Graph Tools and Polynomials

Graph Tools: $f(x) \mapsto f(-x)$ reflect ab y-axis. $f(x) \mapsto -f(x)$: reflect ab x-axis. $f(x) \mapsto -f(-x)$:reflect ab x and y-axes (180° rot ab origin). $f(x) \mapsto f^{-1}(x)$: reflect ab y=x. Polynomials: Finding **roots:** Try ± 1 . Let r be a root. Divide by x - r to find more. $f \in \mathbb{Z}[x] \Rightarrow$ rational roots $\in \{\pm_{\text{divisors of } a_0}\}/\{\pm_{\text{divisors of } a_n}\}$. Vieta: $\Sigma_{\text{roots}} = -a_{n-1}/a_n; \ \Pi_{\text{roots}} = (-1)^n a_0/a_n. \ f(r) = 0 \Leftrightarrow \lambda f(r) = 0.$ r of multip. $k \Leftrightarrow f(r), \dots, f^{(k-1)}(r) = 0, f^{(k)}(r) \neq 0.$ f monic \Rightarrow $|r| < \max(|a_i|) + 1$. Descartes' Rule of Signs: # of positive roots of $f = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$ is the # sign changes of the consecutive nonzero coefficients of f(x) (reading from left to right), or an even number less; # of *negative* roots of f is the # of sign changes of f(-x), or an even number less. (e.g. $f(x) = 2x^5 - 8x - 7$ has 1 sign change so must have one positive root, and $f(-x) = -2x^5 - 8x + 7$ has 0 sign changes, so must have zero negative roots, so f has 1 real root in total, the rest being complex.)

Trigonometric Identities

sin odd, cos even. $\sin(\pi/2 - x) = \cos x$. $\cos(\pi/2 - x) = \sin x$. $\tan(\alpha + x)$ $(\tan \alpha \pm \tan \alpha)/(1 \mp \tan \alpha \tan \alpha)$. $\tan(2x) = 2 \tan x/(1 - \tan^2 x)$. $\sin^2 x = \frac{1}{2}(1 - \cos(2x)), \quad \cos^2 x = \frac{1}{2}(1 + \cos(2x)), \quad \sin x = \frac{1}{2}(1 + \cos(2x))$ $\tan x/\sqrt{1+\tan^2 x}$. $\cos x = 1/\sqrt{1+\tan^2 x}$. $\partial_x(x \log x - x) = \log x$. $\partial_x \log |\tan(x/2)| = \csc x.$

Geometry/Precalculus/Some Differential Calculus

Pyramid/ConeVol: Bh/3, Bbase area(e.g. $\pi r^2 h/3$). Trapezoid vol: (a + b)h/2. Hero's formula: $\triangle abc$, s = (a + b + c)/2, then $A = \sqrt{s(s-a)(s-b)(s-c)}$. Law of cosines: $c^{2} = a^{2} + b^{2} - b^{2}$ $2ab\cos(C)$. Law of sines: $a/\sin(A) = b/\sin(B) = c/\sin(C) = 2R$, R radius of circumscribed circle. Circumscribe circle of shape S =circle s.t. vertices of S lie on circumference. Inscribed circle of S: circle tangent to each edge of S. $x^2 + y^2 = L^2 \Rightarrow$ x(dx/dt) + y(dy/dt) = 0. $V_{\text{sphere}} = A_{\text{sphere}}$. $\log_b x = \log_a x/\log_a b$; $\log_b a = 1/\log_a b$. $\partial_x \arcsin(x) = 1/\sqrt{1-x^2} = -\partial_x \arccos(x)$. $\partial_x \arctan(x) = 1/1 + x^2$. $\partial_x \operatorname{arcsec}(x) = 1/(|x|\sqrt{x^2-1})$. If f is hard to differentiate and $\log(f)$ is easier to differentiate, use that $f' = (\log(f))'f$. Tools for finding lim F include l'Hôpital's Rule, Taylor expansion, or e^L , where $L = \lim(\log(F))$. Integral Calculus

