L1pµq. It follows easily that

the formula

xf |gy “

ż

fgdµ

defines an inner product on L2pµq. In fact, L2pµq is a Hilbert space for any measure µ.
(For a proof of completeness, see Folland Theorem 8; for the present we shall take this
result for granted.)

An important special case of this construction is obtained by taking µ to be counting
measure on pA,PpAqq, where A is any nonempty set; in this situation L2pµq is usually
denoted by ℓ2pAq. Thus, ℓ2pAq is the set of functions f : A Ñ C such that the sum
ř

αPA |fpαq|2 (as defined in Folland Section 0.5) is finite. The completeness of ℓ2pAq is
rather easy to prove directly (Folland Exercise 5.54). For the remainder of this section, H
will denote a Hilbert space.

Proposition 5.107: 5.21.

If xn Ñ x and yn Ñ Y , then xxn|yny Ñ xx|yy.

Proof. By the Schwarz inequality,
|xxn|yny ´ xx|yy| “ |xxn ´ x|yny ` xx|yn ´ yy|

ď }xn ´ x}}yn} ` }x}}yn ´ y},

which tends to zero since }yn} Ñ }y}.

Proposition 5.108: 5.22: The Parallelogram Law.

For all x, y P H,
}x ` y}

2
` }x ´ y}

2
“ 2p}x}

2
` }y}

2
q.

(“The sum of the squares of the diagonals of a parallelogram is the sum of the squares
of the four sides.”)

Proof. Add the two formulas }x ˘ y}2 “ }x}2 ˘ 2Rexx|yy ` }y}2. If x, y P X, we say that
x is orthogonal to y and write x K y if xx|yy “ 0. If E Ă H, we define

EK
“ tx P H | xx|yy “ 0 for all y P Eu.

It is immediate from Proposition 107 and the linearity of the inner product in its first
argument that EK is a closed subspace of H.
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Theorem 5.109: 5.23: The Pythagorean Theorem.

If x1, . . . , xn P H and xj K xk for j ‰ k,
›

›

›

ÿn

1
xj

›

›

›

2

“
ÿn

1
}xj}

2.

Proof. }
ř

xj}
2

“ x
ř

xj|
ř

xjy “
ř

j,kxxj|xky. The terms with k ‰ j are all zero, leaving
only

ř

xxj|xjy “
ř

}xj}
2.

Theorem 5.110: 5.24.

If M is a closed subspace of H, then H “ M ‘ MK; that is, each x P H can be
expressed uniquely as x “ y ` z where y P M and z P M K. Moreover, y and z are the
unique elements of M and MK whose distance to x is minimal.

Proof. Given x P H, let δ “ inft}x ´ y} | y P Mu, and let tynu be a sequence in M such
that }x ´ yn} Ñ δ. By the paralellogram law,

2p}yn ´ x}
2

` }ym ´ x}
2
q “ }yn ´ ym}

2
` }yn ` ym ´ 2x}

2,

so since 1
2
pyn ` ymq P M,

}yn ´ ym}
2

“ 2}yn ´ x}
2

` 2}ym ´ x}
2

´ 4

›

›

›

›

1

2
pyn ` ymq ´ x

›

›

›

›

2

ď 2}yn ´ x}
2

` 2}ym ´ x}
2

´ 4δ2.

As m,n Ñ 8 this last quantity tends to zero, so tynu is a Cauchy sequence. Let y “ lim yn
and z “ x ´ y. Then y P M since M is closed, and }x ´ y} “ δ.

We claim that z P MK. Indeed, if u P M, after multiplying u by a nonzero scalar we
may assume that xz|uy is real. Then the function

fptq “ }z ` tu}
2

“ }z}
2

` 2txz|uy ` t2}u}
2

is real for t P R, and is has a minimum (namely, δ2) at t “ 0 because z` tu “ x´ py´ tuq

and y ´ tu P M. Thus 2xz|uy “ f 1p0q “ 0, so z P MK. Moreover, if z1 is another element
of MK, by the Pythagorean theorem (since x ´ z “ y P M) we have

}x ´ z1
}
2

“ }x ´ z}
2

` }z ´ z1
}
2

ě }x ´ z}
2,

with equality if and only if z “ z1. The same reasoning shows that y is the unique element
of M closest to x.

Finally, if x “ y1 ` z1 with y1 P M and z1 P MK, then y ´ y1 “ z1 ´ z P M X MMK, so
y ´ y1 and z1 ´ z are orthogonal to themselves and hence are zero.

If y P H, the Schwarz inequality shows that the formula fypxq “ xx|yy defines a bounded
linear functional on H such that }fy} “ }y}. Thus, the map y Ñ fy is a conjugate-linear
isometry of H into K˚. It is a fundamental fact that this map is surjective:
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Theorem 5.111: 5.25.

If f P H˚, there is a unique y P H such that fpxq “ xx|yy for all x P X.

Proof. Uniqueness is easy: If xx|yy “ xx|y1y for all x, by taking x “ y ´ y1 we conclude
that }y ´ y1}

2
“ 0 and hence y “ y1. If f is the zero functional, then obviously y “ 0.

Otherwise, let M “ tx P H | fpxq “ 0u. Then M is a proper closed subspace of X, so
MK ‰ t0u by Theorem 110. Pick z P MK with }z} “ 1. If u “ fpxqz ´ fpzqx then u P M,
so

0 “ xu|zy “ fpxq}z}
2

´ fpzqxx|zy “ fpxq ´

A

x
ˇ

ˇ

ˇ
fpzqz

E

.

Hence fpxq “ xx|yy where y “ fpzqz.

Thus, Hilbert spaces are reflexive in a very strong sense: Not only is H naturally
isomorphic to H˚˚, it is naturally isomorphic (via a conjugate-linear map) to H˚.

A subset tuαuαPA of H is called orthonormal if }uα} “ 1 for all α and uα K uβ whenever
α ‰ β. If txnu

8

1 is a linearly independent sequence in H, there is a standard inductive
procedure, called the Gram-Schmidt process, for converting txnu into an orthonormal
sequence tunu such that the linear span of txnu

N
1 coincides with the linear span of tunu

N
1

for all N . Namely, the first step is to set u1 “ x1{}x1}. Having defined u1, . . . , uN´1, we
set vN “ xN ´

řN´1
1 xxN |unyun. Then vN is nonzero because xN is not in the linear span

of x1, . . . , xN´1 and hence of u1, . . . , uN´1, and xvN |umy “ xxN |umy ´ xxN |umy “ 0 for all
m ă N . We can therefore take uN “ vN{}vN}.

Theorem 5.112: 5.26: Bessel’s Inequality.

If tuαuαPA is an orthonormal set in H, then for any x P H
ÿ

αPA
|xx|uαy|

2
ď }x}

2.

In particular, tα | xx|uαy ‰ 0u is countable.

Proof. It suffices to show that
ř

αPF |xx|uαy|
2

ď }x}2 for any finite F Ă A. But

0 ď

›

›

›
x ´

ÿ

αPF
xx|uαyuα

›

›

›

2

“ }x}
2

´ 2Re
A

x
ˇ

ˇ

ˇ

ÿ

αPF
xx|uαyuα

E

`

›

›

›

ÿ

αPF
xx|uαyuα

›

›

›

2

“ }x}
2

´ 2
ÿ

αPF
|xx|uαy|

2
`
ÿ

αPF
|xx|uαy|

2

“ }x}
2

´
ÿ

αPF
|xx|uαy|

2,

where the Pythagorean theorem was used in the third line.
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Theorem 5.113: 5.27.

If tuαuαPA is an orthonormal set in H, the following are equivalent:
(a) (Completeness) If xx|uαy “ 0 for all α, then x “ 0.
(b) (Parseval’s Identity) }x}2 “

ř

αPA|xx|uαy|
2 for all x P H.

(c) For each x P H, x “
ř

αPAxx|uαyuα, where the sum on the right has only countably
many nonzero terms and converges in the norm topology no matter how these
terms are ordered.

Proof. (a) implies (c): If x P H, let α1, α2, . . . be any enumeration of the αs for which
xx|uαy ‰ 0. By Bessel’s inequality the series

ř

|xx|uαȷy|
2 converges, so by the Pythagorean

theorem,
›

›

›

ÿm

n
xx|uαȷyuα,

›

›

›

2

“
ÿm

n
|xx|uαȷy|

2
Ñ 0 as m,n Ñ 8.

The series
ř

xx|uαȷyuα1 therefore converges since H is complete. If y “ x´
ř

xx|uαjyuα1 ,
then clearly xy|uαy “ 0 for all α, so by (a), y “ 0.

(c) implies (b): With notation as above, as in the proof of Bessel’s inequality we have

}x}
2

´
ÿn

1
|xx|uα1y|

2
“

›

›

›
x ´

ÿn

1
xx|uαȷyuα2

›

›

›

2

Ñ 0 as n Ñ 8.

Finally, that (b) implies (a) is obvious.

An orthonormal set having the properties pa ´ cq in Theorem 113 is called an or-
thonormal basis for H. For example, let H “ ℓ2pAq. For each α P A, define eα P ℓ2pAq

by eαpβq “ 1 if β “ α, eαpβq “ 0 otherwise. The set teαuαPA is clearly orthonormal, and
for any f P ℓ2pAq we have xf |eαy “ fpαq, from which it follows that teαu is an orthonormal
basis.

Proposition 5.114: 5.28.

Every Hilbert space has an orthonormal basis.

Proof. A routine application of Zorn’s lemma shows that the collection of orthonormal sets,
ordered by inclusion, has a maximal element; and maximality is equivalent to property
(a) in Theorem 113.

Proposition 5.115: 5.29.

A Hilbert space H is separable if and only if it has a countable orthonormal basis, in
which case every orthonormal basis for H is countable.

Proof. If txnu is a countable dense set in H, by discarding recursively any xn that is in the
linear span of x1, . . . , xn´1 we obtain a linearly independent sequence tynu whose linear
span is dense in H. Application of the Gram-Schmidt process to tynu yields an orthonormal
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sequence tunu whose linear span is dense in H and which is therefore a basis. Conversely,
if tunu is a countable orthonormal basis, the finite linear combinations of the uns with
coefficients in a countable dense subset of C form a countable dense set in H. Moreover,
if tvαuαPA is another orthonormal basis, for each n the set An “ tα P A | xun|vαy ‰ 0u is
countable. By completeness of tunu, A “

Ť8

1 An, so A is countable.

Most Hilbert spaces that arise in practice are separable. We discuss some examples in
Folland Exercise 5.60,Folland Exercise 5.61,Folland Exercise 5.62.

Definition 116. If H1 and H2 are Hilbert spaces with inner products x¨|y1 and x¨|y2, a
unitary map from H1 to H2 is an invertible linear map U : H1 Ñ H2 that preserves
inner products:

xUx|Uyy2 “ xx|yy1 for all x, y P K1.

By taking y “ x, we see that every unitary map is an isometry: }Ux}2 “ }x}1.
Conversely, every surjective isometry is unitary (Folland Exercise 5.55). Unitary maps
are the true “isomorphisms” in the category of Hilbert spaces; they preserve not only the
linear structure and the topology but also the norm and the inner product. From the
point of view of this abstract structure, every Hilbert space looks like an ℓ2 space:

Proposition 5.117: 5.30.

Let teαuαPA be an orthonormal basis for x. Then the correspondence x ÞÑ px defined
by pxpαq “ xx|uαy is a unitary map from H to 2pAq.

Proof. The map x ÞÑ px is clearly linear, and it is an isometry from H to ℓ2pAq by the
Parietal identity }x}2 “

ř

|pxpαq|2. If f P ℓ2pAq then
ř

|fpαq|2 ă 8, so the Pythagorean
theorem shows that the partial sums of the series

ř

fpαquα (of which only countably
many terms are nonzero) are Cauchy; hence x “

ř

fpαquα exists in H and px “ f . By
Folland Exercise 5.55, b, x ÞÑ px is unitary.

Exercise 5.118: Folland Exercise 5.54.

For any nonempty set A, ℓ2pAq is complete.

Exercise 5.119: Folland Exercise 5.55.

Let H be a Hilbert space.
(a) (The polarization identity) For any x, y P H,

xx|yy “
1

4
p}x ` y}

2
` }x ´ y}

2
` i}x ` iy}

2
´ i}x ´ iy}

2
q.

(Completeness is not needed here.)
(b) If H1 is another Hilbert space, a linear map from H to H1 is unitary if and only

Version of April 30, 2024 at 11pm EST Page 222 of 368

https://www.greysonwesley.com/home


Greyson C. Wesley §5.5: Hilbert Spaces

if it is isometric and surjective.

Solution. For (a), we have:
1

4
p}x ` y}

2
` }x ´ y}

2
` i}x ` iy}

2
´ i}x ´ iy}

2
q

“
1

4
p2xx|yy ` 2xy|xyq `

i

4
p2xx|iyy ` 2xiy|xyq

“
1

2
pxx|yy ` xx|yyq `

i

2
pxx|iyy ` xx|iyyq

“ Repxx|yyq ` i Impxx|yyq “ xx|yy.

For (b), let U : H Ñ H 1 be unitary. Then U is surjective, and for each x P H, we have
}Ux}2 “ xUx|Uxy “ xx|xy “ }x}2, meaning U is an isometry. Then we have by (a):

xUx|Uyy “
1

4
p}Ux ` Uy}

2
´ }Ux ´ Uy}

2
` i}Ux ` iUy}

2
´ i}Ux ´ iUy}

2
q

“
1

2
pxx|yy ` xx|yyq `

i

2
pxx|iyy ` xx|iyyq

“ Repxx|yyq ` i Impxx|yyq “ xx|yy,

completing the proof.

Exercise 5.120: Folland Exercise 5.56.

If E is a subset of a Hilbert space H, pEKq
K is the smallest closed subspace of H

containing E.

Exercise 5.121: Folland Exercise 5.57.

Suppose that H is a Hilbert space and T P LpH,Hq.
(a) There is a unique T ˚ P LpH,Hq, called the adjoint of T , such that xTx|yy “

xx|T ˚yy for all x, y P H. (See Folland Exercise 5.22). We have T ˚ “ V ´1T :V
where V is the conjugate-linear isomorphism from H to K˚ in Theorem 111,
pV yqpxq “ xx|yy.)

(b) }T ˚} “ }T }, }T ˚T } “ }T }2, paS`bT q˚ “ aS˚ `bT ˚, pST q˚ “ T ˚S˚, and T ˚˚ “ T .
(c) Let R and N denote range and nullspace; then RpT qK “ NpT ˚q and NpT qK “

RpT ˚q.
(d) T is unitary if and only if T is invertible and T´1 “ T ˚.

Solution.
(a) Define T ˚ : H˚ Ñ H˚ by T ˚ – oloneqoloneqV ´1 ˝ T : ˝ V , where V : H Ñ H˚ sends

y P H to x´|yy P H˚ and T : : H˚ Ñ H˚ sends f to f ˝ T . And V P LpH,H˚q (since
for all }x} “ 1, }Vypxq} “ }xx|yy} ď }x}}y} “ }y} by the Cauchy-Schwarz inequality.)
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Thus }V } ď 1, hence V is bounded. And V is invertible by Theorem 111 (and
Folland’s subsequent remark), and T : is bounded by Folland Exercise 5.22(a) so the
composition T ˚ “ V ´1 ˝ T : ˝ V is bounded. Moreover,
T ˚y “ V ´1

˝ T ˚
˝ V pyq “ V ´1

˝ T :
px´|yyq “ V ´1

px´|yy ˝ T q “ V ´1
pxT p´q|yyq.

By definition of V ´1, V ´1pxT p´q|yyq is the element z P H such that xx|zy “ xTx|yy

for all x P H. Hence, for all x P H, we have
xx|T ˚yy “ xx|zy “ xTx|yy,

as claimed.
To see T ˚ is unique, note that if we also had some S such that

xx|Syy “ xTx|yy “ xx|Syy

for all x, y P H, then xx|pT ˚ ´ Sqyy “ 0 for all x, y P H. Since V ´1 is an isomorphism
then we have }pT ˚ ´ Sqy} “ 0 for all y P H, so by passing to the supremum we
conclude }T ˚ ´ S} “ 0. Since the operator norm is a norm, we conclude T ˚ ´ S “ 0,
that is, T ˚ “ S. Thus T ˚ is unique.

(b) Since for any x, y P H we have
xT ˚x|yy “ xy|T ˚xy “ xTy|xy “ xx|Tyy,

so by uniqueness from part (a) we obtain T “ T ˚˚. Again by uniqueness and the fact
pST q

˚
“ V ´1

pST q
:V “ V ´1T :S:V “ T ˚S˚,

we conclude pST q˚ “ T ˚S˚.
For any x P H,

}Tx}
2

“ xTx|Txy “ xx|T ˚Txy ď }x}}T ˚Tx} ď }x}}T ˚
}}T },

which implies }Tx} ď }T ˚}}x}. Since }Tx} “ inftC | }Tx} ď C}x} for all x P Xu, it
follows that }T } ď }T ˚}. This reasoning is symmetric in T and T ˚, so we similarly
obtain }T ˚} ď }T ˚˚} “ }T }. Thus }T ˚} “ }T }.

Next, to see }T ˚T } “ }T }2, note that }T ˚T } ď }T ˚}}T } “ }T }2, and conversely
we have }Tx}2 “ xTx|Txy “ xx|T ˚Txy ď }T ˚T }}x}, so }T ˚T } “ }T }2.

Lastly, for a, b P C and S, T P LpH,Hq, observe that
paS ` bT q

˚
“ V ´1

paS ` bT q
:V “ V ´1

paS:
` bT :

qV

“ aV ´1S:V ` bV ´1T :V “ aS˚
` bT ˚.

(c) Note that x P H satisfies xy|xy “ 0 for all y P RpT q if and only if xTy|xy “ 0 for all
y P H if and only if xy|T ˚xy “ 0 for all y P H if and only if T ˚x “ 0. Therefore,
RpT qK “ tx P H | xy|xy “ 0 for all y P Hu “ tx P H | T ˚x “ 0u “ NpT ˚q. From
this, we deduce that NpT qK “ NpT ˚˚qK “ pRpT ˚qKqK is the smallest (closed)
linear subspace of H containing RpT ˚q, which means RpT ˚q Ă NpT qK, forcing
RpT ˚q “ NpT qK as RpT ˚q is itself a subspace.
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(d) Let T be unitary. Then for any x, y P H, we have
xTx|yy “ xTx|TT´1yy “ xx|T´1yy,

so by uniqueness of T ˚ from part (a) T´1 “ T ˚. Conversely, if T´1 “ T ˚, then for
any x, y P H,

xTx|Tyy “ xx|T ˚Tyy “ xx|T´1Tyy “ xx|yy,

so T is unitary.

Exercise 5.122: Folland Exercise 5.58.

Let M be a closed subspace of the Hilbert space H, and for x P H let Px be the
element of M such that x ´ Px P MK as in Theorem 110.
(a) P P LpH,Hq, and in the notation of Folland Exercise 5.57 we have P ˚ “ P, P 2 “

P , RpP q “ M, and NpP q “ MK.P is called the orthogonal projection onto M.
(b) Conversely, suppose that P P LpH,Hq satisfies P 2 “ P ˚ “ P . Then RpP q is

closed and P is the orthogonal projection onto RpP q.
(c) If tuαu is an orthonormal basis for M, then Px “

ř

xx|uαyuα.

Exercise 5.123: Folland Exercise 5.59.

Every closed convex set K in a Hilbert space has a unique element of minimal norm.
(If 0 P K, the result is trivial; otherwise, adapt the proof of Theorem 110.)

Solution. Set δ – infyPK }y}. Pick a sequence tynu Ă K such that }yn} Ñ δ as n Ñ 8.
We want to show that the limit is in K and is the unique element with norm δ. For all
n,m, we can use the parallelogram law to write:

2}y2n ´ x}
2

` 2}ym ´ x}
2

“ }yn ` ym ´ 2x}
2

` }yn ´ ym}
2.

Note that 1
2
pyn ` ymq P K since K is convex and 1

2
pyn ` ymq “ tyn ` p1 ´ tqym for t “ 1

2
.

It follows that
›

›

yn`ym
2

´ x
›

›

2 is the square of the distance from x to something in y, and
since δ is the infimum over all such distances, we conclude that this is }yn ` ym ´ 2x}2 “

4
›

›

yn`ym
2

´ x
›

›

2
ě 4δ2. It follows that

}yn ´ ym}
2

ď 2}yn ´ x}
2

` 2}ym ´ x}
2

´ ´ ´ 4δ2 Ñ 0

as m,n Ñ 8. Thus, tynu is Cauchy, so since K is a complete vector space (as it is a closed
subspace of the complete vector space H), we have that yn converges to some y0 P K.
Then, by the continuity of the norm, it follows that:

}y0} “

›

›

›
lim
nÑ8

yn

›

›

›
“ lim

nÑ8
}yn} “ δ,

where the last equality follows from the definition of δ.
We now have that the limit y0 is in K and that }y0} “ δ. It remains to show that any

element in K with norm δ is identical to y0.
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Let δ “ }x} “ }y}, x, y P K. Since K is convex, 1
2
x ` 1

2
y P K. Then, observe that:

δ ď

›

›

›

›

1

2
x `

1

2
y

*

(since δ is the minimum distance)

ď
1

2
}x} `

1

2
}y} (triangle inequality and scaling)

“
1

2
δ `

1

2
δ “ δ,

so all the inequalities are equalities. Then, }x` y} “ }x} ` }y} “ 2δ. Using this, we have,
by the parallelogram law, that:

4δ2 ` }x ´ y}
2

“ 2δ2 ` 2δ2,

so }x ´ y} “ 0, forcing x “ y since } ´ } is a norm.

Exercise 5.124: Folland Exercise 5.60.

Let pX,M, µq be a measure space. If E P M, we identify L2pE, µq with the subspace of
L2pX,µq consisting of functions that vanish outside E. If tEnu is a disjoint sequence in
M with X “

Ť8

1 En, then tL2pEn, µqu is a sequence of mutually orthogonal subspaces
of L2pX,µq, and every f P L2pX,µq can be written uniquely as f “

ř8

1 fn (the series
converging in norm) where fn P L2pEn, µq. If L2pEn, µq is separable for every n, so is
L2pX,µq.

Exercise 5.125: Folland Exercise 5.61.

Let pX,M, µq and pY,N, νq be σ-finite measure spaces such that L2pµq and L2pνq

are separable. If tfmu and tgnu are orthonormal bases for L2pµq and L2pνq and
hmnpx, yq “ fmpxqgnpyq, then thmnu is an orthonormal basis for L2pµˆνq.

Exercise 5.126: Folland Exercise 5.62.

In this exercise the measure defining the L2 spaces is Lebesgue measure.
(a) Cpr0, 1sq is dense in L2pr0, 1sq. (Adapt the proof of Theorem 49.)
(b) The set of polynomials is dense in L2pr0, 1sq.
(c) L2pr0, 1sq is separable.
(d) L2pRq is separable. (Use Folland Exercise 5.60.)
(e) L2pRnq is separable. (Use Folland Exercise 5.60.)

Solution.
(a) Fix f P L2pr0, 1sq. Let tϕnu be simple functions such that |ϕm| ď |ϕn| ď f for m ď n,

and ϕn Õ f pointwise. We have |ϕn ´ f |2 ď p2|f |q2 “ 4|f |2 P L1pr0, 1sq. Then by
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the dominated convergence theoremm

lim
nÑ8

ż

|ϕn ´ f |
2

“

ż

lim
nÑ8

|ϕn ´ f |
2

ă ε2mpr0, 1sq ă `8

for large enough n, so
ş

|ϕn ´ f |2 “ }ϕn ´ f}22 ă ε for sufficiently large n.
If Ik “ pa, bq, then we can approximate χIk in the L1pr0, 1sq metric by continuous

functions that vanish outside pa, bq. Indeed, given ε ą 0, take g to be the continuous
function with g “ 0 on r´1, aq Y rb, 1s and g “ 1 on ra ´ ε, b ` εs, and is linear on
ra, a ` εs and rb ´ ε, bs.

(b) Fix f P L1pr0, 1sq. By part (a), there exists g P Cpr0, 1sq with |f ´ g| ă
?
ε{2.

By the classical Stone-Weierstrass theorem, polynomials are dense in Cpr0, 1sq.
Therefore, pick a polynomial p P Cpr0, 1sq such that |g ´ p| ă

?
ε{2. Then, |f ´ p| ď

|f ´ g| ` |g ´ p| ă
?
ε{2 `

?
ε{2 “

?
ε.

Thus, }f ´ g}22 “
ş

r0,1s
|f ´ p|2 dm ă p

?
εq2mpr0, 1sq “ ε, as desired.

(c) The set of polynomials in r0, 1s with rational coefficients is countable (by the proof of
the classical Stone-Weierstrass where such polynomials are used), so let the countable
dense subset Z be the set of all rational valued polynomials on r0, 1s.

(d) Let pX,µq be a measure space, and for any µ-measurable E, we identify L2pE, µq as
the subspace of L2pXq consisting of functions that vanish outside of E.

From Folland Exercise 5.60, we know that if X “
Ů8

n“1En and L2pEn, µq is
separable for each n, then so is L2pX,µq. Taking pX,µq “ pR,mq and En “ rn´1, ns,
we obtain the desired result.

(e) The Hilbert space L2pRnq with the inner product xf |gy “
ş

Rn fg dm has an orthonor-
mal basis. Thus, L2pRnq is a direct sum of pairwise orthogonal spaces L2pRq, each
of which is separable, and each is over a σ-finite measure space.

It follows that the union of the countable dense subsets from each of these spaces
is itself a countable subset. We can decompose any f P L2pRnq into its mutually
orthogonal components and choose the element ϕi ă ε{n from the corresponding
dense subset of the ith direct summand, invoking Folland Exercise 5.61.

Exercise 5.127: Folland Exercise 5.63.

Let H be an infinite-dimensional Hilbert space.
(a) Every orthonormal sequence in H converges weakly to 0.
(b) The unit sphere S “ tx | }x} “ 1u is weakly dense in the unit ball B “

tx | }x} ď 1u. (In fact, every x P B is the weak limit of a sequence in S.)

Exercise 5.128: Folland Exercise 5.64.

(a) For k P N, define Lk P LpH,Hq by Lkp
ř8

1 anunq “
ř8

k anun´k. Then Lk Ñ 0 in
the strong operator topology but not in the norm topology.
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(b) For k P Zě1, define Rk P LpH,Hq by Rkp
ř8

1 anunq “
ř8

1 anun`k. Then Rk Ñ 0
in the weak operator topology but not in the strong operator topology. c.
RkLk Ñ 0 in the strong operator topology, but LkRk “ I for all k. (Use
Folland Exercise 5.53(b).)

Exercise 5.129: Folland Exercise 5.65.

ℓ2pAq is unitarily isomorphic to ℓ2pBq if and only if cardpAq “ cardpBq.

Exercise 5.130: Folland Exercise 5.66.

Let M be a closed subspace of L2pr0, 1s,mq that is contained in Cpr0, 1sq.
(a) There exists C ą 0 such that }f}u ď C}f}L2 for all f P M. (Use the closed graph

theorem.)
(b) For each x P r0, 1s there exists gx P M such that fpxq “ xf |gxy for all f P M, and

}gx}L2 ď C.
(c) The dimension of M is at most C2. (Hint: If tfju is an orthonormal sequence in

M,
ř

|fjpxq|
2

ď C2 for all x P r0, 1s.)

Exercise 5.131: Folland Exercise 5.67: The Mean Ergodic Theorem.

Let U be a unitary operator on the Hilbert space H,M “ tx | Ux “ xu, P the orthog-
onal projection onto M (Folland Exercise 5.58), and Sn “ n´1

řn´1
0 U j . Then Sn Ñ P

in the strong operator topology. (If x P M, then Snx “ x; if x “ y ´ Uy for some
y, then Snx Ñ 0. By Folland Exercise 5.57(d), M “ tx | U˚x “ xu. Apply Folland
Exercise 5.57(c) with T “ I ´ U .)

6 Lp Spaces

Lp spaces are a class of Banach spaces of functions whose norms are defined in terms
of integrals and which generalize the L1 spaces discussed in Chapter 2. They furnish
interesting examples of the general theory of Chapter 5 and play a central role in modern
analysis.

In this chapter we shall be working on a fixed measure space pX,M, µq.
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6.1 Basic Theory of Lp Spaces

Definition 1. If f is a measurable function on X and 0 ă p ă 8, we define

}f}p –

ˆ
ż

|f |
pdµ

˙1{p

,

allowing the possibility that }f}p “ 8, and we set
LppX,M, µq – tf : X Ñ C | f is measurable and }f}p ă 8u

We abbreviate LppX,M, µq by Lppµq, LppXq, or simply Lp when this will cause no confusion.
As we have done with L1, we consider two functions to define the same element of Lp
when they are equal almost everywhere. We sometimes denote by L0pX,M, µq the set of
equivalence classes of M-measurable functions that are equal a.e., and this may also be
denoted by L0pµq or even L0.

Notation 2. If A is any nonempty set, we define ℓppAq to be Lppµq where µ is counting
measure on pA,PpAqq, and we denote ℓppZě1q simply by ℓp.

Lemma 6.3.

Lp is a vector space for any p P p0,8q.

Proof. If f, g P Lp, then
|f ` g|

p
ď r2maxp|f |, |g|qs

p
ď 2pp|f |

p
` |g|

p
q

so that f ` g P Lp.

Our notation suggests }´}p is a norm on Lp. Indeed, it is obvious that }f}p “ 0 if and
only if f “ 0 a.e. and }cf}p “ |c|}f}p, so the only question is the triangle inequality. It
turns out that the latter is valid precisely when p ě 1, so our attention will be focused
almost exclusively on this case.

Warning 6.4.

Before proceeding further, however, let us see why the triangle inequality fails for p ă 1.
Suppose a ą 0, b ą 0, and 0 ă p ă 1. For t ą 0 we have tp´1 ą pa ` tqp´1, and by
integrating from 0 to b we obtain ap ` bp ą pa` bqp. Thus, if E and F are disjoint sets
of positive finite measure in X and we set a “ µpEq1{p and b “ µpF q1{p, we see that

}χE ` χF }p “ pap ` bpq1{p
ą a ` b “ }χE}p ` }χF }p.

The cornerstone of the theory of Lp spaces is Hölder’s inequality, which we now derive.
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Lemma 6.5: 6.1.

If a ě 0, b ě 0, and 0 ă λ ă 1, then
aλb1´λ

ď λa ` p1 ´ λqb

with equality if and only if a “ b.

Proof. The result is obvious if b “ 0; otherwise, dividing both sides by b and setting
t “ a{b, we are reduced to showing that tλ ď λt ` p1 ´ λq with equality if and only if
t “ 1. But by elementary calculus, tλ ´ λt is strictly increasing for t ă 1 and strictly
decreasing for t ą 1, so its maximum value, namely 1 ´ λ, occurs at t “ 1.

Theorem 6.6: 6.2: Hölder’s Inequality.

Suppose 1 ă p ă 8 and p´1 ` q´1 “ 1 (that is, q “ p{pp ´ 1q). If f and g are
measurable functions on X, then

}fg}1 ď }f}p}g}q (6.6.1)
In particular, if f P Lp and g P Lq, then fg P L1, and in this case equality holds in
Equation (6.6.1) if and only if α|f |p “ β|g|q a.e. for some constants α, β with αβ ‰ 0.

Proof. The result is trivial if }f}p “ 0 or }g}q “ 0 (since then f “ 0 or g “ 0 a.e.),
or if }f}p “ 8 or }g}q “ 8. Moreover, we observe that if Equation (6.6.1) holds for a
particular f and g, then it also holds for all scalar multiples of f and g, for if f and g
are replaced by af and bg, both sides of Equation (6.6.1) change by a factor of |ab|. It
therefore suffices to prove that Equation (6.6.1) holds when }f}p “ }g}q “ 1 with equality
if and only if |f |p “ |g|q a.e. To this end, we apply Lemma 5 with a “ |fpxq|p, b “ |gpxq|q,
and λ “ p´1 to obtain

|fpxqgpxq| ď p´1
|fpxq|

p
` q´1

|gpxq|
q

Integration of both sides yields

}fg}1 ď p´1

ż

|f |
p

` q´1

ż

|g|
q

“ p´1
` q´1

“ 1 “ }f}p}g}q

Equality holds here if and only if it holds a.e. in (6.4), and by Lemma 5 this happens
precisely when |f |p “ |g|q a.e.

The condition p´1 ` q´1 “ 1 occurring in Hölder’s inequality turns up frequently in
Lp theory. If 1 ă p ă 8, the number q “ p{pp ´ 1q such that p´1 ` q´1 “ 1 is called the
conjugate exponent to p.
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Theorem 6.7: 6.5: Minkowski’s Inequality.

If 1 ď p ă 8 and f, g P Lp, then
}f ` g}p ď }f}p ` }g}p

Proof. The result is obvious if p “ 1 or if f ` g “ 0 a.e. Otherwise, we observe that
|f ` g|

p
ď p|f | ` |g|q|f ` g|

p´1

and apply Hölder’s inequality, noting that pp ´ 1qq “ p when q is the conjugate exponent
to p:

ż

|f ` g|
p

ď }f}p}|f ` g|
p´1

}q ` }g}p}|f ` g|
p´1

}q

“ p}f}p ` }g}pq

ˆ
ż

|f ` g|
p

˙1{q

.

Therefore,

}f ` g}p “

„
ż

|f ` g|
p

ȷ1´p1{qq

ď }f}p ` }g}p.

This result shows that, for p ě 1, Lp is a normed vector space. The following theorem
shows that even more is true.

Theorem 6.8: 6.6.

For 1 ď p ă 8, Lp is a Banach space.

Proof. We use Theorem 8. Suppose tfku Ă Lp and
ř8

1 }fk}p “ B ă 8. Let Gn “
řn

1 |fk|

and G “
ř8

1 |fk|. Then }Gn}p ď
řn

1}fk}p ď B for all n, so by the monotone convergence
theorem,

ş

Gp “ lim
ş

Gp
n ď Bp. Hence G P Lp, and in particular Gpxq ă 8 a.e., which

implies that the series
ř8

1 fk converges a.e. Denoting its sum by F , we have |F | ď G and
hence F P Lp; moreover, |F ´

řn
1 fk|

p
ď p2Gqp P L1, so by the dominated convergence

theorem,
›

›

›
F ´

ÿn

1
fk

›

›

›

p

p
“

ż

ˇ

ˇ

ˇ
F ´

ÿn

1
fk

ˇ

ˇ

ˇ

p

Ñ 0

Thus the series
ř8

1 fk converges in the Lp norm.

Proposition 6.9: 6.7.

For 1 ď p ă 8, the set of simple functions f “
řn

1 ajχEj , where µpEjq ă 8 for all j,
is dense in Lp.

Proof. Clearly such functions are in Lp. If f P Lp, choose a sequence tfnu of simple
functions such that fn Ñ f a.e. and |fn| ď |f |, according to Theorem 18. Then fn P Lp
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and |fn ´ f |
p

ď 2p|f |p P L1, so by the dominated convergence theorem, }fn ´ f}p Ñ 0.
Moreover, if fn “

ř

ajχEj where the Ej are disjoint and the aj are nonzero, we must have
µpEjq ă 8 since

ř

|aj|
pµpEjq “

ş

|fn|
p

ă 8.

To complete the picture of Lp spaces, we introduce a space corresponding to the
limiting value p “ 8.

Definition 10. If f is a measurable function on X, we define
}f}8 “ infta ě 0 | µptx | |fpxq| ą auq “ 0u

with the convention that inf ∅ “ 8. }f}8 is called the essential supremum of |f | and
is sometimes written

}f}8 “ ess supxPX |fpxq|.

We now define
L8

pX,M, µq “ tf : X Ñ C | f is measurable and }f}8 ă 8u

with the same notational conventions of Lp and the usual convention that functions that
are equal a.e. define the same element of L8. define

Note 11. We observe that the infimum in Definition 10 is actually attained, for

tx | |fpxq| ą au “
ď8

1
tx | |fpxq| ą a ` n´1

u

and if the sets on the right are null, so is the one on the left.

Thus f P L8 if and only if there is a bounded measurable function g such that f “ g
a.e.; we can take g “ fχE where E “ tx | |fpxq| ď }f}8u.

Two remarks: First, for fixed X and M, L8pX,M, µq depends on µ only insofar as µ
determines which sets have measure zero; if µ and ν are mutually absolutely continuous,
then L8pµq “ L8pνq. Second, if µ is not semifinite, for some purposes it is appropriate to
adopt a slightly different definition of L8. This point will be explored in Folland Exercise
6.23, Folland Exercise 6.24, and Folland Exercise 6.25.

The results we have proved for 1 ď p ă 8 extend easily to the case p “ 8, as follows:

Theorem 6.12: 6.8.

(a) If f and g are measurable functions on X, then }fg}1 ď }f}1}g}8. If f P L1

and g P L8, }fg}1 “ }f}1}g}8 if and only if |gpxq| “ }g}8 a.e. on the set where
fpxq ‰ 0.

(b) } ¨ }8 is a norm on L8.
(c) }fn ´ f}

8
Ñ 0 if and only if there exists E P M such that µpEcq “ 0 and fn Ñ f

uniformly on E.
(d) L8 is a Banach space.
(e) The simple functions are dense in L8.

The proof is left to the reader (Folland Exercise 6.2).
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Convention 6.13.

In view of Theorem 12(a) and the formal equality 1´1 ` 8´1 “ 1, it is natural to
regard 1 and 8 as conjugate exponents of each other, and we do so henceforth.

Theorem 12(c) shows that } ¨ }8 is closely related to, but usually not identical with,
the uniform norm } ¨ }u. However, if we are dealing with Lebesgue measure, or more
generally any Borel measure that assigns positive values to all open sets, then }f}8 “ }f}u

whenever f is continuous, since tx | |fpxq| ą au is open. In this situation we may use
the notations }f}8 and }f}u interchangeably, and we may regard the space of bounded
continuous functions as a (closed!) subspace of L8.

Note 14 (Very Important Note). In general we have Lp Ć Lq for all p ‰ q; to see what is
at issue, it is instructive to consider the following simple examples on p0,8q with Lebesgue
measure. Let fapxq “ x´a, where a ą 0. Elementary calculus shows that faχp0,1q P Lp if
and only if p ă a´1, and faχp1,8q P Lp if and only if p ą a´1. Thus we see two reasons
why a function f may fail to be in Lp: either |f |p blows up too rapidly near some point,
or it fails to decay sufficiently rapidly at infinity. In the first situation the behavior of |f |p

becomes worse as p increases, while in the second it becomes better. In other words, if
p ă q, functions in Lp can be locally more singular than functions in Lq, whereas functions
in Lq can be globally more spread out than functions in Lp. These somewhat imprecisely
expressed ideas are actually a rather accurate guide to the general situation, concerning
which we now give four precise results. The last two show that inclusions Lp Ă Lq can
be obtained under conditions on the measure space that disallow one of the types of bad
behavior described above; for a more general result, see Folland Exercise 6.5.

Proposition 6.15: 6.9.

If 0 ă p ă q ă r ď 8, then Lq Ă Lp `Lr. That is, each f P Lq is the sum of a function
in Lp and a function in Lr.

Proof. If f P Lq, let E “ tx | |fpxq| ą 1u and set g “ fχE and h “ fχEc . Then
|g|p “ |f |pχE ď |f |qχE, so g P Lp, and |h|r “ |f |rχEc ď |f |qχEc , so h P Lr. (For r “ 8,
obviously }h}8 ď 1.)

Proposition 6.16: 6.10.

If 0 ă p ă q ă r ď 8, then Lp X Lr Ă Lq and }f}q ď }f}λp}f}1´λ
r , where λ P p0, 1q is

defined by

q´1
“ λp´1

` p1 ´ λqr´1, that is, λ “
q´1 ´ r´1

p´1 ´ r´1
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Proof. If r “ 8, we have |f |q ď }f}q´p
8 |f |p and λ “ p{q, so

}f}q ď }f}
p{q
p }f}

1´pp{qq
8 “ }f}

λ
p}f}

1´λ
8 .

If r ă 8, we use Hölder’s inequality, taking the pair of conjugate exponents to be p{λq
and r{p1 ´ λqq:

ż

|f |
q

“

ż

|f |
λq

|f |
p1´λqq

ď }|f |
λq

}p{λq}|f |
p1´λqq

}r{p1´λqq

“

„
ż

|f |
p

ȷλq{p„ż

|f |
r

ȷp1´λqq{r

“ }f}
λq
p }f}

p1´λqq
r .

Taking qth roots, we are done.

Proposition 6.17: 6.11.

If A is any set and 0 ă p ă q ď 8, then ℓppAq Ă ℓqpAq and }f}q ď }f}p.

Proof. Obviously }f}p8 “ supα |fpαq|p ď
ř

α |fpαq|p, so that }f}8 ď }f}p. The case
q ă 8 then follows from Proposition 16: if λ “ p{q,

}f}q ď }f}
λ
p}f}

1´λ
8 ď }f}p.

Proposition 6.18: 6.12.

If µpXq ă 8 and 0 ă p ă q ď 8, then Lppµq Ą Lqpµq and }f}p ď }f}qµpXqp1{pq´p1{qq.

Proof. If q “ 8, this is obvious:

}f}
p
p “

ż

|f |
p

ď }f}
p
8

ż

1 “ }f}
p
8µpXq

If q ă 8, we use Hölder’s inequality with the conjugate exponents q{p and q{pq ´ pq:

}f}
p
p “

ż

|f |
p

¨ 1 ď }|f |
p
}q{p}1}q{pq´pq “ }f}

p
qµpXq

pq´pq{q.

We conclude this section with a few remarks about the significance of the Lp spaces.
The three most obviously important ones are L1, L2, and L8. With L1 we are already
familiar; L2 is special because it is a Hilbert space; and the topology on L8 is closely
related to the topology of uniform convergence. Unfortunately, L1 and L8 are pathological
in many respects, and it is more fruitful to deal with the intermediate Lp spaces. One
manifestation of this is the duality theory in Folland Section 6.2; another is the fact that
many operators of interest in Fourier analysis and differential equations are bounded on
Lp for 1 ă p ă 8 but not on L1 or L8. (Some examples are mentioned in Folland Section
9.4.)
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Exercise 6.19: Folland Exercise 6.1.

When does equality hold in Minkowski’s inequality? (The answer is different for p “ 1
and for 1 ă p ă 8. What about p “ 8?)

Exercise 6.20: Folland Exercise 6.2.

Prove Theorem 12.

Exercise 6.21: Folland Exercise 6.3.

If 1 ď p ă r ď 8, Lp X Lr is a Banach space with norm }f} “ }f}p ` }f}r, and if
p ă q ă r, the inclusion map Lp X Lr Ñ Lq is continuous.

Exercise 6.22: Folland Exercise 6.4.

If 1 ď p ă r ď 8, Lp ` Lr is a Banach space with norm }f} “

inft}g}p ` }h}r | f “ g ` hu, and if p ă q ă r, the inclusion map Lq Ñ Lp ` Lr

is continuous.

Exercise 6.23: Folland Exercise 6.5.

Suppose 0 ă p ă q ă 8. Then Lp Ć Lq if and only if X contains sets of arbitrarily
small positive measure, and Lq Ć Lp if and only if X contains sets of arbitrarily large
finite measure.

(For the "if" implication: In the first case there is a disjoint sequence tEnu with
0 ă µpEnq ă 2´n, and in the second case there is a disjoint sequence tEnu with
1 ď µpEnq ă 8. Consider f “

ř

anχEn for suitable constants an.) What about the
case q “ 8 ?

Exercise 6.24: Folland Exercise 6.6.

Suppose 0 ă p0 ă p1 ď 8. Find examples of functions f on p0,8q (with Lebesgue
measure), such that f P Lp if and only if (a) p0 ă p ă p1, (b) p0 ď p ď p1, (c) p “ p0.
(Consider functions of the form fpxq “ x´a| log x|b.)

Exercise 6.25: Folland Exercise 6.7.

If f P Lp X L8 for some p ă 8, so that f P Lq for all q ą p, then }f}8 “ limqÑ8 }f}q.

Solution. First suppose }f}p “ 0. Then 0 “ }f}
p
p “

ş

|f |
p, so |f | “ 0 a.e. This means
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}f}
8

“ 0 and }f}q “ 0 for all q, so
}f}

8
“ 0 “ lim

qÑ8
0 “ lim

qÑ8
}f}q,

which affirms the claim.
Now suppose }f}p ą 0. By Folland Proposition 6.10 with r “ 8, for all q ą 0 and all

p P p1, qq we have

}f}q ď }f}
p{q
p }f}

1´p{q
8

.

Taking the limit at q Ñ 8, we obtain
lim
qÑ8

}f}q ď }f}
p{q
p }f}

1´p{q
8

“ }f}
0
p}f}

1´0
8

“ 8,

where we used that the map q ÞÑ }f}
q
p is continuous as a function of q P p0,8q (since }f}p

is nonnegative).
To show the reverse inequality, it suffices to show lim infqÑ8}f}q ď }f}

8
. We can

prove this as follows: Fix n P Zě1 and let
En – tx P X | |f | ě }f}

8
´ 1{nu.

Since µpEnq ą 0 (by definition of }´}
8

), we have

}f}
q
q “

ż

|f |
q

ě

ż

En

|f |
q

ě

ż

En

p}f}
8

´ 1{nq
q

“ µpEnqp}f}
8

´ 1{nq
q.

Taking the qth root of both sides, we obtain
}f}q ě µpEnq

1{q
p}f}

8
´ 1{nq. (6.25.1)

And µpEnq ă 8, since otherwise 8 “ µpEnq1{qp}f}
8

´ 1{nq ď }f}
q
q, contradicting f P Lq.

Also µpEnq ą 0 (by definition of }´}
8

), so by taking q Ñ 8 we have by Equation (6.25.1)
that

lim
qÑ8

}f}q ě µpEnq
0
p}f}

8
´ 1{nq “ }f}

8
´ 1{n.

Since n was arbitrary, we conclude limqÑ8}f}q ě }f}
8

, which completes the proof.

Exercise 6.26: Folland Exercise 6.8.

Suppose µpXq “ 1 and f P Lp for some p ą 0, so that f P Lq for 0 ă q ă p.
(a) log }f}q ě

ş

log |f |. (Use Exercise 42 d in Folland Section 3.5, with F ptq “ et.)
(b)

`ş

|f |q ´ 1
˘

{q ě log }f}q, and
`ş

|f |q ´ 1
˘

{q Ñ
ş

log |f | as q Ñ 0.
(c) limqÑ0 }f}q “ exp

`ş

log |f |
˘

.

Solution.
(a) Here we use the convention logp0q “ ´8 and log8 “ 8. We may assume

ş

log|f | ‰

´8, since otherwise the desired inequality is

log|f |
q

“ q

ż

log|f | “ ´8 ď log}f}q,
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which holds irregardless of the value of }f}q. The exponential is convex and µpXq “ 1,
so by Jensen’s inequality (Folland Exercise 3.42(d)), we obtain

exp

ˆ
ż

log|f |
q

˙

ď

ż

expplog|f |
q
q “

ż

|f |
q.

Taking the logarithm of both sides, we deduce

q

ż

log|f | “

ż

log|f |
q

ď log

ż

|f |
q

“ log}f}
q
q “ q log}f}q.

By dividing through by q ą 0, we conclude
ş

log|f | ď log}f}q
(b) Since log x ď x ´ 1 for all x P r0,8s, we have

q log}f}q “ log

ż

|f |
q

ď

ż

|f |
q

´ 1.

Then divide through by q ą 0 to obtain the desired inequality.
It remains to show

`ş

|f |
q

´ 1
˘

{q Ñ
ş

log|f | as q Œ 0. We have χt|f |ě1u
|f |

q
´1
q

ď

χt|f |ě1u
|f |

p
´1
p

P L1, so by the dominated convergence theorem

lim
qŒ0

ż

χt|f |ě1u

|f |
q

´ 1

q
“

ż

lim
qŒ0

χt|f |ě1u

|fpxq|
q

´ 1

q
“

ż

χt|f |ě1u log|f |, (6.26.1)

where for the second equality we used the limit definition of the logarithm on r0,8s.
On the other hand, by the fundamental theorem of calculus, we have

χt|f |ă1u

|f |
q

´ 1

q
“

ż |f |

1

χt|f |ă1ut
q´1

“

ż 1

|f |

χt|f |ă1ut
q´1,

which increases as q decreases. As everything here is measurable, by the monotone
convergence theorem

lim
qŒ0

ż

χt|f |ă1u

|f |
q

´ 1

q
“

ż

χt|f |ă1u log|f |. (6.26.2)

Now by Equations (6.26.1) and (6.26.2), we conclude

lim
qŒ0

ż

|f |
q

´ 1

q
“ lim

qŒ0

ż

pχt|f |ă1u ` χt|f |ě1uq
|f |

q
´ 1

q

“

ż

χt|f |ă1u log|f | `

ż

χt|f |ě1u log|f | “

ż

log|f |,

as claimed.
(c) We have

exp

ˆ
ż

log|f |

˙

ď expplog}f}qq ď exp

ˆ
ż

|f |
q

´ 1

˙

{q,

where the first and second inequalities are by parts (a) and (b), respectively. By part
(b) and continuity of the exponential,

exp

ˆ
ż

|f |
q

´ 1

˙

{q Ñ

ż

log|f |
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as q Ñ 0. Now by the squeeze theorem for limits, we conclude

lim
qÑ0

}f}q “ exp

ˆ
ż

log|f |

˙

.

