## 1. KAN EXTENSIONS

**Definition 1.0.1** ([Rie16, Definition 6.1.1, altered]). For a 2-category  $\mathcal{C}$  and 1-morphisms  $h \in \mathcal{C}(a \to c), f \in \mathcal{C}(a \to b)$ , a *left (Kan) extension* of h along f is a pair  $(g, \alpha)$  consisting of a 1-morphism  $g \in \mathcal{C}(b \to c)$  and a 2-morphism  $\alpha \colon h \Rightarrow f \otimes g$  in  $\mathcal{C}$  such that any other such pair  $(g', \alpha' \colon h \Rightarrow f \otimes g')$  factors uniquely through  $\alpha$  as illustrated. We typically write  $\mathbf{L}_f(h)$  for g.



Using the graphical calculus for 2-categories with the convention  $\otimes$  reads right-to-left, these pasting diagrams become



A right (Kan) extension in  $\mathcal{C}$  is a left Kan extension in  $\mathcal{C}^{2\text{op}}$ , the 2-category obtained from  $\mathcal{C}$  by reversing all the 2-morphisms.

**Example 1.0.2.** When C = 2Cat, in which case we capitalize all roman letters in the above equation and set  $G := \mathbf{L}_f(h)$  for clarity, the equation on the right means that there is a unique natural transformation  $\delta : G \Rightarrow G'$  such that for all  $a \in A$ , the following diagram commutes.

$$\begin{array}{c}
H(a) \\
 \alpha_{a} \downarrow \\
G(F(a)) \xrightarrow{\alpha'_{a}} G'(F(a))
\end{array}$$

We write **1** for the category with exactly one object 1 and exactly one morphism, namely  $id_1: 1 \rightarrow 1$ .

**Example 1.0.3.** The colimit of a functor  $F: \mathcal{C} \to \mathcal{D}$  is the value at 1 of the left Kan extension of F along the functor  $\mathcal{C} \to \mathbf{1}$ . That is,

$$\operatorname{colim} F = (\mathbf{L}_{\mathcal{C} \to \mathbf{1}}(F))_1.$$

For example, suppose F is a diagram in Top of shape  $* \leftarrow \bullet \rightarrow *$ , say  $X \xleftarrow{f} Y \xrightarrow{g} Z$ , and  $\sim$  is the equivalence relation determined by the relations  $f(y) \sim g(y)$  for all  $y \in Y$ , so that  $\operatorname{colim} F = (X \amalg Y)/\sim$ .

The unique functor from the index category  $X \xleftarrow{f} Y \xrightarrow{g} Z$  to **1** TODO:

## References

[Rie16] Emily Riehl. Category Theory in Context. Dover Publications, 2016.