 $\int \tan = -\log |\cos|$. $\int \cot = \log |\sin|$. $\int \sec = \log |\sec + \tan|$. $\int \csc = -\log |\csc + \cot |$. $\int 1/(a^2 + x^2) dx = a^{-1} \arctan(u/a)$. $\int 1/\sqrt{a^2 - u^2} = \arcsin(u/a)$. If something has the form $f(x) - \frac{1}{2}$ f(0), think of setting up integral $\int_0^x f'$. $\sqrt{a^2 - x^2}$: $x = a \sin \theta$. $\sqrt{a^2 + x^2} = a \tan \theta$. $\sqrt{x^2 - a^2} = a \sec \theta$. Polar: Area from $\theta \in [a, b]$ of $r = f(\theta)$: $\frac{1}{2} \int_{a}^{b} f(\theta)^{2} d\theta$. Arc length from $x \in [a, b]$: $\int_a^b \sqrt{1+f'(x)^2} dx$, or from $t \in [a,b]$: $\int_a^b \sqrt{(dx/dt)^2+(dy/dt)^2} dt$. Volume rotate $f \leq g$ about x-axis from $x \in [a, b]: \pi \int_a^b (g(x)^2 - f(x)^2) dx$. Int. by parts preference for what u is: ILATE (inverses, logarithms, algebraic (i.e. polynomials/rational functions), trig, exponentials). Tabular method of int. by parts: (left column is u [decided w/ ILATE] and successive derivatives; right column is dv and its successive primitives. Example: $\int x^3 e^x dx = x^3 e^x - 3x^2 e^x + 6x e^x - 6e^x$ Integral tricks if stuck: $\int_{a}^{b} f(x)dx = \int_{a}^{b} f(a+b-x)dx$ (so that $\int_{a}^{b} f(x)dx = \frac{1}{2}\int_{a}^{b} (f(x) + f(a+b-x))dx$). $f \text{ even} \Rightarrow \int_{a}^{a} \frac{f(x)}{1+e^{x}}dx = \int_{0}^{a} f(x)dx$. $\int f(\sin x, \cos x)dx = \int f(\frac{2t}{1+t^{2}}, \frac{1-t^{2}}{1+t^{2}})\frac{1}{1+t^{2}}dt$, $t = \tan(x/2)$. Differentiation under the integral sign (Feynman's trick): If you want $I(\alpha) = \int_{\alpha}^{b} F(x, \alpha) dx$ (usually α is a constant, e.g. 1) and $I'(\alpha) = \int_{a}^{b} F_{\alpha}(x, \alpha) d\alpha$ (adding the bar constant), e.g. $I'(\alpha)$ and $I'(\alpha) = \int_{a}^{b} F_{\alpha}(x, \alpha) d\alpha$ is easier to integrate, then $I(\alpha) = \int I'(\alpha) d\alpha$. If $\int_{\alpha}^{\infty} \frac{f(\alpha x) - f(x)}{\alpha x} dx$ cvgs $\forall a > 0$ and $\lim_{x \to 0} f(x) = a$ then $\int_{0}^{\infty} \frac{f(\alpha x)}{x} dx = A \log(\alpha)$. $\int_{\infty}^{\infty} f(x) dx = \frac{1}{2} \int_{-\infty}^{\infty} (f(x) + \alpha) dx$ $f(-x)dx = \int_{0}^{\infty} (f(x) + f(-x))dx$. Series Convergence Tests: Geometric Series Test: Σx^n cv $\Leftrightarrow |x| < 1$. *p*-Series Test: $\Sigma 1/n^p$ converges $\Leftrightarrow p > 1$. Ratio Test: $r := \lim |a_{n+1}/a_n|$ then: $r < 1 \Rightarrow \Sigma a_n$ coverges (absolutely), $r > 1 \Rightarrow \Sigma a_n$ dives, $r = 1 \Rightarrow$ in-

conclusive. Root Test: $r := \lim |a_n|^{1/n}$ then (*). Integral Test: f cts, ≥ 0 , decreasing on $[1, \infty)$ then $\Sigma f(n) \operatorname{cvg} \Leftrightarrow \int_{1}^{\infty} f \operatorname{cvg}$. Alternating Series Test: $a_n \to 0 \Rightarrow \Sigma(-1)^n a_n$ cvg. Cauchy Condensation **Test:** $a_n \ge 0, a_n \to 0$ then $\sum a_n \operatorname{cvgs} \Leftrightarrow \sum a_{2^n} 2^n$. Expansions/Approximations