Exercise 6.27: Folland Exercise 6.9.

Suppose 1 ď p ă 8. If }fn ´ f}p Ñ 0, then fn Ñ f in measure, and hence some
subsequence converges to f a.e. On the other hand, if fn Ñ f in measure and
|fn| ď g P Lp for all n, then }fn ´ f}p Ñ 0.

Exercise 6.28: Folland Exercise 6.10.

Suppose 1 ď p ă 8. If fn, f P Lp and fn Ñ f a.e., then }fn ´ f}p Ñ 0 if and only if
}fn}p Ñ }f}p. (Use Folland Exercise 2.20.)

Solution. We also prove or disprove the assertion in the case p “ 8.
(ñ) If ε ą 0 and }fn ´ f}p Ñ 0, then by the triangle inequality }fn}p´}f}p ď }fn ´ f}

8
ă

ε for all sufficiently large n P Zě1, so the forward implication holds. Note that this
argument works for all p P r1,8s.

(ð) Since }fn}p Ñ }f}p, we have }fn}
p
p Ñ }f}

p
p. Setting gn – 2pmaxt|fn|

p, |f |
p
u, g –

2p|f |
p

ě 0, hn – 2p|fn ´ f |
p, and h – 0, we observe that

– hn Ñ h a.e.,
– gn Ñ g a.e.,
– gn P L1 since fn, f P Lp implies |fn|

p, |f |
p

P L1 (hence also maxt|fn|
p, |f |

p
u P Lp),

– hn P L1 since by the triangle inequality hn ď 2pmaxt|f |
p
n, |f |

p
u “ gn P L1 and

gn,
– |hn| “ |fn ´ f |

p
ď p|fn| ` |f |q

p
ď 2maxt|fn|

p, |f |
p
u ď 2pmaxt|fn|

p, |f |
p
u “

gn P L1 (since fn, f P Lp, hence |fn|
p, |f |

p
P L1), and

–
ş

gn “ 2p
ş

maxt|fn|
p, |f |

p
u Ñ 2p

ş

|f |
p

“
ş

g by hypothesis.
We can therefore apply the generalized dominated convergence theorem (Folland
Exercise 2.20) to obtain

2p
ż

|fn ´ f |
p

“

ż

hn Ñ

ż

h “

ż

0 “ 0.

By dividing through by 2p ą 0, we obtain
}fn ´ f}

p
p Ñ 0,

which implies }fn ´ f}p Ñ 0.
The above argument fails in the case p “ 8: if p “ 8, then when the measure

space is pR,L,mq, we have
|}χp´n,nq}8

´ }χR}
8

| “ 0 Ñ 0 as n Ñ 8,
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but
}χp´n,nq ´ χR}

8
“ 1 Û 0 as n Ñ 8.

Exercise 6.29: Folland Exercise 6.11.

If f is a measurable function on X, define the essential range Rf of f to be the set of
all z P C such that tx | |fpxq ´ z| ă εu has positive measure for all ε ą 0.
(a) Rf is closed.
(b) If f P L8, then Rf is compact and }f}8 “ maxt|z| | z P Rfu.

Exercise 6.30: Folland Exercise 6.12.

If p ‰ 2, the Lp norm does not arise from an inner product on Lp, except in trivial
cases when dimpLpq ď 1. (Show that the parallelogram law fails.)

Solution. Let pX,M, µq be a measure space. Recall that since dimLp ě 2, there exist
disjoint sets A,B P M of positive finite measure. Then for all p P r1,8q ∖ t2u,

2

›

›

›

›

χA
µpAq1{p

›

›

›

›

p

` 2

›

›

›

›

χB
µpBq1{p

›

›

›

›

p

“ 4 ‰ 41{p
` 41{p

“ p1 ` 1q
2{p

` p1 ` 1q
2{p (since p ‰ 2)

“

ˆ

1

µpAq

ż

|χA|
p

`
1

µpBq

ż

|χB|
p

˙2{p

`

ˆ

1

µpAq

ż

|χA|
p

´
1

µpBq

ż

|χB|
p

˙2{p

“

ˆ
ż

ˇ

ˇ

ˇ

ˇ

χA
µpAq1{p

ˇ

ˇ

ˇ

ˇ

p

`

ż

ˇ

ˇ

ˇ

ˇ

χB
µpBq1{p

ˇ

ˇ

ˇ

ˇ

p˙2{p

`

ˆ
ż

ˇ

ˇ

ˇ

ˇ

χA
µpAq1{p

ˇ

ˇ

ˇ

ˇ

p

´

ż

ˇ

ˇ

ˇ

ˇ

χB
µpBq1{p

ˇ

ˇ

ˇ

ˇ

p˙2{p

“

ˆ
ż

ˇ

ˇ

ˇ

ˇ

χA
µpAq1{p

`
χB

µpBq1{p

ˇ

ˇ

ˇ

ˇ

p˙2{p

`

ˆ
ż

ˇ

ˇ

ˇ

ˇ

χA
µpAq1{p

´
χB

µpBq1{p

ˇ

ˇ

ˇ

ˇ

p˙2{p

(since A X B “ ∅)

“

›

›

›

›

χA
µpAq1{p

`
χB

µpBq1{p

›

›

›

›

2

p

`

›

›

›

›

χA
µpAq1{p

´
χB

µpBq1{p

›

›

›

›

2

p

Hence the parallelogram law fails. And if p “ 8, then with A and B as above we have
2 “ }χA ` χB}

8
` }χA ´ χB}

8
‰ 4 “ 2}χA}

8
` 2}χB}

8
.

Thus for all p P r1,8s ∖ t2u, }´}p does not arise from an inner product.

Exercise 6.31: Folland Exercise 6.13.

LppRn,mq is separable for 1 ď p ă 8. However, L8pRn,mq is not separable. (There
is an uncountable set F Ă L8 such that }f ´ g}8 ě 1 for all f, g P F with f ‰ g.)

Exercise 6.32: Folland Exercise 6.14.

If g P L8, the operator T defined by Tf “ fg is bounded on Lp for 1 ď p ď 8. Its
operator norm is at most }g}8, with equality if µ is semifinite.
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Exercise 6.33: Folland Exercise 6.15: The Vitali Convergence Theorem.

Suppose 1 ď p ă 8 and tfnu
8

1 Ă Lp. In order for tfnu to be Cauchy in the Lp
norm it is necessary and sufficient for the following three conditions to hold: (i) tfnu

is Cauchy in measure; (ii) the sequence t|fn|
p
u is uniformly integrable (see Folland

Exercise 6.11 in Folland Section 3.2); and (iii) for every ε ą 0 there exists E Ă X such
that µpEq ă 8 and

ş

Ec
|fn|

p
ă ε for all n. (To prove the sufficiency: Given ε ą 0, let

E be as in (iii), and let Amn “ tx P E | |fmpxq ´ fnpxq| ě εu. Then the integrals of
|fn ´ fm|

p over E ∖ Amn, Amn, and Ec are small when m and n are large—for three
different reasons.)

Exercise 6.34: Folland Exercise 6.16.

If 0 ă p ă 1, the formula ρpf, gq “
ş

|f ´ g|p defines a metric on Lp that makes Lp
into a complete topological vector space. (The proof of Theorem 8 still works for
p ă 1 if }f}p is replaced by

ş

|f |p, as it uses only the triangle inequality and not the
homogeneity of the norm.)

Exercise 6.35.

Determine precisely the set of triples pp, q, rq P R3 with 1 ď r ď p, q ď 8 such that the
following holds: if f P LppRnq and g P LqpRnq, then fg P LrpRnq and }fg}r ď }f}p}g}q.
(Here the underlying measure is Lebesgue measure.) Prove your answer.

Solution. We claim the set of triples for which this holds is given by
R –

␣

pp, q, rq P R3 ˇ
ˇ 1{p ` 1{q “ 1{r

(

.

Proof. First suppose pp, q, rq P R, f P LppRnq, and g P LqpRnq.
• Case 1: 1 ď r ď p, q ă 8. Then |f |

r
P Lp{rpRnq and |g|

r
P Lq{rpRnq, so by Hölder’s

inequality |fg|
r

“ |f |
r
|g|

r
P L1pRnq, hence fg P Lr, and

}|fg|
r
}1 ď }|f |

r
}p{r}|g|

r
}q{r.

By raising both sides to the power of 1{r, we obtain

}|fg|
r
}
1{r
1 ď }|f |

r
}
1{r
p{r}|g|

r
}
1{r
q{r, (6.35.1)

so

}fg}r “

ˆ
ż

|fg|
r

˙1{r

“ }|fg|
r
}
1{r
1

(6.35.1)
ď }|f |

r
}
1{r
p{r}|g|

r
}
1{r
q{r

“

ˆ
ż

p|f |
r
q
p{r

˙
1

�r
¨ �r
p
ˆ
ż

p|g|
r
q
q{r

˙
1

�r
¨ �r
q

“

ˆ
ż

|f |
p

˙1{pˆż

|g|
q

˙1{q

“ }f}p}g}q.
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• Case 2: 1 ď r ď p ă q “ 8 or 1 ď r ď q ă p “ 8. (Without loss of generality take
1 ď r ď p ă q “ 8.) Then 1{r “ 1{p, and since g P L8, there exists a bounded
function g1 such that g1 “ g a.e.; thus |fg1|

p
“ |fg|

p a.e., so

}fg}
p
p “ }fg1

}
p
p “

ż

|fg1
|
p

ď }g1
}
p
8

ż

|f |
p

“ }g1
}
p
8

}f}
p
p ă 8.

Hence fg P Lr p“ Lpq, and by taking the pth root of both sides (and noting that the
right-hand side is just }g}

p
8

}f}
p
p since g “ g1 a.e.), we recover the desired inequality.

• Case 3: p “ q “ r “ 8. Then the claim holds, since if E P Ln is an arbitrary set of
positive measure then our assumptions imply |f |E|, |g|E| ă 8, hence |f |E| ¨ |g|E| “

|fg|E| ă 8, so fg is bounded on E. But E was an arbitrary set of positive measure,
so }fg}

8
ă 8. Thus fg P L8. And the inequality holds, since for a.e. x we have

|fpxqgpxq| ď }f}
8

|gpxq| ď }f}
8

}g}
8
,

so }fg}
8

ď }f}
8

}g}
8

.
Now suppose pp, q, rq P R3 ∖ R.
• Case 1: 1 ď r ď p, q ă 8. If 1{r ą 1{p ` 1{q, but the desired conclusion fails, since

otherwise

21{r
“

›

›

›

›

ˆ

2χB1p0q

µpB1p0qq

˙2›
›

›

›

r

ď

›

›

›

›

2χB1p0q

µpB1p0qq

›

›

›

›

p

›

›

›

›

2χB1p0q

µpB1p0qq

›

›

›

›

q

“ 21{p
¨ 21{q,

so 1{r ď 1{p ` 1{q, a contradiction. It fails similarly if 1{r ă 1{p ` 1{q, since
otherwise

1

2r
“

›

›

›

›

ˆ

χB1p0q

2µpB1p0qq

˙2›
›

›

›

r

ď

›

›

›

›

χB1p0q

2µpB1p0qq

›

›

›

›

p

›

›

›

›

χB1p0q

2µpB1p0qq

›

›

›

›

q

“
1

2p
¨
1

2q
,

so 21{p`1{q ď 21{r, and hence 1{r ě 1{p ` 1{q, a contradiction.
• Case 2: 1 ď r ď p ă q “ 8 or 1 ď r ď q ă p “ 8. (Without loss of generality take
1 ď r ď p ă q “ 8.) If 1{p ă 1{r, then the desired conclusion fails, since otherwise

µpB1p0qq
1{r

“ }χ2
B1p0q}r ď }χB1p0q}8

}χB1p0q}p “ 1 ¨ µpB1p0qq
1{p,

so 1{r ď 1{p, a contradiction.
Similarly, if 1{p ą 1{r, then the desired conclusion fails, since otherwise

µpB1p0qq
´1{r

“

›

›

›

›

ˆ

χB1p0q

µpB1p0qq

˙2›
›

›

›

r

ď

›

›

›

›

χB1p0q

µpB1p0qq

›

›

›

›

p

›

›

›

›

χB1p0q

µpB1p0qq

›

›

›

›

8

“ µpB1p0qq
´1{p,

so 1{p ď 1{r, a contradiction.
• Case 3: p “ q “ r “ 8. Then the desired conclusion fails, since otherwise

µpB1p0qq “ }pχB1p0qq
2
}r ď }χB1p0q}8

}χB1p0q}8
“ 1 ¨ 1 “ 1,

which fails for all n P Zě1.
We conclude R is precisely the set of triples such that the given statement is true.

Version of April 30, 2024 at 11pm EST Page 241 of 368

https://www.greysonwesley.com/home


Greyson C. Wesley §6.2: The Dual of Lp

6.2 The Dual of Lp

Suppose that p and q are conjugate exponents. Hölder’s inequality shows that each
g P Lq defines a bounded linear functional ϕg on Lp by

ϕgpfq “

ż

fg

and the operator norm of ϕg is at most }g}q. (If p “ 2 and we are thinking of L2 as a
Hilbert space, it is more appropriate to define ϕgpfq “

ş

fg. The same convention can be
used for p ‰ 2 without changing the results below in an essential way.) In fact, the map
g Ñ ϕg is almost always an isometry from Lq into pLpq˚.

Proposition 6.36: 6.13.

Suppose that p and q are conjugate exponents and 1 ď q ă 8. If g P Lq, then

}g}q “ }ϕg} “ sup

"
ˇ

ˇ

ˇ

ˇ

ż

fg

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

}f}p “ 1

*

If µ is semifinite, this result holds also for q “ 8.

Proof. Hölder’s inequality says that }ϕg} ď }g}q, and equality is trivial if g “ 0 (a.e.). If
g ‰ 0 and q ă 8, let

f “
|g|q´1sgn g

}g}q´1
q

Then

}f}
p
p “

ş

|g|pq´1qp

}g}pq´1qp
q

“

ş

|g|q
ş

|g|q
“ 1

so

}ϕg} ě

ż

fg “

ş

|g|q

}g}q´1
q

“ }g}q

(If q “ 1, then f “ sgn g, }f}8 “ 1, and
ş

fg “ }g}1.) If q “ 8, for ε ą 0 let
A “ tx | |gpxq| ą }g}8 ´ εu. Then µpAq ą 0, so if µ is semifinite there exists B Ă A with
0 ă µpBq ă 8. Let f “ µpBq´1χBsgn g; then }f}1 “ 1, so

}ϕg} ě

ż

fg “
1

µpBq

ż

B

|g| ě }g}8 ´ ε

Since ε is arbitrary, }ϕg} “ }g}8.

Conversely, if f Ñ
ş

fg is a bounded linear functional on Lp, then g P Lq in almost all
cases. In fact, we have the following stronger result.
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Theorem 6.37: 6.14.

Let p and q be conjugate exponents. Suppose that g is a measurable function on X
such that fg P L1 for all f in the space Σ of simple functions that vanish outside a set
of finite measure, and the quantity

Mqpgq “ sup

"
ˇ

ˇ

ˇ

ˇ

ż

fg

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

f P Σ and }f}p “ 1

*

is finite. Also, suppose either that Sg “ tx | gpxq ‰ 0u is σ-finite or that µ is semifinite.
Then g P Lq and Mqpgq “ }g}q.

Proof. First, we remark that if f is a bounded measurable function that vanishes
outside a set E of finite measure and }f}p “ 1, then

ˇ

ˇ

ş

fg
ˇ

ˇ ď Mqpgq. Indeed, by Theorem 18
there is a sequence tfnu of simple functions such that |fn| ď |f | (in particular, fn vanishes
outside E) and fn Ñ f a.e. Since |fn| ď }f}8χE and χEg P L1, by the dominated
convergence theorem we have

ˇ

ˇ

ş

fg
ˇ

ˇ “ lim
ˇ

ˇ

ş

fng
ˇ

ˇ ď Mqpgq.
Now suppose that q ă 8. We may assume that Sg is σ-finite, as this condition

automatically holds when µ is semifinite; see Folland Exercise 6.17. Let tEnu be an
increasing sequence of sets of finite measure such that Sg “

Ť8

1 En. Let tϕnu be a sequence
of simple functions such that ϕn Ñ g pointwise and |ϕn| ď |g|, and let gn “ ϕnχEn . Then
gn Ñ g pointwise, |gn| ď |g|, and gn vanishes outside En. Let

fn “
|gn|

q´1sgn g

}gn}
q´1
q

Then as in the proof of Proposition 36 we have }fn}p “ 1, and by Fatou’s lemma,

}g}q ď lim inf}gn}q “ lim inf

ż

|fngn|

ď lim inf

ż

|fng| “ lim inf

ż

fng ď Mqpgq

(For the last estimate we used the remark at the beginning of the proof.) On the other
hand, Hölder’s inequality gives Mqpgq ď }g}q, so the proof is complete for the case q ă 8.

Now suppose q “ 8. Given ε ą 0, let A “ tx | |gpxq| ě M8pgq ` εu. If µpAq were
positive, we could choose B Ă A with 0 ă µpBq ă 8 (either because µ is semifinite
or because A Ă Sg). Setting f “ µpBq´1χBsgn g, we would then have }f}1 “ 1, and
ş

fg “ µpBq´1
ş

B
|g| ě M8pgq ` ε. But this is impossible by the remark at the beginning

of the proof. Hence }g}8 ď M8pgq, and the reverse inequality is obvious.
The last and deepest part of the description of pLpq˚ is the fact that the map g Ñ ϕg

is, in almost all cases, a surjection.
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Theorem 6.38: 6.15.

Let p and q be conjugate exponents. If 1 ă p ă 8, for each ϕ P pLpq˚ there exists
g P Lq such that ϕpfq “

ş

fg for all f P Lp, and hence Lq is isometrically isomorphic
to pLpq˚. The same conclusion holds for p “ 1 provided µ is σ-finite.

Proof. First let us suppose that µ is finite, so that all simple functions are in Lp. If
ϕ P pLpq˚ and E is a measurable set, let νpEq “ ϕpχEq. For any disjoint sequence tEju, if
E “

Ť8

1 Ej we have χE “
ř8

1 χEj where the series converges in the Lp norm:
›

›

›
χE ´

ÿn

1
χEj

›

›

›

p
“

›

›

›

ÿ8

n`1
χEj

›

›

›

p
“ µ

´

ď8

n`1
Ej

¯1{p

Ñ 0 as n Ñ 8

(It is at this point that we need the assumption that p ă 8.) Hence, since ϕ is linear and
continuous,

νpEq “
ÿ8

1
ϕpχEjq “

ÿ8

1
νpEjq

so that ν is a complex measure. Also, if µpEq “ 0, then χE “ 0 as an element of Lp, so
νpEq “ 0; that is, ν ! µ. By the Radon-Nikodym theorem there exists g P L1pµq such
that ϕpχEq “ νpEq “

ş

E
gdµ for all E and hence ϕpfq “

ş

fgdµ for all simple functions f .
Moreover,

ˇ

ˇ

ş

fg
ˇ

ˇ ď }ϕ}}f}p, so g P Lq by Theorem 37. Once we know this, it follows from
Proposition 9 that ϕpfq “

ş

fg for all f P Lp.
Now suppose that µ is σ-finite. Let tEnu be an increasing sequence of sets such that

0 ă µpEnq ă 8 and X “
Ť8

1 En, and let us agree to identify LppEnq and LqpEnq with
the subspaces of LppXq and LqpXq consisting of functions that vanish outside En. The
preceding argument shows that for each n there exists gn P LqpEnq such that ϕpfq “

ş

fgn
for all f P LppEnq, and }gn}q “ }ϕ|LppEnq} ď }ϕ}. The function gn is unique modulo
alterations on nullsets, so gn “ gm a.e. on En for n ă m, and we can define g a.e. on X
by setting g “ gn on En. By the monotone convergence theorem, }g}q “ lim}gn}q ď }ϕ},
so g P Lq. Moreover, if f P Lp, then by the dominated convergence theorem, fχEn Ñ f in
the Lp norm and hence ϕpfq “ limϕpfχEnq “ lim

ş

En
fg “

ş

fg.
Finally, suppose that µ is arbitrary and p ą 1, so that q ă 8. As above, for each

σ-finite set E Ă X there is an a.e.-unique gE P LqpEq such that ϕpfq “
ş

fgE for all
f P LppEq and }gE}q ď }ϕ}. If F is σ-finite and F Ą E, then gF “ gE a.e. on E, so
}gF }q ě }gE}q. Let M be the supremum of }gE}q as E ranges over all σ-finite sets, noting
that M ď }ϕ}. Choose a sequence tEnu so that }gEn}q Ñ M , and set F “

Ť8

1 En. Then
F is σ-finite and }gF }q ě }gEn}q for all n, whence }gF }q “ M . Now, if A is a σ-finite set
containing F , we have

ż

|gF |
q

`

ż

|gA∖F |
q

“

ż

|gA|
q

ď M q
“

ż

|gF |
q

and thus gA∖F “ 0 and gA “ gF a.e. (Here we use the fact that q ă 8.) But if f P Lp,
then A “ F Y tx | fpxq ‰ 0u is σ-finite, so ϕpfq “

ş

fgA “
ş

fgF . Thus we may take
g “ gF , and the proof is complete.
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Corollary 6.39: 6.16.

If 1 ă p ă 8, Lp is reflexive.

We conclude with some remarks on the exceptional cases p “ 1 and p “ 8. For any
measure µ, the correspondence g ÞÑ ϕg maps L8 into pL1q

˚, but in general it is neither
injective nor surjective. Injectivity fails when µ is not semifinite. Indeed, if E Ă X is a
set of infinite measure that contains no subsets of positive finite measure, and f P L1,
then tx | fpxq ‰ 0u is σ-finite and hence intersects E in a null set. It follows that ϕχE “ 0
although χE ‰ 0 in L8. This problem, however, can be remedied by redefining L8; see
Exercises 23-24. The failure of surjectivity is more subtle and is best illustrated by an
example; see also Folland Exercise 6.25.

Let X be an uncountable set, µ “ counting measure on pX,PpXqq,P “ the σ algebra
of countable or co-countable sets, and µ0 “ the restriction of µ to P. Every f P L1pµq

vanishes outside a countable set, and it follows that L1pµq “ L1pµ0q. On the other hand,
L8pµq consists of all bounded functions on X, whereas L8pµ0q consists of those bounded
functions that are constant except on a countable set. With this in mind, it is easy to see
that the dual of L1pµ0q is L8pµq and not the smaller space L8pµ0q.

As for the case p “ 8: the map g Ñ ϕg is always an isometric injection of L1 into
pL8q

˚ by Proposition 36, but it is almost never a surjection. We shall say more about
this in Folland Section 6.6; for the present, we give a specific example. (Another example
can be found in Folland Exercise 6.19.)

Let X “ r0, 1s, µ “ Lebesgue measure. The map f ÞÑ fp0q is a bounded linear
functional on CpXq, which we regard as a subspace of L8. By the Hahn-Banach theorem
there exists ϕ P pL8q

˚ such that ϕpfq “ fp0q for all f P CpXq. To see that ϕ cannot be
given by integration against an L1 function, consider the functions fn P CpXq defined by
fnpxq “ maxp1 ´ nx, 0q. Then ϕpfnq “ fnp0q “ 1 for all n, but fnpxq Ñ 0 for all x ą 0,
so by the dominated convergence theorem,

ş

fng Ñ 0 for all g P L1.

Exercise 6.40: Folland Exercise 6.17.

With notation as in Theorem 37, if µ is semifinite, q ă 8, and Mqpgq ă 8, then
tx | |gpxq| ą εu has finite measure for all ε ą 0 and hence Sg is σ-finite.

Exercise 6.41: Folland Exercise 6.18.

The self-duality of L2 follows from Hilbert space theory (Theorem 111), and this fact
can be used to prove the Lebesgue-Radon-Nikodym theorem by the following argument
due to von Neumann. Suppose that µ, ν are positive finite measures on pX,Mq (the
σ-finite case follows easily as in §3.2), and let λ “ µ ` ν.
(a) The map f ÞÑ

ş

fdν is a bounded linear functional on L2pλq, so
ş

fdν “
ş

fgdλ

Version of April 30, 2024 at 11pm EST Page 245 of 368

https://www.greysonwesley.com/home


Greyson C. Wesley §6.2: The Dual of Lp

for some g P L2pλq. Equivalently,
ş

fp1 ´ gqdν “
ş

fgdµ for f P L2pλq.
(b) 0 ď g ď 1λ-a.e., so we may assume 0 ď g ď 1 everywhere.
(c) Let A “ tx | gpxq ă 1u, B “ tx | gpxq “ 1u, and set νapEq “ νpA X Eq, νspEq “

νpB X Eq. Then νs K µ and νa ! µ; in fact, dνa “ gp1 ´ gq´1χAdµ.

Exercise 6.42: Folland Exercise 6.19.

Define ϕn P pl8q
˚ by ϕnpfq “ n´1

řn
1 fpjq. Then the sequence tϕnu has a weak* cluster

point ϕ, and ϕ is an element of pl8q
˚ that does not arise from an element of ℓ1.

Exercise 6.43: Folland Exercise 6.20.

Suppose supn}fn}p ă 8 and fn Ñ f a.e.
(a) If 1 ă p ă 8, then fn Ñ f weakly in Lp. (Given g P Lq, where q is conjugate

to p, and ε ą 0, there exist (i) δ ą 0 such that
ş

E
|g|q ă ε whenever µpEq ă δ,

(ii) A Ă X such that µpAq ă 8 and
ş

X∖A |g|q ă ε, and (iii) B Ă A such that
µpA∖Bq ă δ and fn Ñ f uniformly on B.)

(b) The result of (a) is false in general for p “ 1. (Find counterexamples in L1pR,mq

and ℓ1.) It is, however, true for p “ 8 if µ is σ-finite and weak convergence is
replaced by weak* convergence.

Exercise 6.44: Folland Exercise 6.21.

If 1 ă p ă 8, fn Ñ f weakly in ℓppAq if and only if supn}fn}p ă 8 and fn Ñ f
pointwise.

Solution. Let 1 ă p ă 8, let f P ℓppAq (we may assume this as mentioned on canvas),
and let q1 “ p.

• Suppose fn Ñ f weakly in ℓp and q “ p1. Then in particular the ℓq function χtau has
ÿ

aPA
fnpaqχtau “ fnpaq Ñ fpaq as n Ñ 8,

so fn Ñ f pointwise. For each n, define pfnpgq “
ş

gfn. Since fn Ñ f weakly, the
sequence tznu8

n“1 Ă C given by zn –
ş

gfn converges, and hence is bounded in C.
Then for all g P ℓq,

supn | pfnpgq| “ supn|zn| ă 8,

so
supn }fn}p “ supn } pf} ă 8,

where the final inequality is by the uniform boundedness theorem.
• Conversely, suppose that fn Ñ f pointwise and supn}fn}p ă 8. Fix g P ℓq “ ℓp

1

and ε ą 0. We claim |xg, fny ´ xg, fy| ă ε, where x´, ˚y –
ş

|p´q ¨ p˚q|. Let M “
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}f}p ` supn}fn}p. Then M ă 8 by hypothesis, and we may assume M ą 0 (since
otherwise fn, and hence f are 0). Since }g}

q
q “

ř

aPA|gpaq|
q

ă 8, we must have
gpaq “ 0 for all but countably many a P A. Thus we may assume A “ Zě1.

For all k P t1, . . . , K ´ 1u, there exists NK P Zě1 such that for all n ě Nk,
|fnpkq ´ fpkq| ă ε{p2pK ´ 1q|gpkq|q. (If |gpkq| “ 0, then we may ignore the
term |gpkq||fnpkq ´ fpkq| “ 0 in the sum, so this is valid.) Thus, for all n ě

maxtN1, . . . , Nku,
ÿK´1

k“1
|gpkq||fnpkq ´ fpkq| ď

ÿK´1

k“1

ε��
��

|gpkq|

2pK ´ 1q����
|gpkq|

“
ε

2
. (6.44.1)

On the other hand, since }g}
q
q ă 8, there exists K ě 2 such that for all sufficiently

large n,

}χA1g}
q
q “

ÿ8

k“K
|gpkq|

q
ă

´ ε

2M

¯q

.

Then, respectively, by Hölder’s inequality and the triangle inequality, for all sufficiently
large n,

ÿ8

k“K
|gpkq||fnpkq ´ fpkq| ď }fn ´ f}p}χA1g}q ď M

ε

2M
“
ε

2
. (6.44.2)

Thus
|xg, fn ´ fy| “

ÿ8

k“1
|gpkq||fnpkq ´ fpkq|

“
ÿK´1

k“1
|gpkq||fnpkq ´ fpkq|

ăε{2 by (6.44.1)

`
ÿ8

k“K
|gpkq||fnpkq ´ fpkq|

ăε{2 by (6.44.2)

ă ε,

so fn Ñ f weakly.

Exercise 6.45: Folland Exercise 6.22.

Let X “ r0, 1s, with Lebesgue measure.
(a) Let fnpxq “ cos 2πnx. Then fn Ñ 0 weakly in L2 (see Folland Exercise 5.63), but

fn Û 0 a.e. or in measure.
(b) Let fnpxq “ nχp0,1{nq. Then fn Ñ 0 a.e. and in measure, but fn  0 weakly in Lp

for any p.

Exercise 6.46: Folland Exercise 6.23.

Let pX,M, µq be a measure space. A set E P M is called locally null if µpE X F q “ 0
for every F P M such that µpF q ă 8. If f : X Ñ C is a measurable function, define

}f}˚ “ infta | tx | |fpxq| ą au is locally nullu
and let L8 “ L8pX,L, µq be the space of all measurable f such that }f}˚ ă 8. We
consider f, g P L8 to be identical if tx | fpxq ‰ gpxqu is locally null.
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(a) If E is locally null, then µpEq is either 0 or 8. If µ is semifinite, then every
locally null set is null.

(b) } ¨ }˚ is a norm on L8 that makes L8 into a Banach space. If µ is semifinite, then
L8 “ L8.

Exercise 6.47: Folland Exercise 6.24.

If g P L8 (see Folland Exercise 6.23), then }g}˚ “ sup
␣
ˇ

ˇ

ş

fg
ˇ

ˇ

ˇ

ˇ }f}1 “ 1
(

, so the map
g ÞÑ ϕg is an isometry from L8 into pL1q

˚. Conversely, if M8pgq ă 8 as in Theorem 37,
then g P L8 and M8pgq “ }g}˚.

Exercise 6.48: Folland Exercise 6.25.

Suppose µ is decomposable (see Folland Exercise 3.15). Then every ϕ P pL1q
˚ is of the

form ϕpfq “
ş

fg for some g P L8, and hence pL1q
˚

– L8 (see Exercises 46 and 47).
(If L is a decomposition of µ and f P L1, there exists tEju Ă L such that f “

ř8

1 fχEj

where the series converges in L1.)

6.3 Some Useful Inequalities

Estimates and inequalities lie at the heart of the applications of Lp spaces in analysis.
The most basic of these are the Hölder and Minkowski inequalities. In this section we
present a few additional important results in this area. The first one is almost a triviality,
but it is sufficiently useful to warrant special mention.

Theorem 6.49: 6.17: Chebyshev’s Inequality.

If f P Lpp0 ă p ă 8q, then for any α ą 0,

µptx | |fpxq| ą αuq ď

„

}f}p

α

ȷp

.

Proof. Let Eα “ tx | |fpxq| ą αu. Then

}f}
p
p “

ż

|f |
p

ě

ż

Eα

|f |
p

ě αp
ż

Eα

1 “ αpµpEαq.

The next result is a rather general theorem about boundedness of integral operators
on Lp spaces.
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Theorem 6.50: 6.18: Schur’s Test (or Generalized Young’s Inequality).

Let pX,M, µq and pY,N, νq be σ-finite measure spaces, and let Kpx, yq be a measurable
function on XˆY .
(i)

ş

X
|Kpx, yq| dµpxq ď C for a.e. y P Y ,

(ii)
ş

Y
|Kpx, yq| dνpyq ď C for a.e. x P X.

Then for all p P r1,8s and all f P Lp, the integral

Tfpxq –

ż

Y

Kpx, yqfpyq dνpyq

converges absolutely for a.e. x P X, Tf P Lp, and }Tf}p ď C}f}p (and, in particular,
T is bounded).

Proof. Suppose that 1 ă p ă 8. Let q be the conjugate exponent to p. By applying
Hölder’s inequality to the product

|Kpx, yqfpyq| “ |Kpx, yq|
1{q

p|Kpx, yq|
1{p

|fpyq|q

we have
ż

|Kpx, yqfpyq|dνpyq ď

„
ż

|Kpx, yq|dνpyq

ȷ1{q„ż

|Kpx, yq||fpyq|
pdνpyq

ȷ1{p

ď C1{q

„
ż

|Kpx, yq||fpyq|
pdνpyq

ȷ1{p

for a.e. x P X. Hence, by Tonelli’s theorem,
ż
„
ż

|Kpx, yqfpyq|dνpyq

ȷp

dµpxq ď Cp{q

ĳ

|Kpx, yq||fpyq|
pdνpyqdµpxq

ď Cpp{qq`1

ż

|fpyq|
pdνpyq.

Since the last integral is finite, Fubini’s theorem implies that Kpx, ¨qf P L1pνq for a.e. x,
so that Tf is well defined a.e., and

ż

|Tfpxq|
pdµpxq ď Cpp{qq`1

}f}
p
p

Taking pth roots, we are done.
For p “ 1 the proof is similar but easier and requires only the hypothesis

ş

|Kpx, yq| dµpxq ď C; for p “ 8 the proof is trivial and requires only the hypothe-
sis

ş

|Kpx, yq|dνpyq ď C. Details are left to the reader (Folland Exercise 6.26).

Minkowski’s inequality states that the Lp norm of a sum is at most the sum of the Lp
norms. There is a generalization of this result in which sums are replaced by integrals:
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Theorem 6.51: 6.19: Minkowski’s Inequality for Integrals.

Suppose that pX,M, µq and pY,M, νq are σ-finite measure spaces, and let f be an
pM b Mq-measurable function on XˆY .
(a) If f ě 0 and 1 ď p ă 8, then

„
ż
ˆ
ż

fpx, yqdνpyq

˙p

dµpxq

ȷ1{p

ď

ż
„
ż

fpx, yq
pdµpxq

ȷ1{p

dνpyq.

(b) If 1 ď p ď 8, fp¨, yq P Lppµq for a.e. y, and the function y ÞÑ }fp¨, yq}p is in
L1pνq, then fpx, ¨q P L1pνq for a.e. x, the function x ÞÑ

ş

fpx, yqdνpyq is in Lppµq,
and

›

›

›

›

ż

fp¨, yqdνpyq

›

›

›

›

p

ď

ż

}fp¨, yq}pdνpyq.

Proof. If p “ 1, (a) is merely Tonelli’s theorem. If 1 ă p ă 8, let q be the conjugate
exponent to p and suppose g P Lqpµq. Then by Tonelli’s theorem and Hölder’s inequality,

ż
„
ż

fpx, yqdνpyq

ȷ

|gpxq|dµpxq “

ĳ

fpx, yq|gpxq|dµpxqdνpyq

ď }g}q

ż
„
ż

fpx, yq
pdµpxq

ȷ1{p

dνpyq.

Assertion (a) therefore follows from Theorem 37. When p ă 8, (b) follows from (a) (with
f replaced by |f |) and Fubini’s theorem; when p “ 8, it is a simple consequence of the
monotonicity of the integral.

Our final result is a theorem concerning integral operators on p0,8q with Lebesgue
measure.

Theorem 6.52: 6.20.

Let K be a Lebesgue measurable function on p0,8qˆp0,8q such that Kpλx, λyq “

λ´1Kpx, yq for all λ ą 0 and
ş8

0
|Kpx, 1q|x´1{pdx “ C ă 8 for some p P r1,8s, and let

q be the conjugate exponent to p. For f P Lp and g P Lq, let

Tfpyq “

ż 8

0

Kpx, yqfpxqdx, Sgpxq “

ż 8

0

Kpx, yqgpyqdy

Then Tf and Sg are defined a.e., and }Tf}p ď C}f}p and }Sg}q ď C}g}q.

Proof. Setting z “ x{y, we have
ż 8

0

|Kpx, yqfpxq|dx “

ż 8

0

|Kpyz, yqfpyzq|ydz “

ż 8

0

|Kpz, 1qfzpyq|dz
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where fzpyq “ fpyzq; moreover,

}fz}p “

„
ż 8

0

|fpyzq|
pdy

ȷ1{p

“

„
ż 8

0

|fpxq|
pz´1dx

ȷ1{p

“ z´1{p
}f}p

Therefore, by Minkowski’s inequality for integrals, Tf exists a.e. and

}Tf}p ď

ż 8

0

|Kpz, 1q|}fz}pdz “ }f}p

ż 8

0

|Kpz, 1q|z´1{pdz “ C}f}p

Finally, setting u “ y´1, we have
ż 8

0

|Kp1, yq|y´1{qdy “

ż 8

0

|Kpy´1, 1q|y´1´p1{qqdy

“

ż 8

0

|Kpu, 1q|u´1{pdu “ C

so the same reasoning shows that Sg is defined a.e. and that }Sg}q ď C}g}q.

Corollary 6.53: 6.21.

Let

Tfpyq “ y´1

ż y

0

fpxqdx, Sgpxq “

ż 8

x

y´1gpyqdy

Then for 1 ă p ď 8 and 1 ď q ă 8,

}Tf}p ď
p

p ´ 1
}f}p, }Sg}q ď q}g}q

Proof. LetKpx, yq “ y´1χEpx, yq where E “ tpx, yq | x ă yu. Then
ş8

0
|Kpx, 1q|x´1{pdx “

ş1

0
x´1{pdx “ p{pp ´ 1q “ q, where q is the conjugate exponent to p, so Theorem 52 yields

the result.

Corollary 53 is a special case of Hardy’s inequalities; the general result is in Folland
Exercise 6.29.

Exercise 6.54: Folland Exercise 6.26.

Complete the proof of Theorem 50 for the cases p “ 1 and p “ 8.

Exercise 6.55: Folland Exercise 6.27.

(Hilbert’s Inequality) The operator Tfpxq “
ş8

0
px`yq´1fpyqdy satisfies }Tf}p ď Cp}f}p

for 1 ă p ă 8, where Cp “
ş8

0
x´1{ppx ` 1q´1dx. (For those who know about contour

integrals: Show that Cp “ π cscpπ{pq.)
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Exercise 6.56: Folland Exercise 6.28.

Let Iα be the αth fractional integral operator as in Folland Exercise 2.61 and let
Jαfpxq “ x´αIαfpxq.
(a) Jα is bounded on Lpp0,8q for 1 ă p ď 8; more precisely,

}Jαf}p ď
Γp1 ´ p´1q

Γpα ` 1 ´ p´1q
}f}p

(b) There exists f P L1p0,8q such that J1f R L1p0,8q.

Exercise 6.57: Folland Exercise 6.29.

Suppose that 1 ď p ă 8, r ą 0, and h is a nonnegative measurable function on p0,8q.
Then:

ż 8

0

x´r´1

„
ż x

0

hpyqdy

ȷp

dx ď

´p

r

¯p
ż 8

0

xp´r´1hpxq
pdx

ż 8

0

xr´1

„
ż 8

x

hpyqdy

ȷp

dx ď

´p

r

¯p
ż 8

0

xp`r´1hpxq
pdx.

(Apply Theorem 52 with Kpx, yq “ xβ´1y´βχp0,8qpy ´ xq, fpxq “ xγhpxq, and gpxq “

xδhpxq for suitable β, γ, δ.)

Exercise 6.58: Folland Exercise 6.30.

Suppose that K is a nonnegative measurable function on p0,8q such that
ş8

0
Kpxqxs´1dx “ ϕpsq ă 8 for 0 ă s ă 1.

(a) If 1 ă p ă 8, p´1 ` q´1 “ 1, and f, g are nonnegative measurable functions on
p0,8q, then (with

ş

“
ş8

0
)

ĳ

Kpxyqfpxqgpyqdxdy ď ϕpp´1
q

„
ż

xp´2fpxq
pdx

ȷ1{p„ż

gpxq
qdx

ȷ1{q

.

(b) The operator Tfpxq “
ş8

0
Kpxyqfpyqdy is bounded on L2pp0,8qq with norm

ď ϕ
`

1
2

˘

. (Interesting special case: If Kpxq “ e´x, then T is the Laplace transform
and ϕpsq “ Γpsq.)

Solution.
(a) The integrand of the left-hand side is a nonnegative measurable function (since f , g,

and K are), so we can apply Tonelli’s theorem below:
ż 8

0

ż 8

0

Kpxyqfpxqgpyq dx dy “

ż 8

0

ż 8

0

Kpzq
fpz{yq

y
gpyq dz dy (z – xy, dx “ dz{y)

“

ż 8

0

Kpzq

ż 8

0

fpz{yq

y
gpyq dy dz
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“

ż 8

0

Kpzqϕg

ˆ

y ÞÑ
fpz{yq

y

˙

dz

ď

ż 8

0

Kpzq

›

›

›

›

y ÞÑ
fpz{yq

y

›

›

›

›

p

}g}q dy dz

“

ż 8

0

Kpzq

ˆ
ż 8

0

fpwqp

pz{wqp

´z

w2
dw

˙1{pˆż 8

0

gpyq
p dy

˙1{q

dz

(substituting w – z{y, dy “ ´z dw{w2)

“

ż 8

0

Kpzqz´1`1{p

ˆ
ż 8

0

fpwq
pwp´2 dw

˙1{pˆż 8

0

gpyq
p dy

˙1{q

dz.

Since
ş8

0
Kpzqz1{p´1 “ ϕp1{pq by definition, the desired inequality follows.

(b) Now consider p “ q “ 2 and define T : L2pp0,8qq Ñ L2pp0,8qq by fpxq ÞÑ
ş8

0
Kpxyqfpyq dy. Then T is linear, and T is bounded since for all f P L2pp0,8qq,

}Tf}
2
2 “

ż

|Tfpyq|
2 dy

“

ż

ˇ

ˇ

ˇ

ˇ

ż

Kpxyqfpxq dx

ˇ

ˇ

ˇ

ˇ

2

dy

ď

ż
ˆ
ż

Kpxyq|fpxq| dx

˙2

dy ď ϕ

ˆ

1

2

˙2 ż

x0|fpxq|
2dx “ ϕ

ˆ

1

2

˙2

}f}
2
2.

where the last inequality is by part (a). Since f P L2pp0,8qq, this shows Tf P

L2pp0,8qq, so T is indeed a linear map L2pp0,8qq Ñ L2pp0,8qq, and moreover that
T is bounded and }Tf}2 ď ϕ

`

1
2

˘

}f}2, which implies }T } ď ϕp1{2q, as claimed.

Exercise 6.59: Folland Exercise 6.31.

(A Generalized Hölder Inequality) Suppose that 1 ď pj ď 8 and
řn

1 p
´1
j “ r´1 ď 1.

If fj P Lpȷ for j “ 1, . . . , n, then
śn

1 fj P Lr and }
śn

1 fj}r ď
śn

1}fj}pj . (First do the
case n “ 2.)

Exercise 6.60: Folland Exercise 6.32.

Suppose that pX,M, µq and pY,M, νq are σ-finite measure spaces and K P L2pµˆνq.
If f P L2pνq, the integral Tfpxq “

ş

Kpx, yqfpyqdνpyq converges absolutely for a.e.
x P X; moreover, Tf P L2pµq and }Tf}2 ď }K}2}f}2.

Exercise 6.61: Folland Exercise 6.33.

Given 1 ă p ă 8, let Tfpxq “ x´1{p
şx

0
fptqdt. If p´1 ` q´1 “ 1, then T is a bounded

linear map from Lqpp0,8qq to C0pp0,8qq.
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Exercise 6.62: Folland Exercise 6.34.

If f is absolutely continuous on rε, 1s for 0 ă ε ă 1 and
ş1

0
x|f 1pxq|

pdx ă 8, then
limxÑ0 fpxq exists (and is finite) if p ą 2, |fpxq|{| log x|1{2 Ñ 0 as x Ñ 0 if p “ 2, and
|fpxq|{x1´p2{pq Ñ 0 as x Ñ 0 if p ă 2.

Exercise 6.63.

The “uncentered” maximal function ĂMf is defined by pĂMfqpxq “

supxPB
1

mpBq

ş

B
|fpyq|dy where the supremum is taken over all balls containing

x (not only those balls centered at x). Here m denotes Lebesgue measure on Rn.
(a) Obviously pMfqpxq ď pĂMfqpxq. Show that there exists a constant c (depending

only on the dimension) such that pĂMfqpxq ď cpMfqpxq.
(b) Determine explicitly the function ĂMpχr0,1sq.
(c) It will be shown in class that M and ĂM are bounded operators on LppRnq for

1 ă p ď 8. Does there exist a pair pp, qq with 1 ă p, q ă 8 and p ‰ q such that
M or ĂM is a bounded operator from LppRnq to LqpRnq?

Solution.
(a) Fix x P Rn, let S be the collection of open balls containing x, let T be the collection

of open balls centered at x, and for all Lebesgue measurable subsets E of Rn define

AE|f | –
1

mpEq

ż

E

|fpyq| dy.

Since T Ă S,
Mfpxq “ supEPT AE|f | ď supEPS AE|f | “ ĂMfpxq.

For the other inequality, let Br be any ball containing x of radius r. Then B Ă B2rpxq,
so

1

mpBrq

ż

Br

|fpyq| dy ď
mpB2rpxqq

mpBrq

1

mpB2rpxqq

ż

B2rpxq

|fpyq|dy ď 2nMfpxq

Since B was any ball containing x, by taking the supremum over all such balls of all
radii we obtain

ĂMfpxq ď 2nMfpxq.

(b) If B P S, then B “ pa, bq for some a, b P R such that a ă x ă b, so

ABχr0,1spxq “
1

b ´ a

ż

pa,bq

χr0,1spyq dy “

$

’

&

’

%

1 if pa, bq Ă r0, 1s,
mppa,bqXr0,1sq

b´a
if pa, bq X r0, 1s ‰ ∅ and pa, bq Ă r0, 1s,

0 if pa, bq X r0, 1s “ ∅.
We now break into cases:
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– If x P p0, 1q then we can choose a, b such that 0 ă a ă x ă b ă 1, in which case
ĂMχr0,1spxq “ 1.

– If x “ 0 (resp. x “ 1) then by considering the sequence of open intervals
tEn “ p´1{n, 1qu8

n“1 (resp. tEn “ p0, 1 ` 1{nqu8
n“1), we see ĂMχr0,1spxq “

limnÑ8 AEnχr0,1spxq “ 1, so ĂMχr0,1spxq “ 1 if x P t0u Y t1u.
– If x ă 0, then for a fixed point q P r0, 1s and the sequence tEn “ px´1{n, qqu8

n“1,
we have

AEnχr0,1spxq “
mppx ´ 1{n, qq X r0, 1sq

q ´ x ` 1{n
“

q

q ´ x ` 1{n
,

which tends to q{pq ´ xq as n Ñ 8. As a function of q P r0, 1s, q{pq ´ xq is
increasing to 1. Thus by taking q “ 1 and the open sets tEn “ px ´ 1{n, q `

1{nqu8
n“1, we conclude that when x ă 0, ĂMχr0,1spxq “ limqÕ1AEnχr0,1spxq “

limqÕ1 q{pq ´ xq “ 1{p1 ´ xq.
– If x ą 1, then by arguing similarly we obtain ĂMχr0,1spxq “ 1{x if x ą 1.

We conclude

ĂMχr0,1spxq “

$

’

&

’

%

1 if 0 ď x ď 1,

1{p1 ´ xq if x ă 0,

1{x if x ą 1.

(c) No. By part (a) M is bounded if and only if ĂM is, so it suffices to prove M is not
bounded as a map LppRnq Ñ LqpRnq. Consider an arbitrary t P p0,8q and consider
the open cube p0, tqn Ă Rn. For any x P Rn, we have

}Mχp0,tqn}
q
q “

ż

Rn

|Mχp0,tqnpxq|
q dx “

ż

Rn

ˇ

ˇ

ˇ

ˇ

suprą0

1

mpBrpxqq

ż

Brpxq

χp0,tqnpyq dy

ˇ

ˇ

ˇ

ˇ

q

dx

“

ż

Rn

ˇ

ˇ

ˇ

ˇ

suprą0

mpBrpxq X p0, tqnq

mpBrpxqq

ˇ

ˇ

ˇ

ˇ

q

dx “

ż

χp0,tqnpxq dx “ mpp0, tqnq,

so }Mχp0,tqn}q “ mpp0, tqnq1{q “ tn{q. On the other hand, for an arbitrary constant
C,

C}χp0,tqn}p “ Cmpp0, tqnq
1{p

“ Ctn{p.

If M were bounded as an operator LppRnq Ñ LqpRnq, then there exists a constant C
such that for all t P p0,8q, tn{q ď Ctn{p, or equivalently, such that

tnp 1
q

´ 1
p

q
ď C.

But this cannot be true at all t P p0,8q since p, q, n are fixed; by choosing sufficiently
small t when 1{p ą 1{q or sufficiently large t (when 1{p ă 1{q), this fails. Thus M ,
hence also ĂM , is unbounded as an operator LppRnq Ñ LqpRnq.
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6.4 Distribution Functions and Weak Lp

If f is a measurable function on pX,M, µq, we define its distribution function
λf : p0,8q Ñ r0,8s by

λf pαq “ µpt|f | ą αuq

(This is closely related, but not identical, to the “distribution functions” discussed in
Folland Section 1.5 and Folland Section 10.1.) We compile the basic properties of λf in a
proposition.

Proposition 6.64: 6.22.

(a) λf is decreasing and right continuous.
(b) If |f | ď |g|, then λf ď λg.
(c) If |fn| increases to |f |, then λfn increases to λf .
(d) If f “ g ` h, then λf pαq ď λg

`

1
2
α
˘

` λh
`

1
2
α
˘

.

Proof. Let Epα, fq “ tx | |fpxq| ą αu. The function λf is decreasing since Epα, fq Ą

Epβ, fq if α ă β, and it is right continuous since Epα, fq is the increasing union of
tEpα ` n´1, fqu

8

1 . If |f | ď |g|, then Epα, fq Ă Epα, gq, so λf ď λg. If |fn| increases to |f |,
then Epα, fq is the increasing union of tEpα, fnqu, so λfn increases to λf . Finally, if f “

g`h, then Epα, fq Ă E
`

1
2
α, g

˘

YE
`

1
2
α, h

˘

, which implies that λf pαq ď λg
`

1
2
α
˘

`λh
`

1
2
α
˘

.
Suppose that λf pαq ă 8 for all α ą 0. In view of Proposition 64a, λf defines a

negative Borel measure ν on p0,8q such that νppa, bsq “ λf pbq´λf paq whenever 0 ă a ă b.
(Our construction of Borel measures on R in Folland Section 1.5 works equally well on
p0,8q.) We can therefore consider the Lebesgue-Stieltjes integrals

ş

ϕdλf “
ş

ϕdν of
functions ϕ on p0,8q. The following result shows that the integrals of functions of |f | on
X can be reduced to such Lebesgue-Stieltjes integrals.

Proposition 6.65: 6.23.

If λf pαq ă 8 for all α ą 0 and ϕ is a nonnegative Borel measurable function on p0,8q,
then

ż

X

ϕ ˝ |f |dµ “ ´

ż 8

0

ϕpαqdλf pαq

Proof. If ν is the negative measure determined by λf , we have
νppa, bsq “ λf pbq ´ λf paq “ ´µptx | a ă |fpxq| ď buq “ ´µp|f |

´1
ppa, bsqq

It follows that νpEq “ ´µp|f |´1pEqq for all Borel sets E Ă p0,8q, by the uniqueness of
extensions (Theorem 33). But this means that

ş

X
ϕ ˝ |f |dµ “ ´

ş8

0
ϕpαqdλf pαq when ϕ is

the characteristic function of a Borel set, and hence when ϕ is simple. The general case
then follows by virtue of Theorem 18 and the monotone convergence theorem.

Version of April 30, 2024 at 11pm EST Page 256 of 368

https://www.greysonwesley.com/home


Greyson C. Wesley §6.4: Distribution Functions and Weak Lp

The case of this result in which we are most interested is ϕpαq “ αp, which gives
ż

|f |
pdµ “ ´

ż 8

0

αpdλf pαq

A more useful form of this equation is obtained by integrating the right side by parts
(Theorem 79) to obtain

ş

|f |pdµ “ p
ş8

0
αp´1λf pαqdα. The validity of this calculation is

not clear unless we know that αpλf pαq Ñ 0 as α Ñ 0 and α Ñ 8; nonetheless, the
conclusion is correct.

Proposition 6.66: 6.24.

If 0 ă p ă 8, then
ż

|f |
pdµ “ p

ż 8

0

αp´1λf pαqdα

Proof. If λf pαq “ 8 for some α ą 0, then both integrals are infinite. If not, and
f is simple, then λf is bounded as α Ñ 0 and vanishes for α sufficiently large, so the
integration by parts described above works. (It is also easy to verify the formula directly
in this case.) For the general case, let tgnu be a sequence of simple functions that increases
to |f |; then the desired result is true for gn, and it follows for f by Proposition 6.22c and
the monotone convergence theorem.

A variant of the Lp spaces that turns up rather often is the following. If f is a
measurable function on X and 0 ă p ă 8, we define

rf sp “ psupαą0 α
pλf pαqq

1{p

and we define weak Lp to be the set of all f such that rf sp ă 8. r¨sp is not a norm; it is
easily checked that rcf sp “ |c|rf sp, but the triangle inequality fails. However, weak Lp is
a topological vector space; see Folland Exercise 6.35.

The relationship between Lp and weak Lp is as follows. On the one hand,
Lp Ă weak Lp, and rf sp ď }f}p

(This is just a restatement of Chebyshev’s inequality.) On the other hand, if we replace
λf pαq by prf sp{αq

p in the integral p
ş8

0
αp´1λf pαqdα, which equals }f}pp, we obtain a

constant times
ş8

0
α´1dα, which is divergent at both 0 and 8´ but just barely. One needs

only slightly stronger estimates on λf near 0 and 8 to obtain f P Lp. (See also Folland
Exercise 6.36.) The standard example of a function that is in weak Lp but not in Lp is
fpxq “ x´1{p on p0,8q (with Lebesgue measure).

Frequently it is convenient to express a function as the sum of a “small” part and
a “big” part. The following is a way of doing this that gives a simple formula for the
distribution functions.
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Proposition 6.67: 6.25.

If f is a measurable function and A ą 0, let EpAq “ tx | |fpxq| ą Au, and set
hA “ fχX∖EpAq ` Apsgn fqχEpAq, gA “ f ´ hA “ psgn fqp|f | ´ AqχEpAq

Then

λgApαq “ λf pα ` Aq, λhApαq “

#

λf pαq if α ă A

0, if α ě A.

The proof is left to the reader (Folland Exercise 6.37).

Exercise 6.68: Folland Exercise 6.35.

For any measurable f and g we have rcf sp “ |c|rf sp and rf ` gsp ď 2prf spp ` rgsppq
1{p;

hence weak Lp is a vector space. Moreover, the "balls" tg | rg ´ f sp ă ru pr ą 0, f P

weak Lpq generate a topology on weak Lp that makes weak Lp into a topological vector
space.

Exercise 6.69: Folland Exercise 6.36.

If f P weak Lp and µptx | fpxq ‰ 0uq ă 8, then f P Lq for all q ă p. On the other
hand, if f P p weak Lpq X L8, then f P Lq for all q ą p.

Solution. Suppose f P weakLp, 0 ă q ă p, and µpt|f | ‰ 0uq ă 8. Define

En –

#

t0 ă |f | ď 1u if n “ 0,

t2n´1 ă |f | ď 2nu if n P Zě1.

Then |f | “
ř8

n“0 χEn |f |, so

}f}
q
q “

ż

|f |
q

ď

ż

ˇ

ˇ

ˇ

ÿ8

n“0
2nχEn

ˇ

ˇ

ˇ

q

ď

ż

ÿ8

n“0
2nqχEn (by the triangle inequality)

“
ÿ8

n“0
2nqµpEnq (by the monotone convergence theorem for series)

“ µpE0q `
ÿ8

n“1
2nqλf p2n´1

q (since En Ă t|f | ą 2n´1u and isolating µpE0q)

“ µpE0q `
ÿ8

n“1
2nqλf p2n´1

q (since rf spp ě 2pn´1qpλf p2n´1q by definition of rf sp)

“ µpE0q `
ÿ8

n“1
2nq´pnp´pq

rf s
p
p,

“ µpE0q `

ˆ

rf sp

2

˙p
ÿ8

n“1
p2nq

q´p,

which is finite since E0 Ă t|f | ‰ 0u—which by hypothesis has finite measure—and the
infinite sum is a geometric series with ratio 2q´p P p´1, 1q since q ă p, and thus converges.
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Now instead suppose f P pweakLpq X L8 and p ă q ă 8. Since f is already L8, we
can assume q ă 8. Define

En –

#

t|f | ą 1u if n “ 0,

t 1
2n

ă |f | ď 1
2n´1 u if n P Zě1.

Computing similarly to before, we have
ż

|f |
q

ď

ż

´

ÿ8

n“0
p21´n

q
qχEn

¯

“ }f}
q
8µpE0q `

ÿ8

n“1
2q´nqµpEnq

ď }f}
q
8λf p1q `

ÿ8

n“1
2q´nqλf p2´n

q

ď }f}
q
8rf s

p
p `

ÿ8

n“1
2q´nq`np

rf s
p
p,

which again is finite for the same reasons as before. Thus f P Lq for all p ă q ď 8.

Exercise 6.70: Folland Exercise 6.37.

Prove Proposition 67.

Exercise 6.71: Folland Exercise 6.38.

f P Lp if and only if
ř8

´8
2kpλf p2kq ă 8.

Exercise 6.72: Folland Exercise 6.39.

If f P Lp, then limαÑ0 α
pλf pαq “ limαÑ8 α

pλf pαq “ 0. (First suppose f is simple.)

Exercise 6.73: Folland Exercise 6.40.

If f is a measurable function on X, its decreasing rearrangement is the function
f˚ : p0,8q Ñ r0,8s defined by

f˚
ptq “ inftα | λf pαq ď tu pwhere inf ∅ “ 8q

(a) f˚ is decreasing. If f˚ptq ă 8 then λf pf˚ptqq ď t, and if λf pαq ă 8 then
f˚pλf pαqq ď α.

(b) λf “ λf˚ , where λf˚ is defined with respect to Lebesgue measure on p0,8q.
(c) If λf pαq ă 8 for all α ą 0 and limαÑ8 λf pαq “ 0 (so that f˚ptq ă 8 for all

t ą 0), and ϕ is a nonnegative measurable function on p0,8q, then
ş

X
ϕ ˝ |f |dµ “

ş8

0
ϕ ˝ f˚ptqdt. In particular, }f}p “ }f˚}p for 0 ă p ă 8.

(d) If 0 ă p ă 8, rf sp “ suptą0 t
1{pf˚ptq.

(e) The name "rearrangement" for f˚ comes from the case where f is a nonnegative
function on p0,8q. To see why it is appropriate, pick a step function on p0,8q

Version of April 30, 2024 at 11pm EST Page 259 of 368

https://www.greysonwesley.com/home


Greyson C. Wesley §6.5: Interpolation of Lp Spaces

assuming four or five different values and draw the graphs of f and f˚.

6.5 Interpolation of Lp Spaces

If 1 ď p ă q ă r ď 8, then pLp X Lrq Ă Lq Ă pLp ` Lrq, and it is natural to ask
whether a linear operator T on Lp`Lr that is bounded on both Lp and Lr is also bounded
on Lq. The answer is affirmative, and this result can be generalized in various ways.
The two fundamental theorems on this question are the Riesz-Thorin and Marcinkiewicz
interpolation theorems, which we present in this section. We begin with the Riesz-Thorin
theorem, whose proof is based on the following result from complex function theory.

Lemma 6.74: 6.26: The Three Lines Lemma.

Let ϕ be a bounded continuous function on the strip 0 ď Re z ď 1 that is holomorphic
on the interior of the strip. If |ϕpzq| ď M0 for Re z “ 0 and |ϕpzq| ď M1 for Re z “ 1,
then |ϕpzq| ď M1´t

0 M t
1 for Re z “ t, 0 ă t ă 1.

Proof. For ε ą 0 let ϕεpzq “ ϕpzqM z´1
0 M´z

1 exppεzpz´ 1qq. Then ϕε satisfies the hypothe-
ses of the lemma with M0 and M1 replaced by 1, and also |ϕεpzq| Ñ 0 as | Im z| Ñ 8.
Thus |ϕεpzq| ď 1 on the boundary of the rectangle 0 ď Re z ď 1, ´A ď Im z ď A provided
that A is large, and the maximum modulus principle therefore implies that |ϕεpzq| ď 1 on
the strip 0 ď Re z ď 1. Letting ε Ñ 0, we obtain the desired result:

|ϕpzq|M t´1
0 M´t

1 “ lim
εÑ0

|ϕεpzq| ď 1 for Re z “ t.

Theorem 6.75: 6.27: The Riesz-Thorin Interpolation Theorem.

Suppose that pX,M, µq and pY,M, νq are measure spaces and p0, p1, q0, q1 P r1,8s. If
q0 “ q1 “ 8, suppose also that ν is semifinite. For 0 ă t ă 1, define pt and qt by

1

pt
“

1 ´ t

p0
`

t

p1
,

1

qt
“

1 ´ t

q0
`

t

q1
If T is a linear map from Lp0pµq ` Lp1pµq into Lq0pνq ` Lq1pνq such that }Tf}q0 ď

M0}f}p0 for f P Lp0pµq and }Tf}q1 ď M1}f}p1 for f P Lp1pµq, then }Tf}qt ď

M1´t
0 M t

1}f}pt for f P Lptpµq, 0 ă t ă 1.

Proof. To begin with, we observe that the case p0 “ p1 follows from Proposition 16: If
p “ p0 “ p1, then

}Tf}qt ď }Tf}
1´t
q0 }Tf}

t
q1 ď M1´t

0 M t
1}f}p

Thus we may assume that p0 ‰ p1, and in particular that pt ă 8 for 0 ă t ă 1.
Let ΣX (resp. ΣY ) be the space of all simple functions on X (resp. Y ) that vanish

outside sets of finite measure. Then ΣX Ă Lppµq for all p and ΣX is dense in Lppµq for
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p ă 8, by Proposition 9; similarly for ΣY . The main part of the proof consists of showing
that }Tf}qt ď M1´t

0 M t
1}f}pt for all f P ΣX . However, by Theorem 37,

}Tf}qt “ sup

"
ˇ

ˇ

ˇ

ˇ

ż

pTfqgdν

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

g P ΣY and }g}q1
t

“ 1

*

where q1
t is the conjugate exponent to qt. (Note that Tf P Lq0 X Lq1 , so ty | Tfpyq ‰ 0u

must be σ-finite unless q0 “ q1 “ 8; hence the hypotheses of Theorem 37 are satisfied.)
Moreover, we may assume that f ‰ 0 and rescale f so that }f}pt “ 1. We therefore wish
to establish the following claim: - If f P ΣX and }f}pt “ 1, then

ˇ

ˇ

ş

pTfqgdν
ˇ

ˇ ď M1´t
0 M t

1

for all g P ΣY such that }g}q1
t

“ 1.
Let f “

řm
1 cjχEj and g “

řn
1 dkχFk where the Ejs and the Fks are disjoint in X and Y

and the cjs and dks are nonzero. Write cj and dk in polar form: cj “ |cj|e
iθj , dk “ |dk|eiψk .

Also, let
αpzq “ p1 ´ zqp´1

0 ` zp´1
1 , βpzq “ p1 ´ zqq´1

0 ` zq´1
1

thus αptq “ p´1
t and βptq “ q´1

t for 0 ă t ă 1. Fix t P p0, 1q; we have assumed that pt ă 8

and hence αptq ą 0, so we may define

fz “
ÿm

1
|cj|

αpzq{αptqeiθjχEj

If βptq ă 91, we define

gz “
ÿn

1
|dk|

p1´βpzqq{p1´βptqqeiψkχFk

while if βptq “ 1 we define gz “ g for all z. (We henceforth assume that βptq ă 1 and
leave the easy modification for βptq “ 1 to the reader.) Finally, we set

ϕpzq “

ż

pTfzqgzdν

Thus,
ϕpzq “

ÿ

j,k
Ajk|cj|

αpzq{αptq
|dk|

p1´βpzqq{p1´βptqq

where

Ajk “ eipθj`ψkq

ż

pTχEjqχFkdν

so that ϕ is an entire holomorphic function of z that is bounded in the strip 0 ď Re z ď 1.
Since

ş

pTfqgdν “ ϕptq, by the three lines lemma it will suffice to show that |ϕpzq| ď M0

for Re z “ 0 and |ϕpzq| ď M1 for Re z “ 1. However, since
αpisq “ p´1

0 ` ispp´1
1 ´ p´1

0 q, 1 ´ βpisq “ p1 ´ q´1
0 q ´ ispq´1

1 ´ q´1
0 q

for s P R, we have
|fis| “ |f |

Rerαpisq{αptqs
“ |f |

pt{p0 , |gis| “ |g|
Rerp1´βpisqq{p1´βptqqs

“ |g|
q1
t{q1

0

Therefore, by Hölder’s inequality,
|ϕpisq| ď }Tfis}q0}gis}q1

0
ď M0}fis}p0}gis}q1

0
“ M0}f}pt}g}q1

t
“ M0
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A similar calculation shows that |ϕp1 ` isq| ď M1, so the claim is proved.
We have now shown that }Tf}qt ď M1´t

0 M t
1}f}pt for f P ΣX , so in view of Proposition 9,

T |ΣX has a unique extension to Lptpµq satisfying the same estimate there. It remains to
show that this extension is T itself, that is, that T satisfies this estimate for all f P Lptpµq.
Given such an f , choose a sequence tfnu in ΣX such that |fn| ď |f | and fn Ñ f pointwise.
Also, let E “ tx : |fpxq| ą 1u, g “ fχE, gn “ fnχE, h “ f ´ g, and hn “ fn ´ gn.
Then if p0 ă p1 (which we may assume, by relabeling the ps), we have g P Lp0pµq, h P

Lp1pµq, and by the dominated convergence theorem, }fn ´ f}pt Ñ 0, }gn ´ g}p0 Ñ 0, and
}hn ´ h}p1 Ñ 0. Hence }Tgn ´ Tg}q0 Ñ 0 and }Thn ´ Th}q1 Ñ 0, so by passing to a
suitable subsequence we may assume that Tgn Ñ Tg a.e. and Thn Ñ Th a.e. (Folland
Exercise 6.9). But then Tfn Ñ Tf a.e., so by Fatou’s lemma,

}Tf}qt ď lim inf}Tfn}qt ď lim infM1´t
0 M t

1}fn}pt “ M1´t
0 M t

1}f}pt ,

and we are done.

The conclusion of the Riesz-Thorin theorem can be restated in a slightly stronger
form. Let Mptq be the operator norm of T as a map from Lptpµq to Lqtpνq. We have
shown that Mptq ď M1´t

0 M t
1. It is possible for strict inequality to hold; however, if

0 ă s ă t ă u ă 1 and t “ p1 ´ τqs` τu, the theorem may be applied again to show that
Mptq ď Mpsq1´τMpuqτ . In short, the conclusion is that logMptq is a convex function of
t.

We now turn to the Marcinkiewicz theorem, for which we need some more terminology.
Let T be a map from some vector space D of measurable functions on pX,D, µq to the space
of all measurable functions on pY,D, νq. T is called sublinear if |T pf ` gq| ď |Tf | ` |Tg|

and |T pcfq| “ c|Tf | for all f, g P D and c ą 0. Now let p, q P r1,8s.
• A sublinear map T is strong type pp, qq if Lppµq Ă D and T maps Lppµq into Lqpνq,

and there exists C ą 0 such that }Tf}q ď C}f}p for all f P Lppµq.
• A sublinear map T is weak type pp, qq if Lppµq Ă D, T maps Lppµq into weakLqpνq,

and there exists C ą 0 such that rTf sq ď C}f}p for all f P Lppµq. Also, we shall say
that T is weak type pp,8q if and only if T is strong type pp,8q.

Theorem 6.76: 6.28: The Marcinkiewicz Interpolation Theorem.

Suppose that pX,M, µq and pY,M, νq are measure spaces; p0, p1, q0, q1 are elements of
r1,8s such that p0 ď q0, p1 ď q1, and q0 ‰ q1; and

1

p
“

1 ´ t

p0
`

t

p1
and

1

q
“

1 ´ t

q0
`

t

q1
, where 0 ă t ă 1

If T is a sublinear map from Lp0pµq ` Lp1pµq to the space of measurable functions on
Y that is weak types pp0, q0q and pp1, q1q, then T is strong type pp, qq. More precisely,
if rTf sqj ď Cj}f}pj for j “ 0, 1, then }Tf}q ď Bp}f}p where Bp depends only on
pj, qj, Cj in addition to p; and for j “ 0, 1, Bp|p ´ pj| (resp. Bp) remains bounded as
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p Ñ pj if pj ă 8 (resp. pj “ 8).

Proof. The case p0 “ p1 is easy and is left to the reader (Folland Exercise 6.42). Without
loss of generality we may therefore assume that p0 ă p1, and for the time being we also
assume that q0 ă 8 and q1 ă 8 (whence also p0 ă p1 ă 8). Given f P Lppµq and A ą 0,
let gA and hA be as in Proposition 67. Then by Propositions 6.24 and 6.25,

ż

|gA|
p0dµ “ p0

ż 8

0

βp0´1λgApβqdβ “ p0

ż 8

0

βp0´1λf pβ ` Aqdβ

“ p0

ż 8

A

pβ ´ Aq
p0´1λf pβqdβ ď p0

ż 8

A

βp0´1λf pβqdβ
ż

|hA|
p1dµ “ p1

ż 8

0

βp1´1λhApβqdβ “ p1

ż A

0

βp1´1λf pβqdβ

Likewise,
ż

|Tf |
qdν “ q

ż 8

0

αq´1λTf pαqdα “ 2qq

ż 8

0

αq´1λTf p2αqdα. (6.30)

Since T is sublinear, by Proposition 64(d) we have
λTf p2αq ď λTgApαq ` λThApαq

This is true for all α ą 0 and A ą 0, so we may take A to depend on α. We now make a
specific choice of A. Namely, it follows from the equations defining p and q that

p0pq0 ´ qq

q0pp0 ´ pq
“
p´1pq´1 ´ q´1

0 q

q´1pp´1 ´ p´1
0 q

“
p´1pq´1 ´ q´1

1 q

q´1pp´1 ´ p´1
1 q

“
p1pq1 ´ qq

q1pp1 ´ pq

we denote the common value of these quantities by σ, and we take A “ ασ. Then by
(6.29), (6.30), (6.31), and the weak type estimates on T ,

}Tf}
q
q ď 2qq

ż 8

0

αq´1
rpC0}gA}p0{αq

q0 ` pC1}hA}p1{αq
q1sdα

ď 2qqCq0
0 p

q0{p0
0

ż 8

0

αq´q0´1

„
ż 8

ασ

βp0´1λf pβqdβ

ȷq0{p0

dα

` 2qqCq1
1 p

q1{p1
1

ż 8

0

αq´q1´1

„
ż ασ

0

βp1´1λf pβqdβ

ȷq1{p1

dα

“
ÿ1

j“0
2qqCpj

j p
qj{pj
j

ż 8

0

„
ż 8

0

ϕjpα, βqdβ

ȷqj{pj

dα

where, denoting by χ0 and χ1 the characteristic functions of tpα, βq | β ą ασu and
tpα, βq | β ă ασu,

ϕjpα, βq “ χjpα, βqαpq´qj´1qpj{qjβpj´1λf pβq

Since q0{p0 ě 1 and q1{p1 ě 1, we may apply Minkowski’s inequality for integrals to
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obtain
ż 8

0

„
ż 8

0

ϕjpα, βqdβ

ȷqj{pj

dα

ď

„
ż 8

0

„
ż 8

0

ϕjpα, βq
qj{pjdα

ȷpj{qj

dβ

ȷqj{pj

.

Let τ “ 1{σ. If q1 ą q0, then q ´ q0 and σ are positive and the inequality β ą ασ is
equivalent to α ă βτ , so

ż 8

0

„
ż 8

0

ϕ0pα, βq
q0{p0dαp0{q0dβ

“

ż 8

0

„
ż βτ

0

αq´q0´1dα

ȷp0{q0

βp0´1λf pβqdβ

“ pq ´ q0q
´p0{q0

ż 8

0

βp0´1`p0pq´q0q{q0σλf pβqdβ

“ pq ´ q0q
´p0{q0

ż 8

0

βp´1λf pβqdβ

“ |q ´ q0|
´p0{q0p´1

}f}
p
p

where we have used (6.32) to simplify the exponent of β. On the other hand, if q1 ă q0,
then q ´ q0 and σ are negative and the inequality β ą ασ is equivalent to α ą βτ , so as
above,

ż 8

0

„
ż 8

0

ϕ0pα, βq
q0{p0dα

ȷp0{q0

dβ “

ż 8

0

„
ż 8

βτ

αq´q0´1dα

ȷp0{q0

βp0´1λf pβqdβ

“ pq0 ´ qq´p0{q0

ż 8

0

βp´1λf pβqdβ

“ |q ´ q0|
´p0{q0p´1

}f}
p
p

A similar calculation shows that
ż 8

0

„
ż 8

0

ϕ1pα, βq
q1{p1dα

ȷp1{q1

dβ “ |q ´ q1|
´p1{q1p´1

}f}
p
p

Combining these results with (6.33) and (6.34), we see that

supt}Tf}q | }f}p “ 1u ď Bp “ 2q1{q
”

ÿ1

j“0
Cqj
j ppj{pq

qj{pj |q ´ qj|
´1
ı1{q

.

But since |T pcfq| “ c|Tf | for c ą 0, this implies that }Tf}q ď Bp}f}p for all f P Lppµq,
and we are done. (The verification of the asserted properties of Bp is left as an easy
exercise.)

It remains to show how to modify this argument to deal with the exceptional cases
q0 “ 8 or q1 “ 8. We distinguish three cases.

Case I: p1 “ q1 “ 8 (so p0 ď q0 ă 8). Instead of taking A “ ασ in the decomposition
of f , we take A “ α{C1. Then }ThA}

8
ď C1}hA}

8
ď α, so λThApαq “ 0, and we obtain
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(6.33) with ϕ1 “ 0 and ασ replaced by α{C1 in the definition of ϕ0. The same argument
as above then gives

}Tf}q ď 2rqCq0
0 C

q´q0
1 pp0{pq

q0{p0 |q ´ q0|
´1

s
1{q

}f}p

Case II: p0 ă p1 ă 8, q0 ă q1 “ 8. Again the idea is to choose A so that λThApαq “ 0,
and the proper choice is A “ pα{dqσ where d “ C1rp1}f}pp{ps

1{p1 and σ “ p1{pp1 ´ pq (the
limiting value of the σ defined by (6.32) as q1 Ñ 8). Indeed, since p1 ą p, we have

}ThA}
p1
8

ď Cp1
1 }hA}

p1
p1

“ Cp1
1 p1

ż A

0

αp1´1λf pαqdα

ď Cp1
1 p1A

p1´p

ż A

0

αp´1λf pαqdα “ Cp1
1

p1
p

”α

d

ıp1
}f}

p
p “ αp1 .

As in Case I, then, we find that ϕ1 “ 0 in (6.33) and the integral involving ϕ0 is majorized
by a constant Bp when }f}p “ 1, which yields the desired result.

Case III: p0 ă p1 ă 8, q1 ă q0 “ 8. The argument is essentially the same as in Case
II, except that we take A “ pα{dqσ with d chosen so that λTgApαq “ 0.

The lengthy formulas in this proof may seem daunting, but the ideas are reasonably
simple. To elucidate them, we recommend the exercise of writing out the proof for
two special (but important) cases: (i) p0 “ q0 “ 1, p1 “ q1 “ 2, and (ii) p0 “ q0 “ 1,
p1 “ q1 “ 8.

Let us compare our two interpolation theorems. The Marcinkiewicz theorem requires
some restrictions on pj and qj that are not present in the Riesz-Thorin theorem; these
restrictions, however, are satisfied in all the interesting applications. Apart from this,
the hypotheses of the Marcinkiewicz theorem are weaker: T is allowed to be sublinear
rather than linear, and it needs only to satisfy weak-type estimates at the endpoints. The
conclusion in both cases is that T is bounded from Lppµq to Lqpνq, but the Riesz-Thorin
theorem produces a much sharper estimate for the operator norm of T . Thus neither
theorem includes the other.

We conclude with two applications of the Marcinkiewicz theorem. The first one
concerns the Hardy-Littlewood maximal operator H discussed in Folland Section 3.4,

Hfpxq “ suprą0

1

mpBpr, xqq

ż

Bpr,xq

|fpyq|dy pf P L1
locpRn

qq

H is obviously sublinear and satisfies }Hf}8 ď }f}8 for all f P L8. Moreover, Theorem 44
says precisely that H is weak type p1, 1q. We conclude:

Corollary 6.77: 6.35.

There is a constant C ą 0 such that if 1 ă p ă 8 and f P LppRnq, then

}Hf}p ď C
p

p ´ 1
}f}p
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Our second application is a theorem on integral operators related to Theorem 50.

Theorem 6.78: 6.36.

Suppose pX,M, µq and pY,M, νq are σ-finite measure spaces, and 1 ă q ă 8. Let K
be a measurable function on XˆY such that, for some C ą 0, we have rKpx, ¨qsq ď C
for a.e. x P X and rKp¨, yqsq ď C for a.e. y P Y . If 1 ď p ă 8 and f P Lppνq, the
integral

Tfpxq “

ż

Kpx, yqfpyqdνpyq

converges absolutely for a.e. x P X, and the operator T thus defined is weak type p1, qq
and strong type pp, rq for all p, r such that 1 ă p ă r ă 8 and p´1 ` q´1 “ r´1 ` 1.
More precisely, there exist constants Bp independent of K such that

rTf sq ď B1C}f}1, }Tf}r ď BpC}f}p pp ą 1, r´1
“ p´1

` q´1
´ 1 ą 0q

Proof. Let p1, q1 be the conjugate exponents to p, q; then
r´1

“ p´1
` q´1

´ 1 “ p´1
´ pq1

q
´1

“ q´1
´ pp1

q
´1

so p ă q1 and q ă p1. Suppose 0 ‰ f P Lpp1 ď p ă q1q; by multiplying f and K by
constants, we may assume that }f}p “ C “ 1. Given a positive number A whose value
will be fixed later, define

E “ tpx, yq | |Kpx, yq| ą Au, K1 “ psgnKqp|K| ´ AqχE, K2 “ K ´ K1,

and let T1, T2 be the operators corresponding to K1, K2. Then by Propositions 66 and 67,
since q ą 1 we have

ż

|K1px, yq|dνpyq “

ż 8

0

λKpx,¨qpα ` Aqdα ď

ż 8

A

α´qdα “
A1´q

q ´ 1

and likewise
ż

|K1px, yq|dµpxq ď
A1´q

q ´ 1

Hence, by Theorem 50, the integral defining T1fpxq converges for a.e. x and

}T1f}p ď
A1´q

q ´ 1
}f}p “

A1´q

q ´ 1

Similarly, since q ă p1,
ż

|K2px, yq|
p1

dνpyq “ p1

ż A

0

αp
1´1λKpx,¨qpαqdα

ď p1

ż A

0

αp
1´1´qdα “

p1Ap
1´q

p1 ´ q

Version of April 30, 2024 at 11pm EST Page 266 of 368

https://www.greysonwesley.com/home


Greyson C. Wesley §6.5: Interpolation of Lp Spaces

Therefore, by Hölder’s inequality, the integral defining T2fpxq converges for every x, and

}T2f}
8

ď

„

p1Ap
1´q

p1 ´ q

ȷ1{p1

}f}p “

„

r

q

ȷ1{p1

Aq{r

We have thus established that Tf “ T1f ` T2f is well defined a.e.
Next, given α ą 0, we wish to estimate λTf pαq. But by Proposition 64(d),

λTf pαq ď λT1f

ˆ

1

2
α

˙

` λT2f

ˆ

1

2
α

˙

and by (6.38), if we choose

A “

”α

2

ır{q”q

r

ır{qp1

we will have }T2f}
8

ď 1
2
α, so that λT2f

`

1
2
α
˘

“ 0. With this choice of A, then, by (6.37)
and Chebyshev’s inequality we obtain

λTf pαq ď λT1f

ˆ

1

2
α

˙

ď

„

2}T1f}p

α

ȷp

ď

„

2A1´q

pq ´ 1qα

ȷp

“
2p´p1´qqpr{q

pq ´ 1qp

”q

r

ıp1´qqpr{qp1

α´p`p1´qqpr{q
“ Cp

„

}f}p

α

ȷr

because }f}p “ 1 and
p1 ´ qqpr

q
´ p “ p

ˆ

´r

q1
´ 1

˙

“ ´p ¨
r

p
“ ´r

A simple homogeneity argument now yields the estimate λTf pαq ď Cpp}f}p{αq
r with no

restriction on }f}p, so we have shown that T is weak type pp, rq, and in particular (for
p “ 1) weak type p1, qq.

Finally, given p P p1, q1q, choose rp P pp, q1q and define rr by rr´1 “ rp´1 ´ pq1q
´1. Then

T is weak types p1, qq and prp, rrq, so it follows from the Marcinkiewicz theorem that T is
strong type pp, rq.

Exercise 6.79: Folland Exercise 6.41.

Suppose 1 ă p ď 8 and p´1 ` q´1 “ 1. If T is a bounded operator on Lp such that
ş

pTfqg “
ş

fpTgq for all f, g P LpXLq, then T extends uniquely to a bounded operator
on Lr for all r in rp, qs (if p ă q) or rq, ps (if q ă p). If p “ 8, further assume that µ is
semifinite.

Solution. Let p P p1,8s, let q “ pp´ 1q{p, let Σ be the set of simple functions that vanish
outside a set of finite measure, and let r lie in the closed interval between p and q.

Claim 80. T maps Lp X Lq into Lq and is bounded as a map Lp X Lq Ñ Lq.

Proof. Let f P Lp X Lq. Then Tf P Lp by hypothesis. Thus if p ă 8 then |Tf |
p

P L1

(since Tf P Lp), so t|Tf |p ‰ 0u “ tTf ‰ 0u is σ-finite by Folland Proposition 2.23(a). On
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the other hand, if p “ 8 then µ is semifinite by hypothesis. In either case, it follows from
Folland Theorem 6.14 that

}Tf}q “ sup

"
ˇ

ˇ

ˇ

ˇ

ż

gpTfq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

g P Σ and }g}p “ 1

*

, (6.80.1)

so it suffices to show the right-hand side is finite. To that end, suppose g P Σ and }g}p “ 1.
We have g P Lq since g P Σ, so in particular g P Lp X Lq. Then

ˇ

ˇ

ˇ

ˇ

ż

gpTfq

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż

fpTgq

ˇ

ˇ

ˇ

ˇ

(by our hypothesis on T )

ď }f}p}Tg}q (by Hölder’s inequality)
ď }f}p}T }LpÑLp}g}p

ď }f}p}T }LpÑLp (since }g}p “ 1).
Our above estimate is independent of our choice of g, so by Equation (6.80.1)

}Tf}q ď }T }LpÑLp}f}p.

Thus T maps Lp XLq into Lq and is bounded as a map pLp XLq, }´}pq Ñ pLq, }´}qq.

Claim 81. The map
rT : Lp ` Lq ÝÑ Lp ` Lq,

f ` g “ h ÞÝÑ rTg – Tf ` lim
nÑ8

Tgn,

where tgnu8
n“1 Ă Lp X Lq and gn Ñ g in Lq, is a well-defined bounded linear operator.

Proof.
• rT is well-defined: Let g P Lp`Lq. Since LpXLq is dense in Lp`Lq (because LpXLq

contains Σ, which is a dense subset in both Lp and Lq), such an approximating
sequence tgnu8

n“1 as in the claim exists in Lp X Lq.
Next we show rT is independent of the choice of sequence tgnu8

n“1 Ă Lp X Lq.
Since tgnu8

n“1 is Cauchy in Lq and T is bounded as a map Lp X Lq Ñ Lq by the first
claim,

}Tgn ´ Tgm}q “ }T pgn ´ gmq}q ď }T }LpÑLq}gn ´ gm}q Ñ 0

as n,m Ñ 8. By uniqueness of the limit (as Lq is a Banach space), we conclude rTg
is independent of the choice of approximating sequence sequence.

• rT is linear: We are given rT is linear on Lq, so it suffices to show linearity on Lp.
Suppose g, g1 P Lp X Lq, α P C, tgnu8

n“1, tg
1
nu8
n“1 Ă Lp X Lq, and gn Ñ g, g1

n Ñ g1 in
Lq. Then

rT pαg ` g1
q “ lim

nÑ8
T pαg ` g1

q

“ lim
nÑ8

pαTgn ` Tg1
nq (by linearity of T )

“ α lim
nÑ8

Tgn ` lim
nÑ8

Tg1
n (by linearity of limits that exist)
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“ αrTg ` rTg1 (by definition of rT ).
Hence rT is linear.

• rT is bounded as a map Lq Ñ Lq: Let g P Lq and let tgnu8
n“1 Ă Lp X Lq such that

gn Ñ g in Lq. Since q ă 8 by hypothesis, we can write

}rTg}
q
q “

ż

|rTg|
q

“

ż

ˇ

ˇ

ˇ
lim
nÑ8

Tgn

ˇ

ˇ

ˇ

q

“

ż

lim
nÑ8

|Tgn|
q (by continuity of R Q x ÞÑ |x|

q
P R)

ď lim infnÑ8}Tgn}
q
q (by Fatou’s lemma)

ď }T }
q
LpÑLq lim infnÑ8}gn}

q
q

(since T is bounded as an operator Lp X Lq Ñ Lq)
“ }T }

q
LpÑLq lim

nÑ8
}gn}

q
q

(since limnÑ8}gn}
q
q exists, hence equals the liminf; see below)

“ }T }
q
LpÑLq}g}

q
q.

The penultimate equality here follows from the fact gn Ñ g in Lq, since for all ε ą 0
and all sufficiently large n,

}gn}q ď }g}q ` }gn ´ g}q ă }Tg}q ` ε ă 8;

taking the qth power, we obtain }gn}
q
q ď p}g}q ` εqq ă 8, so limnÑ8}gn}

q
q “ }g}

q
q.

Claim 82. rT is the unique bounded operator on Lr for all r in the interval rp, qs (if p ă q)
or rq, ps (if q ă p) that extends T .

Proof. Since rT is strong type pp, pq and strong type pq, qq, by the Riesz–Thorin theorem
rT is strong-type pr, rq for all r in the interval rp, qs (if p ă q) or rq, ps (if q ă p). To see
rT is the unique such extension, suppose S is another such extension of T . We can write
each h P Lr as a sum h “ f ` g for some f P Lp and g P Lr, so

Sh “ Spf ` gq “ Sf ` Sg “ rTf ` rTg “ rTh

since because S is an extension we have Sf “ rTf for all f P Lp and Sg “ rTg for all
g P Lq. Thus S “ rT , so the extension is unique.

Exercise 6.83: Folland Exercise 6.42.

Prove the Marcinkiewicz theorem in the case p0 “ p1. (Setting p “ p0 “ p1, we have
λTf pαq ď pC0}f}p{αq

q0 and λTf pαq ď pC1}f}p{αq
q1 . Use whichever estimate is better,

depending on α, to majorize q
ş8

0
αq´1λTf pαqdα.)

Proof. Suppose that pX,M, µq and pY,N, νq are measure spaces; p, q0, q1 P r1,8s and
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p ď q0, q1, and q0 ‰ q1; and
1

q
“

1 ´ t

q0
`

t

q1
, where 0 ă t ă 1.

Let T : Lppµq Ñ L0pνq be1 a sublinear map of weak types pp, q0q and pp, q1q. We claim
T is strong type pp, qq. More precisely, suppose rTf sqj ď Cj}f}p for j “ 0, 1. We claim
}Tf}q ď Bp}f}p where Bp depends only on p, qj, and Cj in addition to p.

Then for α ą 0 we have the estimates
λTf pαq ď pC0}f}p{αq

q0 and λTf pαq ď pC1}f}p{αq
q1 ,

so we obtain the estimate

}Tf}
q
q “

ż

|Tf |
q

“ q

ż 8

0

αq´1µt|Tf | ą αu dα

“ q

ż }f}p

0

αq´1µt|Tf | ą αu dα ` q

ż 8

}f}p

αq´1µt|Tf | ą αu dα

ď q

ż }f}p

0

αq´1

ˆ

C0}f}p

α

˙q0

dα ` q

ż 8

}f}p

αq´1

ˆ

C1}f}p

α

˙q1

dα

ď qCq0
0 }f}

q0
p

ż }f}p

0

αq´q0´1 dα ` qCq1
1 }f}

q1
p

ż 8

}f}p

αq´q1´1 dα

ď qCq0
0 }f}

q0
p

„

αq´q0

q ´ q0

ȷα“}f}p

α“0

` qCq1
1 }f}

q1
p

„

αq´q1

q ´ q1

ȷα“8

α“}f}p

.

“

ˆ

qCq0
0 }f}

q0
p }f}

q´q0

q ´ q0

˙

´

ˆ

qCq1
1 }f}

q1
p }f}

q´q1
p

q ´ q1

˙

“

ˆ

qCq0
0

q ´ q0
`

qCq1
1

q1 ´ q

˙

}f}
q
p.

Thus T is strong type pp, qq, as claimed, and moreover Bp –

´

qCq0
0

q´q0
`

qCq1
1

q1´q

¯1{q

depends
only on qj and Cj for j “ 0, 1.

Exercise 6.84: Folland Exercise 6.43.

Let H be the Hardy-Littlewood maximal operator on R. Compute Hχp0,1q explicitly.
Show that it is in Lp for all p ą 1 and in weak L1 but not in L1, and that its Lp norm
tends to 8 like pp ´ 1q´1 as p Ñ 1, although }χp0,1q}p “ 1 for all p.

Exercise 6.85: Folland Exercise 6.44.

Let Iα be the fractional integration operator of Folland Exercise 2.61. If 0 ă α ă 1,
1 ă p ă α´1, and r´1 “ p´1 ´ α, then Iα is weak type p1, p1 ´ αq´1q and strong type
pp, rq with respect to Lebesgue measure on p0,8q.

1Here L0pνq is the space of measurable functions on Y .
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Exercise 6.86: Folland Exercise 6.45, Altered.

The following concerns Folland Exercise 6.45, which reads as follows:

If 0 ă α ă n, define an operator Tα on functions on Rn by

Tαfpxq –

ż

|x ´ y|
´αfpyq dy

Then Tα is weak type p1, pn ´ αq´1q and strong type pp, rq with respect
to Lebesgue measure on Rn, where 1 ă p ă nα´1 and r´1 “ p´1 ´ αn´1.
(The case n “ 3, α “ 1 is of particular interest in physics: If f represents
the density of a mass or charge distribution, ´p4πq´1T1f represents the
induced gravitational or electrostatic potential.)

The following aims to correct this exercise.
(a) Use a scaling argument to show that the exercise is incorrect as stated.
(b) Replace the exponent ´α in the definition of with ´n` α in the question. Prove

that (this version of) Tα is weak type p1, 1pn´αq´1q and strong type pp, rq under
the conditions on α, p, and r as stated in the exercise. Hint: First show that Tα
is of weak type pp, rq.

Solution.
(a) Suppose for a contradiction Tα is strong type pp, rq, so that }Tα}LpÑLr ă 8. Now fix

ε ą 0. Since }Tα}LpÑLr “ supt}Tαf}r | }f}p “ 1u ă 8, there exists f P Lp such that
}f}p “ 1 and

}Tαf}r ą p1 ´ εq}Tα}LpÑLr (6.86.1)
For each b P Rą0 define gb : Rn Ñ C by

gbpxq “ fpbxq.

Then gbpxq P Lp and for a fixed b P Rą0 be fixed. We have

}gb}
p
p “

ż

|gbpxq|
p dx “

1

bnp

ż

|fpxq|
p dx “

1

bnp
,

so }gb}p “ 1{bn. And for each x P Rn, we have

Tαgbpxq “

ż

|x ´ y|
´αfpbyq dy

“ b´n

ż

|x ´ y{b|´αfpyq dy (substitute by ÞÑ y)

“ b´n

ż

ˇ

ˇ

ˇ

ˇ

bx ´ y

b

ˇ

ˇ

ˇ

ˇ

´α

fpyq dy “ bα´n

ż

|bx ´ y|
´αfpyq dy,
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so

}Tαgb}
r
r “ brpα´nq

ż

ˇ

ˇ

ˇ

ˇ

ż

|bx ´ y|
´αfpyq dy

ˇ

ˇ

ˇ

ˇ

r

dx

“ brpα´nq

ż

ˇ

ˇ

ˇ

ˇ

b´n

ż

|x ´ y|
´αfpyq dy

ˇ

ˇ

ˇ

ˇ

r

dx (substitute bx ÞÑ x)

“ brpα´2nq

ż

|Tαfpxq|
r dx “ brpα´2nq

}Tαf}
r
r.

Thus

bα´n
}Tαf}r “

bα´2n}Tαf}r

b´n
“

}Tαgb}r
}gb}p

ď }Tα}LpÑLr .

Therefore, since 0 ă α ă n and in particular α ‰ n, we can choose f P Lp and b ą 0
sufficiently large such that the left-hand side is strictly larger than the right-hand
side (since otherwise Tα is the zero operator, contrary to the given definition of Tα),
which contradicts the assumed boundedness of T on Lp. It follows that Folland
Exercise 6.45 is incorrect as stated.

(b) Define K : RnˆRn Ñ C by
Kpx, yq – |x ´ y|

´α.

Then K is mˆm-measurable, and for each x P Rn and β ą 0 we have
λKpx,´qpβq “ mpty P Rn

| |x ´ y|
´α

ą βuq

“ mpty P Rn
| |x ´ y| ă β´1{α

uq

ď mpBβ´1{αpxqq

Since the measure of a ball of radius r in Rn is a scalar multiple of the radius to the
power of n, there exists C ą 0 such that for all x P Rn and all β ą 0,

mpBβ´1{αpxqq “ C β´n{α

and thus
βn{αλKpx,´qpβq ď βn{αmpBβ´1{αpxqq “ β´n{αβn{αC “ C.

Thus, by taking the 1{pn{aqth power of both sides and taking the supremum over all
β P Rą0, we obtain for all x P Rn that

rKpx,´qsq “ supqą0pβ
qλKpx,´qpβqq

1{q
ď C1{q.

Arguing identically (but replacing Kpx,´q with Kp´, yq and x with y), there exists
C 1 ą 0 such that rKp´, yqsq ď C 11{q for all y P Rn. Now replacing C with the
maximum of C1{q, C 11{q, the result then follows immediately from Folland Theorem
6.36.
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8 Elements of Fourier Analysis

It is easy to say that Fourier analysis, or harmonic analysis, originated in the work of
Euler, Fourier, and others on trigonometric series; it is much harder to describe succinctly
what the subject comprises today, for it is a meeting ground for ideas from many parts of
analysis and has applications in such diverse areas as partial differential equations and
algebraic number theory. Two of the central ingredients of harmonic analysis, however,
are convolution operators and the Fourier transform, which we study in this chapter.

8.1 Preliminaries

We begin by making some notational conventions. Throughout this chapter we shall
be working on Rn, and n will always refer to the dimension. In any measure-theoretic
considerations we always have Lebesgue measure in mind unless we specify otherwise.
Thus, if E is a measurable set in Rn, we shall denote LppE,mq by LppEq. If U is open
in Rn and k P R, we denote by CkpUq the space of all functions on U whose partial
derivatives of order ď k all exist and are continuous, and we set C8pUq “

Ş8

1 C
kpUq.

Furthermore, for any E Ă Rn we denote by C8
c pEq the space of all C8 functions on Rn

whose support is compact and contained in E. If E “ Rn or U “ Rn, we shall usually
omit it in naming function spaces: thus, Lp “ LppRnq, Ck “ CkpRnq, C8

c “ C8
c pRnq. If

x, y P Rn, we set

x ¨ y “
ÿn

1
xjyj, |x| “

?
x ¨ x

8.1.1 Multi-index notation

It will be convenient to have a compact notation for partial derivatives. We shall write

Bj “
B

Bxj
and for higher-order derivatives we use multi-index notation. A multi-index is an ordered
n-tuple of nonnegative integers. If α “ pα1, . . . , αnq is a multi-index, we set

|α| “
ÿn

1
αj, α! “

źn

1
αj!, B

α
“

ˆ

B

Bx1

˙α1

¨ ¨ ¨

ˆ

B

Bxn

˙αn

and if x “ px1, . . . , xnq P Rn,

xα “
źn

1
xαj
j

(The notation |α| “
ř

αj is inconsistent with the notation |x| “ p
ř

x2jq
1{2, but the meaning

will always be clear from the context.) Thus, for example, Taylor’s formula for functions
f P Ck reads

fpxq “
ÿ

|α|ďk
pB
αfqpx0q

px ´ x0q
α

α!
` Rkpxq, lim

xÑx0

|Rkpxq|

|x ´ x0|
k “ 0
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and the product rule for derivatives becomes

B
α
pfgq “

ÿ

β`γ“α

α!

β!γ!
pB
βfqpB

γgq

(see Folland Exercise 8.1).
We shall often avail ourselves of the sloppy but handy device of using the same notation

for a function and its value at a point. Thus, “x” may be used to denote the function
whose value at any point x is xα.