 $1/(1-x) = 1 + x + x^2 + x^3 + \cdots$ $e^x = 1 + x + x^2/2! + x^3/3! + \cdots$ $\log(1+x) = x - x^2/2 + x^3/3 - \cdots$ $\sin x = x - x^3/3! + x^5/5! - \cdots$ $\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \cdots$ $\arctan(x) = x - \frac{x^3}{3} + \frac{x^3}{5} - \cdots$ $\arctan(x) = \pi/2 - \arctan(1/x)$. $\sqrt{1+x} = 1 + x/2 - x^2/8 + x^3/16 - \cdots$ $n! \sim \sqrt{2\pi n} (n/e)^n \cdot (1+x)^r \approx 1 + rx + \frac{r(r-1)}{2}x^2 + \frac{r(r-1)(r-2)}{2}x^3$ $\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \sum_{i=1}^{n} \Delta x f(a+i\Delta x), \text{ where } \Delta x = \frac{(b^{\underline{6}}a)}{n} \text{ (usu-}$ ally a = 0, 1 and $\Delta x = 1/n$ or something simple).

Linear Algebra

 $m \times n$ matrix E is in row echelon form if (1) all zero rows are below all nonzero rows, and (2) the first nonzero entry of a row is in a column strictly to the right of that of the first nonzero entry of any previous row. If E in echelon form then we say E is in reduced row echelon form if (3) any first nonzero entries are 1, and (4) each column containing a leading 1 has zeros in all its other entries. The row echelon form of A, A_e (resp. the reduced row echelon form of A), denoted $A_{\rm e}$ (resp. $A_{\rm re}$), is any matrix in row echelon form (resp. reduced row echelon form) obtained by elementary row operations, which are (T_1) scalar multiplication of a row, (T_2) swapping any two rows, or (T_3) adding a scalar multiple of one row to another row. $A_{\rm e}$ is not unique, while $A_{\rm re}$ is unique. A system of eqns [A|b] is consistent if $\exists \ge 1$ soln x. A system of eqns [A|b] is **inconsistent** if \nexists soln **x**. A**x** = **b** *in*consistent \Leftrightarrow last column of echelon form of augmented matrix $[A|\mathbf{b}]$ has pivot. Cols of A form a basis \Leftrightarrow all rows and all columns of A_e have pivot $\Leftrightarrow \exists$ unique soln for $A\mathbf{x} = \mathbf{b} \Leftrightarrow A$ invertible. Cols of A spanning $\Leftrightarrow A$ surj \Leftrightarrow every row of A_e has pivot. Cols of A l.i. $\Leftrightarrow A$ inj \Leftrightarrow every column of A_e has pivot. Matrix properties: A is $m \times n \& B$ is $n \times p$, then AB is $(m \times n)(n \times p) = m \times p$ (think of inner ones vanishing, e.g. n in this case). A, B square and A left(or right) invertible w/ left inverse B then B is the *full* inverse of A (i.e. then AB = BA = I). $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \Rightarrow A^{-1} = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$. $ch(A) = l^2 - l tr(A) + det(A) \cdot \Sigma l_i = tr. \quad \Pi l_i = det.$ Cramer's Rule: A square, $A\mathbf{x} = \mathbf{b} \Rightarrow x_i = \det A_i/\det A$, where A_i is $A \le i$ col j blue, subtract red. $A^n = 0 \Rightarrow (I - A)^{-1} = I + A + \cdots + A^{n-1}$ The four fundamental subspaces are im(A) (column space). ker(A) (nullspace), $im(A^t)$ (row space), $ker(A^t)$. Finding bases for row/col(img)/ker spaces: Basis for col space im(A) is the cols A_i of A s.t. the corresponding $(A_e)_i$ have pivot. **Basis for row space** im (A^t) is rows of A_e with pivot (or i/ use basis of the col space of A^t). Basis for nullspace ker(A) is solution set of linear eqns $A\mathbf{x} = 0$. \nexists any shortcut for the subspace ker(A^t); you need to find basis for \mathbf{x} s.t. $A^t \mathbf{x} = 0$.

Affine and Analytic Geometry

 $\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{a} \cdot \mathbf{a}}$. $\operatorname{proj}_{\mathbf{a}}(\mathbf{b}) = \mathbf{a} \cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a}$. Vector from \mathbf{a} to \mathbf{b} (i.e. head at \mathbf{a} and tail \mathbf{b}) is $\mathbf{a} - \mathbf{b}$. Line through \mathbf{p} , \mathbf{q} is $t\mathbf{p} + (1-t)\mathbf{q}$. Plane through \mathbf{x}_0 normal to \mathbf{n} is $\mathbf{n} \cdot (\mathbf{x} - \mathbf{x}_0) = 0$, i.e. $n_1x + n_2y + n_3z = \mathbf{n} \cdot \mathbf{x}_0$. Plane through 3 pts $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3$ is $\mathbf{v} \cdot \mathbf{x} = d$, where \mathbf{v}, d satisfy $\mathbf{v} \cdot \mathbf{x}_1 = d$, $\mathbf{v} \cdot \mathbf{x}_2 = d$, $\mathbf{v} \cdot \mathbf{x}_3 = d$ (expand dot products and solve w/ row-reductn). Graphing Tools: Cylinder: $x^2 + y^2 = a^2$. Cone: $x^2 + y^2 = z^2$. Sphere: $x^2 + y^2 + z^2 = a^2$. We can substitute $x^2 + y^2 \rightarrow r$ to reduce to a two-dimensional graph of z (or whatever variable is not involved) and r, by "unwrapping" the 3D graph around the z-axis. Circles around the z-axis are then level-curves, too. Multivariable Differentiation:

Tangent plane of graph z = f(x, y) at $(x_0, y_0, z_0 = f(x_0, y_0))$: $z - z_0 = f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$. Par-

tial Derivative Chain Rule: If u = f(x, y), v = g(x, y) then partial derivatives of F = F(u, v) are $\frac{\partial F}{\partial u} = \frac{\partial F}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial F}{\partial v} \frac{\partial v}{\partial x}$, and simil. for $\frac{\partial F}{\partial y}$. $f:\mathbb{R}^2 \to \mathbb{R}$. Then $\nabla f = (f_x, f_y)$, so approx near (x_0, y_0) is $\check{f}(x, y) \approx f(x_0, y_0) + \nabla f \cdot \mathbf{x}$. Direction of maximized slope is the direction $\hat{\mathbf{v}} = \nabla f / \|\nabla f\|$ (with slope $\|\nabla f\|$). Then the minimal slope is $-\hat{\mathbf{v}}$ (with slope $-\|\nabla f\|$). Local Extrema: (1) Find **p** s.t. $\nabla f(\mathbf{p}) = 0$ (the crit. pts). (2) Determine Hessian for each **p**: $H_f(\mathbf{p}) = f_{xx}(\mathbf{p})f_{yy}(\mathbf{p}) - f_{xy}(\mathbf{p})^2$. (3) $H_f(\mathbf{p}) > 0$ and $f_{xx}(\mathbf{p}) > 0$ (resp. $f_{xx}(\mathbf{p}) < 0$) then \mathbf{p} is local min (resp. local max). $H_f(\mathbf{p}) < 0 \Rightarrow \mathbf{p}$ a sattle point. $H_f(\mathbf{p}) = 0 \Rightarrow$ inconclusive. Global Extrema: (1) Find local extrema. (2) Check the boundaries (usually single-variable functions). If f(x, y) is linear (i.e. ax + by + cz = d) then extrema are always on the boundaries. **Extrema Subject to Constraint:** Find min/max of f(x, y) such that q(x,y) = 0: $F(x,y,l) := f(x,y) - \lambda q(x,y)$. Then crit. pts. p for F are the candidate extrema (i.e. find z in trms of x, y, then solve the system $F_x(x, y, l) = F_y(x, y, l) = g(x, y) = 0$. Then compare values.