8.1.2 Existence of nonzero functions in C8
c

Two spaces of C8 functions on Rn will be of particular importance for us. The first is
the space C8

c of C8 functions with compact support. The existence of nonzero functions
in C8

c is not quite obvious; the standard construction is based on the fact that the function
ηptq “ e´1{tχp0,8qptq is C8 even at the origin (Folland Exercise 8.3). If we set

ψpxq “ ηp1 ´ |x|
2
q “

#

exprp|x|2 ´ 1q
´1

s if |x| ă 1

0 if |x| ě 1
(8.0.1)

it follows that ψ P C8, and supppψq is the closed unit ball. In the next section we shall use
this single function to manufacture elements of C8

c in great profusion; see Proposition 19
and Theorem 20.

8.1.3 Schwartz space

The other space of C8 functions we shall need is the Schwartz space S consisting of
those C8 functions which, together with all their derivatives, vanish at infinity faster than
any power of |x|. More precisely, for any nonnegative integer N and any multi-index α we
define

}f}pN,αq “ supxPRnp1 ` |x|q
N

|B
αfpxq|

then
S “ tf P C8

| }f}pN,αq ă 8 for all N,αu

Examples of functions in S are easy to find: for instance, fαpxq “ xαe´|x|2 where α is any
multi-index. Also, clearly C8

c Ă S.
It is an important observation that if f P S, then Bαf P Lp for all α and all p P r1,8s.

Indeed, |Bαfpxq| ď CNp1 ` |x|q´N for all N , and p1 ` |x|q´N P Lp for N ą n{p by
Corollary 101.

Proposition 8.1: 8.2.

S is a Fréchet space with the topology defined by the norms } ¨ }pN,αq.
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Proof. The only nontrivial point is completeness. If tfku is a Cauchy sequence in S, then
}fj ´ fk}

pN,αq
Ñ 0 for all N,α. In particular, for each α the sequence tBαfku converges

uniformly to a function gα. Denoting by ej the vector p0, . . . , 1, . . . , 0q with the 1 in the
jth position, we have

fkpx ` tejq ´ fkpxq “

ż t

0

Bjfkpx ` sejqds

Letting k Ñ 8, we obtain

g0px ` tejq ´ g0pxq “

ż t

0

gejpx ` sejqds

The fundamental theorem of calculus implies that gej “ Bjg0, and an induction on |α|

then yields gα “ Bαg0 for all α. It is then easy to check that }fk ´ g0}
pN,αq

Ñ 0 for all
α.

Another useful characterization of S is the following.

Proposition 8.2: 8.3.

If f P C8, then f P S if and only if xβBαf is bounded for all multi-indices α, β if and
only if Bαpxβfq is bounded for all multi-indices α, β.

Proof. Obviously |xβ| ď p1 ` |x|qN for |β| ď N . On the other hand,
řn

1 |xj|
N is strictly

positive on the unit sphere |x| “ 1, so it has a positive minimum δ there. It follows that
řn

1 |xj|
N

ě δ|x|N for all x since both sides are homogeneous of degree N , and hence

p1 ` |x|q
N

ď 2Np1 ` |x|
N

q ď 2N
”

1 ` δ´1
ÿn

1
|xNj |

ı

ď 2Nδ´1
ÿ

|β|ďN
|xβ|

This establishes the first equivalence. The second one follows from the fact that each
Bαpxβfq is a linear combination of terms of the form xγBδf and vice versa, by the product
rule (Folland Exercise 8.1).

We next investigate the continuity of translations on various function spaces. The
following notation for translations will be used throughout this chapter and the next one:
If f is a function on Rn and y P Rn,

τyfpxq “ fpx ´ yq

We observe that }τyf}p “ }f}p for 1 ď p ď 8 and that }τyf}u “ }f}u. A function f is
called uniformly continuous if }τyf ´ f}u Ñ 0 as y Ñ 0. (The reader should pause to
check that this is equivalent to the usual ε-δ definition of uniform continuity.)

Lemma 8.3: 8.4.

If f P CcpRnq, then f is uniformly continuous.
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Proof. Given ε ą 0, for each x P supppfq there exists δx ą 0 such that |fpx´yq´fpxq| ă 1
2
ε

if |y| ă δx. Since supppfq is compact, there exist x1, . . . , xN such that the balls of radius
1
2
δxj about xj cover supppfq. If δ “ 1

2
mintδxju, then, one easily sees that }τyf ´ f}u ă ε

whenever |y| ă δ.

Proposition 8.4: 8.5.

If 1 ď p ă 8, translation is continuous in the Lp norm; that is, if f P Lp and z P Rn,
then limyÑ0}τy`zf ´ τzf}p “ 0.

Proof. Since τy`z “ τyτz, by replacing f by τzf it suffices to assume that z “ 0. First,
if g P Cc, for |y| ď 1 the functions τyg are all supported in a common compact set K, so
by Lemma 3,

ż

|τyg ´ g|
p

ď }τyg ´ g}
p
umpKq Ñ 0 as y Ñ 0

Now suppose f P Lp. If ε ą 0, by ?? there exists g P Cc with }g ´ f}p ă ε{3, so

}τyf ´ f}p ď }τypf ´ gq}p ` }τyg ´ g}p ` }g ´ f}p ă
2

3
ε ` }τyg ´ g}p

and }τyg ´ g}p ă ε{3 if y is sufficiently small.
Proposition 4 is false for p “ 8, as one should expect since the L8 norm is closely

related to the uniform norm; see Folland Exercise 8.4.
Some of our results will concern multiply periodic functions in Rn, and for simplicity

we shall take the fundamental period in each variable to be 1. That is, we define a function
f on Rn to be periodic if fpx ` kq “ fpxq for all x P Rn and k P Rn. Every periodic
function is thus completely determined by its values on the unit cube

Q “

„

´
1

2
,
1

2

˙n

.

Periodic functions may be regarded as functions on the space Rn{Zn – pR{Zqn of cosets
of Rn, which we call the n-dimensional torus and denote by Tn. (When n “ 1 we write T
rather than T1.) Tn is a compact Hausdorff space; it may be identified with the set of all
z “ pz1, . . . , znq P Cn such that |zj| “ 1 for all j, via the map

px1, . . . , xnq ÞÑ pe2πix1 , . . . , e2πixnq

On the other hand, for measure-theoretic purposes we identify Tn with the unit cube Q,
and when we speak of Lebesgue measure on Tn we mean the measure induced on Tn by
Lebesgue measure on Q. In particular, mpTnq “ 1. Functions on Tn may be considered
as periodic functions on Tn or as functions on Q; the point of view will be clear from the
context when it matters.
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Exercise 8.5: Folland Exercise 8.1.

Prove the product rule for partial derivatives as stated in the text. Deduce that
B
α
pxβfq “ xβB

αf `
ÿ

cγδx
δ
B
γf, xβB

αf “ B
α
pxβfq `

ÿ

c1
γδB

γ
pxδfq

for some constants cγδ and c1
γδ with cγδ “ c1

γδ “ 0 unless |γ| ă |α| and |δ| ă |β|.

Exercise 8.6: Folland Exercise 8.2.

Observe that the binomial theorem can be written as follows:

px1 ` x2q
k

“
ÿ

|α|“k

k!

α!
xα px “ px1, x2q, α “ pα1, α2qq

Prove the following generalizations:
(a) The multinomial theorem: If x P Rn,

px1 ` ¨ ¨ ¨ ` xnq
k

“
ÿ

|α|“k

k!

α!
xα

(b) The n-dimensional binomial theorem: If x, y P Rn,

px ` yq
α

“
ÿ

β`γ“α

α!

β!γ!
xβyγ.

Exercise 8.7: Folland Exercise 8.3.

Let ηptq “ e´1{t for t ą 0, ηptq “ 0 for t ď 0.
(a) For k P Zě1 and t ą 0, ηpkqptq “ Pkp1{tqe´1{t where Pk is a polynomial of degree

2k.
(b) ηpkqp0q exists and equals zero for all k P Zě1.

Exercise 8.8: Folland Exercise 8.4.

If f P L8 and }τyf ´ f}
8

Ñ 0 as y Ñ 0, then f agrees a.e. with a uniformly continuous
function. (Let Arf be as in Theorem 45. Then Arf is uniformly continuous for r ą 0
and uniformly Cauchy as r Ñ 0.)

Solution. The statement of Exercise 8 follows immediately from the following points:
(i) A1{nfpxq Ñ fpxq a.e. as n Ñ 8.
(ii) For all n P Zě1, A1{nfpxq is uniformly continuous as a function of x P Rn.
(iii) The sequence tA1{nfu8

n“1 is uniformly Cauchy.
(iv) If tfn : Rn Ñ Cu8

n“1 is a uniformly Cauchy sequence of uniformly continuous functions,
then limnÑ8 fn is uniformly continuous.

Proof of (i). This is just Folland Theorem 3.18 since L8 functions are L1
loc.
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Proof of (ii). Let n P Zě1. Fix ε ą 0. It suffices to show }τyArf ´ Arf}u Ñ 0 as y Ñ 0.
For any x, we have

|τyA1{nfpxq ´ A1{nfpxq| “
1

mpBrp0qq

ˇ

ˇ

ˇ

ˇ

ż

Brpx´yq

|fpzq| dz ´

ż

Brpxq

|fpzq| dz

ˇ

ˇ

ˇ

ˇ

“
1

mpBrp0qq

ˇ

ˇ

ˇ

ˇ

ż

Brpx´yq

|fpzq| dz ´

ż

Brpx´yq

|fpz ´ yq| dz

ˇ

ˇ

ˇ

ˇ

(substitute z ÞÑ z ´ y)

ď
1

mpBrp0qq

ż

Brpx´yq

|τyfpzq ´ fpzq| dz

ď
1

mpBrp0qq

ż

Brpx´yq

}τyf ´ f}
8
dz

(since |τyfpzq ´ fpzq| ď }τyf ´ f}
8

for a.e. z P Rn)
“ }τyf ´ f}

8
.

Taking the supremum of both sides over all x P Rn, we obtain
}τyA1{nf ´ A1{nf}u ď }τyf ´ f}

8
.

Since }τyf ´ f}
8

Ñ 0 as y Ñ 0 by hypothesis, we conclude A1{nf is uniformly continuous.

Proof of (iii). We claim }A1{nf ´ A1{mf}u Ñ 0 as m,n Ñ 8. Fix ε ą 0. Since A1{n By
Folland Lemma 3.16, Arf is a continuous function of r P Rą0; thus A1{nf ´ A1{mf is
continuous for all n,m P Zě1, so its supremum norm equals its infinity norm. Hence

}A1{nf ´ A1{mf}u “ }A1{nf ´ A1{mf}
8

ď }A1{nf ´ f}
8

` }A1{mf ´ f}
8
. (8.8.1)

Where n P Zě1, we have

}A1{nf ´ f}
8

“

›

›

›

›

x ÞÑ
1

mpB1{npxqq

ż

B1{npxq

|fpyq| dy ´ fpxq

›

›

›

›

8

ď

›

›

›

›

x ÞÑ
1

mpB1{npxqq

ż

B1{npxq

|fpyq ´ fpxq| dy

›

›

›

›

8

(by the triangle inequality)

ď

›

›

›

›

x ÞÑ
1

mpB1{npxqq

ż

B1{np0q

|τyfpxq ´ fpxq| dy

›

›

›

›

8

ď
1

mpB1{npxqq

ż

B1{np0q

}x ÞÑ |τyfpxq ´ fpxq|}
8
dy

ď
1

mpB1{npxqq

ż

B1{np0q

}τyf ´ f}
8
dy,ÝÑ 0 as n Ñ 8

where we used Minkowski’s inequality for integrals (Folland Theorem 6.19) since τyf ´ f P

L8 for a.e. y P Rn and ry ÞÑ }τyf ´ f}ps P L1.
Thus both terms on the right-hand side of Equation (8.8.1) tend to 0 as m,n Ñ 8, so
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tA1{nfu8
n“1 is uniformly Cauchy.

Proof of (iv). Fix ε ą 0 and g “ limnÑ8 fn. Then for all sufficiently large n,
|fnpxq ´ gpxq| ă ε{3. Since each fn is uniformly continuous, there exists δ ą 0 such
that |fnpxq ´ fnpyq| ă ε{3 whenever |x ´ y| ă δ. Thus, for any x, y such that |x ´ y| ă δ
and all sufficiently large n, we have

|gpxq ´ gpyq| ď |gpxq ´ fnpxq| ` |fnpxq ´ fnpyq| ` |fnpyq ´ gpyq|

ă ε{3 ` ε{3 ` ε{3 “ ε,

so g is uniformly continuous.

8.2 Convolutions

Definition 9 (Convoltuion). Define the convolution by the assignment ˚ : L0ˆL0 ÝÑ L0,
written pf, gq ÞÑ f ˚ g, where

f ˚ gpxq –

ż

fpyqgpx ´ yq dy.

for all x such that the integral exists.2

Proposition 8.10.

The convolution ˚ is well-defined. That is, for any f, g P L0, ry ÞÑ fpyqgpx ´ yqs P L1

for a.e. x P Rn and f ˚ g P L0.

Proof. We shall need the fact that if f is a measurable function on Rn, then the function
Kpx, yq “ fpx ´ yq is measurable on RnˆRn. We have K “ f ˝ s where spx, yq “ x ´ y;
since s is continuous, K is Borel measurable if f is Borel measurable. This can always be
assumed without affecting the definition of f ˚g, by Proposition 22. However, the Lebesgue
measurability of K also follows from the Lebesgue measurability of f ; see Folland Exercise
8.5.

TODO.

The elementary properties of convolutions are summarized in the following proposition.

Proposition 8.11: Properties of the convolution.

Let f, g, h P L0. Provided that the integrals in the following assertions exist, they are
true:
(a) f ˚ g “ g ˚ f .

2Various conditions can be imposed on f and g to guarantee that f ˚ g is defined at least almost
everywhere. For example, if f is bounded and compactly supported, g can be any locally integrable
function; see also Theorem 12, Theorem 14, and Proposition 13.
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(b) If f ˚ gpxq, g ˚ hpxq, and f ˚ g ˚ hpxq –
ş ş

fpx ´ y ´ zqgpyqhpzq dy dz exist and
are finite for a.e. x P Rn, thena pf ˚ gq ˚ h “ f ˚ pg ˚ hq.

(c) For z P Rn, τzpf ˚ gq “ pτzqpf ˚ gq “ pτzfq ˚ g “ f ˚ pτzqg.
(d) supppf ˚ gq Ă supppfq ` supppgq.

aAssociativity of the convolution can fail without these extra hypotheses. For example, for
f “ χRą0

´χRą0
, g “ χr0,1s ´χr´1,0q and h “ χR, we have f ˚ gpxq “ g ˚ fpxq “ maxt0, 2´ 2|x|u and

g ˚ h “ h ˚ g “ 0. However for every x P R, pf ˚ gq ˚ hpxq “
ş

R f ˚ gpyqdy “
ş1

´1
p2 ´ 2|y|qdy “ 2, while

f ˚ pg ˚ hqpxq “ f ˚ 0pxq “ 0, so pf ˚ gq ˚ h ‰ f ˚ pg ˚ hq.

Proof.
(a) Substituting z ÞÑ x ´ y, we obtain

f ˚ gpxq “

ż

fpx ´ yqgpyq dy “

ż

fpzqgpx ´ zq dz “ g ˚ fpxq.

(b) At any x P Rn where f ˚ g ˚ hpxq is defined, by Fubini’s theorem we can write
f ˚ g ˚ hpxq as

ż

hpzq dz

ż

fpx ´ z ´ yqgpyq dy “

ż

f ˚ gpx ´ zqhpzq dz “ pf ˚ gq ˚ hpxq

“

ż

fpx ´ yqgpy ´ zqhpzq dy dz “

ż

fpx ´ yq dy

ż

gpy ´ zqhpzq dz

“

ż

fpx ´ yqpg ˚ hqpyq dy “ f ˚ pg ˚ hqpxq.

In particular pf ˚ gq ˚ h and f ˚ pg ˚ hq are defined and equal to each other.
(c) We have

τzpf ˚ gqpxq “

ż

fpx ´ z ´ yqgpyq dy “

ż

τzfpx ´ yqgpyq dy “ pτzfq ˚ gpxq,

and by (a),
τzpf ˚ gq “ τzpg ˚ fq “ pτzgq ˚ f “ f ˚ pτzgq.

(d) If x R supppfq ` supppgq, then for any y P supppgq we have x ´ y R supppfq; thus
fpx ´ yqgpyq “ 0 for all y, so f ˚ gpxq “ 0.

The following two propositions contain the basic facts about convolutions of Lp
functions.

8.12 Young’s convolution inequality.

For any p P r1,8s, if f P L1 and g P Lp, then f ˚ gpxq exists for a.e. x P Rn, f ˚ g P Lp,
and

}f ˚ g}p ď }f}1}g}p.
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Proof. By Minkowski’s inequality for integrals,

}f ˚ g}p “

›

›

›

›

x ÞÑ

ż

fpyqgpx ´ yq dy

›

›

›

›

p

ď

ż

|fpyq|}τyg}p dy “ }f}1}g}p.

Proposition 8.13.

For any p P r1,8s, if q “ p1, f P Lp, and g P Lq, then f ˚ gpxq exists for a.e. x P Rn,
f ˚ g is bounded and uniformly continuous, and

}f ˚ g}u ď }f}p}g}q.

If p P p1,8q, then also f ˚ g P C0pRnq.

Proof. By Hölder’s inequality,

|f ˚ gpxq| “

ż

fpyqgpx ´ yq dy ď }f}p}g}q,

so by taking the supremum over all x P Rn we obtain }f ˚ g}u ď }f}p}g}q. And f ˚ g is
uniformly continuous by Propositions 4 and 11, since

}τypf ˚ gq ´ f ˚ g}u “ }pτyf ´ fq ˚ g}
8

ď }τyf ´ f}p}g}q Ñ 0 as y Ñ 0,

where if p “ 8 we swap f and g. Finally, if p, q P p1,8q then choose sequences tfnu, tgnu

of compactly supported functions such that }fn ´ fp}, }gn ´ gq} Ñ 0. Then by the above
and Proposition 11(d), we obtain fn ˚ gn P Cc. But

}fn ˚ gn ´ f ˚ g}u ď }fn ´ f}p}gn} ` }f}}gn ´ g}q Ñ 0,

so f ˚ g P C0 by Proposition 116.

Theorem 8.14.

Suppose p, q, r P r1,8s and 1{p ` 1{q “ 1{r ` 1.
(a) (Young’s convolution inequality—general form), if f P Lp and g P Lq, then

f ˚ g P Lr and
}f ˚ g}r ď }f}p}g}r.

(b) Suppose also p, q ą 1 and r ă 8. If f P Lp and g P weakpLpq, then f ˚ g P Lr

and there exists a constant Cpq ą 0 independent of f and g such that
}f ˚ g}r ď Cpq}f}p}g}q.

(c) Suppose p “ 1 and r “ q ą 0. If f P L1 and g P weakpLqq, then f ˚ g P weakpLqq
and there exists a constant Cq independent of f and g such that

rf ˚ gsq ď Cq}f}1}g}q.

Proof. To prove (a), let q be fixed. The special cases p “ 1, r “ q and p “ q{pq´1q, r “ 8

are Theorem 12 and Proposition 13. The general case then follows from the Riesz-Thorin
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interpolation theorem. (See also Folland Exercise 8.6 for a direct proof.) (b) and (c) are
special cases of Theorem 78.

8.2.1 Smoothness of convolutions

One of the most important properties of convolution is that, roughly speaking, f ˚ g is
at least as smooth as either f or g, because formally we have

B
α
pf ˚ gqpxq “ B

α

ż

fpx ´ yqgpyqdy “

ż

B
αfpx ´ yqgpyqdy “ pB

αfq ˚ gpxq

and similarly Bαpf ˚ gq “ f ˚ pBαgq. To make this precise, one needs only to impose
conditions on f and g so that differentiation under the integral sign is legitimate. One
such result is the following; see also Exercises 23 and 24.

Proposition 8.15: 8.10.

If f P L1, g P Ck, and Bαg is bounded for |α| ď k, then f ˚ g P Ck and for all |α| ď k,
B
α
pf ˚ gq “ f ˚ pB

αgq.

Proof. This is clear from Theorem 50.

Proposition 8.16: 8.11.

If f, g P S, then f ˚ g P S.

Proof. First, f ˚ g P C8 by Proposition 15. Since
1 ` |x| ď 1 ` |x ´ y| ` |y| ď p1 ` |x ´ y|qp1 ` |y|q (8.16.1)

we have

p1 ` |x|q
N

|B
α
pf ˚ gqpxq| ď

ż

p1 ` |x ´ y|q
N

|B
αfpx ´ yq|p1 ` |y|q

N
|gpyq|dy

ď }f}pN,αq}g}pN`n`1,αq

ż

p1 ` |y|q
´n´1dy

which is finite by Corollary 101.

Convolutions of functions on the torus Tn are defined just as for functions on Rn. (If
one regards functions on Tn as periodic functions on Rn, of course, the integration is to
be extended over the unit cube rather than Tn.) All of the preceding results remain valid,
with the same proofs.

8.2.2 Approximate identities

The following theorem underlies many of the important applications of convolutions
on Rn. We introduce a bit of notation that will be used frequently hereafter: If ϕ is any
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function on Rn and t ą 0, we set

ϕtpxq –
1

tn
ϕpx{tq.

We observe that if ϕ P L1, then
ş

ϕt is independent of t by Theorem 87, since
ż

ϕt “

ż

ϕpt´1xq
1

tn
dx “

ż

ϕpyqdy “

ż

ϕ.

Moreover, the “mass” of ϕt becomes concentrated at the origin as t Ñ 0. (Draw a picture
if this isn’t clear.)

Theorem 8.17: 8.14.

Suppose p P r1,8q, ϕ P L1, and
ş

ϕpxqdx “ a.
(a) If p P r1,8q and f P Lp, then

f ˚ ϕt Ñ af in Lp as t Œ 0.

(b) If f is bounded and uniformly continuous, then
f ˚ ϕt Ñ af uniformly as t Œ 0.

(c) If f P L8 and f is continuous on an open set U , then
f ˚ ϕt Ñ af uniformly on compact subsets of U as t Ñ 0.

Proof. Setting y “ tz, we have

f ˚ ϕtpxq ´ afpxq “

ż

rfpx ´ yq ´ fpxqsϕtpyqdy

“

ż

rfpx ´ tzq ´ fpxqsϕpzqdz “

ż

rτtzfpxq ´ fpxqsϕpzqdz

Apply Minkowski’s inequality for integrals:

}f ˚ ϕt ´ af}p ď

ż

}τtzf ´ f}p|ϕpzq|dz

Now, }τtzf ´ f}p is bounded by 2}f}p and tends to 0 as t Ñ 0 for each z, by Proposition 4.
Assertion (a) therefore follows from the dominated convergence theorem.

The proof of (b) is exactly the same, with } ¨ }p replaced by } ¨ }u. The estimate for
}f ˚ ϕt ´ af}u is obvious, and }τtzf ´ f}u Ñ 0 as t Ñ 0 by the uniform continuity of f .

As for (c), given ε ą 0 let us choose a compact E Ă Rn such that
ş

Ec |ϕ| ă ε. Also, let
K be a compact subset of U . If t is sufficiently small, then, we will have x´ tz P U for all
x P K and z P E, so from the compactness of K it follows as in Lemma 3 that

supxPK,zPE |fpx ´ tzq ´ fpxq| ă ε
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for small t. But then

supxPK |f ˚ ϕtpxq ´ afpxq| ď supxPK

„
ż

E

`

ż

Ec

ȷ

|fpx ´ tzq ´ fpxq||ϕpzq|dz

ď ε

ż

|ϕ| ` 2}f}8ε

from which (c) follows.

If we impose slightly stronger conditions on ϕ, we can also show that f ˚ ϕt Ñ af
almost everywhere for f P Lp. The device in the following proof of breaking up an integral
into pieces corresponding to the dyadic intervals r2k, 2k`1s and estimating each piece
separately is a standard trick of the trade in Fourier analysis.

Theorem 8.18: 8.15.

Suppose |ϕpxq| ď Cp1 ` |x|q´n´ε for some C, ε ą 0 (which implies that ϕ P L1 by
Corollary 101), and

ş

ϕpxqdx “ a. If f P Lpp1 ď p ď 8q, then f ˚ ϕtpxq Ñ afpxq as
t Ñ 0 for every x in the Lebesgue set of f—in particular, for almost every x, and for
every x at which f is continuous.

Proof. If x is in the Lebesgue set of f , for any δ ą 0 there exists η ą 0 such that
ż

|y|ăr

|fpx ´ yq ´ fpxq|dy ď δrn for r ď η. (8.18.1)

Let us set

I1 “

ż

|y|ăη

|fpx ´ yq ´ fpxq||ϕtpyq|dy and I2 “

ż

|y|ěη

|fpx ´ yq ´ fpxq||ϕtpyq|dy.

We claim that I1 is bounded by Aδ for some A independent of t, whereas I2 Ñ 0 as t Ñ 0.
Since

|f ˚ ϕtpxq ´ afpxq| ď I1 ` I2,

we will have
lim suptÑ0|f ˚ ϕtpxq ´ afpxq| ď Aδ,

and since δ is arbitrary, this will complete the proof.
To estimate I1, let K be the integer such that 2K ď η{t ă 2K`1 if η{t ě 1, and K “ 0 if

η{t ă 1. We view the ball |y| ă η as the union of the annuli 2´kη ď |y| ă 21´kηp1 ď k ď Kq

and the ball |y| ă 2´Kη. On the kth annulus we use the estimate

|ϕtpyq| ď Ct´n
ˇ

ˇ

ˇ

y

t

ˇ

ˇ

ˇ

´n´ε

ď Ct´n
„

2´kη

t

ȷ´n´ε
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and on the ball |y| ă 2´Kη we use the estimate |ϕtpyq| ď Ct´n. Thus

I1 ď
ÿK

1
Ct´n

„

2´kη

t

ȷ´n´ε ż

2´kηď|y|ă21´kη

|fpx ´ yq ´ fpxq|dy

` Ct´n
ż

|y|ă2´Kη

|fpx ´ yq ´ fpxq|dy.

Therefore, by Equation (8.18.1) and the fact that 2K ď η{t ă 2K`1,

I1 ď Cδ
ÿK

1
p21´kηq

nt´n
„

2´kη

t

ȷ´n´ε

` Cδt´np2´Kηq
n

“ 2nCδ
”η

t

ı´εÿK

1
2kε ` Cδ

„

2´Kη

t

ȷn

“ 2nCδ
”η

t

ı´ε2pK`1qε ´ 2ε

2ε ´ 1
` Cδ

„

2´Kη

t

ȷn

ď 2nCr2εp2ε ´ 1q
´1

` 1sδ.

As for I2, if p1 is the conjugate exponent to p and χ is the characteristic function of
ty | |y| ě ηu, by Hölder’s inequality we have

I2 ď

ż

|y|ěη

p|fpx ´ yq| ` |fpxq|q|ϕtpyq|dy

ď }f}p}χϕt}p1 ` |fpxq|}χϕt}1
so it suffices to show that for 1 ď q ď 8, and in particular for q “ 1 and q “ p1, }χϕt}q Ñ 0
as t Ñ 0. If q “ 8, this is obvious:

}χϕt}8
ď Ct´nr1 ` pη{tqs

´n´ε
“ Ctεpt ` ηq

´n´ε
ď Cη´n´εtε.

If q ă 8, by Corollary 100 we have

}χϕt}
q
q “

ż

|y|ěη

t´nq|ϕpt´1yq|
qdy “ tnp1´qq

ż

|z|ěη{t

|ϕpzq|
qdz

ď C1t
np1´qq

ż 8

η{t

rn´1´pn`εqqdr “ C2t
np1´qq

”η

t

ın´pn`εqq

“ C3t
εq.

In either case, }χϕt}q is dominated by tε, so we are done.

In most of the applications of the preceding two theorems one has a “ 1, although
the case a “ 0 is also useful. If a “ 1, tϕtutą0 is called an approximate identity , as
it furnishes an approximation to the identity operator on Lp by convolution operators.
This construction is useful for approximating Lp functions by functions having specified
regularity properties. For example, we have the following two important results:

Proposition 8.19: 8.17.

If p P r1,8q, then C8
c (and hence also S) is dense in Lp and in C0.
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Proof. Given f P Lp and ε ą 0, there exists g P Cc with }f ´ g}p ă ε{2, by ??. Let ϕ
be a function in C8

c such that
ş

ϕ “ 1—for example, take ϕ “
`ş

ψ
˘´1

ψ where ψ is as
in Equation (8.0.1). Then g ˚ ϕt P C8

c by Proposition 11(d) and Proposition 15, and
}g ˚ ϕt ´ g}p ă ε{2 for sufficiently small t by Theorem 17. The same argument applies if
Lp is replaced by C0, } ¨ }p by } ¨ }u, and ?? by Proposition 116.

Theorem 8.20: 8.18: The C8 Urysohn Lemma.

If K Ă Rn is compact and U is an open set containing K, there exists f P C8
c such

that 0 ď f ď 1, f “ 1 on K, and supppfq Ă U .

Proof. Let δ “ ρpK,U cq (the distance from K to U c, which is positive since K is compact),
and let V “ tx | ρpx,Kq ă δ{3u. Choose a nonnegative ϕ P C8

c such that
ş

ϕ “ 1 and
ϕpxq “ 0 for |x| ě δ{3 (for example,

`ş

ψ
˘´1

ψδ{3 with ψ as in Equation (8.0.1)), and set
f “ χV ˚ϕ. Then f P C8

c by Proposition 11(d) and Proposition 15, and it is easily checked
that 0 ď f ď 1, f “ 1 on K, and supppfq Ă tx | ρpx,Kq ď 2δ{3u Ă U .

Exercise 8.21: Folland Exercise 8.5.

If s : RnˆRn Ñ Rn is defined by spx, yq “ x´ y, then s´1pEq is Lebesgue measurable
whenever E is Lebesgue measurable. (For n “ 1, draw a picture of s´1pEq Ă R2. It
should be clear that after rotation through an angle π{4, s´1pEq becomes FˆR where
F “

␣

x
ˇ

ˇ

?
2x P E

(

, and Theorem 87 can be applied. The same idea works in higher
dimensions.)

Exercise 8.22: Folland Exercise 8.6.

Prove Theorem 14(a) by using Folland Exercise 6.31 to show that

|f ˚ gpxq|
r

ď }f}
r´p
p }g}

r´q
q

ż

|fpyq|
p
|gpx ´ yq|

qdy

Exercise 8.23: Folland Exercise 8.7.

If f is locally integrable on Rn and g P Ck has compact support, then f ˚ g P Ck.

Exercise 8.24: Folland Exercise 8.8.

Suppose that f P LppRq. If there exists h P LppRq such that
lim
yÑ0

}y´1
pτ´yf ´ fq ´ h}p “ 0

we call h the strong Lp derivative of f . If f P LppRnq, strong Lp partial derivatives
of f are defined similarly. Suppose that p and q are conjugate exponents, f P Lp, g P Lq,
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and the Lp derivative Bjf exists. Then Bjpf ˚ gq exists (in the ordinary sense) and
equals pBjfq ˚ g.

Exercise 8.25: Folland Exercise 8.9.

If f P LppRq, the strong Lp derivative of f (call it h; see Folland Exercise 8.8) exists
if and only if f is absolutely continuous on every bounded interval (perhaps after
modification on a null set) and its pointwise derivative f 1 is in Lp, in which case h “ f 1

a.e. (For “only if,” use Folland Exercise 8.8: If g P Cc with
ş

g “ 1, then f ˚ gt Ñ f
and pf ˚ gtq

1
Ñ h as t Ñ 0. For “if,” write

fpx ` yq ´ fpxq

y
´ f 1

pxq “
1

y

ż y

0

rf 1
px ` tq ´ f 1

pxqsdt

and use Minkowski’s inequality for integrals.)

Exercise 8.26: Folland Exercise 8.10.

Let ϕ satisfy the hypotheses of Theorem 18. If f P Lpp1 ď p ď 8q, define the
ϕ-maximal function of f to be Mϕfpxq “ suptą0|f ˚ ϕtpxq|. (Observe that the
Hardy-Littlewood maximal function Hf is Mϕ|f | where ϕ is the characteristic function
of the unit ball divided by the volume of the ball.) Show that there is a constant C,
independent of f , such that Mϕf ď C ¨ Hf . (Break up the integral

ş

fpx ´ yqϕtpyqdy
as the sum of the integrals over |y| ď t and over 2kt ă |y| ď 2k`1t pk “ 0, 1, 2, . . .q, and
estimate ϕt on each region.) It follows from Theorem 44 that Mϕ is weak type p1, 1q,
and the proof of Theorem 45 can then be adapted to give an alternate demonstration
that f ˚ ϕt Ñ

`ş

ϕ
˘

f a.e.

Exercise 8.27: Folland Exercise 8.11.

Young’s inequality shows that L1 is a Banach algebra, the product being convolution.
(a) If J is an ideal in the algebra L1, so is its closure in L1.
(b) If f P L1, the smallest closed ideal in L1 containing f is the smallest closed sub-

space of L1 containing all translates of f . (If g P Cc, f ˚ gpxq can be approximated
by sums

ř

fpx ´ yjqgpyjq∆yj. On the other hand, if tϕtu is an approximate
identity, f ˚ τypϕtq Ñ τyf as t Ñ 0.)

8.3 The Fourier Transform

One of the fundamental principles of harmonic analysis is the exploitation of symmetry.
To be more specific, if one is doing analysis on a space on which a group acts, it is a good
idea to study functions (or other analytic objects) that transform in simple ways under
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the group action, and then try to decompose arbitrary functions as sums or integrals of
these basic functions.

The spaces we are studying are Rn and Tn, which are abelian groups under addition
and act on themselves by translation. The building blocks of harmonic analysis on these
spaces are the functions that transform under translation by multiplication by a factor
of absolute value one, that is, functions f such that for each x there is a number ϕpxq

with |ϕpxq| “ 1 such that fpy ` xq “ ϕpxqfpyq. If f and ϕ have this property, then
fpxq “ ϕpxqfp0q, so f is completely determined by ϕ once fp0q is given; moreover,

ϕpxqϕpyqfp0q “ ϕpxqfpyq “ fpx ` yq “ ϕpx ` yqfp0q

so that (unless f “ 0) ϕpx ` yq “ ϕpxqϕpyq. In short, to find all fs that transform as
described above, it suffices to find all ϕs of absolute value one that satisfy the functional
equation ϕpx` yq “ ϕpxqϕpyq. Upon imposing the natural requirement that ϕ should be
measurable, we have a complete solution to this problem.

Theorem 8.28: 8.19.

If ϕ is a measurable function on Tn (resp. Rn) such that ϕpx ` yq “ ϕpxqϕpyq and
|ϕ| “ 1, there exists ξ P Tn (resp. ξ P Rn) such that ϕpxq “ e2πiξ¨x.

Proof. We first prove this assertion on R. Let a P R be such that
şa

0
ϕptqdt ‰ 0; such an a

surely exists, for otherwise the Lebesgue differentiation theorem would imply that ϕ “ 0
a.e. Setting A “

`şa

0
ϕptqdt

˘´1, then, we have

ϕpxq “ A

ż a

0

ϕpxqϕptqdt “ A

ż a

0

ϕpx ` tqdt “ A

ż x`a

x

ϕptqdt.

Thus ϕ, being the indefinite integral of a locally integrable function, is continuous; and
then, being the integral of a continuous function, it is C1. Moreover,

ϕ1
pxq “ Arϕpx ` aq ´ ϕpxqs “ Bϕpxq, where B “ Arϕpaq ´ 1s.

It follows that pd{dxqpe´Bxϕpxqq “ 0, so that e´Bxϕpxq is constant. Since ϕp0q “ 1, we
have ϕpxq “ eBx, and since |ϕ| “ 1, B is purely imaginary, so B “ 2πiξ for some ξ P R.
This completes the proof for R; as for R, the ϕ we have been considering will be periodic
(with period 1) if and only if e2πiξ “ 1 if and only if ξ P R.

The n-dimensional case follows easily, for if e1, . . . , en is the standard basis for Rn, the
functions ψjptq “ ϕptejq satisfy ψjpt ` sq “ ψjptqψjpsq on R, so that ψjptq “ e2πiξjt, and
hence

ϕpxq “ ϕ
´

ÿn

1
xjej

¯

“
źn

1
ψjpxjq “ e2πiξ¨x.

8.3.1 Fourier transform on Tn

The idea now is to decompose more or less arbitrary functions on Rn or Tn in terms
of the exponentials e2πiξ¨x. In the case of Tn this works out very simply for L2 functions:
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Theorem 8.29: 8.20.

Let Eκpxq “ e2πiκ¨x. Then tEκ | κ P Znu is an orthonormal basis of L2pTnq.

Proof. Verification of orthonormality is an easy exercise in calculus; by Fubini’s theorem
it boils down to the fact that

ş1

0
e2πiktdt equals 1 if k “ 0 and equals 0 otherwise. Next,

since EκEλ “ Eκ`λ, the set of finite linear combinations of the Eκs is an algebra. It
clearly separates points on Tn; also, E0 “ 1 and Eκ “ E´κ. Since Tn is compact, the
Stone-Weierstrass theorem implies that this algebra is dense in CpTnq in the uniform
norm and hence in the L2 norm, and CpTnq is itself dense in L2pTnq by ??. It follows
that tEκu is a basis.

We can restate Theorem 29 as follows. If f P L2pTnq, we define its Fourier transform
pf , a function on Tn, by

pfpκq “ xf, Eκy “

ż

Tn

fpxqe´2πiκ¨xdx,

and we call the series
ÿ

κPZn
pfpκqEκ

the Fourier series of f .3 Theorem 29 then says that the Fourier transform maps L2pTnq

onto ℓ2pTnq, that } pf}2 “ }f}2 (Parseval’s identity), and that the Fourier series of f
converges to f in the L2 norm. We shall consider the question of pointwise convergence
in the next two sections.

Actually, the definition of pfpκq makes sense if f is merely in L1pTnq, and | pfpκq| ď }f}1,
so the Fourier transform extends to a norm-decreasing map from L1pTnq to ℓ8pTnq. (The
Fourier series of an L1 function may be quite badly behaved, but there are still methods
for recovering f from pf when f P L1, as we shall see in the next section.) By interpolating
between L1 and L2, we obtain the following result.

Theorem 8.30: 8.21: The Hausdorff-Young Inequality.

Suppose that 1 ď p ď 2 and q is the conjugate exponent to p. If f P LppTnq, then
pf P ℓqpZnq and } pf}q ď }f}p.

Proof. Since } pf}8 ď }f}1 and } pf}2 “ }f}2 for f P L1 or f P L2, the assertion follows from
the Riesz-Thorin interpolation theorem.

3The term “Fourier transform” is also used to mean the map f ÞÑ pf .
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8.3.2 Fourier transform on Rn

The situation on Rn is more delicate. The formal analogue of Theorem 29 should be

fpxq “

ż

Rn

pfpξqe2πiξ¨xdξ, where pfpξq “

ż

Rn

fpxqe´2πiξ¨xdx

These relations turn out to be valid when suitably interpreted, but some care is needed.
In the first place, the integral defining pfpξq is likely to diverge if f P L2. However, it
certainly converges if f P L1. We therefore begin by defining the Fourier transform of
f P L1pRnq by

Ffpξq “ pfpξq “

ż

Rn

fpxqe´2πiξ¨xdx

(We use the notation F for the Fourier transform only in certain situations where it is
needed for clarity.) Clearly } pf}u ď }f}1, and pf is continuous by Theorem 50; thus

F : L1
pRn

q Ñ BCpRn
q

We summarize the elementary properties of F in a theorem.

Theorem 8.31: 8.22.

Suppose f, g P L1pRnq.
(a) pτyfq^pξq “ e´2πiξ¨y

pfpξq and τηp pfq “ ph where hpxq “ e2πiη¨xfpxq.
(b) If T is an invertible linear transformation of Rn and S “ pT ˚q

´1 is its inverse
transpose, then pf ˝ T q^ “ | detT |´1

pf ˝ S. In particular, if T is a rotation, then
pf ˝ T q

^
“ pf ˝ T ; and if Tx “ t´1xpt ą 0q, then pf ˝ T q

^
pξq “ tn pfptξq, so that

pftq
^

pξq “ pfptξq in the notation of (8.13).
(c) pf ˚ gq^ “ pf pg.
(d) If xαf P L1 for |α| ď k, then pf P Ck and Bα pf “ pp´2πixqαfq

^.
(e) If f P Ck, Bαf P L1 for |α| ď k, and Bαf P C0 for |α| ď k ´ 1, then pBαfq

^
pξq “

p2πiξqα pfpξq.
(f) (The Riemann–Lebesgue Lemma) FpL1pRnqq Ă C0pRnq.

Proof.
(a) We have

pτyfqpξq “

ż

fpx ´ yqe´2πiξ¨xdx “

ż

fpxqe´2πiξ¨px`yqdx “ e´2πiξ¨y
pfpξq

and similarly for the other formula.
(b) By Theorem 87,

pf ˝ T qxpξq “

ż

fpTxqe´2πiξ¨xdx “ | detT |
´1

ż

fpxqe´2πiξ¨T´1xdx

“ | detT |
´1

ż

fpxqe´2πiSξ¨xdx “ | detT |
´1

pfpSξq

Version of April 30, 2024 at 11pm EST Page 290 of 368

https://www.greysonwesley.com/home


Greyson C. Wesley §8.3: The Fourier Transform

(c) By Fubini’s theorem,

pf ˚ gqxpξq “

ĳ

fpx ´ yqgpyqe´2πiξ¨xdydx

“

ĳ

fpx ´ yqe´2πiξ¨px´yqgpyqe´2πiξ¨ydxdy

“ pfpξq

ż

gpyqe´2πiξ¨ydy

“ pfpξqpgpξq.

(d) By Theorem 50 and induction on |α|,

B
α
pfpξq “ B

α
ξ

ż

fpxqe´2πiξ¨xdx “

ż

fpxqp´2πixq
αe´2πiξ¨xdx

(e) First assume n “ |α| “ 1. Since f P C0, we can integrate by parts:
ż

f 1
pxqe´2πiξ¨xdx “ fpxqe´2πiξ¨x

|
8

´8
´

ż

fpxqp´2πiξqe´2πiξ¨xdx

“ 2πiξ pfpξq.

The argument for n ą 1, |α| “ 1 is the same—to compute pBjfq_, integrate by parts
in the jth variable—and the general case follows by induction on |α|.

(f) By (e), if f P C1 X Cc, then |ξ| pfpξq is bounded and hence pf P C0. But the set
of all such fs is dense in L1 by Proposition 19, and pfn Ñ pf uniformly whenever
fn Ñ f in L1. Since C0 is closed in the uniform norm, the result follows. Continuity
of pf follows from the DCT, so we only need to show pf vanishes at infinity. For
f – χra1,b1 ŝ ¨¨¨̂ ran,bns, we have

pfpξq “

ż

Rn

e´2πixx,ξyξr¨¨¨ spxqdx

“
źn

k“1

ż bk

ak

e´2πixk¨ξkdxk “
źn

k“1

1

´2πiξk
pe2πibkξk ´ e´2πiakξkq,

which tends to 0 as |ξ| Ñ 8. Next, if f P L1pRnq, pick simple functions tϕju
8
j“1 such

that }f ´ ϕj}1 Ñ 0 as j Ñ 8.
| pfpξq| ď | pfpξq ´ pϕjpξq| ` |pϕjpξq| ď }f ´ ϕj}1 ` |pϕjpξq|,

and both terms vanish as j Ñ 8. .

Parts (d) and (e) of Theorem 31 point to a fundamental property of the Fourier
transform: Smoothness properties of f are reflected in the rate of decay of pf at infinity,
and vice versa. Parts (a), (c), (e), and (f) of this theorem are valid also on Tn, as is (b)
provided that T leaves the lattice Tn invariant (Folland Exercise 8.12).
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Corollary 8.32: 8.23.

F maps the Schwartz class S continuously into itself.

Proof. If f P S, then xαBβf P L1 X C0 for all α, β, so by Theorem 31d,e, pf is C8 and
pxαB

βfq
^

“ p´1q
|α|

p2πiq|β|´|α|
B
α
pξβ pfq.

Thus Bαpξβ pfq is bounded for all α, β, whence pf P S by Proposition 2. Moreover, since
ş

p1 ` |x|q´n´1dx ă 8,
}pxαB

βfq}u ď }xαB
βf}1 ď C}p1 ` |x|q

n`1xαB
βf}u.

It then follows that } pf}pN,βq ď CN,β
ř

|γ|ď|β|
}f}pN`n`1,γq by the proof of Proposition 2, so

the Fourier transform is continuous on S.

At this point we need to compute an important specific Fourier transform.

Proposition 8.33: 8.24.

If fpxq “ e´πa|x|2 where a ą 0, then pfpξq “ a´n{2e´π|ξ|2{a.

Proof. First consider the case n “ 1. Since the derivative of e´πax2 is ´2πae´πax2 , by
Theorem 31(d,e) we have

p pfq
1
pξq “ p´2πixe´πax2

q
^

pξq “
i

a
pf 1

q
^
ξ “

i

a
p2πiξq pfpξq “ ´

2π

a
ξ pfpξq

It follows from the product rule that pd{dξqpeπξ
2{a

pfpξqq “ 0, so that eπξ2{a
pfpξq is constant.

To evaluate the constant, set ξ “ 0 and use Proposition 102:

pfp0q “

ż

e´πax2dx “ a´1{2

The n-dimensional case follows by Fubini’s theorem, since |x|2 “
řn

1 x
2
j :

pfpξq “
źn

1

ż

expp´πax2j ´ 2πiξjxjqdxj

“
źn

1
ra´1{2 expp´πξ2j {aqs “ a´n{2 expp´π|ξ|

2
{aq.

We are now ready to invert the Fourier transform. If f P L1, we define

f_
pxq “ pfp´xq “

ż

fpξqe2πiξ¨xdξ

and we claim that if f P L1 and pf P L1 then p pfq_ “ f . A simple appeal to Fubini’s
theorem fails because the integrand in

p pfq
_

pxq “

ĳ

fpyqe´2πiξ¨ye2πiξ¨xdydξ

is not in L1pRnˆRnq. The trick is to introduce a convergence factor and then pass to the
limit, using Fubini’s theorem via the following lemma.

Version of April 30, 2024 at 11pm EST Page 292 of 368

https://www.greysonwesley.com/home


Greyson C. Wesley §8.3: The Fourier Transform

Lemma 8.34: 8.25.

If f, g P L1, then
ş

pfg “
ş

fpg.

Proof. Both integrals are equal to
ť

fpxqgpξqe´2πiξ¨xdxdξ.

Theorem 8.35: 8.26: The Fourier Inversion Theorem.

If f P L1 and pf P L1, then f agrees almost everywhere with a continuous function f0,
and p pfq_ “ pf_q

^
“ f0.

Proof. Given t ą 0 and x P Rn, set
ϕpξq “ expp2πiξ ¨ x ´ πt2|ξ|

2
q

By Theorem 31(a) and Proposition 33,
pϕpyq “ t´n expp´π|x ´ y|

2
{t2q “ gtpx ´ yq

where gpxq “ e´π|x|2 and the subscript t has the meaning in (8.13). By Lemma 34, then,
ż

e´πt2|ξ|2e2πiξ¨x
pfpξqdξ “

ż

pfϕ “

ż

f pϕ “ f ˚ gtpxq

Since
ş

e´π|x|2dx “ 1, by Theorem 17 we have f ˚ gt Ñ f in the L1 norm as t Ñ 0. On the
other hand, since pf P L1 the dominated convergence theorem yields

lim
tÑ0

ż

e´πt2|ξ|2e2πiξ¨x
pfpξqdξ “

ż

e2πiξ¨x
pfpξqdξ “ p pfq

_
pxq

It follows that f “ p pfq_ a.e., and similarly pf_q
^

“ f a.e. Since p pfq_ and pf_q
^ are

continuous, being Fourier transforms of L1 functions, the proof is complete.

Corollary 8.36: 8.27.

If f P L1 and pf “ 0, then f “ 0 a.e.

Theorem 8.37: 8.28: Corollary.

F is an isomorphism of S onto itself.

Proof. By Corollary 32, F maps F continuously into itself, and hence so does f ÞÑ f_,
since f_pxq “ pfp´xq. By the Fourier inversion theorem, these maps are inverse to each
other.

At last we are in a position to derive the analogue of Theorem 29 on Rn.
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Theorem 8.38: 8.29: The Plancherel Theorem.

If f P L1 X L2, then pf P L2; and F|L1XL2 extends uniquely to a unitary isomorphism
on L2.

Proof. Let X “ tf P L1 | pf P L1u. Since pf P L1 implies f P L8, we have X Ă L2 by
Proposition 16, and X is dense in L2 because S Ă X and S is dense in L2 by Proposition 19.
Given f, g P X, let h “ pg. By the inversion theorem,

phpξq “

ż

e´2πiξ¨x
pgpxqdx “

ż

e2πiξ¨x
pgpxqdx “ gpξq

Hence, by Lemma 34,
ż

fg “

ż

fph “

ż

pfh “ pfpg.

Thus F|X preserves the L2 inner product; in particular, by taking g “ f , we obtain
} pf}2 “ }f}2. Since FpXq “ X by the Fourier inversion theorem, F|X extends by continuity
to a unitary isomorphism on L2.