Multivariable Integration

Line Integral of the First Kind: Gets area under z = f(x, y)and above a curve C parameterized by q(x(t), y(t)) = 0 for $t \in [a, b]$: $\int_{a}^{b} f(x(t), y(t)) \sqrt{\dot{x}^{2}(t) + \dot{y}^{2}(t)} dt$. Line Integral of the Second **K**ind: Gets the net work done by the vector field $\mathbf{F}(x, y) =$ (P(x,y),Q(x,y)) on a particle moving along a curve C parameterized by $\mathbf{r} = (x(t), y(t)), t \in [a, b]: \int_C \mathbf{F} \cdot d\mathbf{r} = \int_a^b (P(x(t)) + \mathbf{r}) d\mathbf{r}$ $Q(y(t))dt = \int_C \mathbf{F} \cdot d\mathbf{r} = \int_C Pdx + Qdy$. Direction matters here but not the specific param. E.g. C unit circle oriented ccw by $\mathbf{r} = (\cos t, \sin t) \Rightarrow \int_C x dx + y dy = \int_0^{2\pi} (\cos t(-\sin t) + \sin t(\cos t)) dt = 0.$ **FTOC** for Line Integrals of the Second Kind: If F(x, y) is gradient of g (i.e. **F** is gradient field), $\int_{C^{\mathbf{a}\to\mathbf{b}}} \mathbf{F} \cdot d\mathbf{r} = g(\mathbf{b}) - g(\mathbf{a})$. **Green's Theorem:** A bounded by closed curved C, simple (no self-intersct), ccw-orient, $P, Q \in C^1(A) \Rightarrow \oint_C Pdx + Qdy = \int_A (Q_x - Q_x) dy$ P_y)dA. Divergence/Gauss Thm: Divergence over volume = surface flux, i.e. $\int_{V} \nabla \cdot \mathbf{F} dV = \oint_{A} \mathbf{F} \cdot \hat{\mathbf{n}} ds$. Stokes' Thm: Domain D pos. oriented. etc, then $\oint_{\partial D} \vec{\mathbf{F}} \cdot d\mathbf{r} = \int \cdots \int_{D} \nabla \times \mathbf{F} dV$.

Stokes' Thm (Curl Theorem): The line integral of a vector field over a loop is equal to the flux of its curl through the enclosed surface, i.e. $\iint_{A} \nabla \times \mathbf{F} \cdot \hat{\mathbf{n}} ds = \oint \mathbf{F} d\ell$

Gradient Field Char. $\mathbf{F} \in C^1(R)$, R smply cnctd $\Rightarrow \mathbf{F}$ gradient field $\Leftrightarrow P_y = Q_x \Leftrightarrow$ line int. of **F** is path-independent \Leftrightarrow line int. around any closed path is zero. Green's theorem: area of A is $\oint_C xdy = -\oint ydx = \frac{1}{2}\oint (xdy - ydx).$ Numerical Analysis Topics

Let $(x_1, y_1), \ldots, (x_N, y_N)$ be pts in plane. Center of Gravity: $X = \frac{1}{N} \Sigma x_i, Y = \frac{1}{N} \Sigma y_i$. Least Squares Linear Regression finds a, b s.t. line y = ax + b minimizes y-error $\Sigma(y_i - (ax_i + b))^2$. Goes through center of gravity. Methods for Finding Solns f(x) = 0, f cts: Bisection Method: find pts w/ f > 0, f < 0, bisect them, try w new pt. Newton's Method: Converges faster than bisection: f is differentiable then Newton's method: guess x_0 , set $x_n := x_{n-1} - f(x_{n-1})/f'(x_{n-1})$. Algorithms: 'if': piecewise. Graph Theory

Hamiltonian Walk (resp. cycle): A walk (resp. cycle) going through each vertex exactly once. Eulerian Walk (resp. cycle): A walk (resp. cycle) going through each edge exactly once. Eulerian cycle \Leftrightarrow all vertex degrees are even. Eulerian walk \Leftrightarrow all or n-2 vertex degrees are even. $\sum_{v \in V} \deg(v) = 2|E|$. T a tree $\Leftrightarrow |V(T)| = |E(T)| + 1.$

Set Theory and Logic

 $\begin{array}{l} A \subset X \Rightarrow f(A) \subset Y. \ B \subset Y \Rightarrow f^{-1}(B) \subset X. \ f(A_1 \cup A_2) = f(A) \cup f(A_2). \\ f(A_1 \cap A_2) \subset f(A_1) \cap f(A_2) \ (\text{equality if } f \ \text{inj}). \ f^{-1}(B_1 \cup B_2) = \\ f^{-1}(B_1) \cup f^{-1}(B_2). \ f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2). \ f : \\ A \Rightarrow B \ \text{surjective} \Rightarrow |A| \geqslant |B|. \ g : A \mapsto B \ \text{injective} \Rightarrow |A| \leqslant |B|. \\ h : A \to B \ \text{bijection} \Rightarrow |A| = |B|. \ \text{If } f, g \ \text{exist as above then} \\ |A| = |B|. \ \text{If } A \mapsto B \ \text{and } B \mapsto A \ \text{then } \exists \ \text{a bijection}. \ \textbf{Cantor:} \\ |\mathcal{P}(A)| > |A|. \ \text{Ctbl union of ctbl sets is ctbl}(e.g.\mathbb{Q} \cong \cup_{j \in \mathbb{Z}} \mathbb{Z}/j). \ \text{Finite cartesian product of ctbl sets is ctbl}(e.g.\mathbb{Q} \times \mathbb{Q}). \ A \ \text{ctbl} \Rightarrow A[x] \\ \text{ctbl. Algebraic } \# \text{s are ctbl. } \mathcal{P}(\text{ctbl set}) = \text{unctbl (bc not in bijection} \\ w/n \ \text{by Cantor's thm}). \ \text{arctan is a bijection from } \mathbb{R} \to (-\pi/2, \pi/2). \\ \text{Modifying this gives bijection from } \mathbb{R} \ \text{to any interval. Logic: } P \to Q \\ \text{equiv. to } \neg P \lor Q. \ P \to Q \ \text{is false iff } P \ \text{is true and } Q \ \text{is false simultaneously.} \end{array}$

Counting

Multinomial Coef: $\binom{n}{k_1,\ldots,k_r} = \frac{n!}{k_1!k_2!\cdots k_r!}$: # ways to put *n* lable balls in *r* lable containers, C_1,\ldots,C_r , where C_i has exactly k_i elements. $[a^i b^j c^k](a+b+c)^n = \binom{n}{(j+k)}$.

	Counting 'I	l'able	
	No Restrictions	≤ 1 items/slot	≥1 items/slot
_			

Lbl.	Lbl.	n^k	$k!\binom{n}{k}$	$k!\binom{k}{n}$
Unl.	Lbl.	$\binom{n+k-1}{k}$	$\binom{n}{k}$	$\binom{k-1}{k-n}$
Lbl.	Unl.	$\binom{k}{1} + \dots + \binom{k}{n}$	$[k \leqslant n]$	$\binom{k}{n}$
Unl.	Unl.	$p(k,1) + \dots + p(k,n)$	$[k \leq n]$	p(k, n)

Probability

k items n slots

X a set. F a family of subsets of X is a **Boolean algebra** if $X, \emptyset \in F$ and $A, B \in F \Rightarrow A \cap B, A \cup B, A^c \in F$. A probability function is \mathbb{P} : $F \to [0,1]$ s.t. $\mathbb{P}(X) = 1$, $\mathbb{P}(\emptyset) = 0$, $\mathbb{P}(A \sqcup B) = \mathbb{P}(A) + \mathbb{P}(B)$. $\mathbb{P}(A^c) = 1 - P(A)$. Events A, B are inde**pendent** if $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$. A pt $x \in X$ is **outcome/simple** event. If # possible events is ctbl then say X is discrete. X discrete $\Rightarrow \mathbb{P}(A) = |A|/|X| = (\# \text{outcomes in } A)/(\# \text{total outcomes}).$ A random variable is a function $V : X \to \mathbb{R}$. For discrete random vars: Expectation (mean): $\mathbb{E}(Y) = \Sigma y \mathbb{P}(Y = y)$. Variance: $\mathbb{V}(Y) = \mathbb{E}(Y^2) - \mathbb{E}(Y)^2 \ge 0$. FOr non-discrete random vars Y: A distribution function is $F_Y(t) = \mathbb{P}(Y \leq t)$ $t) = \int_{-\infty}^{t} f_Y$, where $f_Y = F'_Y$ is probability density function. $\mathbb{E}(Y) = \int_{-\infty}^{\infty} sf_Y(s) ds$, $\mathbb{V}(Y) = no$ change. Bernoulli Random **Vars:** Either 0 or 1. 1 if experiment with probability p is success, 0 otherwise. Exmples: one coin flip, one random binary digit, asking whether a disk drive crashed. $\mathbb{P}(X = 1) = p$, $\mathbb{P}(X = 0) = (1 - p)$. $\mathbb{E}(X) = p$. $\mathbb{V}(X) = p(1-p)$. Binomial random vars represent the # of successes in n successive indep. trials of a Bernoulli experiment. Examples: the # of heads from n coin flips, the #of disk drives that crashed in a cluster of 1000 computers, etc. and # of advertisements that are clicked when 400 are served. $\mathbb{P}(X = k) = \binom{n}{k} p^k (1 - p)^{n-k} \text{ if } k \in \mathbb{N}, \ 0 \leq k \leq n \ (0 \text{ otherwise}).$ $\mathbb{E}(X) = np$. $\mathbb{V}(X) = np(1-p)$. Exmpl: X = # heads appearing in 3 coin flips $\Rightarrow X =$ binom random var, p = 0.5. What is the probability of each of the different values of X?: $\mathbb{P}(X = 0) = \binom{3}{0}p^0(1-p)^3 = \frac{1}{8}$, $\mathbb{P}(X = 1) = \binom{3}{1}p^1(1-p)^2 = \frac{3}{8}$, $\mathbb{P}(X = 2) = \binom{3}{2}p^2(1-p)^1 = \frac{3}{8}$, $\mathbb{P}(X = 3) = \binom{3}{3}p^3(1-p)^0 = \frac{1}{8}$. Exmpl of non-discrete randomvar: A normally distributed random variable Y has $\mathbb{E}(Y) = \mu$, $\mathbb{V}(Y) = \sigma^2$, the normal dist. is $f_Y(s) = e^{-((s-\mu)/\sqrt{2\sigma})^2}/\sigma\sqrt{2\pi}$. $\mathbb{P}(Y < \mu) = 0.5. \ \mathbb{P}(Y < \mu + \sigma/2) \approx 0.691. \ \mathbb{P}(Y < \mu + \sigma) \approx 0.841.$ $\mathbb{P}(Y < \mu + 2\sigma) \approx 0.977$. $\mathbb{P}(Y + 3\sigma) \approx 0.999$. The Gaussian (bell curve) is symmetric about the line $x = \mu$, so e.g. $\mathbb{P}(Y < \mu - \sigma) =$ $\mathbb{P}(Y > \mu + \sigma) \approx 1 - 0.841 = 0.159$. It is standard normal dist. when $\mu = 0, \sigma = 1$. The *z*-score is # std. devs from the mean, i.e. $z = (x - \mu)/\sigma$, where x is observed value. The *t*-score is $t = (\overline{x} - \mu)/(s/\sqrt{n})$, where \overline{x} is mean of sample (i.e. $(\sum x_i)/n$), s=std. dev. of sample, $s = \sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2} / \sqrt{n}$.