It remains only to show that this extension agrees with F on all of L1 X L2. But
if f P L1 X L2 and gpxq “ e´π|x|2 as in the proof of the inversion theorem, we have
f ˚ gt P L1 by Young’s inequality and pf ˚ gtqpe P L1 because pf ˚ gtqpppξq “ e´πt2|ξ|2

pfpξq

and pf is bounded. Hence f ˚ gt P X; moreover, by Theorem 17, f ˚ gt Ñ f in both the L1

and L2 norms. Therefore pf ˚ gtq Ñ pf both uniformly and in the L2 norm, and we are
done.

We have thus extended the domain of the Fourier transform from L1 to L1 ` L2. Just
as on Tn, the Riesz-Thorin theorem yields the following result for the intermediate Lp
spaces.

Theorem 8.39: 8.30: The Hausdorff-Young Inequality.

Suppose that 1 ď p ď 2 and q is the conjugate exponent to p. If f P LppRnq, then
pf P LqpRnq and } pf}q ď }f}p.

If f P L1 and pf P L1, the inversion formula

fpxq “

ż

pfpξqe2πiξ¨xdξ

exhibits f as a superposition of the basic functions e2πiξ¨x; it is often called the Fourier
integral representation of f . This formula remains valid in spirit for all f P L2,
although the integral (as well as the integral defining pf) may not converge pointwise. The
interpretation of the inversion formula will be studied further in the next section.

We conclude this section with a beautiful theorem that involves an interplay of Fourier
series and Fourier integrals. To motivate it, consider the following problem: Given a
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function f P L1pRnq, how can one manufacture a periodic function (that is, a function on
Rn) from it? Two possible answers suggest themselves. One way is to “average” f over
all periods, producing the series

ř

kPRn fpx ´ kq. This series, if it converges, will surely
define a periodic function. The other way is to restrict f to the lattice Rn and use it to
form a Fourier series

ř

κPRn
pfpκqe2πiκ¨x. The content of the following theorem is that these

methods both work and both give the same answer.

Theorem 8.40: 8.31.

If f P L1pRnq, the series
ř

kPRn τkf converges pointwise a.e. and in L1pRnq to a function
Pf such that }Pf}1 ď }f}1. Moreover, for κ P Rn, pPfq

^
pκq (Fourier transform on

Rn) equals pfpκq (Fourier transform on Rn).

Proof. Let Q “
“

´1
2
, 1
2

˘n. Then Rn is the disjoint union of the cubes Q ` k “

tx ` k | x P Qu, k P Rn, so
ż

Q

ÿ

kPZn
|fpx ´ kq|dx “

ÿ

kPZn

ż

Q`k

|fpxq|dx “

ż

Zn

|fpxq|dx

Now apply Theorem 48. First, it shows that the series
ř

τkf converges a.e. and in L1pTnq

to a function Pf P L1pTnq such that }Pf}1 ď }f}1, since Tn is measure-theoretically
identical to Q. Second, it yields

FpPfqpκq “

ż

Q

ÿ

kPZn
fpx ´ kqe´2πiκ¨xdx “

ÿ

kPZn

ż

Q`k

fpxqe´2πiκ¨px`kqdx

“
ÿ

kPZN

ż

Q`k

fpxqe´2πiκ¨xdx “

ż

Zn

fpxqe´2πiκ¨xdx “ pfpκq.

If we impose conditions on f to guarantee that the series in question converge absolutely,
we obtain a more refined result.

Theorem 8.41: 8.32: The Poisson Summation Formula.

Suppose f P CpRnq satisfies |fpxq| ď Cp1 ` |x|q´n´ε and | pfpξq| ď Cp1 ` |ξ|q´n´ε for
some C, ε ą 0. Then

ÿ

kPZn
fpx ` kq “

ÿ

κPZn
pfpκqe2πiκ¨x

where both series converge absolutely and uniformly on Tn. In particular, taking x “ 0,
ÿ

kPZn
fpkq “

ÿ

κPZn
pfpκq

Proof. The absolute and uniform convergence of the series follows from the fact that
ř

kPZnp1`|k|q´n´ε ă 8, which can be seen by comparing the latter series to the convergent
integral

ş

p1` |x|q´n´εdx. Thus the function Pf “
ř

k τkf is in CpZnq and hence in L2pZnq,
so Theorem 56 implies that the series

ř

pfpκqe2πiκ¨x converges in L2pZnq to Pf . Since it
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also converges uniformly, its sum equals Pf pointwise. (The replacement of k by ´k in
the formula for Pf is immaterial since the sum is over all k P Zn.)

Exercise 8.42: Folland Exercise 8.12.

Work out the analogue of Theorem 31 for the Fourier transform on Tn.

Exercise 8.43: Folland Exercise 8.13.

Let fpxq “ 1
2

´ x on the interval r0, 1q, and extend f to be periodic on R.
(a) pfp0q “ 0, and pfpκq “ p2πiκq´1 if κ ‰ 0.
(b)

ř8

1 k
´2 “ π2{6. (Use the Parseval identity.)

Solution.
(a) First note f P L2pTq, since

}f}
2
2 “

ż

T
|fpxq|

2 dx “

”x

4
´
x2

2
`
x3

3

ıx“1

x“0
“

1

12
. (8.43.1)

We have

pfp0q “

ż

T
fpxqe´2πi0¨x dx “

ż 1

0

fpxq “
1

2
´

”x2

2

ıx“1

x“0
“ 0,

and if k P Z ∖ t0u,

pfpkq “

ż

T

ˆ

1

2
´ x

˙

e´2πikx dx “

ż 1

0

1

2
e´2πikx dx ´

ż 1

0

xe´2πikx dx

“
´1

4πik
´

„

x

´2πike´2πikx

ȷx“1

x“0

`
´1

2πik

ż 1

0

e´2πikx dx

“
´1

4πik
´

´1

2πik
`

1

4πik
“

1

2πik
.

(b) By part (a) | pfpkq|
2

“ 1{p4π2k2q, so by Plancherel’s theorem
ÿ8

k“1

1

k2
“ 4π2

ÿ8

k“0
| pfpkq|

2
“ 2π2

ÿ

kPZ
| pfpkq|

2
“ 2π2

}f}
2
2

(8.43.1)
“

π2

6
.

Exercise 8.44: Folland Exercise 8.14.

(Wirtinger’s Inequality) If f P C1pra, bsq and fpaq “ fpbq “ 0, then
ż b

a

|fpxq|
2dx ď

ˆ

b ´ a

π

˙2 ż b

a

|f 1
pxq|

2
dx

(By a change of variable it suffices to assume a “ 0, b “ 1
2
. Extend f to

“

´1
2
, 1
2

‰

by
setting fp´xq “ ´fpxq, and then extend f to be periodic on R. Check that f , thus
extended, is in C1pRq and apply the Parseval identity.)
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Exercise 8.45: Folland Exercise 8.15.

Let sincx “ psin πxq{πxpsinc 0 “ 1q.
(a) If a ą 0, pχr´a,aspxq “ χ_

ra,aspxq “ 2a sinc 2ax.
(b) Let Ha “ tf P L2 | pfpξq “ 0 ( a.e.) for |ξ| ą au. Then H is a Hilbert space and

␣?
2a sincp2ax ´ kq

ˇ

ˇ k P Z
(

is an orthonormal basis for H.
(c) (The Sampling Theorem) If f P Ha, then f P C0 (after modification on a null

set), and fpxq “
ř8

´8
fpk{2aq sincp2ax ´ kq, where the series converges both

uniformly and in L2. (In the terminology of signal analysis, a signal of bandwidth
2a is completely determined by sampling its values at a sequence of points tk{2au

whose spacing is the reciprocal of the bandwidth.)

Solution.
(a) We have

pχr´a,aspξq “

ż a

´a

e´2πiξx dx “
´1

2πiξ
pe´2πiξa

´ e2πiξaq “
sinp2πaξq

πξ
“ 2a sincp2aξq

and, by changing variables x ÞÑ ´x in the integrand of χ_
r´a,aspξq, we find

χ_
r´a,aspξq “

ż a

´a

e2πiξx “ ´

ż ´a

a

e´2πiξx dx “

ż a

´a

e´2πiξx dx “ χ^
r´a,aspξq.

(b) ℋa is a linear subspace: If f, g P ℋa and λ P C, then for all |ξ| ą a we have
pfpξq “ pgpξq “ 0, so

pf ` λgq
^

pξq “ pfpξq ` λpgpξq “ 0 ` λ0 “ 0.

Thus f ` λg P ℋa, so ℋa is a linear subspace of L2.
ℋa is closed: Suppose tfnu8

n“1 Ă ℋa and }fn ´ f}2 Ñ 0. Since the Fourier
transform is unitary on L2 (hence an isometry), } pfn ´ pf}2 Ñ 0, that is, fn Ñ f in
L2. Thus there exists a subsequence pfnk Ñ pf pointwise a.e., so for a.e. x P R, we
have for |ξ| ą a

pfpξq “ lim
kÑ8

pfnkpxq “ lim
kÑ8

0 “ 0.

Thus f P ℋa, so ℋa is a closed linear subspace of the Hilbert space L2, and thus ℋa

is a Hilbert space.
Now for k P Z and x P R, define ζkpxq –

?
2a sincp2ax´ kq. We claim tζkukPZ is

an orthonormal basis of ℋa. We first show tζkukPZ Ă ℋa. For any k P Z,

ζkpxq “
?
2a sincp2ax ´ kq “

1
?
2a

p2a sincp2apx ´ k{2aqqq
(a)
“

1
?
2a
χ_

r´a,aspx ´ k{2aq.

(8.45.1)

Version of April 30, 2024 at 11pm EST Page 297 of 368

https://www.greysonwesley.com/home


Greyson C. Wesley §8.3: The Fourier Transform

Taking the Fourier transform, we obtain

ζ^
k pξq “

1
?
2a

pτk{2aχ
_
r´a,asq

^
pξq “

e´2πiξpk{2aq

?
2a

pχ_
r´a,asq

^
pξq “

e´2πipk{2aqξ

?
2a

χr´a,aspξq,

(8.45.2)
where for the last equality we used χr´a,as P L2 and that the Fourier transform is a
unitary isomorphism on L2. In particular, Equation (8.45.2) shows both that ζk P L2

(since its Fourier transform is) and that pζkpξq “ 0 whenever |ξ| ą a, so ζk P ℋa.
tζkukPZ is an orthonormal set in ℋa: Since the Fourier transform is a unitary

operator L2 Ñ L2, we have for all k P Z that

xζk|ζky “ xζ^
k |ζ^

k y “
1

2a

ż a

´a

e2πipk´kqξ dξ “
1

2a

ż a

´a

1 dξ “ 1,

and if ℓ P Z ∖ tku,

xζk|ζℓy “ xζ^
k |ζ^

ℓ y
(8.45.2)

“
1

2a

ż

e´2πipk{2aqξχr´a,aspξqe´2πiξpℓ{2aqχr´a,aspξq dξ

“
1

2a

ż a

´a

e2πiξp
k´ℓ
2a q dξ “

1

2a

ˆ

2a

2πipk ´ ℓq
peπipk´ℓq

´ eπipℓ´kq
q

˙

“
sinpπpk ´ ℓqq

2πipk ´ ℓq
“ 0.

Thus tζkukPZ is an orthonormal set in ℋa.
tζkukPZ is a basis of ℋa: Suppose f P ℋa satisfies xf |ζky “ 0 (and hence also

xf^|ζ^
k y “ 0) for all k P Z. Then for each k P Z,

0 “

ż

f^
pξqζ^

k pξq dξ
(8.45.2)

“
1

?
2a

ż a

´a

f^
pξqe2πipk{2aqξ dξ

“
1

?
2a

ż 1{2

´1{2

f^
pη{2aqe2πikη dη “

?
2a

ż

T
f^

p´η{2aqEkpηq dη “
?
2ax pf ˝ s|Eky,

where s : η ÞÑ ´η{2a, and Ekpηq “ e2πikη. In particular x pfχr´a,as|Eky “ 0 for all
k P Z. But by Folland Theorem 8.20 tEkukPZ is an orthonormal basis for L2pTq,
so pfχr´a,as “ 0 a.e. Therefore, since pf P L2pTq, by the Fourier inversion theorem
(namely since the Fourier transform is an isomorphism L2 Ñ L2), pf ˝ s “ 0 a.e. on
r´1{2, 1{2s. Thus pfχr´a,as “ 0 a.e., and hence pf “ 0 for a.e. ξ P R (since already
pfpξq “ 0 for all ξ ą a). It follows that tζkukPZ is a basis of ℋa.

(c) Fix f P ℋa. By part (b) tζkukPZ is an orthonormal basis of ℋa, so

f “
ÿ

kPZ
xf |ζkyζk “

ÿ

kPZ
x pf |pζkyζk,

where the series converge in L2. Thus it is is enough to show xf |ζky “ 1?
2a
fpk{2aq

for k P Z and that
ř

kPZ fpk{2aqζk converges to f uniformly. We have

xf^
|ζ^
k y “

1
?
2a

ż

f^
pxqe2πipk{2aqxχr´a,aspxq dx

“
1

?
2a

ż a

´a

f^
pxqe2πipk{2aqx dx “

1
?
2a

p

pfp´k{2aq “
1

?
2a
fpk{2aq,

so it only remains to show the series converges uniformly, and for this it is enough to

Version of April 30, 2024 at 11pm EST Page 298 of 368

https://www.greysonwesley.com/home


Greyson C. Wesley §8.3: The Fourier Transform

show the sequence t
řN
k“´N fpk{2aqζkuNPZ is uniformly Cauchy.

Fix ε ą 0. By Parseval’s identity
ř

kPZ|xf |ζky| “ }f}
2
2 ă 8, so for all sufficiently

large N P Zě0
ÿ

kPZ
|xf |ζky|

2
ă ε. (8.45.3)

Now fix x P R and M,N P Z with M ď N . For all sufficiently large M,N P Z, we
have
ˇ

ˇ

ˇ

ÿN

k“M
fpk{2aq sincp2ax ´ kq

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

ÿN

k“M
xf |ζkyζkpxq

ˇ

ˇ

ˇ
“
ÿN

k“M
|xf |ζky||ζkpxq|

ď

´

ÿN

k“M
|xf |ζky|

2
¯1{2´ÿN

k“M
|ζkpxq|

2
¯1{2 (8.45.3)

ă ε1{2
´

ÿN

k“M
|ζkpxq|

2
¯1{2

where we used the Cauchy–Schwarz inequality. Since χr´a,as is a factor of ζk, we may
assume x P r´a, as, and hence that 0 ď |x| ď a. But we only know this (the previous
sentence) for ζk, not pζk! This requires a correction before the rest of the argument
to work. It thus only remains to show the remaining sum term on the right-hand
side is uniformly bounded for all x P r´a, as as M,N Ñ 8. For all sufficiently large
M,N P Zě0 sufficiently large and k P tM ` 1, . . . , Nu, we have

|2ax ´ k|
2

“ |k ´ 2ax|
2

ě ||k|
2

´ 2a|x|| ě
|k|

2

2
“
k2

2
,

and hence
1

|2ax ´ k|
2 ď

2

k2
,

so that
ÿN

k“M
|ζkpxq|

2
“

2a

π2

ÿN

k“M

|sinpπp2ax ´ kqq|
2

|2ax ´ k|
2 ď

2a

π2

ÿN

k“M

1

|2ax ´ k|
2 ď

4a

π2

ÿN

k“M

1

k2
ă ε,

where the final step is by Folland Exercise 8.13(b). The argument that
}x ÞÑ

řN
k“M fpk{2aq sincp2ax ´ kq}u ă ε for all sufficiently large M,N P Z with

M ď N is similar. Thus the series
ř8

k“´8
fpk{2aq sincp2ax´ kq is uniformly Cauchy,

and hence converges uniformly.
Lastly, we show fpxq “

ř

kPZ fpk{2aq sincp2ax ´ kq a.e. and that f P C0. We
already know the partial sums converge to f in L2, so some subsequence of the
partial sums converge to f pointwise a.e., so, after modification of f on a null set f
equals the given series. Thus f is the uniform limit of the partial sums—which are
themselves continuous since sinc is—so f is continuous. To see f vanishes at infinity,
note that if we take the Fourier transformation of Equation (8.45.2) once more, we
obtain

p

pζkpxq “
1

?
2a

ż

e´2πipk{2aqξχr´a,aspξqe´2πixξ dξ “
1

?
2a

ż

χr´a,aspξqe2πip´x´k{2aqξ dξ

“
1

?
2a
χ_

r´a,asp´x ´ k{2aq
(8.45.1)

“ ζkp´xq.
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But tζkukPZ is an orthonormal basis for ℋa, so we have a convergent series in L2

given by

fp´xq “
ÿ

kPZ
xf |ζkyζkp´xq “

ÿ

kPZ
xf |ζky

p

pζkpxq “ ℱ2
´

x ÞÑ
ÿ

kPZ
xf |ζkyζkpxq

¯

pxq “
p

pfpxq,

where the penultimate equality is by the DCT, so in particular pf P L1 by the Fourier
inversion theorem. Thus p

pfp´xq “ fpxq is the Fourier transform of an L1 function,
so f P C0 by the Riemann–Lebesgue lemma.

Exercise 8.46: Folland Exercise 8.16.

Let fk “ χr´1,1s ˚ χr´k,ks.
(a) Compute fkpxq explicitly and show that }f}u “ 2.
(b) f_

k pxq “ pπxq´2 sin 2πkx sin 2πx, and }f_
k }1 Ñ 8 as k Ñ 8. (Use Folland

Exercise 8.15(a), and substitute y “ 2πkx in the integral defining }f_
k }1.)

(c) FpL1q is a proper subset of C0. (Consider gk “ f_
k and use the open mapping

theorem.)

Solution.
(a) Let ra, bs, rc, ds Ă R. Then

χrc,dspx ´ yq “ δcďx´yďd “ δx´dďyďx´c “ χrx´d,x´cspyq,

so

χra,bs ˚ χrc,dspxq “

ż

χra,bspyqχrc,dspx ´ yq dy “ χra,bspyqχrx´d,x´cspyq dy

“

ż

χra,bsXrx´d,x´cspyq dy “ mpra, bs X rx ´ d, x ´ csq.

Thus
}f}u “ supxPR|mpr´1, 1s X rx ´ k, x ` ksq| ď mpr´1, 1sq “ 2.

(b) By Folland Exercise 8.15(a),
f_
k pxq “ pχr´1,1s ˚ χr´k,ksq

_
pxq “ χ_

r´1,1spxqχ_
r´k,kspxq

“ 2 sincp2xq2k sincp2kxq “ pπxq
´2 sinp2πxq sinp2πkxq

and, making the substitution y ÞÑ 2kπx, we obtain
ż

|f_
k pxq| dx “ π´2

ż

ˇ

ˇ

ˇ

ˇ

1

x2
sinp2πxq sinp2πkxq

ˇ

ˇ

ˇ

ˇ

dx

“ 4|k|
2

ż

ˇ

ˇ

ˇ

ˇ

1

y2
sinpyq sinpy{kq

ˇ

ˇ

ˇ

ˇ

dy “ 4|k| lim
NÑ8

ż 8

´8

ˇ

ˇ

ˇ

ˇ

sin y

y

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

sinpy{kq

y{k

ˇ

ˇ

ˇ

ˇ

dy.

For all N P Zě0,
ˇ

ˇ

ˇ

sin y
y

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

sinpy{kq

y{k

ˇ

ˇ

ˇ
χrN,Ns ď χrN,Ns P L1, so by the DCT we have

lim
kÑ8

ż N

´N

ˇ

ˇ

ˇ

ˇ

sin y

y

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

sinpy{kq

y{k

ˇ

ˇ

ˇ

ˇ

dy “

ż N

´N

lim
kÑ8

ˇ

ˇ

ˇ

ˇ

sin y

y

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

sinpy{kq

y{k

ˇ

ˇ

ˇ

ˇ

dy “

ż N

´N

ˇ

ˇ

ˇ

ˇ

sin y

y

ˇ

ˇ

ˇ

ˇ

dy.
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Hence
}f_
k }1 ě

ż N

´N

ˇ

ˇ

ˇ

ˇ

sin y

y

ˇ

ˇ

ˇ

ˇ

dy (8.46.1)
for all N P Zě0. But the right-hand side diverges to 8 as N Ñ 8, which we now show
(or, alternatively, by Folland Exercise 2.59). Note that |sinx| ě 1{2 for all x P R such
that |x| P rπ{6, 5π{6s, r7π{6, 11π{6s, r13π{6, 17π{6s, . . . . On these respective intervals,
we have |1{x| ě 6{5π, 6{11π, 6{17π, . . . , and thus

ˇ

ˇ

sinx
x

ˇ

ˇ ě 3{5π, 3{11π, 3{17π, . . . .
Therefore, for all k P Zě0, by taking the limit of Equation (8.46.1) as N Ñ 8, we
obtain

ż 8

´8

ˇ

ˇ

ˇ

ˇ

sin y

y

ˇ

ˇ

ˇ

ˇ

dy ě 3

ˆ

1

5π
`

1

11π
`

1

17π
` ¨ ¨ ¨

˙

“
3

π

ÿ8

N“1

1

6N ´ 1
“ 8.

(c) Any pf P ℱpL1q is continuous since ℱ maps L1 into C0. Now suppose for a contra-
diction ℱpL1q “ C0. By the Hausdorff–Young inequality, ℱ is bounded as a map
L1 Ñ C0 (since pf P C0 Ă Cb, hence } pf}u “ } pf}

8
ď }f}1 for all f P L1). Thus ℱ is

a bounded surjection, so by the open mapping theorem F is invertible on L1 and
ℱ´1 : C0 Ñ L1 is bounded. Then there exists C ą 0 such that for all k P Zě0,

} pfk}1 ď C}fk}u
(a)
“ 2C,

contradicting part (b) since } pfk}1 Ñ 8 as k Ñ 8.

Exercise 8.47: Folland Exercise 8.17.

Given a ą 0, let fpxq “ e´2πxxa´1 for x ą 0 and fpxq “ 0 for x ď 0.
(a) f P L1, and f P L2 if a ą 1

2
.

(b) pfpξq “ Γpaqrp2πqp1` iξqs´a. (Here we are using the branch of za in the right half
plane that is positive when z is positive. Cauchy’s theorem may be used to justify
the complex substitution y “ p1 ` iξqx in the integral defining pf .)

(c) If a, b ą 1
2

then
ż 8

´8

p1 ´ ixq
´a

p1 ` ixq
´bdx “

22´a´bπΓpa ` b ´ 1q

ΓpaqΓpbq
.

Exercise 8.48: Folland Exercise 8.18.

Suppose f P L2pRq.
(a) The L2 derivative f 1 (see Exercises 24 and 25) exists if and only if ξ pf P L2, in

which case pf 1pξq “ 2πiξ pfpξq.
(b) If the L2 derivative f 1 exists, then

„
ż

|fpxq|
2dx

ȷ

ď 4

ż

|xfpxq|
2dx

ż

|f 1
pxq|

2
dx

(If the integrals on the right are finite, one can integrate by parts to obtain
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ş

|f |2 “ ´2Re
ş

xff 1.)
(c) (Heisenberg’s Inequality) For any b, β P R,

ż

px ´ bq2|fpxq|
2dx

ż

pξ ´ βq
2
| pfpξq|

2dξ ě
}f}42

16π2

(The inequality is trivial if either integral on the right is infinite; if not, reduce
to the case b “ β “ 0 by considering gpxq “ e´2πiβxfpx ` bq.) This inequality, a
form of the quantum uncertainty principle, says that f and pf cannot both be
sharply localized about single points b and β.

Exercise 8.49: Folland Exercise 8.19.

(A variation on the theme of Folland Exercise 8.18) If f P L2pRnq and the set S “

tx | fpxq ‰ 0u has finite measure, then for any measurable

E Ă Rn,

ż

E

| pf |
2

ď }f}
2
2mpSqmpEq.

Solution. Given that the measure of the set S is finite (mpSq ă 8), it follows that
LppSq Ă LqpSq for 1 ď q ď p. Thus, since f P L2pSq, we have f P L1pSq. And for any
fixed ξ P Rn, we have

ż

S

|e2πix¨ξ
|
2 dx “

ż

S

1 dx “ mpSq ă 8,

so the map x ÞÑ e2πix¨ξ is also in L2pSq. Now by Hölder’s inequality

| pfpξq| “

ˇ

ˇ

ˇ

ˇ

ż

fpxqe´2πiξ¨x dx

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż

χSpxqfpxqe´2πiξ¨x dx

ˇ

ˇ

ˇ

ˇ

ď }f}2}χS}2 “ }f}2mpSq
1{2,

(8.49.1)
where the second equality is because f |Rn∖S “ 0 (by definition of S). Thus

} pfχE}
2
2 “

ż

E

| pfpξq|
2dξ

(8.49.1)
ď }f}

2
2mpSq

ż

E

1 dξ “ }f}
2
2mpSqmpEq.

Exercise 8.50: Folland Exercise 8.20.

If f P L1pRn`mq, define Pfpxq “
ş

fpx, yqdy. (Here x P Rn and y P Rm.) Then
Pf P L1pRnq, }Pf}1 ď }f}1, and pPfq^pξq “ pfpξ, 0q.

Exercise 8.51: Folland Exercise 8.21.

State and prove a result that encompasses both Theorem 40 and Folland Exercise 8.20,
in the setting of Fourier transforms on closed subgroups and quotient groups of Rn.
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Exercise 8.52: Folland Exercise 8.22.

Since F commutes with rotations, the Fourier transform of a radial function is radial;
that is, if F P L1pRnq and F pxq “ fp|x|q, then pF pξq “ gp|ξ|q, where f and g are related
as follows.
(a) Let Jpξq “

ş

S
eixξdσpxq where σ is surface measure on the unit sphere S in Rn (The-

orem 99). Then J is radial—say, Jpξq “ jp|ξ|q—and gpρq “
ş8

0
jp2πrρqfprqrn´1dr.

(b) J satisfies
řn

1 B2
kJ ` J “ 0.

(c) j satisfies ρj2pρq ` pn´ 1qj1pρq `ρjpρq “ 0. (This equation is a variant of Bessel’s
equation. The function j is completely determined by the fact that it is a solution
of this equation, is smooth at ρ “ 0, and satisfies jp0q “ σpSq “ 2πn{2{Γpn{2q. In
fact, jpρq “ p2πqn{2ρp2´nq{2Jpn´2q{2pρq where Jα is the Bessel function of the first
kind of order α.)

(d) If n “ 3, jpρq “ 4πρ´1 sin ρ. (Set fpρq “ ρjpρq and use (c) to show that f2 `f “ 0.
Alternatively, use spherical coordinates to compute the integral defining Jp0, 0, ρq

directly.)

Exercise 8.53: Folland Exercise 8.23.

In this exercise we develop the theory of Hermite functions.
(a) Define operators T, T ˚ on SpRq by Tfpxq “ 2´1{2rxfpxq ´ f 1pxqs and T ˚fpxq “

2´1{2rxfpxq ` f 1pxqs. Then
ş

pTfqg “
ş

f
`

T ˚g
˘

and T ˚T k´ T kT ˚ “ kT k´1.
(b) Let h0pxq “ π´1{4e´x2{2, and for k ě 1 let hk “ pk!q´1{2T kh0. phk is the kth

normalized Hermite function.) We have Thk “
?
k ` 1hk`1 and T ˚hk “

?
khk´1,

and hence TT ˚hk “ khk.
(c) Let S “ 2TT ˚ ` I. Then Sfpxq “ x2fpxq ´ f2pxq and Shk “ p2k ` 1qhk. (S is

called the Hermite operator.)
(d) thku

8

0 is an orthonormal set in L2pRq. (Check directly that }h0}2 “ 1, then
observe that for k ą 0,

ş

hkhm “ k´1
ş

pTT ˚hkqhm and use (a) and (b).)
(e) We have

T kfpxq “ p´1q
k2´k{2ex

2{2

ˆ

d

dx

˙k

re´x2{2fpxqs

(use induction on k), and in particular,

hkpxq “
p´1qk

rπ1{22kk!s1{2 e
x2{2

ˆ

d

dx

˙k

e´x2

(f) Let Hkpxq “ ex
2{2hkpxq. Then Hk is a polynomial of degree k, called the kth

normalized Hermite polynomial. The linear span of H0, . . . , Hm is the set of all
polynomials of degree ď m. (The kth Hermite polynomial as usually defined is
rπ1{22kk!s1{2Hk.)
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(g) thku
8

0 is an orthonormal basis for L2pRq. (Suppose f K hk for all k, and let
gpxq “ fpxqe´x2{2. Show that pg “ 0 by expanding e´2πiξ¨x in its Maclaurin series
and using (f).)

(h) Define A : L2 Ñ L2 by Afpxq “ p2πq1{4fpx
?
2πq, and define rf “ A´1FAf

for f P L2. Then A is unitary and rfpξq “ p2πq´1{2
ş

fpxqe´iξxdx. Moreover,
ĂTf “ ´iT p rfq for f P F, and rh0 “ h0; hence rhk “ p´iqkhk. Therefore, if
ϕk “ Ahk, tϕku

8

0 is an orthonormal basis for L2 consisting of eigenfunctions for
F; namely, pϕk “ p´iqkϕk.

Q5.

Suppose that f P L1pRq and both f and pf have compact support. Prove that f “ 0.

Solution. Since we can translate and compose with scalar multiplication, we may assume
without loss of generality supp f Ă r0, 1{2s. Since f P L1, By the Hausdorff–Young
theorem pf P L8 and } pf}

8
ď }f}1. Hence pf is a.e. bounded, and in particular

} pf}1 “

ż

| pf | ď

ż

}f}1χsuppp pfq ă 8.

Thus pf P L1, so by the Fourier inversion theorem f is a.e. continuous and pf^ “ pf_q^ “ f .
Since supp pf is bounded, there exists N P Zě0 such that pfpκq “ 0 whenever |κ| ě N .

In particular, the Fourier series of f is
řN
m“´N

pfpmqe2πimx. By a corollary to the Fourier
inversion theorem (namely Folland Corollary 8.27), to see f “

řN
m“´N

pfpmqe2πimx a.e. it
suffices to show for κ P Z that

ℱ
´

x ÞÑ
ÿN

m“´N
pfpmqe2πimx

¯

pκq “ pfpκq.

And indeed,

ℱ
´

x ÞÑ
ÿN

m“´N
pfpmqe2πimx

¯

pκq “

ż 1

0

´

ÿN

m“´N
pfpmqe2πimx

¯

e´2πiκx dx

“
ÿN

m“´N
pfpmq

ż 1

0

e2πipm´κqx dx “
ÿN

m“´N
pfpmqδm,κ “ pfpκq,

so f “
řN
m“´N

pfpmqe2πimx a.e. But f vanishes on the interval p1{2, 1q, so the sum
řN
m“´N

pfpmqe2πimx “ 0 must also; but any trigonometric polynomial that vanishes on
an interval must be identically zero (e.g., by the identity principle, since trigonometric
polynomials are holomorphic), so f “ 0.

Q6.

Show that the conditions 1
p

` 1
q

“ 1 and 1 ď p ď 2 in the Hausdorff–Young inequality
(Folland Theorem 8.30) are both necessary for such an inequality to hold. a
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aHint: For the second condition, consider the functions fspxq “ s´ n
2 e´π|x|

2
{s for s “ 1 ` it and

t ą 0.

Solution. Suppose p, q P r1,8s satisfy
} pf}q ď }f}p for all f P LppRn

q. (8.53.1)
• Necessity that the exponents are conjugate: Suppose p, q P r1,8s, and consider an

arbitrary f P LppRnq. For t ą 0, define ftpxq “ t´nfpt´1xq.

}ft}p “

ˆ
ż

t´np|fpt´1xq|
p dx

˙1{p

“ t´n
ˆ
ż

tn|fpxq|
p dx

˙1{p

“ t´np1´1{pq
}f}p,

(8.53.2)
and this equation still holds if p “ 8 with the convention 1{p “ 0. Now in particular
we know ft P Lp. Now write

pf tpξq “ t´n
ż

fpt´1xqe´2πiξ¨x dt “

ż

fpyqe´2πiξ¨py{tq dy “ pfptξq.

Then

} pf t}q “

ˆ
ż

| pfptξq|
q dξ

˙1{q

“ t´n{q

ˆ
ż

| pfpξq|
q dξ

˙1{q

“ t´n{q
} pf}q (8.53.3)

so

} pf}q
(8.53.3)

“ tn{q
} pf t}q

(8.53.1)
ď tn{q

}ft}p
(8.53.2)

“ tn{qt´np1´1{pq
}f}p “ tnp 1

p
` 1

q
´1q}f}p,

where we use the condition that 1{q “ 0 for q “ 8. But t ą 0 was arbitrary,
so this must hold for all such t; thus 1{p ` 1{q ´ 1 “ 0, so p and q are conjugate
exponents. Thus the conjugate exponent condition in the Hausdorff–Young inequality
is necessary for p, q P r1,8s.

• Necessity that p P r1, 2s: Suppose for a contradiction p P p2,8s and again consider
an arbitrary f P L1pRnq. First note p ‰ 8, since otherwise by Folland Exercise 8.15
the L1pRq function χr´ 1

2
, 1
2

s satisfies

8 “

ż 8

´8

ˇ

ˇ

ˇ

ˇ

sinpξq

ξ

ˇ

ˇ

ˇ

ˇ

dξ “ }pχr´ 1
2
, 1
2

s}1

(8.53.1)
ď }χr´ 1

2
, 1
2

s}8
“ 1,

a contradiction (and the case of general n P Zě1 is similar by considering χr´1{2,1{2sn),
so we may assume p P p2,8q.

Let fspxq “ s´n{2e´π|x|
2

{s and let hpxq “ e´πs|x|
2

, so that fs “ ph by Folland
Proposition 8.24. By our assumption (8.53.1) and the previous point, 1{p` 1{q “ 1.
Then q P p1, 2q, and in particular q ă p. We have

}h}p “

ˆ
ż

|e´πs|x|
2

|
p dx

˙1{p

“

ˆ
ż

e´πp|x|
2

dx

˙1{p Folland
Prop. 2.53

“ p´n{2p (8.53.4)
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and

}ph}q “ }fs}q “

ˆ
ż

|s´n{2e´π|x|
2

{s
|
q

˙1{q

“ |s|´n{2

ˆ
ż

e´πqp1`t2q´1|x|
2

dx

˙1{q

Folland
Prop. 2.53

“ |s|´n{2

ˆ

π

πqp1 ` t2q´1

˙n{2q

“ p1 ` t2q´n{4q´n{2q
p1 ` t2qn{2q

“ q´n{2q
p1 ` t2q

n
4

p 2
q

´1q
“ q´n{2q

p1 ` t2q
n
4 p 1

q
´ 1

pq, (8.53.5)
where for the last equality we used the requirement from the previous point that
1{p ` 1{q “ 1. In particular h P LppRnq, so by our assumption (8.53.1)

p´n{2p (8.53.4)
“ }h}p ě }ph}q

(8.53.5)
“ q´n{2q

p1 ` t2q
n
4 p 1

q
´ 1

pq.

Raising both sides to the power of ´2{n, we obtain

p1{p
ď q1{q

p1 ` t2q´ 1
2p 1

q
´ 1

pq. (8.53.6)
Since p ă q by assumption, ´1{2p1{q ´ 1{pq ă 0, so by choosing t ą 0 appropriately
we can make p1 ` tq´ 1

2p 1
q

´ 1
pq arbitrarily small. But p1{p is strictly positive, so this

contradicts Equation (8.53.6). Thus p R p2,8s, so p P r1, 2s.

8.4 Summation of Fourier Integrals and Series

The Fourier inversion theorem shows how to express a function f on Rn in terms of pf
provided that f and pf are in L1. The same result holds for periodic functions. Namely,
if f P L1pRnq and pf P ℓ1pRnq, then the Fourier series

ř

κ
pfpκqe2πiκ¨x converges absolutely

and uniformly to a function g. Since ℓ1 Ă ℓ2, it follows from Theorem 29 that f P L2 and
that the series converges to f in the L2 norm. Hence f “ g a.e., and f “ g everywhere if
f is assumed continuous at the outset.

Two questions therefore arise. What conditions on f will guarantee that pf is integrable?
And how can f be recovered from pf if pf is not integrable?

As for the first question, since pf is bounded for f P L1, the issue is the decay of pf at
infinity, and this is related to the smoothness properties of f . For example, by Theorem 31e,
if f P Cn`1pRnq and Bαf P L1 X C0 for |α| ď n ` 1, then | pfpξq| ď Cp1 ` |ξ|q´n´1 and
hence pf P L1pRnq by Corollary 101. The same result holds for periodic functions, for the
same reason: If f P Cn`1pRnq, then | pfpκq| ď Cp1 ` |κ|q´n´1 and hence pf P ℓ1pRnq.

To obtain sharper results when n ą 1 requires a generalized notion of partial derivatives,
so we shall postpone this task until §9.3. (See Theorem 43.) However, for n “ 1 we can
easily obtain a better theorem that covers the useful case of functions that are continuous
and piecewise C1. We state it for periodic functions and leave the nonperiodic case to the
reader (Folland Exercise 8.24).
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Theorem 8.54: 8.33.

Suppose that f is periodic and absolutely continuous on R, and that f 1 P LppRq for
some p ą 1. Then pf P ℓ1pRq.

Proof. Since p ą 1, we have Cp “
ř8

1 κ
´p ă 8; and since LppTq Ă L2pTq for

p ą 2, we may assume that p ď 2. Integration by parts (Theorem 79) shows that
pf 1qpppκq “ 2πiκ pfpκq. Hence, by the inequalities of Hölder and Hausdorff-Young, if q is
the conjugate exponent to p,

ÿ

κ‰0
| pfpκq| ď

”

ÿ

κ‰0
p2π|κ|q

´p
ı1{p”ÿ

κ‰0
p2π|κ pfpκq|q

q
ı1{q

“
p2Cpq

1{p

2π
}pf 1

q}q ď
p2Cpq

1{p

2π
}f 1

}p

Adding | pfp0q| to both sides, we see that } pf}1 ă 8.
We now turn to the problem of recovering f from pf under minimal hypotheses on f ,

and we consider first the case of Rn. The proof of the Fourier inversion theorem contains
the essential idea: Replace the divergent integral

ş

pfpξqe2πiξ¨xdξ by
ş

pfpξqΦptξqe2πiξ¨xdξ
where Φ is a continuous function that vanishes rapidly enough at infinity to make the
integral converge. If we choose Φ to satisfy Φp0q “ 1, then Φptξq Ñ 1 as t Ñ 0, and with
any luck the corresponding integral will converge to f in some sense. One Φ that works
is the function Φpξq “ e´π|ξ|2 used in the proof of the inversion theorem, but we shall
see below that there are others of independent interest. We therefore formulate a fairly
general theorem, for which we need the following lemma that complements Theorem 31(c).

Lemma 8.55: 8.34.

If f, g P L2pRnq, then pxfgq_ “ f ˚ g.

Proof. xfg P L1 by Plancherel’s theorem and Hölder’s inequality, so pxfgq_ makes sense.
Given x P Rn, let hpyq “ gpx ´ yq. It is easily verified that phpξq “ pgpξqe´2πiξ¨x, so since F

is unitary on L2,

f ˚ gpxq “

ż

fh “

ż

pfh “

ż

pfpξqpgpξqe2πiξ¨xdξ “ pxfgq
_

pxq

Theorem 8.56: 8.35.

Suppose that Φ P L1 X C0,Φp0q “ 1, and ϕ “ Φ_ P L1. Given f P L1 ` L2, for t ą 0
set

f tpxq “

ż

pfpξqΦptξqe2πiξ¨xdξ

(a) If f P Lpp1 ď p ă 8q, then f t P Lp and }f t ´ f}p Ñ 0 as t Ñ 0.
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(b) If f is bounded and uniformly continuous, then so is f t, and f t Ñ f uniformly as
t Ñ 0.

(c) Suppose also that |ϕpxq| ď Cp1 ` |x|q´n´ϵ for some C, ϵ ą 0. Then f tpxq Ñ fpxq

for every x in the Lebesgue set of f .

Proof. We have f “ f1 ` f2 where f1 P L1 and f2 P L2. Since pf 1 P L8, pf 2 P L2,
and Φ P pL1 X C0q Ă pL1 X L2q, the integral defining f t converges absolutely for every
x. Moreover, if ϕtpxq “ t´nϕpt´1xq, we have Φptξq “ pϕtq

^
pξq by the inversion theorem

and Theorem 31b, and
ş

ϕpxqdx “ Φp0q “ 1. Since ϕ,Φ P L1 we have f1 ˚ ϕ P L1 and
pf 1Φ P L1, so by Theorem 8.22c and the inversion formula,

ż

pf 1pξqΦptξqe2πiξ¨xdξ “ f1 ˚ ϕtpxq

Also, ϕ P L2 by the Plancherel theorem, so by Lemma 55,
ż

pf 2pξqΦptξqe2πiξ¨xdξ “ f2 ˚ ϕtpξq

In short, f t “ f ˚ ϕt, so the assertions follow from Theorems 8.14 and 8.15.
By combining this theorem with the Poisson summation formula, we obtain a corre-

sponding result for periodic functions.

Theorem 8.57: 8.36.

Suppose that Φ P CpRnq satisfies |Φpξq| ď Cp1 ` |ξ|q´n´ε, |Φ_pxq| ď Cp1 ` |x|q´n´ε,
and Φp0q “ 1. Given f P L1pRnq, for t ą 0 set

f tpxq “
ÿ

κPZn
pfpκqΦptκqe2πiκ¨x

(which converges absolutely since
ř

κ |Φptκq| ă 8).

(a) If f P LppTnqp1 ď p ă 8q, then }f t ´ f}p Ñ 0 as t Ñ 0, and if f P CpTnq, then
f t Ñ f uniformly as t Ñ 0.

(b) f tpxq Ñ fpxq for every x in the Lebesgue set of f .

Proof. Let ϕ “ Φ_ and ϕtpxq “ t´nϕpt´1xq. Then pϕtq
^

pξq “ Φptξq, and ϕt satisfies
the hypotheses of the Poisson summation formula, so

ÿ

kPZn
ϕtpx ´ kq “

ÿ

kPZn
Φptκqe2πiκ¨x

Let us denote the common value of these sums by ψtpxq. Then
pf ˚ ψtq

_
pκq “ pfpκq pψtpκq “ pfpκqΦptκq “ pf tq^

pκq.

so f t “ f ˚ ψt. Hence, by Young’s inequality and Theorem 40 we have
}f t}p ď }f}p}ψt}1 ď }f}p}ϕt}1 “ }f}p}ϕ}1

so the operators f ÞÑ f t are uniformly bounded on Lp, 1 ď p ď 8.
Now, since Φ is continuous and Φp0q “ 1, we clearly have f t Ñ f uniformly (and

Version of April 30, 2024 at 11pm EST Page 308 of 368

https://www.greysonwesley.com/home


Greyson C. Wesley §8.4: Summation of Fourier Integrals and Series

hence in LppTnq) if f is a trigonometric polynomial—that is, if pfpκq “ 0 for all but finitely
many κ. But the trigonometric polynomials are dense in CpTnq in the uniform norm by
the Stone-Weierstrass theorem, and hence also dense in LppTnq in the Lp norm for p ă 8.
Assertion (a) therefore follows from Proposition 89.

To prove (b), suppose that x is in the Lebesgue set of f ; by translating f we may
assume that x “ 0, which simplifies the notation. With Q “

“

´1
2
, 1
2

˘n, we have

f tp0q “ f ˚ ψtp0q “

ż

Q

fpxqψtp´xqdx

“

ż

Q

fpxqϕtp´xqdx `
ÿ

k‰0

ż

Q

fpxqϕtp´x ` kqdx

Since
|ϕtpxq| ď Ct´np1 ` t´1

|x|q
´n´ε

ď Ctε|x|
´n´ε

for x P Q and k ‰ 0 we have |ϕtp´x ` kq| ď C2n`εtε|k|´n´ε, and hence
ÿ

k‰0

ż

Q

|fpxqϕtp´x ` kq|dx ď

”

C2n`ε
}f}1

ÿ

k‰0
|k|

´n´ε
ı

tε

which vanishes as t Ñ 0. On the other hand, if we define g “ fχQ P L1pRnq, then 0 is in
the Lebesgue set of g (because 0 is in the interior of Q, and the condition that 0 be in the
Lebesgue set of g depends only on the behavior of g near 0), so by Theorem 18,

lim
tÑ0

ż

Q

fpxqϕtp´xqdx “ lim
tÑ0

g ˚ ϕtp0q “ gp0q “ fp0q

Let us examine some specific examples of functions Φ that can be used in Theorems 8.35
and 8.36. The first is the one already used in the proof of the inversion theorem,

Φpξq “ e´π|ξ|2 , ϕpxq “ Φ_
pxq “ e´π|x|2

This ϕ is called the Gauss kernel or Weierstrass kernel. It is important for a number of
reasons, including its connection with the heat equation that we shall explain in Folland
Section 8.7. When n “ 1, its periodized version

ψtpxq “
1

t

ÿ

kPZ
e´π|x´k|2{t2

“
ÿ

κPZ
e´πt2κ2e2πiκ¨x

in terms of which the f t in Theorem 57 is given by f t “ f ˚ ψt, is essentially one of the
Jacobi theta functions, which are connected with elliptic functions and have applications
in number theory.

The second example is Φpξq “ e´2π|ξ|, whose inverse Fourier transform ϕ is called the
Poisson kernel on Rn. When n “ 1, we have

ϕpxq “

ż 0

´8

e2πp1`ixqξdξ `

ż 8

0

e2πp´1`ixqξdξ

“
1

2π

„

1

1 ` ix
`

1

1 ´ ix

ȷ

“
1

πp1 ` x2q

The formula for ϕ in higher dimensions is worked out in Folland Exercise 8.26; it turns out
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that ϕpxq is a constant multiple of p1 ` |x|2q
´pn`1q{2. Like the Gauss kernel, the Poisson

kernel has an interpretation in terms of partial differential equations that we shall explain
in Folland Section 8.7.

If we take n “ 1 and Φpξq “ e´2π|ξ| in Theorem 57, make the substitution r “ e´2πt,
and write Arf in place of f t, we obtain

Arfpxq “
ÿ

κPZ
r|κ|

pfpκqe´2πiκx

“ pfp0q `
ÿ8

k“1
rkr pfpkqe2πikx ` pfp´kqe´2πikx

s

This formula is a special case of one of the classical methods for summing a (possibly)
divergent series. Namely, if

ř8

0 ak is a series of complex numbers, for 0 ă r ă 1 its rth
Abel mean is the series

ř8

0 r
kak. If the latter series converges for r ă 1 to the sum Sprq

and the limit S “ limr{1 Sprq exists, the series
ř8

0 ak is said to be Abel summable to S.
If
ř8

0 ak converges to the sum S, then it is also Abel summable to S (Folland Exercise
8.27), but the Abel sum may exist even when the series diverges.

In (8.38), Arfpxq is the rth Abel mean of the Fourier series of f , in which the kth and
p´kqth terms are grouped together to make a series indexed by the nonnegative integers.
It has the following complex-variable interpretation: If we set z “ re2πix, then

Arfpxq “
ÿ8

0
pfpkqzk `

ÿ8

1
pfp´kqzk

The two series on the right define, respectively, a holomorphic and an antiholomorphic
function on the unit disc |z| ă 1. In particular, Arfpxq is a harmonic function on the unit
disc, and the fact that Arf Ñ f as r Ñ 1 means that f is the boundary value of this
function on the unit circle. See also Folland Exercise 8.28.

Our final example is the function Φpξq “ maxp1´ |ξ|, 0q with n “ 1. Its inverse Fourier
transform is

ϕpxq “

ż 0

´1

p1 ` ξqe2πiξ¨xdξ `

ż 1

0

p1 ´ ξqe2πiξ¨xdξ

“
e2πix ` e´2πix ´ 2

p2πixq2
“

ˆ

sin πx

πx

˙2

If we use this Φ in Theorem 57, take t “ pm` 1q´1pm “ 0, 1, 2, . . .q, and write σmfpxq for
f 1{pm`1qpxq, we obtain

σmfpxq “
ÿm

κ“´m

m ` 1 ´ |κ|

m ` 1
pfpκqe2πiκx

“ pfp0q `
ÿm

k“1

m ` 1 ´ k

m ` 1
r pfpkqe2πikx ` pfp´kqe´2πikx

s

This is an instance of another classical method for summing divergent series. Namely,
if
ř8

0 ak is a series of complex numbers, its mth Cesr̀o mean is the average of its first
m` 1 partial sums, pm` 1q´1

řm
0 Sn, where Sn “

řn
0 ak. If the sequence of Cesr̀o means

converges as m Ñ 8 to a limit S, the series is said to be Cesr̀o summable to S. It is
easily verified that if

ř8

0 ak converges to S, then it is Cesr̀o summable to S (but perhaps
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not conversely), and that σmfpxq is the mth Cesr̀o mean of the Fourier series of f with
the kth and p´kqth terms grouped together. See Folland Exercise 8.29, and also Folland
Exercise 8.33 in the next section.

Exercise 8.58: Folland Exercise 8.24.

State and prove an analogue of Theorem 54 for functions on R. (In addition to the
hypotheses that f be locally absolutely continuous and that f 1 P Lp for some p ą 1,
you will need some further conditions f and/or f 1 at infinity to make the argument
work. Make them as mild as possible.)