Number Theory

Group Theory

 $G = \langle \alpha \rangle$ finite cyclic $\Rightarrow \overline{|\langle \alpha^m \rangle|} = n/\gcd(\overline{m,n})$. Lagrange's The**orem:** G finite, $H < G \Rightarrow |H|$ divides |G|. G finite, abelian $\Rightarrow G$ has a subgroup of order d for all divisors d of n. G finite, cyclic \Rightarrow G has exactly one (cyclic) subgroup for every divisor d of n. **Cauchy's Theorem**: G finite of order n, p prime dividing $n \Rightarrow G$ has a subgroup of order p. First Sylow Theorem: For any finite group G and prime p, if p^k divides |G|, then G has a subgroup of order p^k . In other words, if G finite of order $n = p^k m, p \nmid n$ \Rightarrow G has subgroup of order p^i for all $0 \leq i \leq k$. For cyclic groups, $C_m \oplus C_n$ is cyclic \Leftrightarrow gcd(m, n) = 1, in which case $C_m \oplus C_n \cong C_{mn}$ as groups. Classification of Finite Abelian Groups: Shown by example: Q: What is #(up to isom.) abelian groups of order 600? A: $600 = (2^3)(3^1)(5^2)$ is prime factorization, and the ans is the prod. of the partition numbers of the powers all w/ each other $(p(3) \cdot p(1) \cdot p(2)) = 6. \ \sigma \in S_n$ an **even** permutation if σ a product of evenly many transpositions, and odd permutation defined similarly. Helpful: partition p(2) = 2, p(3) = 3, p(4) = 5, p(5) = 7, p(6) = 11,remember using that these are the first few primes. Elementary Complex Analysis

Elementary Complex Analysis $x \in \mathbb{C}$ has $x = x \pm iy$ for $x, y \in \mathbb{R}$ (