Exercise 8.59: Folland Exercise 8.25.

For 0 ă α ď 1, let ΛαpTq be the space of Hölder continuous functions on T of exponent
α as in Folland Exercise 5.11. Suppose 1 ă p ă 8 and p´1 ` q´1 “ 1.
(a) If f satisfies the hypotheses of Theorem 54, then f P Λ1{qpTq, but f need not lie

in ΛαpTq for any α ą 1{q. (Hint: fpbq ´ fpaq “
şb

a
f 1ptqdt.)

(b) If α ă 1,ΛαpTq contains functions that are not of bounded variation and hence
are not absolutely continuous. (But see Folland Exercise 3.37.)

Exercise 8.60: Folland Exercise 8.26.

The aim of this exercise is to show that the inverse Fourier transform of e´2π|ξ| on Rn is

ϕpxq “
Γ
`

1
2
pn ` 1q

˘

πpn`1q{2
p1 ` |x|

2
q

´pn`1q{2

(a) If β ě 0, e´β “ π´1
ş8

´8
p1 ` t2q´1e´iβtdt. (Use (8.37).)

(b) If β ě 0, e´β “
ş8

0
pπsq´1{2e´se´β2{4sds. (Use (a), Proposition 33, and the formula

p1 ` t2q´1
“
ş8

0
e´p1`t2qsds.)

(c) Let β “ 2π|ξ| where ξ P Rn; then the formula in (b) expresses e´2π|ξ| as a
superposition of dilated Gauss kernels. Use Proposition 33 again to derive the
asserted formula for ϕ.

Exercise 8.61: Folland Exercise 8.27.

Suppose that the numerical series
ř8

0 ak is convergent.
(a) Let Snm “

řn
m ak. Then

řn
m r

kak “
řn´1
m Sjmprj ´ rj`1q ` Snmr

n for 0 ď r ď 1
(“summation by parts”).

(b) |
řn
m r

kak| ď supjěm|Sjm|.
(c) The series

ř8

0 r
kak is uniformly convergent for 0 ď r ď 1, and hence its sum Sprq

is continuous there. In particular,
ř8

0 ak “ limr ą 1Sprq.
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Exercise 8.62: Folland Exercise 8.28.

Suppose that f P L1pTq, and let Arf be given by (8.38).
(a) Arf “ f ˚ Pr where Prpxq “

ř8

´8
r|κ|e2πiκx is the Poisson kernel for T.

(b) Prpxq “ p1 ´ r2q{p1 ` r2 ´ 2r cos 2πxq.

Exercise 8.63: Folland Exercise 8.29.

Given taku
8

0 Ă C, let Sn “
řn

0 ak and σm “ pm ` 1q´1
řm

0 Sn.
(a) σm “ pm ` 1q´1

řm
0 pm ` 1 ´ kqak.

(b) If limnÑ8 Sn “
ř8

0 ak exists, then so does limmÑ8 σm, and the two limits are
equal.

(c) The series
ř8

0 p´1qk diverges but is Abel and Cesr̀o summable to 1
2
.

Exercise 8.64: Folland Exercise 8.30.

If f P L1pRnq, f is continuous at 0, and pf ě 0, then pf P L1. (Use Theorem 8.35c and
Fatou’s lemma.)

Exercise 8.65: Folland Exercise 8.31.

Suppose a ą 0. Use (8.37) to show that
ÿ8

´8

1

k2 ` a2
“
π

a

1 ` e´2πa

1 ´ e´2πa

Then subtract a´2 from both sides and let a Ñ 0 to show that
ř8

1 k
´2 “ π2{6.

Exercise 8.66: Folland Exercise 8.32.

A C8 function f on R is real-analytic if for every x P R, f is the sum of its Taylor
series based at x in some neighborhood of x. If f is periodic and we regard f as a
function on S “ tz P R | |z| “ 1u, this condition is equivalent to the condition that f
be the restriction to S of a holomorphic function on some neighborhood of S. Show
that f P C8pRq is real-analytic if and only if | pfpκq| ď Ce´ε|κ| for some C, ε ą 0. (See
the discussion of the Abel means Arf in the text, and note that z “ z´1 when |z| “ 1.)

8.5 Pointwise Convergence of Fourier Series

The techniques and results of the previous two sections, involving such things as Lp
norms and summability methods, are relatively modern; they were preceded historically by
the study of pointwise convergence of one-dimensional Fourier series. Although the latter is
one of the oldest parts of Fourier analysis, it is also one of the most difficult—unfortunately
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for the mathematicians who developed it, but fortunately for us who are the beneficiaries
of the ideas and techniques they invented in doing so. A thorough study of this issue is
beyond the scope of this book, but we would be remiss not to present a few of the classic
results.

To set the stage, suppose f P L1pTq. We denote by Smf the mth symmetric partial
sum of the Fourier series of f :

Smfpxq “
ÿm

´m
pfpkqe2πikx

From the definition of pfpkq, we have

Smfpxq “
ÿm

´m

ż 1

0

fpyqe2πikpx´yqdy “ f ˚ Dmpxq

where Dm is the mth Dirichlet kernel:
Dmpxq “

ÿm

´m
e2πikx

The terms in this sum form a geometric progression, so

Dmpxq “ e´2πimx
ÿ2m

0
e2πikx “ e´2πimx e

2πp2m`1qx ´ 1

e2πix ´ 1
Multiplying top and bottom by e´πix yields the standard closed formula for Dm:

Dmpxq “
ep2m`1qπix ´ e´p2m`1qπix

eπix ´ e´πix
“

sinp2m ` 1qπx

sin πx
(8.66.1)

The difficulty with the partial sums Smf , as opposed to (for example) the Abel or Cesr̀o
means, can be summed up in a nutshell as follows. Smf can be regarded as a special case
of the construction in Theorem 57; in fact, with the notation used there, Smf “ f 1{m if
we take Φ “ χr´1,1s. But χr´1,1s does not satisfy the hypotheses of Theorem 57, because
its inverse Fourier transform pπxq´1 sin 2πx (Folland Exercise 8.15(a)) is not in L1pRq.
On the level of periodic functions, this is reflected in the fact that although Dm P L1pRq

for all m, }Dm}1 Ñ 8 as m Ñ 8 (Folland Exercise 8.34).
Among the consequences of this is that the Fourier series of a continuous function f

need not converge pointwise, much less uniformly, to f ; see Folland Exercise 8.35. (This
does not contradict the fact that trigonometric polynomials are dense in CpTq ! It just
means that if one wants to approximate a function f P CpTq uniformly by trigonometric
polynomials, one should not count on the partial sums Smf to do the job; the Cesr̀o means
defined by (8.39) work much better in general.) To obtain positive results for pointwise
convergence, one must look in other directions.

The first really general theorem about pointwise convergence of Fourier series was
obtained in 1829 by Dirichlet, who showed that Smfpxq Ñ 1

2
rfpx`q ` fpx´qs for every

x provided that f is piecewise continuous and piecewise monotone. Later refinements
of the argument showed that what is really needed is for f to be of bounded variation.
We now prove this theorem, for which we need two lemmas. The first one is a slight
generalization of one of the more arcane theorems of elementary calculus, the “second
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mean value theorem for integrals.”

Lemma 8.67: 8.41.

Let ϕ and ψ be real-valued functions on ra, bs. Suppose that ϕ is monotone and right
continuous on ra, bs and ψ is continuous on ra, bs. Then there exists η P ra, bs such that

ż b

a

ϕpxqψpxqdx “ ϕpaq

ż η

a

ψpxqdx ` ϕpbq

ż b

η

ψpxqdx

Proof. Adding a constant c to ϕ changes both sides of the equation by the amount
c
şb

a
ψpxqdx, so we may assume that ϕpaq “ 0. We may also assume that ϕ is increasing;

otherwise replace ϕ by ´ϕ. Let Ψpxq “
şb

x
ψptqdt (so that Ψ1 “ ´ψ) and apply Theorem 79:

ż b

a

ϕpxqψpxqdx “ ´ϕpxqΨpxq|
b
a `

ż

pa,bs

Ψpxqdϕpxq

The endpoint evaluations vanish since ϕpaq “ Ψpbq “ 0. Since ϕ is increasing and
ş

pa,bs
dϕ “ ϕpbq ´ ϕpaq “ ϕpbq, if m and M are the minimum and maximum values of Ψ

on ra, bs we have mϕpbq ď
ş

pa,bs
Ψdϕ ď Mϕpbq. By the intermediate value theorem, then,

there exists η P ra, bs such that
ş

pa,bs
Ψdϕ “ Ψpηqϕpbq, which is the desired result.

Lemma 8.68: 8.42.

There is a constant C ă 8 such that for every m ě 0 and every ra, bs Ă
“

´1
2
, 1
2

‰

,
ˇ

ˇ

ˇ

ˇ

ż b

a

Dmpxqdx

ˇ

ˇ

ˇ

ˇ

ď C

Moreover,
ş0

´1{2
Dmpxqdx “

ş1{2

0
Dmpxqdx “ 1

2
for all m.

Proof. By Equation (8.66.1),
şb

a
Dmpxqdx “

şb

a
sinp2m`1qπx

πx
dx `

şb

a
sinp2m `

1qπx
“

1
sinπx

´ 1
πx

‰

dx.
Since psin πxq´1 ´ pπxq´1 is bounded on

“

´1
2
, 1
2

‰

and | sinp2m` 1qπx| ď 1, the second
integral on the right is bounded in absolute value by a constant. With the substitution
y “ p2m ` 1qπx, the first one becomes

ż p2m`1qπb

p2m`1qπa

sin y

πy
dy “

Sirp2m ` 1qπbs ´ Sirp2m ` 1qπas

π

where Sipxq “
şx

0
y´1 sin ydy. But Sipxq is continuous and approaches the finite limits ˘1

2
π

as x Ñ ˘8 (see Folland Exercise 2.59(b)), so Sipxq is bounded. This proves the first
assertion. As for the second one,

ż 1{2

´1{2

Dmpxqdx “
ÿm

´m

ż 1{2

´1{2

e2πikxdx “ 1
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(only the term with k “ 0 is nonzero), so since Dm is even,
ż 0

´1{2

Dmpxqdx “

ż 1
2

0

Dmpxqdx “
1

2

Theorem 8.69: 8.43.

If f P BV pTq—that is, if f is periodic on T and of bounded variation on
“

´1
2
, 1
2

‰

—then

lim
mÑ8

Smfpxq “
1

2
rfpx`q ` fpx´qs for every x

In particular, limmÑ8 Smfpxq “ fpxq at every x at which f is continuous.

Proof. We begin by making some reductions. In examining the convergence of Smfpxq,
we may assume that x “ 0 (by replacing f with the translated function τ´xf), that f is
real-valued (by considering the real and imaginary parts separately), and that f is right
continuous (since replacing fptq by fpt`q affects neither Smf nor 1

2
rfp0`q ` fp0´qs

˘

. In
this case, by Theorem 3.27 b, on the interval

“

´1
2
, 1
2

˘

we can write f as the difference
of two right continuous increasing functions g and h. If these functions are extended
to R by periodicity, they are again of bounded variation, and it is enough to show that
Smgp0q Ñ 1

2
rgp0`q ` gp0´qs and likewise for h.

In short, it suffices to consider the case where x “ 0 and f is increasing and right con-
tinuous on

“

´1
2
, 1
2

˘

. Since Dm is even, we have Smfp0q “ f ˚Dmp0q “
ş1{2

´1{2
fpxqDmpxqdx,

so by Lemma 68,
Smfp0q ´ 1

2
rfp0`q ` fp0´qs

“

ż 1{2

0

rfpxq ´ fp0`qsDmpxqdx `

ż 0

´1{2

rfpxq ´ fp0´qsDmpxqdx

We shall show that the first integral on the right tends to zero as m Ñ 8; a similar
argument shows that the second integral also tends to zero, thereby completing the proof.

Given ε ą 0, choose δ ą 0 small enough so that fpδq ´ fp0`q ă ε{C where C is as in
Lemma 68. Then by Lemma 67, for some η P r0, δs,

ˇ

ˇ

ˇ

ˇ

ż δ

0

rfpxq ´ fp0`qsDmpxqdx

ˇ

ˇ

ˇ

ˇ

“ rfpδq ´ fp0`qs

ˇ

ˇ

ˇ

ˇ

ż δ

η

Dmpxqdx

ˇ

ˇ

ˇ

ˇ

,

which is less than ε. On the other hand, by (8.40),
ż 1{2

δ

rfpxq ´ fp0`qsDmpxqdx “ pg`p´mq ´ pg´pmq

where g˘is the periodic function given on the interval
“

´1
2
, 1
2

˘

by

g˘pxq “
rfpxq ´ fp0`qse˘πix

2i sin πx
χrδ,1{2qpxq

But g˘ P L1pTq, so pg˘p¯mq Ñ 0 as m Ñ 8 by the Riemann–Lebesgue lemma (the
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periodic analogue of Theorem 31f). Therefore,

lim supmÑ8

ˇ

ˇ

ˇ

ˇ

ż 1{2

0

rfpxq ´ fp0`qsDmpxqdx

ˇ

ˇ

ˇ

ˇ

ă ε

for every ε ą 0, and we are done.
One of the less attractive features of Fourier series is that bad behavior of a function

at one point affects the behavior of its Fourier series at all points. For example, if f has
even one jump discontinuity, then pf cannot be in ℓ1pZq and so the series

ř

pfpkqe2πikx

cannot converge absolutely at any point. However, to a limited extent the convergence
of the series at a point x depends only on the behavior of f near x, as explained in the
following localization theorem.

Theorem 8.70: 8.44.

If f and g are in L1pTq and f “ g on an open interval I, then Smf´Smg Ñ 0 uniformly
on compact subsets of I.

Proof. It is enough to assume that g “ 0 (consider f ´ g), and by translating f we
may assume that I is centered at 0, say I “ p´c, cq where c ď 1

2
. Fix δ ă c; we shall show

that if f “ 0 on I then Smf Ñ 0 uniformly on r´δ, δs.
The first step is to show that Smf Ñ 0 pointwise on r´δ, δs, and the argument is

similar to the preceding proof. Namely, by (8.40) we have

Smfpxq “

ż 1{2

´1{2

fpx ´ yqDmpyqdy “ pgx,`p´mq ´ pgx,´pmq

where

gx,˘pyq “
fpx ´ yqe˘πiy

2i sin πy

Since fpx ´ yq “ 0 on a neighborhood of the zeros of sin πy, the functions gx,˘ are in
L1pTq, so pgx,˘p¯mq Ñ 0 by the Riemann–Lebesgue lemma.

The next step is to show that if x1, x2 P r´δ, δs, then Smfpx1q ´ Smfpx2q vanishes as
x1 ´ x2 Ñ 0, uniformly in m. By (8.40) again,

Smfpx1q ´ Smfpx2q “

ż 1{2

´1{2

sinp2m ` 1qπy

sinπy
rfpx1 ´ yq ´ fpx2 ´ yqsdy.

But fpx1 ´ yq ´ fpx2 ´ yq “ 0 for |y| ă c ´ δ, and for c ´ δ ď |y| ď 1
2

we have
ˇ

ˇ

ˇ

ˇ

sinp2m ` 1qπy

sin πy

ˇ

ˇ

ˇ

ˇ

ď
1

sin πpc ´ δq
“ A

where A is independent of m. Hence

|Smfpx1q ´ Smfpx2q| ď A

ż 1{2

´1{2

|fpx1 ´ yq ´ fpx2 ´ yq|dy “ A}τx1f ´ τx2f}1
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which vanishes as x1 ´ x2 Ñ 0 by (the periodic analogue of) Proposition 4.
Now, given ε ą 0, we can choose η small enough so that if x1, x2 P r´δ, δs and

|x1 ´ x2| ă η, then |Smfpx1q ´ Smfpx2q| ă ε{2. Choose x1, . . . , xk P r´δ, δs so that the
intervals |x ´ xj| ă η cover r´δ, δs. Since Smfpxjq Ñ 0 for each j, we can choose M large
enough so that |Smfpxjq| ă ε{2 for m ą M and 1 ď j ď k. If |x| ď δ, then, we have
|x ´ xj| ă η for some j, so

|Smfpxq| ď |Smfpxq ´ Smfpxjq| ` |Smfpxjq| ă ε

for m ą M , and we are done.

Corollary 8.71: 8.45.

Suppose that f P L1pTq and I is an open interval of length ď 1.
(a) If f agrees on I with a function g such that pg P ℓ1pZq, then Smf Ñ f uniformly

on compact subsets of I.
(b) If f is absolutely continuous on I and f 1 P LppIq for some p ą 1, then Smf Ñ f

uniformly on compact subsets of I.

Proof. If f “ g on I, then Smf ´ f “ Smf ´ g “ pSmf ´ Smgq ` pSmg ´ gq on I, and
if pg P ℓ1pZq, then Smg Ñ g uniformly on Z; (a) follows. As for (b), given ra0, b0s Ă I,
pick a ă a0 and b ą b0 so that ra, bs Ă I, and let g be the continuous periodic function
that equals f on ra, bs and is linear on rb, a ` 1s (which is unique since gpbq “ fpbq and
gpa ` 1q “ gpaq “ fpaqq. Under the hypotheses of (b), g is absolutely continuous on Z
and g1 P LppZq, so pg P ℓ1pZq by Theorem 54. Thus Smf Ñ f uniformly on ra0, b0s by (a).

Finally, we discuss the behavior of Smf near a jump discontinuity of f . Let us first
consider a simple example: Let

ϕpxq “
1

2
´ x ´ rxs prxs “ greatest integer ď xq.

Then ϕ is periodic and is C8 except for jump discontinuities at the integers, where
ϕpj`q ´ ϕpj´q “ 1. It is easy to check that pϕp0q “ 0 and pϕpkq “ p2πikq´1 for k ‰ 0
(Folland Exercise 8.13(a)), so that

Smϕpxq “
ÿ

0ă|k|ďm

e2πikx

2πik
“
ÿm

1

sin 2πkx

πk
From Corollary 71 it follows that Smϕ Ñ ϕ uniformly on any compact set not containing
an integer, and it is obvious that Smϕpxq “ 0 when x is an integer. But near the integers a
peculiar thing happens: Smϕ contains a sequence of spikes that overshoot and undershoot
ϕ, as shown in Figure 8.1, and as m Ñ 8 the spikes tend to zero in width but not in height.
In fact, when m is large the value of Smϕ at its first maximum to the right of 0 is about
0.5895, about 18% greater than ϕp0`q “ 1

2
. This is known as the Gibbs phenomenon; the

precise statement and proof are given in Folland Exercise 8.37.
Now suppose that f is any periodic function on R having a jump discontinuity at
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x “ a (that is, fpa`q and fpa´q exist and are unequal). Then the function
gpxq “ fpxq ´ rfpa`q ´ fpa´qsϕpx ´ aq

is continuous at every point where f is, and also at x “ a provided that we (re)define
gpaq to be 1

2
rfpa`q ` fpa´qs, as the jumps in f and ϕ cancel out. If g satisfies one of

the hypotheses of Corollary 71 on an interval I containing a, the Fourier series of g will
converge uniformly near a, and hence the Fourier series of f will exhibit the same Gibbs
phenomenon as that of ϕ.

Finally, suppose that f is periodic and continuous except at finitely many points
a1, . . . , ak P T, where f has jump discontinuities. We can then subtract off all the jumps
to form a continuous function g:

gpxq “ fpxq ´
ÿ

rfpaj`q ´ fpaj´qsϕpx ´ ajq

If f satisfies some mild smoothness conditions—for example, if f is absolutely continuous
on any interval not containing any aj and f 1 P Lp for some p ą 1—then pg will be in
ℓ1pZq. Conclusion: Smf Ñ f uniformly on any interval not containing any aj, Smpajq Ñ
1
2
rfpaj`q ` fpaj´qs, and Smf exhibits the Gibbs phenomenon near every aj.

Exercise 8.72: Folland Exercise 8.33.

Let σmf be the Cesr̀o means of the Fourier series of f given by (8.39).
(a) σmf “ f ˚ Fm where Fm “ pm ` 1q´1

řm
0 Dk and Dk is the kth Dirichlet kernel.

(See Folland Exercise 8.29(a).) Fm is called the mth Fejér kernel.
(b) Fmpxq “ sin2pm ` 1qπx{pm ` 1q sin2 πx. (Use (8.40) and the fact that

sinp2k ` 1qπx “ Im ep2k`1qπix.q

Exercise 8.73: Folland Exercise 8.34.

If Dm is the mth Dirichlet kernel, }Dm}1 Ñ 8 as m Ñ 8. (Make the substitution
y “ p2m ` 1qπx and use Folland Exercise 2.59(a)..)

Exercise 8.74: Folland Exercise 8.35.

The purpose of this exercise is to show that the Fourier series of “most” continuous
functions on T do not converge pointwise.
(a) Define ϕmpfq “ Smfp0q. Then ϕ P CpTq˚ and }ϕ} “ }Dm}1.
(b) The set of all f P CpTq such that the sequence tSmfp0qu converges is meager in

CpTq. (Use Folland Exercise 8.34 and the uniform boundedness principle.)
(c) There exist f P CpTq (in fact, a residual set of such fs) such that tSmfpxqu

diverges for every x in a dense subset of T. (The result of (b) holds if the point 0
is replaced by any other point in T. Apply Folland Exercise 5.40..)
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Exercise 8.75: Folland Exercise 8.36.

The Fourier transform is not surjective from L1pTq to C0pTq. (Use Folland Exercise
8.34, and confer with Folland Exercise 8.16(c).)

Exercise 8.76: Folland Exercise 8.37.

(a) Let ϕ be given by (8.46) and let ∆m “ Smϕ ´ ϕ. Then pd{dxq∆mpxq “ Dmpxq

for x R Z.
(b) The first maximum of ∆m to the right of 0 occurs at x “ p2m ` 1q´1, and

lim
mÑ8

∆m

ˆ

1

2m ` 1

˙

“
1

π

ż π

0

sin t

t
dt ´

1

2
– 0.0895

(Use (8.40) and the fact that ∆mpxq “
şx

0
∆1
mptqdt ´ 1

2
.)

(c) More generally, the jth critical point of ∆m to the right of 0 occurs at x “

j{p2m ` 1qpj “ 1, . . . , 2mq, and

lim
mÑ8

∆m

ˆ

j

2m ` 1

˙

“
1

π

ż jπ

0

sin t

t
dt ´

1

2

These numbers are positive for j odd and negative for j even. (See Folland
Exercise 2.59(b))

8.6 Fourier Analysis of Measures

We recall that MpRnq is the space of complex Borel measures on Rn (which are
automatically Radon measures by ??), and we embed L1pRnq into MpRnq by identifying
f P L1 with the measure dµ “ fdm. We shall need to define products of complex measures
on Cartesian product spaces, which can easily be done in terms of products of positive
measures by using Radon-Nikodym derivatives. Namely, if µ, ν P MpRnq, we define
µˆν P MpRnˆRnq by

dpµˆνqpx, yq “
dµ

d|µ|
pxq

dν

d|ν|
pyqdp|µ|ˆ|ν|qpx, yq

If µ, ν P MpRnq, we define their convolution µ ˚ ν P MpRnq by µ ˚ νpEq “ µˆνpα´1pEqq

where α : RnˆRn Ñ Rn is addition, αpx, yq “ x ` y. In other words,

µˆνpEq “

ĳ

χEpx ` yqdµpxqdνpyq

Proposition 8.77: 8.48.

(a) Convolution of measures is commutative and associative.
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(b) For any bounded Borel measurable function h,
ż

hdpµ ˚ νq “

ĳ

hpx ` yqdµpxqdνpyq.

(c) }µ ˚ ν} ď }µ}}ν}.
(d) If dµ “ fdm and dν “ gdm, then dpµ ˚ νq “ pf ˚ gqdm; that is, on L1 the new

and old definitions of convolution coincide.

Proof. Commutativity is obvious from Fubini’s theorem, as is associativity, for λ ˚µ ˚ ν
is unambiguously defined by the formula

λ ˚ µ ˚ νpEq “

¡

χEpx ` y ` zqdλpxqdµpyqdνpzq

Assertion (b) follows from (8.47) by the usual linearity and approximation arguments. In
particular, taking h “ d|µ ˚ ν|{dpµ ˚ νq, since |h| “ 1 we obtain

}µ ˚ ν} “

ż

hdpµ ˚ νq ď

ĳ

|h|d|µ|d|ν| “ }µ}}ν}

which proves (c). Finally, if dµ “ fdm and dν “ gdm, for any bounded measurable h we
have

ż

hdpµ ˚ νq “

ĳ

hpx ` yqfpxqgpyqdxdy

“

ĳ

hpxqfpx ´ yqgpyqdxdy “

ż

hpxqpf ˚ gqpxqdx

whence dpµ ˚ νq “ pf ˚ gqdm.
We can also define convolutions of measures with functions in LppRn,mq, which we

implicitly assume to be Borel measurable. (By Proposition 22, this is no restriction.)

Proposition 8.78: 8.49.

If f P LppRnqp1 ď p ď 8q and µ P MpRnq, then the integral f ˚µpxq “
ş

fpx´yqdµpyq

exists for a.e. x, f ˚ µ P Lp, and }f ˚ µ}p ď }f}p}µ}. (Here “ Lp” and “a.e.” refer to
Lebesgue measure.)

Proof. If f and µ are nonnegative, then f ˚ µpxq exists (possibly being equal to 8) for
every x, and by Minkowski’s inequality for integrals,

}f ˚ µ}p ď

ż

}fp¨ ´ yq}pdµpyq “ }f}p}µ}

In particular, f ˚ µpxq ă 8 for a.e. x. In the general case this argument applies to |f |

and |µ|, and the result follows easily.
In the case p “ 1, the definition of f ˚ µ in Proposition 78 coincides with the definition

Version of April 30, 2024 at 11pm EST Page 320 of 368

https://www.greysonwesley.com/home


Greyson C. Wesley §8.6: Fourier Analysis of Measures

given earlier in which f is identified with fdm, for
ż

E

f ˚ µpxqdx “

ĳ

χEpxqfpx ´ yqdµpyqdx “

ĳ

χEpx ` yqfpxqdxdµpyq

for any Borel set E. Thus L1pRnq is not merely a subalgebra of MpRnq with respect to
convolution but an ideal.

We extend the Fourier transform from L1pRnq to MpRnq in the obvious way: If
µ P MpRnq, pµ is the function defined by

pµpξq “

ż

e´2πiξ¨xdµpxq

(The Fourier transform on measures is sometimes called the Fourier-Stieltjes transform.)
Since e´2πiξ¨x is uniformly continuous in x, it is clear that pµ is a bounded continuous
function and that }pµ}u ď }µ}. Moreover, by taking hpxq “ e´2πiξ¨x in Proposition 77b,
one sees immediately that pµ ˚ νq^ “ pµpν.

We conclude by giving a useful criterion for vague convergence of measures in terms of
Fourier transforms.

Proposition 8.79: 8.50.

Suppose that µ1, µ2, . . ., and µ are in MpRnq. If }µk} ď C ă 8 for all k and pµk Ñ pµ
pointwise, then µk Ñ µ vaguely.

Proof. If f P S, then f_ P S (Corollary 32), so by the Fourier inversion theorem,
ż

fdµk “

ĳ

f_
pyqe´2πiy¨xdydµkpxq “

ż

f_
pyqpµkpyqdy

Since f_ P L1 and }pµk}u ď C, the dominated convergence theorem implies that
ş

fdµk Ñ
ş

fdµ. But S is dense in C0pRnq (Proposition 19), so by Proposition 89,
ş

fdµk Ñ
ş

fdµ
for all f P C0pRnq, that is, µk Ñ µ vaguely.

This result has a partial converse: If µk Ñ µ vaguely and }µk} Ñ }µ}, then pµk Ñ pµ
pointwise. This follows from Folland Exercise 7.3.

Exercise 8.80: Folland Exercise 8.38.

Work out the analogues of the results in this section for measures on the torus Tn.

Exercise 8.81: Folland Exercise 8.39.

If µ is a positive Borel measure on T with µpTq “ 1, then |pµpkq| ă 1 for all k ‰ 0
unless µ is a linear combination, with positive coefficients, of the point masses at
0, 1

m
, . . . , m´1

m
for some m P T, in which case pµpjmq “ 1 for all j P T.
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Exercise 8.82: Folland Exercise 8.40.

L1pRnq is vaguely dense in MpRnq. (If µ P MpRnq, consider ϕt ˚ µ where tϕtutą0 is an
approximate identity.)

Exercise 8.83: Folland Exercise 8.41.

Let ∆ be the set of finite linear combinations of the point masses δx, x P Rn. Then ∆ is
vaguely dense in MpRnq. (If f is in the dense subset CcpRnq of L1pRnq and g P C0pRnq,
approximate

ş

fg by Riemann sums. Then use Folland Exercise 8.40.)

Exercise 8.84: Folland Exercise 8.42.

A function ϕ on Rn that satisfies
řm
j,k“1 zjzkϕpxj ´ xkq ě 0 for all z1, . . . , zm P R and

all x1, . . . , xm P Rn, for any m P R, is called positive definite. If µ P MpRnq is positive,
then pµ is positive definite.

8.7 Applications to Partial Differential Equations

In this section we present a few of the many applications of Fourier analysis to the
theory of partial differential equations; others will be found in Chapter 9. We shall use
the term differential operator to mean a linear partial differential operator with smooth
coefficients, that is, an operator L of the form

Lfpxq “
ÿ

|α|ďm
aαpxqB

αfpxq, aα P C8

If the aαs are constants, we call L a constant-coefficient operator. In this case, if for all
sufficiently well-behaved functions f (for example, f P S) we have

pLfqxpξq “
ÿ

|α|ďm
aαp2πiξq

α
pfpξq

It is therefore convenient to write L in a slightly different form: We set bα “ p2πiq|α|aα
and introduce the operators

Dα
“ p2πiq´|α|

B
α

so that
L “

ÿ

|α|ďm
bαD

α, pLfq “
ÿ

|α|ďm
bαξ

α
pf

Thus, if P is any polynomial in n complex variables, say P pξq “
ř

|a|ďm bαξ
α, we can form

the constant-coefficient operator P pDq “
ř

|α|ďm bαD
α, and we then have rP pDqfps “ P pf .

The polynomial P is called the symbol of the operator P pDq.
eaClearly, one potential application of the Fourier transform is in finding solutions of

the differential equation P pDqu “ f . Indeed, application of the Fourier transform to both
sides yields pu “ P´1

pf , whence u “ pP´1
pfq

_. Moreover, if P´1 is the Fourier transform of
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a function ϕ, we can express u directly in terms of f as u “ f ˚ ϕ. For these calculations
to make sense, however, the functions f and P´1

pf (or P´1) must be ones to which the
Fourier transform can be applied, which is a serious limitation within the theory we have
developed so far. The full power of this method becomes available only when the the
domain of the Fourier transform is substantially extended. We shall do this in Folland
Section 9.2; for the time being, we invite the reader to work out a fairly simple example
in Folland Exercise 8.43. (It must also be pointed out that even when this method works,
u “ pP´1

pfq
_ is far from being the only solution of P pDqu “ f ; there are others that grow

too fast at infinity to be within the scope even of the extended Fourier transform.)
Let us turn to some more concrete problems. The most important of all partial

differential operators is the Laplacian

∆ “
ÿn

1

Bℓ2

Bx2j
“ ´4π2

ÿn

1
D2
j “ P pDq where P pξq “ ´4π2

|ξ|
2

The reason for this is that ∆ is essentially the only (scalar) differential operator that is
invariant under translations and rotations. (If one considers operators on vector-valued
functions, there are others, such as the familiar grad, curl, and div of 3-dimensional vector
analysis.) More precisely, we have:

Theorem 8.85: 8.51.

A differential operator L satisfies Lpf ˝T q “ pLfq ˝T for all translations and rotations
T if and only if there is a polynomial P in one variable such that L “ P p∆q.

Proof. Clearly L is translation-invariant if and only if L has constant coefficients, in
which case L “ QpDq for some polynomial Q in n variables. Moreover, since pLfq^ “ Q pf
and the Fourier transform commutes with rotations, L commutes with rotations if and
only if Q is rotation-invariant. Let Q “

řm
0 Qj where Qj is homogeneous of degree j; then

it is easy to see that Q is rotation-invariant if and only if each Qj is rotation-invariant.
(Use induction on j and the fact that Qjpξq “ limrÑ0 r

´j
řm
j Qiprξq.) But this means

that Qjpξq depends only on |ξ|, so Qjpξq “ cj|ξ|j by homogeneity. Moreover, |ξ|j is a
polynomial precisely when j is even, so cj “ 0 for j odd. Setting bk “ p´4π2q

´kc2k, then,
we have Qpξq “

ř

bkp´4π2|ξ|2q
k, that is, L “

ř

bk∆
k.

One of the basic boundary value problems for the Laplacian is the Dirichlet problem:
Given an open set Ω Ă Rn and a function f on its boundary BΩ, find a function u on Ω
such that ∆u “ 0 on Ω and u|BΩ “ f . (This statement of the problem is deliberately a
bit imprecise.) We shall solve the Dirichlet problem when Ω is a half-space.

For this purpose it will be convenient to replace n by n`1 and to denote the coordinates
on Rn`1 by x1, . . . , xn, t. We continue to use the symbol ∆ to denote the Laplacian on
Rn, and we set

Bt “
B

Bt
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so the Laplacian on Rn`1 is ∆ ` B2
t . We take the half-space Ω to be Rnˆp0,8q. Thus,

given a function f on Rn, satisfying conditions to be made more precise below, we wish
to find a function u on Rnˆr0,8q such that p∆ ` B2

t qu “ 0 and upx, 0q “ fpxq.
The idea is to apply the Fourier transform on Rn, thus converting the partial differential

equation p∆ ` B2
t qu “ 0 into the simple ordinary differential equation p´4π2|ξ|2 ` B2

t qpu “ 0.
The general solution of this equation is

pupξ, tq “ c1pξqe´2πt|ξ|
` c2pξqe2πt|ξ|

and we require that pupξ, 0q “ pfpξq. We therefore obtain a solution to our problem by
taking c1pξq “ pfpξq, c2pξq “ 0 (more about the reasons for this choice below); this gives
pupξ, tq “ pfpξqe´2πt|ξ|, or upx, tq “ pf ˚ Ptqpxq where Pt “ pe´2πt|ξ|q

_ is the Poisson kernel
introduced in Folland Section 8.4. As we calculated in Folland Exercise 8.26,

Ptpxq “
Γ
`

1
2
pn ` 1q

˘

πpn`1q{2

t

pt2 ` |x|2q
´pn`1q{2

So far this is all formal, since we have not specified conditions on f to ensure that these
manipulations are justified. We now give a precise result.

Theorem 8.86: 8.53.

Suppose f P LppRnqp1 ď p ď 8q. Then the function upx, tq “ pf ˚ Ptqpxq satisfies
p∆ ` B2

t qu “ 0 on Rnˆp0,8q, and limtÑ0 upx, tq “ fpxq for a.e. x and for every x at
which f is continuous. Moreover, limtÑ0 }up¨, tq ´ f}p “ 0 provided p ă 8.

Proof. Pt and all of its derivatives are in LqpRnq for 1 ď q ď 8, since a rough
calculation shows that |BαxPtpxq| ď Cα|x|´n´1´|α| and |BjtPtpxq| ď Cj|x|´n´1 for large x.
Also, p∆ ` B2

t qPtpxq “ 0, as can be verified by direct calculation or (more easily) by taking
the Fourier transform. Hence f ˚ Pt is well defined and

p∆ ` B
2
t qpf ˚ Ptq “ f ˚ p∆ ` B

2
t qPt “ 0

Since Ptpxq “ t´nP1pt´1xq and
ş

P1pxqdx “ pP 1p0q “ 1, the remaining assertions follow
from Theorems 8.14 and 8.15.

The function upx, tq “ pf ˚ Ptqpxq is not the only one satisfying the conclusions of
Theorem 86; for example, vpx, tq “ upx, tq ` ct also works, for any c P C. For f P L1,
we could also obtain a large family of solutions by taking c2 in (8.52) to be an arbitrary
function in C8

c and c1 “ pf ´ c2. (But there is no nice convolution formula for the
resulting function u, because e2πt|ξ| is not the Fourier transform of a function or even a
distribution.) The solution upx, tq “ pf ˚ Ptqpxq is distinguished, however, by its regularity
at infinity; for example, it can be shown that if f P BCpCnq, then u is the unique solution
in BCpCnˆr0,8qq.

The same idea can be used to solve the heat equation
pBt ´ ∆qu “ 0
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on Rnˆp0,8q subject to the initial condition upx, 0q “ fpxq. (Physical interpretation:
upx, tq represents the temperature at position x and time t in a homogeneous isotropic
medium, given that the temperature at time 0 is fpxq.) Indeed, Fourier transformation
leads to the ordinary differential equation pBt ` 4π2|ξ|2qpu “ 0 with initial condition
pupξ, 0q “ pfpξq. The unique solution of the latter problem is pupξ, tq “ pfpξqe´4π2t|ξ|2 . In
view of Proposition 33, this yields

upx, tq “ f ˚ Gtpxq, Gtpxq “ p4πtq´n{2e´|x|2{4t

Here we have Gtpxq “ t´n{2G1pt
´1{2xq, so after the change of variable s “

?
t, Theorems

8.14 and 8.15 apply again, and we obtain an exact analogue of Theorem 86 for the initial
value problem pBt ´ ∆qu “ 0, upx, 0q “ fpxq. Actually, in the present case the hypotheses
on f can be relaxed considerably because Gt P S; see Folland Exercise 8.44.

Another fundamental equation of mathematical physics is the wave equation
pB

2
t ´ ∆qu “ 0

(Physical interpretation: upx, tq is the amplitude at position x and time t of a wave
traveling in a homogeneous isotropic medium, with units chosen so that the speed of
propagation is 1.q Here it is appropriate to specify both upx, 0q and Btupx, 0q:

pB
2
t ´ ∆qu “ 0, upx, 0q “ fpxq, Btupx, 0q “ gpxq

After applying the Fourier transform, we obtain
pB

2
t ` 4π2

|ξ|
2
qpupξ, tq “ 0, pupξ, 0q “ pfpξq, Btpupξ, 0q “ pgpξq

the solution to which is

pupξ, tq “ pcos 2πt|ξ|q pfpξq `
sin 2πt|ξ|

2π|ξ|
pgpξq

Since

cos 2πt|ξ| “
B

Bt

„

sin 2πt|ξ|

2π|ξ|

ȷ

it follows that

upx, tq “ f ˚ BtWtpxq ` g ˚ Wtpxq, where Wt “

„

sin 2πt|ξ|

2π|ξ|

ȷ_

But here there is a problem: p2π|ξ|q´1 sin 2πt|ξ| is the Fourier transform of a function
only when n ď 2 and the Fourier transform of a measure only when n ď 3; for these cases
the resulting solution of the wave equation is worked out in Exercises 45-47. To carry
out this analysis in higher dimensions requires the theory of distributions, which we shall
examine in Chapter 9. (We shall not, however, derive the explicit formula for Wt, which
becomes increasingly complicated as n increases.)
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Exercise 8.87: Folland Exercise 8.43.

Let ϕpxq “ e´|x|{2 on R. Use the Fourier transform to derive the solution u “ f ˚ ϕ
of the differential equation u ´ u2 “ f , and then check directly that it works. What
hypotheses are needed on f?

Exercise 8.88: Folland Exercise 8.44.

Let Gtpxq “ p4πtq´n{2e´|x|2{4t, and suppose that f P L1
loc pRnq satisfies |fpxq| ď Cεe

ε|x|2

for every ε ą 0. Then upx, tq “ f ˚ Gtpxq is well defined for all x P Rn and t ą 0;
pBt ´ ∆qu “ 0 on Rnˆp0,8q; and limtÑ0 upx, tq “ fpxq for a.e. x and for every x at
which f is continuous. (To show upx, tq Ñ fpxq a.e. on a bounded open set V , write
f “ ϕf ` p1 ´ ϕqf where ϕ P Cc and ϕ “ 1 on V , and show that rp1 ´ ϕqf s ˚Gt Ñ 0
on V .)

Solution.
(i) For x P Rn and t ą 0, and choose ε ą 0 such that 1 ´ 4tε ą 0. Then by completing

the square in the exponent and applying [Fol99, Proposition 2.53] we obtain

|p4πtqn{2
pf ˚ Gtqpxq| “

ż

|fpyq|e´|x´y|
2

{4t dy ď Cε

ż

eε|y|
2

´|x´y|
2

{4t dy

ď Cε

ż

eε|y|
2

´ 1
4t

p|x|
2

´2|x||y|`|y|
2

q dy

ď Cεepp 4t
1´4tεq

2
´ 1

4tq|x|
2

ż

e´ 4t
1´4tεp|y|

2
´ 8t

1´4tε
|x||y|`p 4t

1´4tεq
2

|x|
2q dy

ď Cεepp 4t
1´4tεq

2
´ 1

4tq|x|
2

ż

e´ 4t
1´4tεp|y|´ 4t

1´4tε
|x|q

2

dy

ď Cεepp 4t
1´4tεq

2
´ 1

4tq|x|
2

ż

e´ 4t
1´4tε |y´ 4t

1´4tε
x|

2

dy

ď Cεπ
n{2

p4tq´n{2
p1 ´ 4tεqn{2epp 4t

1´4tεq
2

´ 1
4tq|x|

2

ă 8,

so y ÞÑ fpyqGtpx´ yq is in L1pRnq. Thus f ˚Gtpxq is well-defined for all x P Rn and
all t ą 0.

(ii) We claim
pBt ´ ∆qpf ˚ Gtq “ 0. (8.88.1)

By [Fol99, Proposition 8.24], the Fourier transform of Gt for t ą 0 is given by
pGtpξq “ p4πtq´n{2

p4tqn{2e´4πt|ξ|2
“ π´n{2e´4πt|ξ|2 . (8.88.2)

Applying the Fourier transform to Equation (8.88.1), we obtain by [Fol99, discussion
on p. 273] and [Fol99, Theorem 8.22(c), p. 249]

pBt ` 4π2
|ξ|

2
qpf ˚ Gtq

^
pξq “ π´n{2

pfpξqpBte
´4πt|ξ|2

` 4π2
|ξ|

2e´4πt|ξ|2
q
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“ π´n{2
pfpξqp((((((((

´4π|ξ|
2e´4πt|ξ|2

`(((((((4π|ξ|e´4πt|ξ|2
q “ 0,

so pBt ´ ∆qpf ˚ Gtq “ 0 on Rnˆp0,8q. This proves (ii).
(iii) Fix t, r ą 0, and again choose ε ą 0 such that 1 ´ 4tε ą 0. For x P Rn, let

Brpxq denote the open ball in Rn centered at x. Since |fpxq| ď Cεe
ε|x|

2

and Brpxq

is bounded, f P LppBrpxqq for all p P r1,8s. Now choose ϕ P CcpRnq such that
ϕ|Brpxq “ 1. By estimating as in part (i) and noting 1 ´ ϕ “ 0 on Brpxq, we obtain

|p1 ´ ϕqf ˚ Gspxq| ď Cεp4πtq
´n{2

ż

|1 ´ ϕpyq|eε|y|
2

´|x´y|
2

{4t dy

ď p4πtq´n{2Cεepp 4t
1´4tεq

2
´ 1

4tq|x|
2

ż

|1 ´ ϕpyqq|e´ 4t
1´4tε |y´ 4t

1´4tε
x|

2

dy

ď p4πtq´n{2Cεepp 4t
1´4tεq

2
´ 1

4tq|x|
2

ż

Brpxq

|1 ´ ϕpyq|e´ 4t
1´4tε |y´ 4t

1´4tε
x|

2

dy

ď p4πtq´n{2Cεepp 4t
1´4tεq

2
´ 1

4tq|x|
2

}1 ´ ϕ}
8

ż

Brpxq

e´ 4t
1´4tε |y´ 4t

1´4tε
x|

2

dy

“ p4πtq´n{2Cεπ
n{2

p4tq´n{2
p1 ´ 4tεqn{2epp 4t

1´4tεq
2

´ 1
4tq|x|

2

}1 ´ ϕ}
8
,

and this is finite because ϕ P CcpRnq (so that }1 ´ ϕ}
8

ă 8). Since the exponential
decays to 0 faster than any polynomial as t Ñ 8 (since

`

4t
1´4tε

˘2
´ 1

4t
“ ´1{4t`Opt2q),

it follows that implies |p1 ´ ϕqf ˚ Gtpxq| Ñ 0 as t Ñ 0.
We claim pϕfq ˚ Gtpxq Ñ fpxq as t Ñ 0 for a.e. x in the Lebesgue set of f .

Now let r “ t. Since ϕ “ 1 on Brpxq, we have by taking t small enough so that
Btpxq Ă suppϕ that

|pϕfq ˚ Gtpxq ´ fpxq| “

ˇ

ˇ

ˇ

ˇ

ż

fpyqGtpx ´ yq dy ´ fpxq

ˇ

ˇ

ˇ

ˇ

ď

ż

Btpxq

|fpyq ´ fpxq||Gtpx ´ yq| dy

ď p4πtq´n{2

ż

Btpxq

|fpyq ´ fpxq| dy,

“ C

ˆ

1

mpBtpxqq

ż

Btpxq

|fpyq ´ fpxq| dy

˙

,

where C is the reciprocal of the constant given explicitly in [Fol99, Corollary 2.55,
p. 80]. By Lebesgue’s differentiation theorem [Fol99, Theorem 3.21, p. 98], the
integral on the right-hand side converges to fpxq for all x in the Lebesgue set of f .
In particular, limtÑ0 f ˚Gtpxq “ fpxq for a.e. x and for all x at which f is continuous
(see [Fol99, §3.4, Exercise 24, p. 100]).
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Exercise 8.89: Folland Exercise 8.45.

Let n “ 1. Use (8.55) and Folland Exercise 8.15(a) to derive d’Alembert’s solution to
the initial value problem (8.54):

upx, tq “
1

2
rfpx ` tq ` fpx ´ tqs `

1

2

ż x`t

x´t

gpsqds

Under what conditions on f and g does this formula actually give a solution?

Exercise 8.90: Folland Exercise 8.46.

Let n “ 3, and let σt denote surface measure on the sphere |x| “ t. Then
sin 2πt|ξ|

2π|ξ|
“ p4πtq´1

pσtpξq

(See Folland Exercise 8.22(d).) What is the resulting solution of the initial value
problem (8.54), expressed in terms of convolutions? What conditions on f and g ensure
its validity?

Exercise 8.91: Folland Exercise 8.47.

Let n “ 2. If ξ P R2, let ξ̃ “ pξ, 0q P R3. Rewrite the result of Folland Exercise 8.46,

sin 2πt|rξ|

2π|rξ|
“

1

4πt

ż

|x|“t

e´2πirξ¨xdσtpxq

in terms of an integral over the disc Dt “ ty | |y| ď tu in R2 by projecting the upper
and lower hemispheres of the sphere |x| “ t in R3 onto the equatorial plane. Conclude
that p2π|ξ|q´1 sin 2πt|ξ| is the Fourier transform of

Wtpxq “ p2πq
´1

pt2 ´ |x|
2
q

´1{2χDtpxq

and write out the resulting solution of the initial value problem (8.54).

Exercise 8.92: Folland Exercise 8.48.

Solve the following initial value problems in terms of Fourier series, where f, g, and
up¨, tq are periodic functions on R:
(a) pB2

t ` B2
xqu “ 0, upx, 0q “ fpxq. (Cf. the discussion of Abel means in Folland

Section 8.4.)
(b) pBt ´ B2

xqu “ 0, upx, 0q “ fpxq.
(c) pB2

t ´ B2
xqu “ 0, upx, 0q “ fpxq, Btupx, 0q “ gpxq.
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Exercise 8.93: Folland Exercise 8.49.

In this exercise we discuss heat flow on an interval.
(a) Solve pBt ´ B2

xqu “ 0 on pa, bqˆp0,8q with boundary conditions upx, 0q “ fpxq for
x P pa, bq, upa, tq “ upb, tq “ 0 for t ą 0, in terms of Fourier series. (This describes
heat flow on pa, bq when the endpoints are held at a constant temperature. It
suffices to assume a “ 0, b “ 1

2
; extend f to R by requiring f to be odd and

periodic, and use Folland Exercise 8.48(b).)
(b) Solve the same problem with the condition upa, tq “ upb, tq “ 0 replaced by

Bxupa, tq “ Bxupb, tq “ 0. (This describes heat flow on pa, bq when the endpoints
are insulated. This time, extend f to be even and periodic.)

Exercise 8.94: Folland Exercise 8.50.

Solve pB2
t ´ B2

xqu “ 0 on pa, bqˆp0,8q with boundary conditions upx, 0q “ fpxq and
Btupx, 0q “ gpxq for x P pa, bq, upa, tq “ upb, tq “ 0 for t ą 0, in terms of Fourier series
by the method of Folland Exercise 8.49(a). (This problem describes the motion of a
vibrating string that is fixed at the endpoints. It can also be solved by extending f to
be odd and periodic and using Folland Exercise 8.45. That form of the solution tells
you what you see when you look at a vibrating string; this one tells you what you hear
when you listen to it.)

9 Extra section: Rate of decay of Fourier coefficients

The following theorems (and their proofs) are from 4/3–4/12 lectures.
The following is a partial solution to the “inverse Fourier series problem”, which asks

when a function has a prescribed Fourier series.

Theorem 9.1.

If tanu8
n“´8 Ă R is a nonnegative even sequencea that satisfies the conditionb

an ď
1

2
pan`1 ` an´1q @n P Zą0,

then there exists f P L1pTq such that an “ pfpnq.
aBy “even sequence” we mean an “ ´an for n P Zě0.
bThis is informally referred to as a “convexity condition” for reasons you can probably guess,
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Corollary 9.2.

The Fourier series coefficients of f P L1pTq tend to 0 at an arbitrarily slow rate.

Theorem 9.3.

If f P L1pTq and pf is an odd function,a then
ÿ

nPZ∖t0u

pfpnq

n
ă 8.

aBy “odd function” we mean pfp|n|q “ ´ pfp´|n|q for all n P Z.

For α P p0, 1q, define
LipαpTq – tf P CpTq | DC ą 0 such that @x P T, |fpx ` kq ´ fpxq| ď C|k|

α
u

f P LipαpTq means that f P CpTq and there exists C ą 0 such that |fpx ` kq ´ fpxq| ď

C|k|
α for all x P T.

Theorem 9.4.

If f P LipαpTq, then pfpnq “ Opn´αq as |n| Ñ 8.

Theorem 9.5.

If f P L1pTq and pfpnq “ Op1{nq as |n| Ñ 8, then Snfpxq and σnfpxq, the symmetric
partial sums and Cesàro partial sums, respectively, converge for the same values of
x and to the same limit. Moreover, if σnfpxq converges uniformly in a set E, then
Snfpxq converges uniformly on E.

Corollary 9.6.

If f P BVpTq then Snfpxq Ñ limkÑ8
1
2
pfpx ` kq ` fpx ´ kqq. If in addition f P CpTq,

then the Fourier series of f converges to f everywhere. (This is a consequence of
Fejér’s theorem and the fact that f P BVpTq implies pfpnq “ Op1{nq as n Ñ 8.)

9.7 Principle of localization.

Suppose f, g P L1pTq and fpxq “ gpxq in a neighborhood of y. Then the Fourier series
of f and g at x either both converge to the same limit or both diverge.

Note 8. The local behavior of f can affect the global behavior of its Fourier series. For
instance, suppose f is continuous on T except at some point where f is a jump discontinuity.
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Then its Fourier series does not converge absolutely anywhere, that is, pf R ℓ1. In fact, if
f P L1pTq and pf P ℓ1, then Fourier inversion holds in the sense that the Fourier series
of f converges a.e. to f . (Indeed,

ř

nPZ
pfpnqe2πinx converges absolutely and uniformly

to a continuous function g. On the other hand, since ℓ1pTq Ă ℓ2pTq, the Fourier series
converges in the L2 norm to a function f0 P L2pTq Ă L1pTq, so pf0pnq “ pfpxq for all n P Z.
Then by the uniqueness theorem for L1 functions, f “ f0 a.e. and thus f “ g a.e.)

To show the principle of localization, it suffices to show that if f P L1pTq and vanishes
on an interval I, then Snfpxq Ñ 0 as n Ñ 8 for x P I. In fact, if f P L1pTq and

ż 1{2

´1{2

ˇ

ˇ

ˇ

ˇ

fptq

t

ˇ

ˇ

ˇ

ˇ

dt ă 8,

then limnÑ8 Snfp0q “ 0.

9.1 Absolute convergence of Fourier series

As before, CpTq denotes 1-periodic functions f : R Ñ C. Let

ApTq –

!

f P CpTq

ˇ

ˇ

ˇ

ÿ

nPZ
| pfpnq| ă 8

)

.

Thus ApTq is the set of 1-periodic functions f : R Ñ C whose Fourier series converge
absolutely.

Theorem 9.9: Sergei Bernstein, 1914.

For α P p1{2, 1s, LipαpTq Ă ApTq.

Theorem 9.10: Antoni Zygmund, 1928.

For any α P p0, 1q, LipαpTq X BVpTq Ă ApTq.

9.1.1 Application of multidimensional Fourier series to random walks

Consider a particle on the d-dimensional lattice Zℓ that moves to a neighboring point
in the lattice at each unit time interval. Assume each unit step un at time n is independent
of each other and each possible direction has equal probability. The position at time n is
sn “ u1 ` ¨ ¨ ¨ ` un and for given unit steps e1, . . . , en, ppu1 “ z1, u2 “ e2, . . . , en “ enq “
śn

j“1 ppuj “ ejq “
`

1
2d

˘n.

Question. Assume the particle starts at the origin. What is the expected number of times
that it returns to the origin? (The answer depends on the dimension d).
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Theorem 9.11: Pólya, 1921.

P psn “ 0 infinitely oftenq “ 1 when d “ 1 or d “ 2, and

P
´

lim
nÑ8

|sn| “ 8

¯

“ 1

when d P Zě1.

Theorem 9.12.

Assume Φ P L1pRnqXC0pRnq, Φp0q “ 1, and Φ “ pφ where φ P L1pRnq. For f P L1 `L2

and ε ą 0, define

fεpxq –

ż

Rn

Φpεξq pfpξqe2πix¨ξ dξ.

(a) For p P r1,8q, if f P Lp then fε Ñ f in Lp.
(b) If f is bounded and uniformly continuous, then fε Ñ f uniformly (and fε is

uniformly continuous).
(c) If |φpxq| ď Cp1 ` |x|q

´n´σ for some C, σ ą 0, then fεpxq Ñ fpxq at point in the
Lebesgue set of f (that is, when limrÑ0

1
mpBrpxqq

ş

Brpxq
|fpyq ´ fpxq| dy “ 0), and

thus fε Ñ f pointwise a.e.

Proposition 9.13.

Suppose f, g P L2pRnq. Then p pfpgq_ “ f ˚ g.

The discrete analog (for Fourier series) of this theorem is the following.

Theorem 9.14.

Assume Φ P CpRnq, Φp0q “ 1, and Φ “ pφ, where |Φpξq ď Ap1 ` |ξ|q
´n´σ

| and |φpxq|l ď

Ap1 ` |x|q
´n´σ for some σ ą 0. For f P L1pTnq and ε ą 0, define

fξpxq –
ÿ

kPZn
Φpεkq pfpkqe2πik¨x.

(a) If p P r1,8q and f P LppTnq, then fε Ñ f in Lp. If f P CpTnq, then fε Ñ f
uniformly.

(b) If x is a point in the Lebesgue set of f , then fεpxq Ñ fpxq. In particular, fε Ñ f
a.e.

Corollary 9.15.

For p P r1,8q, the Riesz means
ř

kPZn,|k|ďR

´

1 ´
|k|

2

R2

¯α
pfpkqe2πik¨x converge to f in Lp

and a.e. as R Ñ 8 when α ą pn ´ 1q{2.
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Proof. See Folland.

Corollary 15 is false for α “ pn ´ 1q{2 and p “ 1.

9 Elements of Distribution Theory

At least as far back as Heaviside in the 1890s, engineers and physicists have found it
convenient to consider mathematical objects which, roughly speaking, resemble functions
but are more singular than functions. Despite their evident efficacy, such objects were
at first received with disdain and perplexity by the pure mathematicians, and one of the
most important conceptual advances in modern analysis is the development of methods
for dealing with them in a rigorous and systematic way. The method that has proved to
be most generally useful is Laurent Schwartz’s theory of distributions, based on the idea
of linear functionals on test functions. For some purposes, however, it is preferable to
use a theory more closely tied to L2 on which the power of Hilbert space methods and
the Plancherel theorem can be brought to bear, namely, the pL2q Sobolev spaces. In this
chapter we present the fundamentals of these theories and some of their applications.

9.1 Distributions

In order to find a fruitful generalization of the notion of function on Rn, it is necessary
to get away from the classical definition of function as a map that assigns to each point
of Rn a numerical value. We have already done this to some extent in the theory of Lp
spaces: If f P Lp, the pointwise values fpxq are of little significance for the behavior of f
as an element of Lp, as f can be modified on any set of measure zero without affecting
the latter. What is more to the point is the family of integrals

ş

fϕ as ϕ ranges over the
dual space Lq. Indeed, we know that f is completely determined by its action as a linear
functional on Lq; on the other hand, if we take ϕ “ ϕr “ mpBrq

´1χBr where Br is the ball
of radius r about x, by the Lebesgue differentiation theorem we can recover the pointwise
value fpxq, for almost every x, as limrÑ0

ş

fϕr. Thus, we lose nothing by thinking of f as
a linear map from LqpRnq to R rather than as a map from Rn to R.

Let us modify this idea by allowing f to be merely locally integrable on Rn but
requiring ϕ to lie in C8

c . Again the map ϕ ÞÑ
ş

fϕ is a well-defined linear functional
on C8

c , and again the pointwise values of f can be recovered a.e. from it, by an easy
extension of Theorem 18. But there are many linear functionals on C8

c that are not of
the form ϕ ÞÑ

ş

fϕ, and these—subject to a mild continuity condition to be specified
below—will be our “generalized functions.”

Recall that for E Ă Rn we have defined C8
c pEq to be the set of all C8 functions whose

support is compact and contained in E. If U Ă Rn is open, C8
c pUq is the union of the

spaces C8
c pKq as K ranges over all compact subsets of U . Each of the latter is a Fréchet
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space with the topology defined by the norms
ϕ ÞÑ }B

αϕ}u pα P t0, 1, 2, . . .unq

in which a sequence tϕju converges to ϕ if and only if Bαϕj Ñ Bαϕ uniformly for all α.
(The completeness of C8

c pKq is easily proved by the argument in Folland Exercise 5.9.)
With this in mind, we make the following definitions, in which U is an open subset of Rn:

i. A sequence tϕju in C8
c pUq converges in C8

c to ϕ if tϕju Ă C8
c pKq for some compact

set K Ă U and ϕj Ñ ϕ in the topology of C8
c pKq, that is, Bαϕj Ñ Bαϕ uniformly for all

α.
ii. If X is a locally convex topological vector space and T : C8

c pUq Ñ X is a linear
map, T is continuous if T |C8

c pKq is continuous for each compact K Ă U , that is, if
Tϕj Ñ Tϕ whenever ϕj Ñ ϕ in C8

c pKq and K Ă U is compact.
iii. A linear map T : C8

c pUq Ñ C8
c pU 1q is continuous if for each compact K Ă U there

is a compact K 1 Ă U 1 such that T pC8
c pKqq Ă C8

c pK 1q, and T is continuous from C8
c pKq

to C8
c pK 1q.

iv. A distribution on U is a continuous linear functional on C8
c pUq. The space of all

distributions on U is denoted by D1pUq, and we set D1 “ D1pRnq. We impose the weak*
topology on D1pUq, that is, the topology of pointwise convergence on C8

c pUq.
Two remarks: First, the standard notation D1 for the space of distributions comes

from Schwartz’s notation D for C8
c , which is also quite common. Second, there is a locally

convex topology on C8
c with respect to which sequential convergence in C8

c is given by
(i) and continuity of linear maps T : C8

c Ñ X and T : C8
c Ñ C8

c is given by (ii) and (iii).
However, its definition is rather complicated and of little importance for the elementary
theory of distributions, so we shall omit it.

Here are some examples of distributions; more will be presented below. - Every
f P L1

loc pUq—that is, every function f on U such that
ş

K
|f | ă 8 for every compact

K Ă U—defines a distribution on U , namely, the functional ϕ Ñ
ş

fϕ, and two functions
define the same distribution precisely when they are equal a.e. - Every Radon measure µ
on U defines a distribution by ϕ ÞÑ

ş

ϕdµ. - If x0 P U and α is a multi-index, the map
ϕ ÞÑ Bαϕpx0q is a distribution that does not arise from a function; it arises from a measure
µ precisely when α “ 0, in which case µ is the point mass at x0.

If f P L1
loc pUq, we denote the distribution ϕ ÞÑ

ş

fϕ also by f , thereby identifying
L1

loc pUq with a subspace of D1pUq. In order to avoid notational confusion between fpxq

and fpϕq “
ş

fϕ, we adopt a different notation for the pairing between C8
c pUq and D1pUq.

Namely, if F P D1pUq and ϕ P C8
c pUq, the value of F at ϕ will be denoted by xF, ϕy.

Observe that the pairing x¨, ¨y between D1pUq and C8
c pUq is linear in each variable; this

conflicts with our earlier notation for inner products but will cause no serious confusion.
If µ is a measure, we shall also identify µ with the distribution ϕ ÞÑ

ş

ϕdµ
Sometimes it is convenient to pretend that a distribution F is a function even when

it really is not, and to write
ş

F pxqϕpxqdx instead of xF, ϕy. This is the case especially
when the explicit presence of the variable x is notationally helpful.
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At this point we set forth two pieces of notation that will be used consistently
throughout this chapter. First, we shall use a tilde to denote the reflection of a function
in the origin:

rϕpxq “ ϕp´xq.

Second, we denote the point mass at the origin, which plays a central role in distribution
theory, by δ:

xδ, ϕy “ ϕp0q

As an illustration of the role of δ and the notion of convergence in D1, we record the
following important corollary of Theorem 17:

Proposition 9.1: 9.1.

Suppose that f P L1pRnq and
ş

f “ a, and for t ą 0 let ftpxq “ t´nfpt´1xq. Then
ft Ñ aδ in D1 as t Ñ 0.

Proof. If ϕ P C8
c , by Theorem 17 we have

xft, ϕy “

ż

ftϕ “ ft ˚ ϕ̃p0q Ñ aϕ̃p0q “ aϕp0q “ axδ, ϕy

Although it does not make sense to say that two distributions F and G in D1pUq agree at
a single point, it does make sense to say that they agree on an open set V Ă U ; namely,
F “ G on V if and only if xF, ϕy “ xG, ϕy for all ϕ P C8

c pV q. (Clearly, if F and G are
continuous functions, this condition is equivalent to the pointwise equality of F and G on
V ; if F and G are merely locally integrable, it means that F “ G a.e. on V .) Since a
function in C8

c pV1 Y V2q need not be supported in either V1 or V2, it is not immediately
obvious that if F “ G on V1 and on V2 then F “ G on V1 Y V2. However, it is true:

Proposition 9.2: 9.2.

Let tVαu be a collection of open subsets of U and let V “
Ť

α Vα. If F,G P D1pUq and
F “ G on each Vα, then F “ G on V .

Proof. If ϕ P C8
c pV q, there exist α1, . . . αm such that supp ϕ Ă

Ťm
1 Vαj . Pick

ψ1, . . . , ψm P C8
c such that supppψjq Ă Vαj and

řm
1 ψj “ 1 on supppϕq. (That this can

be done is the C8 analogue of Proposition 125, proved in the same way as that result by
using the C8 Urysohn lemma.) Then xF, ϕy “

ř

xF, ψjϕy “
ř

xG,ψjϕy “ xG, ϕy.
According to Proposition 2, if F P D1pUq, there is a maximal open subset of U on

which F “ 0, namely the union of all the open subsets on which F “ 0. Its complement
in U is called the support of F .

There is a general procedure for extending various linear operations from functions
to distributions. Suppose that U and V are open sets in Rn, and T is a linear map
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from some subspace X of L1
loc pUq into L1

loc pV q. Suppose that there is another linear
mapT 1 : C8

c pV q Ñ C8
c pUq such that

ż

pTfqϕ “

ż

fpT 1ϕq pf P X,ϕ P C8
c pV qq

Suppose also that T 1 is continuous in the sense defined above. Then T can be extended
to a map from D1pUq to D1pV q, still denoted by T , by

xTF, ϕy “ xF, T 1ϕy pF P D1
pUq, ϕ P C8

c pV qq

The intervention of the continuous map T 1 guarantees that the original T , as well as
its extension to distributions, is continuous with respect to the weak* topology on
distributions: If Fα Ñ F P D1pUq, then TFα Ñ TF in D1pV q.

Here are the most important instances of this procedure. In each of them, U is an
open set in Rn, and the continuity of T 1 is an easy exercise that we leave to the reader.

i. (Differentiation) Let Tf “ Bαf , defined on C |α|pUq. If ϕ P C8
c pUq, integration by

parts gives
ş

pBαfqϕ “ p´1q|α|
ş

fpBαϕq; there are no boundary terms since ϕ has compact
support. Hence T 1 “ p´1q|α|T |C8

c pUq, and we can define the derivative BαF P D1pUq of
any F P D1pUq by

xB
αF, ϕy “ p´1q

|α|
xF, Bαϕy.

Notice, in particular, that by this procedure we can define derivatives of arbitrary locally
integrable functions even when they are not differentiable in the classical sense; this is
one of the main reasons for the power of distribution theory. We shall discuss this matter
in more detail below. ii. (Multiplication by Smooth Functions) Given ψ P C8pUq, define
Tf “ ψf . Then T 1 “ T |C8

c pUq, so we can define the product ψF P D1pUq for F P D1pUq

by
xψF, ϕy “ xF, ψϕy

Moreover, if ψ P C8
c pUq, this formula makes sense for any ϕ P C8

c pRnq and defines ψF as
a distribution on Rn.

iii. (Translation) Given y P Rn, let V “ U ` y “ tx ` y | x P Uu and let T “ τy.
(Recall that we have defined τyfpxq “ fpx´yq.) Since

ş

fpx´yqϕpxqdx “
ş

fpxqϕpx`yqdx,
we have T 1 “ τ´y|C

8
c pU ` yq. For F P D1pUq, then, we define the translated distribution

τyF P D1pU ` yq by
xτyF, ϕy “ xF, τ´yϕy

For example, the point mass at y is τyδ.
iv. (Composition with Linear Maps) Given an invertible linear transformation S of

Rn, let V “ S´1pUq and let Tf “ f ˝ S. Then T 1ϕ “ | detS|´1ϕ ˝ S´1 by Theorem 87, so
for F P D1pUq we define F ˝ S P D1pS´1pUqq by

xF ˝ S, ϕy “ | detS|
´1

xF, ϕ ˝ S´1
y.

In particular, for Sx “ ´x we have f ˝ S “ f̃ , S´1 “ S, and | detS| “ 1, so we define the
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reflection of a distribution in the origin by
x rF , ϕy “ xF, rϕy

v. (Convolution, First Method) Given ψ P C8
c , let

V “ tx | x ´ y P U for y P supppψqu

( V is open but may be empty.) If f P L1
loc pUq, the integral

f ˚ ψpxq “

ż

fpx ´ yqψpyqdy “

ż

fpyqψpx ´ yqdy “

ż

f
´

τx rψ
¯

is well defined for all x P V . The same definition works for F P D1pUq: the convolution
F ˚ ψ is the function defined on V by

F ˚ ψpxq “

A

F, τx rψ
E

Since τx rψ Ñ τx0ψ̃ in C8
c as x Ñ x0, F ˚ ψ is a continuous function (actually C8, as we

shall soon see) on V . As an example, for any ψ P C8
c we have

δ ˚ ψpxq “

A

δ, τx rψ
E

“ τx rψp0q “ ψpxq

so δ is the multiplicative identity for convolution. vi. (Convolution, Second Method) Let
ψ, ψ̃, and V be as in (v). If f P L1

loc pUq and ϕ P C8
c pV q, we have

ż

pf ˚ ψqϕ “

ĳ

fpyqψpx ´ yqϕpyqdydx “

ż

fpϕ ˚ rψq

That is, if Tf “ f ˚ψ, then T maps L1
loc pUq into L1

loc pV q and T 1ϕ “ ϕ˚ rψ. For F P D1pUq,
we can therefore define F ˚ ψ as a distribution on V by

xF ˚ ψ, ϕy “ xF, ϕ ˚ rψy

Again, we have δ ˚ ψ “ ψ, for

xδ ˚ ψ, ϕy “ xδ, ϕ ˚ rψy “ ϕ ˚ rψp0q “

ż

ϕpxqψpxqdx “ xψ, ϕy

The definitions of convolution in (v) and (vi) are actually equivalent, as we shall now
show.

Proposition 9.3: 9.3.

Suppose that U is open in Rn and ψ P C8
c . Let V “ tx | x ´ y P U for y P supppψqu.

For F P D1pUq and x P V let F ˚ ψpxq “

A

F, τx rψ
E

. Then

(a) F ˚ ψ P C8pV q.
(b) BαpF ˚ ψq “ pBαF q ˚ ψ “ F ˚ pBαψq.
(c) For any ϕ P C8

c pV q,
ş

pF ˚ ψqϕ “ xF, ϕ ˚ rψy.

Proof. Let e1, . . . , en be the standard basis for Rn. If x P V , there exists t0 ą 0 such
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that x ` tej P U for |t| ă t0, and it is easily verified that

t´1
´

τx`tej
rψ ´ τx rψ

¯

Ñ τxĄBjψ in C8
c pUq as t Ñ 0

It follows that BjpF ˚ ψqpxq exists and equals F ˚ Bjψpxq, so by induction, F ˚ ψ P C8pV q

and BαpF ˚ ψq “ F ˚ Bαψ. Moreover, since Bα rψ “ p´1q|α|
ĄBαψ and Bατx “ τxBα, we have

pBαF q ˚ ψpxq “

A

BαF, τx rψ
E

“ p´1q|α|

A

F, Bατx rψ
E

“

A

F, τxĄBαψ
E

“ F ˚ pBαψqpxq.
Next, if ϕ P C8

c pV q, we have

ϕ ˚ rψpxq “

ż

ϕpyqψpy ´ xqdy “

ż

ϕpyqτy rψpxqdy

The integrand here is continuous and supported in a compact subset of U , so the integral can
be approximated by Riemann sums. That is, for each (large) m P Zě1 we can approximate
supppϕq by a union of cubes of side length 2´m (and volume 2´nm) centered at points
ym1 , . . . , y

m
kpmq P supppϕq; then the corresponding Riemann sums Sm “ 2´nm

ř

j ϕpymj qτymj
rψ

are supported in a common compact subset of U and converge uniformly to ϕ˚ rψ as m Ñ 8.
Likewise, BαSm “ 2´nm

ř

j ϕpymj qτymj Bα rψ converges uniformly to ϕ ˚ Bα rψ “ Bαpϕ ˚ rψq, so
Sm Ñ ϕ ˚ rψ in C8

c pUq. Hence,

xF, ϕ ˚ rψy “ lim
mÑ8

xF, Smy “ lim
mÑ8

2´nm
ÿ

j
ϕpymj q

A

F, τymj
rψ
E

“

ż

ϕpyq

A

F, τy rψ
E

dy “

ż

ϕpyqF ˚ ψpyqdy

Next we show that although distributions may be highly singular objects, they can all
be approximated in the (weak*) topology of distributions by smooth functions, even by
compactly supported ones.

Lemma 9.4: 9.4.

Suppose that ϕ P C8
c , ψ P C8

c , and
ş

ψ “ 1, and let ψtpxq “ t´nψpt´1xq.
(a) Given any neighborhood U of supppϕq, we have supppϕ ˚ ψtq Ă U for t sufficiently

small.
(b) ϕ ˚ ψt Ñ ϕ in C8

c as t Ñ 0.

Proof. If supppψq Ă tx | |x| ď Ru then supppϕ ˚ ψtq is contained in the set of points
whose distance from supppϕq is at most tR; this is included in a fixed compact set if t ď 1
and is included in U if t is small. Moreover, Bαpϕ ˚ ψtq “ pBαϕq ˚ ψt Ñ Bαϕ uniformly as
t Ñ 0, by Theorem 17. The result follows.

Proposition 9.5: 9.5.

For any open U Ă Rn, C8
c pUq is dense in D1pUq in the topology of D1pUq.
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Proof. Suppose F P D1pUq. We shall first approximate F by distributions supported
in compact subsets of U , then approximate the latter by functions in C8

c pUq.
Let tVju be an increasing sequence of precompact open subsets of U whose union is U ,

as in Proposition 122. For each j, by the C8 Urysohn lemma we can pick ζj P C8
c pUq

such that ζj “ 1 on V j. Given ϕ P C8
c pUq, for j sufficiently large we have supppϕq Ă Vj

and hence xF, ϕy “ xF, ζjϕy “ xζjF, ϕy. Therefore ζjF Ñ F as j Ñ 8.
Now, as we noted in defining products of smooth functions and distributions, since

supppζjq is compact, ζjF can be regarded as a distribution on Rn. Let ψ, ψt be as
in Lemma 4, and rψpxq “ ψp´xq. Then

ş

rψ “ 1 also, so given ϕ P C8
c , we have

ϕ ˚ rψt Ñ ϕ in C8
c by Lemma 4. But then by Proposition 3, we have pζjF q ˚ ψt P C8

and xpζjF q ˚ ψt, ϕy “

A

ζjF, ϕ ˚ rψt

E

Ñ xζjF, ϕy, so pζjF q ˚ψt Ñ ζjF in D1. In short, every
neighborhood of F in D1pUq contains the C8 functions pζjF q ˚ ψt for j large and t small.

Finally, we observe that supppζjq Ă Vk for some k. If supppϕq X V k “ ∅, then
for sufficiently small t we have supp

´

ϕ ˚ rψt

¯

X V k “ ∅ (Lemma 4 again) and hence

xpζjF q ˚ ψt, ϕy “

A

F, ζj

´

ϕ ˚ rψt

¯E

“ 0. In other words, suppppζjF q ˚ ψtq Ă V k Ă U , so we
are done.

We conclude this section with some further remarks and examples concerning differen-
tiation of distributions. To restate the basic facts: Every F P D1pUq possesses derivatives
BαF P D1pUq of all orders; moreover, Bα is a continuous linear map of D1pUq into itself.
Let us examine a couple of one-dimensional examples to see what sort of things arise by
taking distribution derivatives of functions that are not classically differentiable.

First, differentiating functions with jump discontinuities leads to “delta-functions,”
that is, distributions given by measures that are point masses. The simplest example is
the Heaviside step function H “ χp0,8q, for which we have

xH 1, ϕy “ ´xH,ϕ1
y “ ´

ż 8

0

ϕ1
pxqdx “ ϕp0q “ xδ, ϕy

so H 1 “ δ. See Exercises 5 and 7 for generalizations.
Second, distribution derivatives can be used to extract “finite parts” from divergent

integrals. For example, let fpxq “ x´1χp0,8qpxq.f is locally integrable on Rzt0u and so
defines a distribution there, but

ş

fϕ diverges whenever ϕp0q ‰ 0. Nonetheless, there is a
distribution on R that agrees with f on Rzt0u, namely, the distribution derivative of the
locally integrable function Lpxq “ plog xqχp0,8qpxq. One way of seeing what is going on
here is to consider the functions Lεpxq “ plog xqχpε,8qpxq. By the dominated convergence
theorem we have

ş

Lϕ “ limεÑ0

ş

Lεϕ for any ϕ P C8
c , that is, Lε Ñ L in D1; it follows

that L1
ε Ñ L1 in D1. But

xL1
ε, ϕy “ ´xLε, ϕ

1
y “ ´

ż 8

ε

ϕ1
pxq log xdx “

ż 8

ε

ϕpxq

x
dx ` ϕpεq log ε

As ε Ñ 0, this last sum converges even though the two terms individually do not. Formally,
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passage to the limit gives xL1, ϕy “
ş

fϕ ` plog 0qϕp0q; that is, L1 is obtained from f by
subtracting an infinite multiple of δ. (This process is akin to the “renormalizations” used
by physicists to remove the divergences from quantum field theory.)

Another way to analyze this situation is to consider smooth approximations to L, such
as Lεpxq “ Lpxqψpεxq where ψ is a smooth function such that ψpxq “ 0 for x ď 1 and
ψpxq “ 1 for x ě 2. The reader is invited to sketch the graphs of Lε and pLεq1; the latter
will look like the graph of f together with a large negative spike near the origin, which
turns into “ ´8 ¨ δ” as ε Ñ 0. See also Folland Exercise 9.10,Folland Exercise 9.12.

Finally, we remark that one of the bugbears of advanced calculus, that equality of
mixed partials need not hold for functions whose derivatives are not continuous, disappears
in the setting of distributions: BjBk “ BkBj on C8

c ; therefore BjBk “ BkBj on D1! In the
standard counterexample, fpx, yq “ xypx2 ´ y2qpx2 ` y2q´1 (with fp0, 0q “ 0), BxByf and
ByBxf are locally integrable functions that agree everywhere except at the origin; hence
they are identical as distributions.

Exercise 9.6: Folland Exercise 9.1.

Suppose that f1, f2, . . ., and f are in L1
locpUq. The conditions in (a) and (b) below

imply that fn Ñ f in D1pUq, but the condition in (c) does not.
(a) fn P LppUqp1 ď p ď 8q and fn Ñ f in the Lp norm or weakly in Lp.
(b) For all n, |fn| ď g for some g P L1

locpUq, and fn Ñ f a.e.
(c) fn Ñ f pointwise.

Exercise 9.7: Folland Exercise 9.2.

The product rule for derivatives is valid for products of smooth functions and distribu-
tions.

Exercise 9.8: Folland Exercise 9.3.

On R, if ψ P C8 then ψδpkq “
řk

0p´1qj

ˆ

k
j

˙

ψpjqp0qδpk´jq, where the superscripts

denote derivatives.

Exercise 9.9: Folland Exercise 9.4.

Suppose that U and V are open in Rn and Φ: V Ñ U is a C8 diffeomorphism. Explain
how to define F ˝ Φ P D1pUq for any F P D1pV q.
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Exercise 9.10: Folland Exercise 9.5.

Suppose that f is continuously differentiable on R except at x1, . . . , xm, where f
has jump discontinuities, and that its pointwise derivative df{dx (defined except at
the xjs) is in L1

loc pRq. Then the distribution derivative f 1 of f is given by f 1 “

pdf{dxq `
řm

1 rfpxj`q ´ fpxj´qsτxjδ.

Exercise 9.11: Folland Exercise 9.6.

If f is absolutely continuous on compact subsets of an interval U Ă R, the distribution
derivative f 1 P D1pUq coincides with the pointwise (a.e.-defined) derivative of f .

Exercise 9.12: Folland Exercise 9.7.

Suppose f P L1
loc pRq. Then the distribution derivative f 1 is a complex measure on R

if and only if f agrees a.e. with a function F P NBV , in which case xf 1, ϕy “
ş

ϕdF .

Exercise 9.13: Folland Exercise 9.8.

Suppose f P LppRnq. If the strong Lp derivatives Bjf exist in the sense of Folland
Exercise 8.8, , they coincide with the partial derivatives of f in the sense of distributions.

Exercise 9.14: Folland Exercise 9.9.

A distribution F on Rn is called homogeneous of degree λ if F ˝Sr “ rλF for all r ą 0,
where Srpxq “ rx.
(a) δ is homogeneous of degree ´n.
(b) If F is homogeneous of degree λ, then BαF is homogeneous of degree λ ´ |α|.
(c) The distribution pd{dxqrχp0,8qpxq log xs discussed in the text is not homogeneous,

although it agrees on Rzt0u with a function that is homogeneous of degree -1.

Exercise 9.15: Folland Exercise 9.10.

Let f be a continuous function on Rnzt0u that is homogeneous of degree ´n (i.e.,
fprxq “ r´nfpxq) and has mean zero on the unit sphere (i.e.,

ş

fdσ “ 0 where σ is
surface measure on the sphere). Then f is not locally integrable near the origin (unless
f “ 0), but the formula

xPV pfq, ϕy “ lim
εÑ0

ż

|x|ąε

fpxqϕpxqdx pϕ P C8
c q

defines a distribution PV pfq´ “ PV ” stands for “principal value”—that agrees with
f on Rnzt0u and is homogeneous of degree ´n in the sense of Folland Exercise 9.9.

Version of April 30, 2024 at 11pm EST Page 341 of 368

https://www.greysonwesley.com/home


Greyson C. Wesley §9.1: Distributions

(Hint: For any a ą 0, the indicated limit equals
ż

|x|ďa

fpxqrϕpxq ´ ϕp0qsdx `

ż

|x|ąa

fpxqϕpxqdx

and these integrals converge absolutely.)

Exercise 9.16: Folland Exercise 9.11.

Let F be a distribution on Rn such that supppF q “ t0u.
(a) There exist N P Zě1, C ą 0 such that for all ϕ P C8

c ,

|xF, ϕy| ď C
ÿ

|α|ďN
sup|x|ď1|B

αϕpxq|

(b) Fix ψ P C8
c with ψpxq “ 1 for |x| ď 1 and ψpxq “ 0 for |x| ě 2. If ϕ P C8

c , let
ϕkpxq “ ϕpxqr1 ´ ψpkxqs. If Bαϕp0q “ 0 for |α| ď N , then Bαϕk Ñ Bαϕ uniformly
as k Ñ 8 for |α| ď N . (Hint: By Taylor’s theorem, |Bαϕpxq| ď C|x|N`1´|α| for
|α| ď N .)

(c) If ϕ P C8
c and Bαϕp0q “ 0 for |α| ď N , then xF, ϕy “ 0.

(d) There exist constants cαp|α| ď Nq such that F “
ř

|α|ďN cαBαδ.

Exercise 9.17: Folland Exercise 9.12.

Suppose λ ą n; then the function x ÞÑ |x|´λ on Rn is not locally integrable near the
origin. Here are some ways to make it into a distribution:
(a) If ϕ P C8

c , let P k
ϕ be the Taylor polynomial of ϕ about x “ 0 of degree k. Given

k ą λ ´ n ´ 1 and a ą 0, define

xF k
a , ϕy “

ż

|x|ďa

rϕpxq ´ P k
ϕ pxqs|x|

´λdx `

ż

|x|ąa

ϕpxq|x|
´λdx

Then F k
a is a distribution on Rn that agrees with |x|´λ on Rnzt0u.

(b) If λ R Z and we take k to be the greatest integer ď λ ´ n, we can let a Ñ 8 in
(a) to obtain another distribution F that agrees with |x|´λ on Znzt0u:

xF, ϕy “

ż

rϕpxq ´ P k
ϕ pxqs|x|

´λdx

(c) Let n “ 1 and let k be the greatest integer ď λ. Let

fpxq “

#

rpk ´ λq ¨ ¨ ¨ p1 ´ λqs´1psgnxqk|x|k´λ if λ ą k

p´1qk´1rpk ´ 1q!s´1psgnxqk log |x| if λ “ k

Then f P L1
loc pRq, and the distribution derivative f pkq agrees with |x|´λ on Rzt0u.

(d) According to Folland Exercise 9.11, the difference between any two of the dis-
tributions constructed in (a)-(c) is a linear combination of δ and its derivatives.
Which one?
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Exercise 9.18: Folland Exercise 9.13.

If F P D1 and BjF “ 0 for j “ 1, . . . , n, then F is a constant function. (Consider f ˚ψt
where ψt is an approximate identity in C8

c .)

Exercise 9.19: Folland Exercise 9.14.

For n ě 3, define F, F ε P L1
loc pRnq by

F pxq “
|x|2´n

ωnp2 ´ nq
, F ε

pxq “
p|x|2 ` ε2q

p2´nq{2

ωnp2 ´ nq

where ωn “ 2πn{2{Γpn{2q is the volume of the unit sphere, and let ∆ be the Laplacian.
(a) ∆F εpxq “ ε´ngpε´1xq where gpxq “ nω´1

n p|x|2 ` 1q
´pn`2q{2.

(b)
ş

g “ 1. (Use polar coordinates and set s “ r2{pr2 ` 1q.)
(c) ∆F “ δ.pF ε Ñ F in D1; use Proposition 1.)
(d) If ϕ P C8

c , the function f “ F ˚ ϕ satisfies ∆f “ ϕ.
(e) The results of (c) and (d) hold also for n “ 1 but can be proved more simply

there. For n “ 2, they hold provided F, F ε are defined by F pxq “ p2πq´1 log |x|

and F ε “ p4πq´1 logp|x|2 ` ε2q.

Exercise 9.20: Folland Exercise 9.15.

Define G on RnˆR by Gpx, tq “ p4πtq´n{2e´|x|2{4tχp0,8qptq.
(a) pBt ´ ∆qG “ δ, where ∆ is the Laplacian on Rn. (Let Gεpx, tq “ Gpx, tqχpε,8qptq;

then Gε Ñ G in D1. Compute xpBt ´ ∆qGε, ϕy for ϕ P C8
c , recalling the discussion

of the heat equation in §8.7.)
(b) If ϕ P C8

c pRnˆRq, the function f “ G ˚ ϕ satisfies pBt ´ ∆qf “ ϕ.

Solution.
(a) Let ε ą 0 and ϕ P C8

c pRnˆRq. Then Gε P D1pRnˆRq, and by Fubini’s theorem

xϕ,Gε
y “

ż

Rn R̂
Gεϕ “

ż 8

ε

ż

Rn

Gpx, tqϕpx, tq dx dt

εÑ0
ÝÝÑ

ż 8

0

ż

Rn

Gpx, tqϕpx, tq dx dt “ xϕ,Gy,

so Gε Ñ G in D1pRnˆRq as ε Ñ 0. For x P Rn and t P pε,8q, it follows from [Fol99,
§8.7, Exercise 44, assertion (ii)] that p∆ ´ BtqG

εpx, tq “ 0; thus
∆Gε

px, tq “ BtG
ε
px, tq. (9.20.1)

In addition (see [Fol99, p. 284]), we have
Btϕpx, tqGε

px, tq “ ´ϕpx, tqBtG
ε
px, tq, (9.20.2)
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so
xϕ, pBt ´ ∆qGε

y “ xpBt ` ∆qϕ,Gε
y

“

ż

Rn

ˆ
ż 8

ε

pϕpx, tqBtG
ε
px, tq ` ∆ϕpx, tqGε

px, tqq dt

`

ż ε

0

pϕpx, tq∆Gε
px, tq ` ϕpx, tq∆Gε

px, tqq dt

˙

dx

(9.20.2)
“

ż

Rn

ˆ
ż 8

ε

pϕpx, tq∆Gε
px, tq ` ∆ϕpx, tqGε

px, tqq dt

`

ż ε

0

pϕpx, tqBtG
ε
px, tq ´ ϕpx, tq∆Gε

px, tqq dt

˙

dx

(9.20.1)
“

ż

Rn

ˆ
ż 8

ε

p(((((((((
ϕpx, tq∆Gε

px, tq ´(((((((((
ϕpx, tq∆Gε

px, tqq dt

`

ż ε

0

pϕpx, tqBtG
ε
px, tq ´ ϕpx, tq∆Gε

px, tqq dt

˙

dx

“

ż

Rn

ż ε

0

ϕpx, tqpBt ´ ∆qGε
px, tq dt dx “

ż

Rn

ϕpx, εqGpx, εq dx.

(b) Let ϕ P C8
c pRnˆRq. Since G P D1pRnˆRq, by [Fol99, Proposition 9.3(b)] we have

pBt ´ ∆qpG ˚ ϕq “ ppBt ´ ∆qGq ˚ ϕ “ δ ˚ ϕ “ ϕ,

where the second equality is by part (a) and the third equality holds since δ is an
identity for the convolution product.

9.2 Compactly Supported, Tempered, and Periodic Distributions

If U is an open set in Rn, the space of all distributions on U whose support is a
compact subset of U is denoted by E1pUq; as usual, we set E1 “ E1pRnq.E1pUq turns out to
be a dual space in its own right, as we shall now show.

The space C8pUq of C8 functions on U is a Fréchet space with the C8 topology—that
is, the topology of uniform convergence of functions, together with all their derivatives, on
compact subsets of U . This topology can be defined by a countable family of seminorms
as follows. Let tVmu

8

1 be an increasing sequence of precompact open subsets of U whose
union is U , as in Proposition 122; then for each m P Zě1 and each multi-index α we have
the seminorm

}f}rm,αs “ supxPVm
|B
αfpxq|

Clearly Bαfj Ñ Bαf uniformly on compact sets for all α if and only if }fj ´ f}
rm,αs

Ñ 0
for all m,α; a different choice of sets Vm would yield an equivalent family of seminorms.
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Proposition 9.21: 9.7.

C8
c pUq is dense in C8pUq.

Proof. Let tVmu
8

1 be as in (9.6). For each m, by the C8 Urysohn lemma we can pick
ψm P C8

c pUq with ψm “ 1 on V m. If ϕ P C8pUq, clearly }ψmϕ ´ ϕ}
rm0,αs

“ 0 provided
m ě m0; thus ψmϕ Ñ ϕ in the C8 topology.

Theorem 9.22: 9.8.

E1pUq is the dual space of C8pUq. More precisely: If F P E1pUq, then F extends
uniquely to a continuous linear functional on C8pUq; and if G is a continuous linear
functional on C8pUq, then G|C8

c pUq P E1pUq.

Proof. If F P E1pUq, choose ψ P C8
c pUq with ψ “ 1 on supppF q, and define the linear

functional G on C8pUq by xG, ϕy “ xF, ψϕy. Since F is continuous on C8
c psupppψqq, and

the topology of the latter is defined by the norms ϕ ÞÑ }Bαϕ}u, by Proposition 87 there
exist N P Zě1 and C ą 0 such that |xG, ϕy| ď C

ř

|α|ďN}Bαpψϕq}u for ϕ P C8pUq. By the
product rule, if we choose m large enough so that supppψq Ă Vm, this implies that

|xG, ϕy| ď C 1
ÿ

|α|ďN
supxPsupppψq|B

αϕpxq| ď C 1
ÿ

|α|ďN
}ϕ}rm,αs

so that G is continuous on C8pUq. That G is the unique continuous extension of F follows
from Proposition 21.

On the other hand, if G is a continuous linear functional on C8pUq, by Proposition 87
there exist C,m,N such that |xG, ϕy| ď C

ř

|α|ďN }ϕ}rm,αs for all ϕ P C8pUq. Since
}ϕ}rm,αs ď }Bαϕ}u, this implies that G is continuous on C8

c pKq for each compact K Ă U ,
so G|C8

c pUq P D1pUq. Moreover, if rsupppϕqs X V m “ ∅, then xG, ϕy “ 0; hence
supppGq Ă V m and G|C8

c pUq P D1pUq.
The operations of differentiation, multiplication by C8 functions, translation, and

composition by linear maps discussed in Folland Section 9.1 all preserve the class E1. As
for convolution, there is more to be said.

First, if F P E1 and ϕ P C8
c then F ˚ ϕ P C8

c , as Proposition 11d remains valid in this
setting. Second, if F P E1 and ψ P C8, F ˚ ψ can be defined as a C8 function or as a
distribution just as before:

F ˚ ψpxq “

A

F, τx rψ
E

, xF ˚ ψ, ϕy “ xF, ϕ ˚ rψy pϕ P C8
c q

(see Folland Exercise 9.16). Finally, a further dualization allows us to define convolutions
of arbitrary distributions with compactly supported distributions. To wit, if F P D1 and
G P D1, we can define F ˚ G P D1 and G ˚ F P D1 as follows:

xF ˚ G, ϕy “ xF, rG ˚ ϕy, xG ˚ F, ϕy “ xG, rF ˚ ϕy pϕ P C8
c q

and likewise for rF . The proof that F ˚ G and G ˚ F are indeed distributions (i.e., that
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they are continuous on C8
c ) and that F ˚ G “ G ˚ F requires a closer examination of

the continuity of the maps involved. We shall not pursue this matter here; however, see
Exercises 20 and 21.

A notable omission from our list of operations that can be extended from functions
to distributions is the Fourier transform F. The trouble is that F does not map C8

c into
itself; in fact, if ϕ P C8

c , then pϕ cannot vanish on any nonempty open set unless ϕ “ 0.
To see this, suppose pϕ “ 0 on a neighborhood of ξ0. Replacing ϕ by e´2πiξ0¨xϕ, we may
assume that ξ0 “ 0. Since ϕ has compact support, we can expand e´2πiξ¨x in its Maclaurin
series and integrate term by term to obtain

pϕpξq “
ÿ8

k“0

1

k!

ż

p´2πiξ ¨ xq
kϕpxqdx “

ÿ

α

1

α!
ξα

ż

p´2πixq
αϕpxqdx

(see Folland Exercise 8.2(a) in Folland Section 8.1). But
ş

p´2πixqαϕpxqdx “ Bαpϕp0q for
all α by Theorem 31d. These derivatives all vanish by assumption, so pϕ “ 0 and hence
ϕ “ 0.

However, we do have available a slightly larger space of smooth functions that is
mapped into itself by F, namely, the Schwartz class δ. We recall that F is a Fréchet space
with the topology defined by the norms

}ϕ}pN,αq “ supxPRnp1 ` |x|q
N

|B
αϕpxq|

Proposition 9.23: 9.9.

Suppose ψ P C8
c and ψp0q “ 1, and let ψεpxq “ ψpεxq. Then for any ϕ P S, ψεϕ Ñ ϕ

in S as ε Ñ 0. In particular, C8
c is dense in S.

Proof. Given N P Zě1, for any η ą 0 we can choose a compact set K such that
p1 ` |x|qN |ϕpxq| ă η for x R K. Since ψpεxq Ñ 1 uniformly for x P K as ε Ñ 0, it
follows easily that }ψεϕ ´ ϕ}

pN,0q
Ñ 0 for every N . For the norms involving derivatives,

we observe that by the product rule,
p1 ` |x|q

N
B
α
pψεϕ ´ ϕq “ p1 ` |x|q

N
pψεBαϕ ´ B

αϕq ` Eεpxq

where Eε is a sum of terms involving derivative of ψε. Since
|B
βψεpxq| “ ε|β|

|B
βψpεxq| ď Cβε

|β|

we have }Eε}u ď Cε Ñ 0 as ε Ñ 0. The preceding argument then shows that
}ψεϕ ´ ϕ}

pN,αq
Ñ 0.

A tempered distribution is a continuous linear functional on δ. The space of tempered
distributions is denoted by δ1; it comes equipped with the weak* topology, that is, the
topology of pointwise convergence on δ. If F P S1, then F |C8

c is clearly a distribution,
since convergence in C8

c implies convergence in S, and F |C8
c determines F uniquely by

Proposition 23. Thus we may, and shall, identify δ1 with the set of distributions that
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extend continuously from C8
c to δ. We say that a locally integrable function is tempered

if it is tempered as a distribution.
The condition that a distribution be tempered means, roughly speaking, that it does

not grow too fast at infinity. Here are a few examples: - Every compactly supported
distribution is tempered. - If f P L1

loc pRnq and
ş

p1 ` |x|qN |fpxq|dx ă 8 for some N , then
f is tempered, for

ˇ

ˇ

ş

fϕ
ˇ

ˇ ď C}ϕ}p0,Nq. - The function fpxq “ eax on R is tempered if and
only if a is purely imaginary. Indeed, suppose a “ b ` ic with b, c real. If b “ 0, then f
is bounded and hence tempered by (ii). If b ‰ 0, choose a function ψ P C8

c such that
ş

ψ “ 1, and let ϕjpxq “ e´axψpx ´ jq. It is easily verified that ϕj Ñ 0 in δ as j Ñ `8

(if b ą 0) or j Ñ ´8 (if b ă 0), but
ş

fϕj “
ş

ψ “ 1 for all j. - On the other hand, the
function fpxq “ ex cos ex on R is tempered, because it is the derivative of the bounded
function sin ex. Indeed, if ϕ P S, integration by parts yields

ˇ

ˇ

ˇ

ˇ

ż

fϕ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

´

ż

ϕ1
pxq sin exdx

ˇ

ˇ

ˇ

ˇ

ď C}ϕ}p2,1q

Intuitively, fpxq is not too large “on average” when x is large, because of its rapid
oscillations.

We turn to the consideration of the basic linear operations on tempered distributions.
The operations of differentiation, translation, and composition with linear transformations
work just the same way for tempered distributions as for plain distributions; these
operations all map δ and δ1 into themselves. The same is not true of multiplication by
arbitrary smooth functions, however. The proper requirement on ψ P C8 in order for the
map F Ñ ψF to preserve S and S1 is that ψ and all its derivatives should have at most
polynomial growth at infinity:

|B
αψpxq| ď Cαp1 ` |x|q

Npαq for all α
Such C8 functions are called slowly increasing. For example, every polynomial is slowly
increasing; so are the functions p1 ` |x|2q

s
ps P Rq, which will play an important role in

the next section.
As for convolutions, for any F P S1 and ψ P S we can define the convolution F ˚ ψ by

F ˚ ψpxq “

A

F, τx rψ
E

, as before, and we have an analogue of Proposition 3:

Proposition 9.24: 9.10.

If F P S1 and ψ P S, then F ˚ ψ is a slowly increasing C8 function, and for any ϕ P S

we have
ş

pF ˚ ψqϕ “ xF, ϕ ˚ rψy.

Proof. That F ˚ ψ P C8 is established as in Proposition 3. By Proposition 87, the
continuity of F implies that there exist m,N,C such that

|xF, ϕy| ď C
ÿ

|α|ďN
}ϕ}pm,αq pϕ P Sq
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and hence by (8.12),

|F ˚ ψpxq| ď C
ÿ

|α|ďN
supyp1 ` |y|q

m
|B
αψpx ´ yq|

ď Cp1 ` |x|q
m
ÿ

|α|ďN
supyp1 ` |x ´ y|q

m
|B
αψpx ´ yq|

ď Cp1 ` |x|q
m
ÿ

|α|ďN
}ψ}pm,αq.

The same reasoning applies with ψ replaced by Bβψ, so F ˚ ψ is slowly increasing.
Next, by Proposition 3 we know that the equation

ş

pF ˚ ψqϕ “ xF, ϕ ˚ rψy holds when
ϕ, ψ P C8

c . By Proposition 23, if ϕ, ψ P S we can find sequences tϕju and tψju in
C8
c that converge to ϕ and ψ in S. Then ϕj ˚ rψj Ñ ϕ ˚ rψ in S by (the proof of)

Proposition 16, so
A

F, ϕj ˚ rψj

E

Ñ xF, ϕ ˚ rψy. On the other hand, the preceding estimates
show that |F ˚ ψjpxq| ď Cp1 ` |x|qm with C and m independent of j, and likewise
|ϕjpxq| ď Cp1 ` |x|q´m´n´1, so

ş

pF ˚ ψjqϕj Ñ
ş

pF ˚ ψqϕ by the dominated convergence
theorem.

Finally, we come to the principal raison d’être of tempered distributions, the Fourier
transform. We recall (Corollary 32) that the Fourier transform maps δ continuously into
itself, and that for f, g P L1 (in particular, for f, g P S) we have

ż

pfpyqgpyqdy “

ĳ

fpxqgpyqe´2πix¨ydxdy “

ż

fpxqpgpxqdx

We can therefore extend the Fourier transform to a continuous linear map from S1 to itself
by defining

x pF , ϕy “ xF, pϕy pF P S1, ϕ P Sq.

This definition clearly agrees with the one in Chapter 8 when F P L1 ` L2.
The basic properties of the Fourier transform in Theorem 31 continue to hold in this

setting. To wit,

pτyF q “ e´2πiξ¨y
pF , τη pF “

”

e2πiη¨x
xF s,

B
α
pF “

”

p´2πixq
αFps,

´

B
αF pF “ p2πiξq

α
pF

´

f ˝ Tpq “ | detT |
´1

pf ˝ pT ˚
q

´1
pT P GLpn,Rqq,

pF ˚ ψq pψ “ pψ pF pψ P Sq.

(The first four of these formulas involve products of slowly increasing C8 functions,
specified by their values at a general point x or ξ, and tempered distributions.) The easy
verifications of these facts are left to the reader (Folland Exercise 9.17).

Moreover, we can define the inverse transform in the same way:
xF_, ϕy “ xF, ϕ_

y.
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The Fourier inversion theorem formula ϕ “ ppϕq_ “ pϕ_q
pT then extends to S1:

A

p pF q
_, ϕ

E

“

A

pF , ϕ_
E

“ xF, pϕ_
qy “ xF, ϕy

so that p pF q_ “ F , and likewise
´

F_
pq “ F . Thus the Fourier transform is an isomorphism

on S 1.
If F P E1, there is an alternative way to define pF . Indeed, xF, ϕy makes sense for any

ϕ P C8, and if we take ϕpxq “ e´2πiξ¨x, we obtain a function of ξ that has a strong claim
to be called pF pξq. In fact, the two definitions are equivalent:

Proposition 9.25: 9.11.

If F P E1, then pF is a slowly increasing C8 function, and it is given by pF pξq “ xF,E´ξy

where Eξpxq “ e2πiξ¨x.

Proof. Let gpξq “ xF,E´ξy. Consideration of difference quotients of g, as in the
proof of Proposition 3, shows that g is a C8 function with derivatives given by Bαgpξq “

xF, Bαξ E´ξy “ p´2πiq|α|xF, xαE´ξy. Moreover, by Theorem 22 and Proposition 87, there
exist m,N,C such that

|B
αgpξq| ď C

ÿ

|β|ďN
sup|x|ďm|B

β
rxαE´ξpxqs| ď C 1

p1 ` mq
|α|

p1 ` |ξ|q
N

so g is slowly increasing.
It remains to show that g “ pF , and by Proposition 23 it suffices to show that

ş

gϕ “ xF, pϕy for ϕ P C8
c . In this case gϕ P C8

c , so
ş

gϕ can be approximated by Riemann
sums as in the proof of Proposition 3, say

ř

gpξjqϕpξjq∆ξj. The corresponding sums
ř

ϕpξjqe
´2πiξj ¨x∆ξj and their derivatives in x converge uniformly, for x in any compact

set, to pϕpxq and its derivatives. Therefore, since F is a continuous functional on C8,
ż

gϕ “ lim
ÿ

xF,E´ξjyϕpξjq∆ξj “ lim
A

F,
ÿ

ϕpxjqE´ξj∆ξj

E

“ xF, pϕy

It is time for some examples. First and foremost, the Fourier transform of the point mass
at 0 is the constant function 1 : xδ, E´ξy “ E´ξp0q “ 1. More generally, for point masses
at other points and their derivatives, we have

´

B
ατyδpqpξq “ p´1q

|α|
xδ, τ´yB

αE´ξy “ p´1q
|α|

B
α
x pe´2πiξ¨px`yq

q|x“0

“ p2πiξq
αe´2πiξ¨y

In particular:

Proposition 9.26: 9.12.

The Fourier transforms of the linear combinations of δ and its derivatives are precisely
the polynomials.
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The Fourier inversion theorem then yields the formulas for the Fourier transforms of
polynomials and imaginary exponentials:

pxαq
p´

“ rp´xq
α
s

_
“ p´2πiq´|α|

B
αδ, pEy “ pE´yq

_
“ τyδ

As an illustration of the heuristics associated to these results, consider the formula
ż

e2πiξ¨xdξ “ δpxq

Although this is nonsensical as a pointwise equality, it is valid when viewed from the right
angle. One the one hand, it expresses the fact that the Fourier transform of the constant
function 1 is δ. More interestingly, it is a concise statement of the Fourier inversion
theorem. Indeed, if we replace x by x ´ y, integrate both sides against ϕ P S, and reverse
the order of integration on the left, we obtain

ĳ

ϕpyqe2πiξ¨px´yqdydx “

ż

δpx ´ yqϕpyqdy

The integral on the left is ppϕq_pxq, and the integral on the right equals ϕpxq !
It is an important fact that every distibution is, at least locally, a linear combination

of derivatives of continuous functions. The Fourier transform yields an easy proof of this:

Proposition 9.27: 9.14.

(a) If F P E1, there exist N P Zě1, constants cαp|α| ď Nq, and f P C0pZně1q such that
F “

ř

|α|ďN cαBαf .
(b) If F P D1pUq and V is a precompact open set with V Ă U , there exist N, cα, f as

above such that F “
ř

|α|ďN cαBαf on V .

Proof. By Proposition 25, if F P E1 then pF is slowly increasing, so the function
gpξq “ p1 ` |ξ|2q

´M
pF pξq will be in L1 if the integer M is chosen sufficiently large. Let

f “ pg; then f P C0 and pF “ p1 ` |ξ|2q
M
pf , so F “ pI ´ p4π2q

´1řn
1 B2

j q
Mf . This proves

(a); for (b), choose ψ P C8
c pUq such that ψ “ 1 on V , and apply (a) to ψF .

We conclude this section with a sketch of the theory of periodic distributions; some of
the details are fleshed out in Exercises 22-24.

The space C8pTnq of smooth periodic functions is a Fréchet space with the topology
defined by the seminorms ϕ ÞÑ }Bαϕ}u, and a distribution on Tn is a continuous linear
functional on this space; the space of distributions on Tn is denoted by D1pTnq. If
F P D1pTnq, its Fourier transform is the function pF on Tn define by pfpκq “ xF,E´κy

where Eκpxq “ e2πiκ¨x. Since F satisfies an estimate of the form |xF, ϕy| ď C
ř

|α|ďN}Bαϕ}u,
there exist C,N such that

| pF pκq| ď Cp1 ` |κ|q
N

and the Fourier transform is an isomorphism from D1pTnq to the space of all functions on
Tn satisfying such an estimate. Moreover, if F P D1pTnq, the Fourier series

ř

κ
pF pκqEκ
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converges in D1pTnq to F .
Instead of defining periodic distributions as distributions on Tn (linear functionals on

C8pTnq), one can define them as distributions on Tn (linear functionals on C8
c pTnq) that

are invariant under the translations τκ, κ P Tn. Accordingly, let
D1

pRn
qper “ tF P D1

pRn
q | τκF “ F for κ P Ru

The periodization map Pϕ “
ř

κPZn τκϕ used in Theorem 40 is easily seen to map
C8
c pZnq continuously into C8pZnq, so it induces a map P 1 : D1pZnq Ñ D1pZnq given by

xP 1F, ϕy “ xF, Pϕy. Since P ˝ τκ “ P for κ P Zn, we have τκ ˝ P 1 “ P 1, that is, the range
of P 1 lies in D1pZnqper. . In fact, P 1 : D1pZnq Ñ D1pZnqper is a bijection. (The proof is
nontrivial; see Folland Exercise 9.24.) Moreover, if f P L1pZnq, then f and P 1f coincide
as periodic functions on Z, for if ϕ P C8

c pZnq,

xP 1f, ϕy “ xf, Pϕy “

ż

r0,1qn
fpxq

ÿ

ϕpx ´ κqdx

“
ÿ

ż

r0,1qn`κ

fpxqϕpxqdx “

ż

Rn

fpxqϕpxqdx “ xf, ϕy.

Thus the two descriptions of periodic distributions are equivalent.
If F P D1pTnq, the Fourier series

ř

pF pκqEκ converges in D1pTnq to F ; on the other
hand, it follows easily from (9.15) that it also converges in S 1pTnq, and its sum there is
P 1f . Thus D1pTnqper Ă D1pTnq, and by (9.13) we have

pP 1F q “
ÿ

pF pκq pEκ “
ÿ

pF pκqτκδ

giving the relation between the Rn—and Rn-Fourier transforms for periodic distributions.
In particular, if F “ δRn , the point mass at the origin in Rn, then pF pκq “ 1 for all κ;
hence P 1F and pP 1F q are both equal to

ř

τκδ´ a restatement of the Poisson summation
formula.

Exercise 9.28: Folland Exercise 9.16.

Suppose F P E1 and ψ P C8. Show that for any ϕ P C8
c ,

ş

A

F, τx rψ
E

ϕpxqdx “ xF, ϕ ˚ rψy.
(The result can be reduced to Proposition 3; given F and ϕ, the indicated expressions
depend only on the values of ψ in a compact set.)

Exercise 9.29: Folland Exercise 9.17.

Suppose that F P S1. Show that

(a)
´

τyFpq “ e´2πiξ¨y
pF , τη pF “

”

e2πiη¨xFps .

(b) Bα pF “

”

p´2πixqαFps, pBαF q “ p2πiξqα pF .

(c)
´

F ˝ Tpq “ | detT |´1
pF ˝ pT ˚q

´1 for T P GLpn,Rq.
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(d) pF ˚ ψq pψ pψ pF for ψ P S.

Exercise 9.30: Folland Exercise 9.18.

If n “ l ` m, let us write x P Rn as py, zq with y P Rl and z P Rm. Let F denote the
Fourier transform on Rn and F1,F2 the partial Fourier transforms in the first and
second sets of variables—i.e., F1fpη, zq “

ş

fpy, zqe´2πiη¨ydy and likewise for F2. Then
F1 and F2 are isomorphisms on FpRnq and F1pRnq, and F “ F1F2 “ F2F1.

Exercise 9.31: Folland Exercise 9.19.

On R, let F0 “ PV p1{xq as defined in Folland Exercise 9.10. Also, for ε ą 0 let
Fεpxq “ xpx2 ` ε2q´1, G˘

ε pxq “ px ˘ iεq´1, and Sεpxq “ e´2πε|x| sgnx.
(a) limεÑ0 Fε “ F0 in the weak* topology of S1. (Theorem 17, with a “ 0, may be

useful.)
(b) limεÑ0Gε “ F0 ¯ πiδ. (Hint: px ˘ iεq´1 “ px ¯ iεqpx2 ` ε2q´1.)
(c) pSε “ pπiq´1Fε and hence xsgn “ pπiq´1F0.
(d) From (c) it follows that pF0 “ ´πi sgn. Prove this directly by showing that

F0 “ limεÑ0,NÑ8 Hε,N , where Hε,Npxq “ x´1 if ε ă |x| ă N and Hε,Npxq “ 0
otherwise, and using Folland Exercise 2.59(b).

(e) Compute pχp0,8q (i) by writing χp0,8q “ 1
2
sgn`1

2
and using (c), (ii) by writing

χp0,8qpxq “ lim e´εxχp0,8qpxq and using (b).

Exercise 9.32: Folland Exercise 9.20.

Suppose that F P S1 and G P S1.
(a) pF pG is well-defined element of S1.
(b) If ψ P S, then G ˚ ψ P S.
(c) Let F ˚ G (or G ˚ F ) be the tempered distribution such that pF ˚ Gq pF “ pF p. .

Then xF ˚ G,ψy “ xF, rG ˚ ψy “ xG, rF ˚ ψy for ψ P S.

Exercise 9.33: Folland Exercise 9.21.

Suppose that F,G,H P S1.
(a) If at most one of F,G,H has noncompact support, then pF ˚Gq ˚H “ F ˚ pG ˚Hq,

where the convolutions are defined as in Folland Exercise 9.20.
(b) On R, let F be the constant function 1, G “ dδ{dx, and H “ χp0,8q. Then

pF ˚ Gq ˚ H and F ˚ pG ˚ Hq are well defined in S1 but are unequal.
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Exercise 9.34: Folland Exercise 9.22.

Let Eκpxq “ e2πiκ¨x. If g : Zn Ñ Z satisfies |gpκq| ď Cp1 ` |κ|qN for some C,N ą 0,
then the series

ř

κPZn gpκqEκ converges in D1pZnq to a distribution F that satisfies
pF “ g. It also converges in D1pZnq to a tempered distribution G p“ P 1F q such that
τκG “ G for all κ.

Exercise 9.35: Folland Exercise 9.23.

Suppose that F,G P D1pTnq.

(a) There is a unique F ˚G P D1pTnq such that pF ˚Gpq “ pF pG. (Use Folland Exercise
9.22.)

(b) If G P C8pTnq, then F ˚ G P C8pTnq and F ˚ Gpxq “

A

F, τx rG
E

as on Tn.

Exercise 9.36: Folland Exercise 9.24.

Let P be the periodization map, Pϕ “
ř

κPZn τκϕ.
(a) P is a continuous linear map from C8

c pRnq to C8pRnq. (Note that for ϕ P C8
c and

x in a compact set, only finitely many terms of the series
ř

τκϕpxq are nonzero.)
(b) Choose γ P C8

c with
ş

γ “ 1, and let ω “ γ ˚ χr0,1qn . Then ω P C8
c and Pω “ 1.

(c) If ψ P C8pTnq, then ψ “ P pωψq (where ψ is regarded as a function on Tn on
the left and as a function on Tn on the right). Consequently, P : C8

c pTnq Ñ

C8pTnq is surjective and the dual map P 1 : D1pTnq Ñ D1pTnqper is injective. d.
Given G P D1pTnqper , define F P D1pTnq by xF, ψy “ xG,ωψy (with the same
understanding as in part (c)). Then P 1F “ G, so P 1 maps D1pTnq onto D1pTnqper .

Exercise 9.37: Folland Exercise 9.25.

Suppose that P is a polynomial in n variables such that only zero of P pξq in Rn is
ξ “ 0, and let P pDq be as in Folland Section 8.7.
(a) Every tempered distribution F that satifies P pDqF “ 0 is a polynomial. (Use

Proposition 26 and Folland Exercise 9.11.)
(b) Every bounded function f that satisfies P pDqf “ 0 is a constant. (This result, for

the special cases where P pDq is the Laplacian or the Cauchy-Riemann operator
Bx ` iBy on R2, is known as Liouville’s theorem.)

Exercise 9.38: Folland Exercise 9.26.

On RnˆR, let Gpx, tq “ p4πtq´n{2e´|x|2{4tχp0,8qptq.
(a) pG is the tempered function pGpξ, τq “ p2πiτ ` 4π2|ξ|2q

´1. (Use Proposition 33
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and Folland Exercise 9.18.)
(b) Deduce that pBt ´ ∆qG “ δ. (Cf. Folland Exercise 9.15.)

Exercise 9.39: Folland Exercise 9.27.

Suppose that 0 ă Reα ă n.
(a) For any ϕ P S,

Γppn ´ αq{2q

πpn´αq{2

ż

|x|
α´n

pϕpxqdx “
Γpα{2q

πα{2

ż

|ξ|
´αϕpξqdξ

(Hint: By Proposition 33 and Lemma 34, if t ą 0 we have
ż

e´πt|x|2
pϕpxqdx “ t´n{2

ż

e´π|ξ|2{tϕpξqdξ

Multiply both sides by t´1`pn´αq{2dt and integrate from 0 to 8.)
(b) Let Rαpxq “ Γppn´αq{2qrΓpα{2q2απn{2s

´1
|x|α´n. Then Rα is a tempered function

and pRα is the tempered function pRαpξq “ p2π|ξ|q´α.
(c) If n ą 2, then ∆R2 “ ´δ. (Cf. Folland Exercise 9.14. See the next exercise for

the case n “ 2.)

Exercise 9.40: Folland Exercise 9.28.

Suppose n “ 2. For 0 ă Reα ă 2, let cα “ Γpp2 ´ αq{2qrΓpα{2q2απs
´1 and Qαpxq “

cαp|ξ|α´2 ´ 1q. (Note that Qα differs by a constant from the Rα in Folland Exercise
9.27.)
(a) limαÑ2Qαpxq “ ´p2πq´1 log |x|, pointwise and in S1.
(b) By (a), limαÑ2

pQα exists in S1, and by Exercise 27b, pQαpξq “ p2π|ξ|q´α´ cαδ.
Noting that p2π|ξ|q´2 is not integrable near the origin and that limαÑ2 cα “ 8,
find an explicit formula for limαÑ2

pQα. (Folland Exercise 9.12 may help.)

Exercise 9.41: Folland Exercise 9.29.

For 1 ď p ă 8, let Cp be the set of all F P C1 for which there exists C ě 0 such that
}F ˚ ϕ}p ď C}ϕ}p for all ϕ P C, so that the map ϕ ÞÑ F ˚ ϕ extends to a bounded
operator on Lp.
(a) C1 “ MpRnq. (If F P C1, consider F ˚ ϕt where tϕtu is an approximate identity,

and apply Alaoglu’s theorem.)
(b) C2 “

!

F P C1

ˇ

ˇ

ˇ

pF P L8

)

. (Use the Plancherel theorem.)

(c) If p and q are conjugate exponents, then Cp “ Cq. (Hint: xF ˚ ϕ, ψy “ xF ˚ rψ, rϕy.)
(d) If 1 ď p ď 2 and q is the conjugate exponent to p, then ep Ă Cr for all r P pp, qq.
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(Use the Riesz-Thorin theorem.)
(e) C1 Ă Cp Ă C2 for all p P p1,8q.

9.3 Sobolev Spaces

One of the most satisfactory ways of measuring smoothness properties of functions and
distributions is in terms of L2 norms. There are two reasons for this: L2 has the advantage
of being a Hilbert space, and the Fourier transform, which converts differentiation into
multiplication by the coordinate functions, is an isometry on L2.

As a first step, suppose k P Zě1 and let Hk be the space of all functions f P L2pZně1q

whose distribution derivatives Bαf are L2 functions for |α| ď k. One can make Hk into a
Hilbert space by imposing the inner product

pf, gq ÞÑ
ÿ

|α|ďk

ż

pB
αfq

`

Bαg
˘

However, it is more convenient to use an equivalent inner product defined in terms of
the Fourier transform. Theorem 31e and the Plancherel theorem imply that f P Hk if
and only if ξα pf P L2 for |α| ď k. A simple modification of the argument in the proof of
Proposition 2 shows that there exist C1, C2 ą 0 such that

C1p1 ` |ξ|
2
q
k

ď
ÿ

|α|ďk
|ξα|

2
ď C2p1 ` |ξ|

2
q
k

from which it follows that f P Hk if and only if p1 ` |ξ|2q
k{2

pf P L2 and that the norms

f ÞÑ

´

ÿ

|α|ďk
}B
αf}

2
2

¯1{2

and f ÞÑ

›

›

›
p1 ` |ξ|

2
q
k{2

pf
›

›

›

2

are equivalent. The latter norm, however, makes sense for any k P R, and we can use it to
extend the definition of Hk to all real k.

We proceed to the formal definitions. For any s P R the function ξ ÞÑ p1 ` |ξ|2q
s{2 is

C8 and slowly increasing (Folland Exercise 9.30), so the map Λs defined by

Λsf “

”

p1 ` |ξ|
2
q
s{2

pf
ı_

is a continuous linear operator on S1—actually an isomorphism, since Λ´1
s “ Λ´s. If s P R,

we define the Sobolev space Hs to be
Hs “ tf P S1

| Λsf P L2
u

and we define an inner product and norm on Hs by

xf, gypsq “

ż

pΛsfq
`

Λsg
˘

“

ż

pfpξqp1 ` |ξ|
2
q
sgpξq

}f}psq “ }Λsf}2 “

„
ż

| pfpξq|
2
p1 ` |ξ|

2
q
sdξ

ȷ1{2

(The equality of the two formulas for xf, gypsq and for }f}psq follows from the Plancherel
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theorem.) Note that the inner products x¨, ¨ypsq are conjugate linear in the second variable,
but we are continuing to use the notation x¨, ¨y for the bilinear pairing between S1 and
S. This will cause no confusion, since we shall not be using the inner products x¨, ¨ypsq

explicitly.
The following properties of Sobolev spaces are simple consequences of the definitions

and the preceding discussion:
(i) The Fourier transform is a unitary isomorphism fromHs to L2pRn, µsq where dµspξq “

p1 ` |ξ|2q
sdξ. In particular, Hs is a Hilbert space.

(ii) S is a dense subspace of Hs for all s P R. (This follows easily from (i) and Proposi-
tion 19.)

(iii) If t ă s,Hs is a dense subspace of Ht in the topology of Ht, and } ¨ }ptq ď } ¨ }psq.
(iv) Λt is a unitary isomorphism from Hs to Hs´t for all s, t P R.
(v) H0 “ L2 and } ¨ }p0q “ } ¨ }2 (by Plancherel).
(vi) Bα is a bounded linear map from Hs to Hs´|α| for all s, α (because |ξα| ď

p1 ` |ξ|2q
|α|{2

q.
By (iii) and (v), for s ě 0 the distributions in Hs are L2 functions. For s ă 0 the elements
of Hs are generally not functions. For example, the point mass δ is in Hs if and only if
s ă ´1

2
n, for pδ is the constant function 1, and

ş

p1 ` |ξ|2q
sdξ ă 8 if and only if s ă ´1

2
n.

Another example: The distribution Wt whose Fourier transform is p2π|ξ|q´1 sin 2πt|ξ|,
which arose in the discussion of the wave equation in Folland Section 8.7, is in Hs if and
only if s ă 1 ´ 1

2
n; it is in L1 X L2 when n “ 1 and in L1zL2 for n “ 2, but is not a

function for n ě 3.

Proposition 9.42: 9.16.

If s P R, the duality between S1 and S induces a unitary isomorphism from H´s

to pHsq
˚. More precisely, if f P H´s, the functional ϕ ÞÑ xf, ϕy on S extends to a

continuous linear functional on Hs with operator norm equal to }f}p´sq, and every
element of pHsq

˚ arises in this fashion.

Proof. If f P H´s and ϕ P S,

xf, ϕy “

A

f_, pϕ
E

“

ż

f_
pξqpϕpξqdξ

since f_pξq “ pfp´ξq is a tempered function. Thus by the Schwarz inequality,

|xf, ϕy| ď

„
ż

|f_
pξq|

2
p1 ` |ξ|

2
q

´sdξ

ȷ1{2„ż

|pϕpξq|
2
p1 ` |ξ|

2
q
sdξ

ȷ1{2

“ }f}p´sq}ϕ}psq

so the functional ϕ ÞÑ xf, ϕy extends continuously to Hs, with norm at most }f}p´sq. In
fact, its norm equals }f}p´sq, since if g P S1 is the distribution whose Fourier transform is
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pgpξq “ p1 ` |ξ|2q
´s

pfpξq, we have g P Hs and

xf, gy “

ż

| pfpξq|
2
p1 ` |ξ|

2
q
sdξ “ }f}

2
p´sq “ }f}p´sq}g}psq

Finally, if G P pHsq
˚, then G ˝ F´1 is a bounded linear functional on L2pµsq where

dµspξq “ p1 ` |ξ|2q
sdξ, so there exists g P L2pµsq such that

Gpϕq “

ż

pϕpξqgpξqp1 ` |ξ|
2
q
sdξ

But then Gpϕq “ xf, ϕy where f_pξq “ p1 ` |ξ|2q
sgpξq, and f P H´s since

}f}
2
p´sq “

ż

| pfpξq|
2
p1 ` |ξ|

2
q

´sdξ “

ż

|gpξq|
2
p1 ` |ξ|

2
q
sdξ

For s ą 0, the elements of Hs are L2 functions that are “ L2-differentiable up to order
s,” and it is natural to ask what is the relationship between this notion of smoothness
and ordinary differentiability. Of course, if one thinks of elements of Hs as distributions
or elements of L2, there is no distinction among functions that agree almost everywhere;
from this perspective, when one says that a function in Hs is of class Ck, one means that
it agrees a.e. with a Ck function. With this understanding, the question just posed has a
simple and elegant answer. We introduce the notation

Ck
0 “ tf P Ck

pRn
q | B

αf P C0 for |α| ď ku

Ck
0 is a Banach space with the Ck norm f ÞÑ

ř

|α|ďk}Bαf}u.

Theorem 9.43: 9.17: The Sobolev Embedding Theorem.

Suppose s ą k ` 1
2
n.

(a) If f P Hs, then
´

Bαfpq P L1 and
›

›

›
pBαfqp}

›

›

›

1
ď C}f}psq for |α| ď k, where C depends

only on k ´ s.
(b) Hs Ă Ck

0 , and the inclusion map is continuous.

Proof. By the Schwarz inequality,

p2πq
´|α|

ż

|

´

B
αfpqpξq|dξ “

ż

ˇ

ˇ

ˇ
ξα pfpξq

ˇ

ˇ

ˇ
dξ ď

ż

p1 ` |ξ|
2
q
k{2

| pfpξq|dξ

ď

„
ż

p1 ` |ξ|
2
q
s
| pfpξq|

2dξ

ȷ1{2„ż

p1 ` |ξ|
2
q
k´sdξ

ȷ1{2

The first factor on the right is }f}psq, and the second one is finite by Corollary 101 since
2pk ´ sq ă ´n. This proves (a), and (b) follows by the Fourier inversion theorem and the
Riemann-Lebesgue lemma.

Version of April 30, 2024 at 11pm EST Page 357 of 368

https://www.greysonwesley.com/home


Greyson C. Wesley §9.3: Sobolev Spaces

Corollary 9.44: 9.18.

If f P Hs for all s, then f P C8.

An example may help to elucidate this theorem. Let fλpxq “ ϕpxq|x|λ, where λ P R
and ϕ P C8

c with ϕ “ 1 on a neighborhood of 0. Then the (classical) derivative Bαfλ is
C8 except at 0 and is homogeneous of degree λ´ |α| near 0, so that |Bαfλ| ď Cα,λ|x|λ´|α|,
and in particular Bαfλ P L1 provided λ ´ |α| ą ´n. In this case Bαfλ, as an L1 function,
is also the distribution derivative of fλ. (To see this, replace fλ by the C8 function
ϕpxqp|x|2 ` ε2qλ{2 and consider the limit as ε Ñ 0.) Moreover, Bαfλ P L2 if and only if
λ ´ |α| ą ´1

2
n, so f P Hkpk “ 0, 1, 2, . . .q if and only if λ ą k ´ 1

2
n, whereas fλ P Ck

0 if
and only if λ ą k. See also Exercises 33-35 for some related results.

Next, we show that multiplication by suitably smooth functions preserves the Hs

spaces. We need a lemma:

Lemma 9.45: 9.19.

For all ξ, η P Rn and s P R,
p1 ` |ξ|

2
q
s
p1 ` |η|

2
q

´s
ď 2|s|

p1 ` |ξ ´ η|
2
q

|s|

Proof. Since |ξ| ď |ξ ´ η| ` |η|, we have |ξ|2 ď 2p|ξ ´ η|2 ` |η|2q and hence
1 ` |ξ|

2
ď 2p1 ` |ξ ´ η|

2
qp1 ` |η|

2
q.

If s ě 0, we have merely to raise both sides to the sth power. If s ă 0, we interchange ξ
and η and replace s by ´s, obtaining

p1 ` |η|
2
q

´s
ď 2´s

p1 ` |ξ|
2
q

´s
p1 ` |ξ ´ η|

2
q

´s

which is again the desired result.

Theorem 9.46: 9.20.

Suppose that ϕ P C0pRnq and that pϕ is a function that satisfies
ż

p1 ` |ξ|
2
q
a{2

|pϕpξq|dξ “ C ă 8

for some a ą 0. Then the map Mϕpfq “ ϕf is a bounded operator on Hs for |s| ď a.

Proof. Since Λs is a unitary map from Hs to H0 “ L2, it is equivalent to show that
ΛsMϕΛ´s is a bounded operator on L2. But

ˆ

ΛsMϕΛ´sf pfqpξq “ p1 ` |ξ|
2
q
s{2

„

pϕ ˚ pΛ´sfqpspξq “

ż

Kpξ, ηq pfpηqdη

where
Kpξ, ηq “ p1 ` |ξ|

2
q
s{2

p1 ` |η|
2
q

´s{2
pϕpξ ´ ηq
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By Lemma 45,
|Kpξ, ηq| ď 2|s|{2

p1 ` |ξ ´ η|
2
q

|s|{2
|pϕpξ ´ ηq|

so if |s| ď a, then
ş

|Kpξ, ηq|dξ and
ş

|Kpξ, ηq|dη are bounded by 2a{2C. That ΛsMϕΛ´s is
bounded on L2 therefore follows from the Plancherel theorem and Theorem 50.

Corollary 9.47: 9.21.

If ϕ P S, then Mϕ is a bounded operator on Hs for all s P R.

Our next result is a compactness theorem that is of great importance in the applications
of Sobolev spaces.

Theorem 9.48: 9.22: Rellich’s Theorem.

Suppose that tfku is a sequence of distributions in Hs that are all supported in a fixed
compact set K and satisfy supk}fk}

psq
ă 8. Then there is a subsequence tfkju that

converges in Ht for all t ă s.

Proof. First we observe that by Proposition 25, pfk is a slowly increasing C8 function.
Pick ϕ P C8

c such that ϕ “ 1 on a neighborhood of K. Then fk “ ϕfk, so pfk “ pϕ˚ pfk where
the convolution is defined pointwise by an absolutely convergent integral. By Lemma 45
and the Schwarz inequality,

p1 ` |ξ|
2
q
s{2
ˇ

ˇ

ˇ

pfkpξq

ˇ

ˇ

ˇ

ď2|s|{2

ż

|pϕpξ ´ ηq|p1 ` |ξ ´ η|
2
q

|s|{2
ˇ

ˇ

ˇ

pfkpηq

ˇ

ˇ

ˇ
p1 ` |η|

2
q
s{2dη

ď2|s|{2
}ϕ}p|s|q}fk}

psq
ď constant.

Likewise, since Bj

´

pϕ ˚ pfk

¯

“

´

Bj
pϕ
¯

˚ pfk, we see that p1 ` |ξ|2q
s{2
ˇ

ˇ

ˇ
Bj
pfkpξq

ˇ

ˇ

ˇ
is bounded by a

constant independent of ξ, j, and k. In particular, the pfks and their first derivatives are
uniformly bounded on compact sets, so by the mean value theorem and the Arzelà-Ascoli
theorem there is a subsequence

!

pfkj

)

that converges uniformly on compact sets.
We claim that tfkju is Cauchy in Ht for all t ă s. Indeed, for any R ą 0 we can write

the integral

}fki ´ fkj}
2
ptq “

ż

p1 ` |ξ|
2
q
t
ˇ

ˇ

ˇ

pfki ´ pfkj

ˇ

ˇ

ˇ

2

pξqdξ

as the sum of the integrals over the regions |ξ| ď R and |ξ| ą R. For |ξ| ď R we use the
estimate

p1 ` |ξ|
2
q
t

ď p1 ` R2
q
maxpt,0q

Version of April 30, 2024 at 11pm EST Page 359 of 368

https://www.greysonwesley.com/home


Greyson C. Wesley §9.3: Sobolev Spaces

and for |ξ| ą R we use the estimate
p1 ` |ξ|

2
q
t

ď p1 ` R2
q
t´s

p1 ` |ξ|
2
q
s

which yield

}fk2 ´ fkj}
2
ptq ďCRn

p1 ` R2
q
maxpt,0q sup|ξ|ďR

ˇ

ˇ

ˇ

pfki ´ pfkj

ˇ

ˇ

ˇ

2

pξq

` p1 ` R2
q
t´s

}fki ´ fkj}
2
psq

Given ε ą 0, the second term will be less than 1
2
ε provided R is chosen sufficiently large,

since t ´ s ă 0; once such an R is fixed, the first term will less than 1
2
ε provided i and j

are sufficiently large. The proof is therefore complete.
Although the definition of Sobolev spaces in terms of the Fourier transform entails

their elements being defined on all of Rn, these spaces can also be used in the study of
local smoothness properties of functions. The key definition is as follows: If U is an open
set in Rn, the localized Sobolev space H loc

s pUq is the set of all distributions f P D1pUq

such that for every precompact open set V with V Ă U there exists g P Hs such that
g “ f on V .

Proposition 9.49: 9.23.

A distribution f P D1pUq is in H loc
s pUq if and only if ϕf P Hs for every ϕ P C8

c pUq.

Proof. If f P H loc
s pUq and ϕ P C8

c pUq, then f agrees with some g P Hs on a
neighborhood of supppϕq; hence ϕf “ ϕg P Hs by Corollary 47. For the converse, given a
precompact open V with V Ă U , we can choose ϕ P C8

c pUq with ϕ “ 1 on a neighborhood
of V by the C8 Urysohn lemma; then ϕf P Hs and ϕf “ f on V . (We have implicitly
used Proposition 110 to obtain compact neighborhoods of suppϕ and V in U .)

We conclude this section with one of the classic applications of Sobolev spaces, a
regularity theorem for certain partial differential operators.

If L “
řm

0 ajpd{dxqj is an ordinary differential operator with C8 coefficients such that
am never vanishes, it is not hard to show that smooth data give smooth solutions. More
precisely, if Lu “ f and f is Ck on an open interval I, then u is Ck`m on I. No such
result holds for partial differential operators in general. For example, for any f P L1

locpRq

the function upx, tq “ fpx ´ tq satisfies the wave equation pB2
t ´ B2

xqu “ 0, but u has only
as much smoothness as f . However, there is a large class of differential operators for
which a strong regularity theorem holds. We restrict attention to the constant-coefficient
case, although the results are valid in greater generality.

Let P pDq “
ř

|α|ďm cαD
α (notation as in Folland Section 8.7) be a constant-coefficient

operator. We assume that m is the true order of P pDq, i.e., that cα ‰ 0 for some α with
|α| “ m. The principal symbol Pm is the sum of the top-order terms in its symbol:

Pmpξq “
ÿ

|α|“m
cαξ

α
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P pDq is called elliptic if Pmpξq ‰ 0 for all nonzero ξ P Rn. Thus, ellipticity means that, in
a formal sense, P pDq is genuinely mth order in all directions. (For example, the Laplacian
∆ is elliptic on Rn, whereas the heat and wave operators Bt ´∆ and B2

t ´∆ are not elliptic
on Rn`1.)

Lemma 9.50: 9.24.

Suppose that P pDq is of order m. Then P pDq is elliptic if and only if there exist
C,R ą 0 such that |P pξq| ě C|ξ|m when |ξ| ě R.

Proof. If P pDq is elliptic, let C1 be the minimum value of the principal symbol Pm on
the unit sphere |ξ| “ 1. Then C1 ą 0, and since Pm is homogeneous of degree m, we have
|Pmpξq| ě C1|ξ|m for all ξ. On the other hand, P ´ Pm is of order m ´ 1, so there exists
C2 such that |P pξq ´ Pmpξq| ď C2|ξ|m´1. Therefore,

|P pξq| ě |Pmpξq| ´ |P pξq ´ Pmpξq| ě
1

2
C1|ξ|

m for |ξ| ě 2C2C
´1
1

Conversely, if P pDq is not elliptic, say Pmpξ0q “ 0, then |P pξq| ď C|ξ|m´1 for every scalar
multiple ξ of ξ0.

Lemma 9.51: 9.25.

If P pDq is elliptic of order m,u P Hs, and P pDqu P Hs, then u P Hs`m.

Proof. The hypotheses say that p1 ` |ξ|2q
s{2
pu P L2 and p1 ` |ξ|2q

s{2Ppu P L2. By
Lemma 50, for some R ě 1 we have

p1 ` |ξ|
2
q
m{2

ď 2m|ξ|
m

ď C´12m|P pξq| for |ξ| ě R

and p1 ` |ξ|2q
m{2

ď p1 ` R2q
m{2 for |ξ| ď R. It follows that

p1 ` |ξ|
2
q

ps`mq{2
|pu| ď C 1

p1 ` |ξ|
2
q
s{2

p|Ppu| ` |pu|q P L2

that is, u P Hs`m.

Theorem 9.52: 9.26: The Elliptic Regularity Theorem.

Suppose that L is a constant-coefficient elliptic differential operator of order m,Ω is
an open set in Rn, and u P D1pΩq. If Lu P H loc

s pΩq for some s P R, then u P H loc
s`mpΩq;

and if Lu P C8pΩq, then u P C8pΩq.

Proof. The second assertion follows from the first in view of Corollary 44, so by
Proposition 49 we must show that if Lu P H loc

s pΩq and ϕ P C8
c pΩq, then ϕu P Hs`m. Let

V be a precompact open set such that supppϕq Ă V Ă V Ă Ω, and choose ψ P C8
c pΩq

such that ψ “ 1 on V . Then ψu P E1, so it follows from Proposition 25 that ψu P Hσ

for some σ P R. By decreasing σ we may assume that s ` m ´ σ is a positive integer k.
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Set ψ0 “ ψ and ψk “ ϕ, and choose recursively ψ1, . . . , ψk´1 P C8
c such that ψj “ 1 on a

neighborhood of supppϕq and supppψjq is contained in the set where ψj´1 “ 1. We shall
prove by induction that ψju P Hσ`j. When j “ k, we obtain ϕu “ ψku P Hσ`k “ Hm,
which will complete the proof.

The crucial observation is that for any ζ P C8
c the operator rL, ζs defined by

rL, ζsf “ Lpζfq ´ ζLf

is a differential operator of order m ´ 1 whose coefficients are linear combinations of
derivatives of ζ; in particular, these coefficients are C8 functions that vanish on any
open set where ζ is constant. (This follows from the product rule for derivatives.) Thus,
if f P Ht, we have Bαf P Ht´pm´1q for |α| ď m ´ 1 and hence rL, ζsf P Ht´pm´1q by
Theorem 46.

For j “ 0 we have ψ0u P Hσ by assumption. Suppose we have established that
ψju P Hσ`j, where 0 ď j ă k. Then by the preceding remarks,

Lpψj`1uq “ ψj`1Lu ` rL, ψj`1su “ ψj`1Lu ` rL, ψj`1sψju

P Hs ` Hσ`j´pm´1q “ Hσ`j`1´m

Since ψj`1u “ ψj`1ψju P Hσ`j , Lemma 51 (with P pDq “ L) implies that ψj`1u P Hσ`j`1,
and we are done.

Two classical special cases of this theorem are particularly noteworthy. First, every
distribution solution of Laplace’s equation ∆u “ 0 is a C8 function. (This fact is known as
Weyl’s lemma.) Second, if L “ B1`iB2 on R2, the equation Lu “ 0 is the Cauchy-Riemann
equation, whose solutions are the holomorphic (or analytic) functions of z “ x1 ` ix2. We
thus recover the fact that holomorphic functions are C8.

Exercise 9.53: Folland Exercise 9.30.

Let fspξq “ p1 ` |ξ|2q
s{2. Then |Bαfspξq| ď Cαp1 ` |ξ|qs´|α|.

Exercise 9.54: Folland Exercise 9.31.

If k P Zě1, Hk is the space of all f P L2 that possess strong L2 derivatives Bαf , as
defined in Folland Exercise 8.8, for |α| ď k; and these strong derivatives coincide with
the distribution derivatives.

Exercise 9.55: Folland Exercise 9.32.

Suppose r ă s ă t. For any ε ą 0 there exists C ą 0 such that }f}psq ď ε}f}ptq `C}f}prq

for all f P Ht.
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Exercise 9.56: Folland Exercise 9.33.

(Converse of the Sobolev Theorem) If Hs Ă Ck
0 , then s ą k ` 1

2
n. (Use the closed

graph theorem to show that the inclusion map Hs Ñ Ck
0 is continuous and hence that

Bαδ P pHsq
˚ for |α| ď k.)

Exercise 9.57: Folland Exercise 9.34.

(A Sharper Sobolev Theorem) For 0 ă α ă 1, let

ΛαpRn
q “

"

f P BCpRn
q

ˇ

ˇ

ˇ

ˇ

supx‰y

|fpxq ´ fpyq|

|x ´ y|α
ă 8

*

(a) If s “ 1
2
n ` α where 0 ă α ă 1, then }τxδ ´ τyδ}p´sq

ď Cα|x ´ y|α. (We have
´

τxδpqpξq “ e´2πiξ¨x . Write the integral defining }τxδ ´ τyδ}
2
p´sq

as the sum of the
integrals over the regions |ξ| ď R and |ξ| ą R, where R “ |x ´ y|´1, and use the
mean value theorem to estimate pτxδ ´ τyδq on the first region.)

(b) If s “ 1
2
n ` α where 0 ă α ă 1, then Hs Ă ΛαpRnq.

(c) If s “ 1
2
n ` k ` α where k P Zě1 and 0 ă α ă 1, then

Hs Ă tf P Ck
0 | B

αf P ΛapRn
q for |α| ď ku.

Exercise 9.58: Folland Exercise 9.35.

The Sobolev theorem says that if s ą 1
2
n, it makes sense to evaluate functions in Hs at

a point. For 0 ď s ď 1
2
n, functions in Hs are only defined a.e., but if s ą 1

2
k with k ă n,

it makes sense to restrict functions in Hs to subspaces of codimension k. More precisely,
let us write Rn “ Rn´kˆRk, x “ py, zq, ξ “ pη, ζq, and define R : SpRnq Ñ SpRn´kq by
Rfpyq “ fpy, 0q.
(a) zpRfqpηq “

ş

pfpη, ζqdζ. (See Folland Exercise 8.20.)
(b) If s ą 1

2
k,

|pxRfpηqq|
2

ď Csp1 ` |η|
2
q

pk{2q´s

ż

| pfpη, ζq|
2
p1 ` |η|

2
` |ζ|

2
q
sdζ

(c) R extends to a bounded map from HspRnq to Hs´pk{2qpRn´kq provided s ą 1
2
k.

Exercise 9.59: Folland Exercise 9.36.

Suppose that 0 ‰ ϕ P C8
c and taju is a sequence in Rn with |aj| Ñ 8, and let

ϕjpxq “ ϕpx ´ ajq. Then tϕju is bounded in Hs for every s but has no convergent
subsequence in Ht for any t.
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Exercise 9.60: Folland Exercise 9.37.

The heat operator Bt ´ ∆ is not elliptic, but a weakened version of Theorem 52 holds
for it. Here we are working on Rn`1 with coordinates px, tq and dual coordinates pξ, τq,
and Bt ´ ∆ “ P pDq where P pξ, τq “ 2πiτ ` 4π2|ξ|2.
(a) There exist C,R ą 0 such that |ξ||pξ, τq|1{2 ď C|P pξ, τq| for |pξ, τq| ą R. (Con-

sider the regions |τ | ď |ξ|2 and |τ | ě |ξ|2 separately.)
(b) If f P Hs and pBt ´ ∆qf P Hs, then f P Hs`1 and Bxif P Hs`p1{2q for 1 ď i ď n.
(c) If ζ P C8

c pRn`1q, we have

rBt ´ ∆, ζsf “ pBtζ ´ ∆ζqf ´ 2
ÿ

pBxiζqpBxifq

(d) If Ω is open in Rn`1, u P D1pΩq, and pBt ´ ∆qu P H loc
s pΩq, then u P H loc

s`1pΩq. (Let
ψj be as in the proof of Theorem 52. Show inductively that if ψ0u P Hσ, then
ψju P Hσ`pj{2q and Bxipψjuq P Hσ`pj´1q{2 provided σ ` 1

2
j ď s.)

Exercise 9.61: Folland Exercise 9.38.

Suppose s0 ď s1 and t0 ď t1, and for 0 ď λ ď 1 let
sλ “ p1 ´ λqs0 ` λs1, tλ “ p1 ´ λqt0 ` λt1

If T is a bounded linear map from Hs0 to Ht0 whose restriction to Hs1 is bounded
from Hs1 to Ht1 , then the restriction of T to Hsλ is bounded from Hsλ to Htλ for
0 ď λ ď 1. ( T is bounded from Hs to Ht if and only if ΛsTΛ´t is bounded on L2.
Observe that Λz is well defined for all z P C and Λz is unitary on every Hs if Re
z “ 0. Let spzq “ p1 ´ zqs0 ` zs1, tpzq “ p1 ´ zqt0 ` zt1, and for 0 ď Re z ď 1 and
ϕ, ψ P S let F pzq “

ş

rΛtpzqTΛ´spzqϕsψ. Apply the three lines lemma as in the proof of
the Riesz-Thorin theorem.)

Exercise 9.62: Folland Exercise 9.39.

Let Ω be an open set in Rn, and let G : Ω Ñ Rn be a C8 diffeomorphism. For any
ϕ P C8

c pGpΩqq, the map Tf “ pϕfq ˝ G is bounded on Hs for all s; consequently,
f ˝ G P H loc

s pΩq whenever f P H loc
s pGpΩqq. Proceed as follows:

(a) If s “ 0, 1, 2, . . ., use the chain rule and the fact that f P Hs if and only if Bαf P L2

for |α| ď s.
(b) Use Folland Exercise 9.38 to obtain the result for all s ą 0.
(c) For s ă 0, use Proposition 42 and the fact that the transpose of T is another

operator of the same type, namely, T 1f “ pψfq ˝ H where H “ G´1 and ψ “

pJϕq ˝ G with Jpxq “ |detDxG|.
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Exercise 9.63: Folland Exercise 9.40.

State and prove analogues of the results in this section for the periodic Sobolev spaces

HspTnq “

!

f P D1
pTnq

ˇ

ˇ

ˇ

ÿ

p1 ` |κ|
2
q
s
| pfpκq|

2
ă 8

)

Version of April 30, 2024 at 11pm EST Page 365 of 368

https://www.greysonwesley.com/home


Alphabetical Index

pM,Nq-measurable, 50
C1-diffeomorphism, 92
αth fractional integral of f , 97
M-measurable, 50
µ˚-measurable, 37
ϕ-maximal function, 287
σ-algebra generated by tfαuαPA, 51
σ-compact, 167
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continuous, 146
convergence in L1, 64
converges in measure, 72
converges, 140, 156
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convex, 136
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disconnected, 144
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equicontinuous, 172
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147
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a real variable, 118
limit, 156
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locally integrable (with respect to the

Lebesgue measure), 117
meager, 197
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measurable on E, 51
measurable, 50
monotone class generated by P, 80
monotone class, 80
mutually singular, 104
negative for ν, 103
negative variation of F , respectively, 127
negative variation of ν, 105
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net, 155
norm topology, 183
normalized functions of bounded

variation on R, 127
normed linear space, 183
normed vector space, 183
norm, 183
nowhere dense, 138
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open, 202
order topology, 144
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oscillation, 199
outer approximation, 90
outer content, 90
outer measure, 36
paracompact, 170
partition of unity, 168
partition, 69
pointwise bounded, 172
popcorn function, 200
positive for ν, 103
positive measure, 102
positive variation of F , 127
positive variation of ν, 105
pre-Hilbert space, 217
precompact, 159
product of µ and ν, 79
proper, 169
quotient norm, 184
quotient space, 184
regular, 120, 121
relatively closed, 137
relatively open, 137
residual, 197
scalar product, 216
second axiom of countability, 140
second category, 197
second countable, 140
seminorm, 182
separable, 140
separate points, 175
separation axioms, 141
sequentially compact, 161
shrink nicely, 120

sides, 87
signed measure, 102
simple function, 54
singular with respect to µ, 104
standard representation, 53
stars over babylon function, 200
strong Lp derivative, 286
strong type pp, qq, 262
stronger, 138
subbase for 𝒯 pEq, 138
sublinear functional, 192
sublinear, 262
subnet, 156
subordinate to an open cover U , 168
subspace, 182
support, 165
the signed measure f dµ, 109
topological space, 137
topology generated by E, 138
topology of uniform convergence on

compact sets, 166
topology, 137
total variation of F on ra, bs, 125
total variation of ν, 105
total varition function of F , 125
uniform norm, 149
uniformly integrable, 113
unitary map, 222
vanishes at infinity, 165
weak topology generated by tfαuαPA, 147
weak type pp, qq, 262
weak* topology, 213
weaker, 138
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