 $z \in \mathbb{C}$ has z = x + iy for $x, y \in \mathbb{R}$ (cartesian form) and $\overline{z = re^{i\theta}}$ $(r \in [0, \infty), \theta \in \mathbb{R} \text{ (polar form)}, r = |z| = \sqrt{x^2 + y^2}, x = r \cos \theta,$ $y = r \sin \theta$. $\theta = \arg(z)$ not unique. $\operatorname{Arg}(z) = \arctan(y/x)$ or $\arctan(y/x) + \pi$ (context-dependent). $z/w = z\overline{w}/|w|^2 =$ $e^{i(\theta_z - \theta_w)} r_z / r_w$. Log(z) = log(|z|) + i Arg(z). $z^{x+iy} = z^x (z^y)^i$. $\sin(z) = (e^{iz} - e^{-iz})/2i = -i\sinh(iz)$. $\cos(z) = (e^{iz} + e^{-iz})/2 =$ $\cosh(iz)$. $|\sin|, |\cos|$ unbdd on \mathbb{C} . $f: \mathbb{C} \to \mathbb{C}$. f is diff. at z_0 if $f'(z_0) := \lim_{w \to 0} (f(z+w) - f(z))/w$ exists. f = u + iv, u, v real fcns. Cauchy-Riemann Equations: $u_x = v_y, u_y = -v_x$. f diff. at $z_0 \Rightarrow C.R.$ at z_0 . C.R. at $z_0 \& u_x, u_y, v_x, v_y$ cts in open nhd of $z_0 \Rightarrow f$ diff. at z_0 . A **domain** is an open connected subset (of e.g. \mathbb{C}). Let D be a domain. f is **holomorphic on** domain D if f is diff. at every $z \in D$. f is holomorphic at $z_0 \in \mathbb{C}$ if f is holomorphic on some domain containing z_0 . f can be diff. at z_0 but not holomorphic at $z_0!$ f hol. on $D \Rightarrow C.R.$ equip hold on D and $f \in C^{\infty}$. C.R. at $z_0 \in D$, u_x, u_y, v_x, v_y cts on $D \Rightarrow f$ hol. on D. $f: D \to \mathbb{C}$, f **analytic** at $z_0 \in D$ if \exists power series $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ converging to f in open nhd U of z_0 . f analytic on D if f analytic at all $z \in D$. f analytic on $D \Leftrightarrow f$ holomorphic on D. Let R be radius of convergence of $L = \sum a_n (z - z_0)^n$. Cauchy-Hadamard Theorem: $1/R = \limsup |a_n|^{1/n}$. L cvgs (i) absolutely in $\{z : |z - z_0| < R\}$, (ii) uniformly in $\{z : |z - z_0| < R - \varepsilon\}$ for any $\varepsilon > 0$. We cannot say anything ab the boundary $|z - z_0| = R$. f is entire if f is holomorphic on all of \mathbb{C} , e.g. $f = e^z$, cos, sin, polys, etc. $\text{Log}(z) : \mathbb{C} \setminus (-\infty, 0] \to \mathbb{C}$ only analytic where defined. f is **meromorphic** if analytic except at *isolated* pts, called **poles**. E.g. $f = e^{z}/z^{2}(z+1)$ has poles z = 0, -1, is meromorphic. z_0 is a **simple pole** (i.e. pole of order 0) if z_0 is a removable singularity (i.e. if the limit exists, e.g. $\sin(z)/z$). z_0 is a **pole of order** n if n is the smallest s.t. $(z-z_0)^n f(z)$ is analytic at z_0 . If $n = \infty z_0$ is called an essential singularity (e.g. the expansion of $e^{1/z}$ shows it has $z_0 = 0$ as an essential singularity). Let f be meromorphic but analytic on an (open) annulus around z_0 , $A = \{r < |z - z_0| < R\}$, $r \in [0, \infty)$, $R \in (r, \infty]$. The **Lau-rent** series of f in an annulus centered at z_0 is $\sum_{-\infty}^{\infty} a_n (z - z_0)^{-n}$. Examples: 1/z about $z_0 = 0$ (on any annulus w/o 0) is its own Laurent series. But centered around $z_0 = 1$, say in annulus $A = \{1 < |z - 1| < 2\}$, have (by typical power series manipulations) that $1/z = 1/(1 - (-1)(z - 1)) = (z - 1)^{-1} - (z - 1)^{-2} + (z - 1)^{-3} - \cdots$. The poles outside the annulus do not contribute to a_{-1} . If asked to find Laurent series of f which has ≥ 2 pole, decompose f w/ partial fractions, do each separately, then sum. If asked to find Laurent series of $2/(z - 2)^2$, use that $2/(z - 2)^2 = -2\frac{d}{dz}1/(z - 2)$. Complex Integration

Let $C \subset \mathbb{C}$ be an oriented smooth curve $z(t) = u(t) + iv(t), t \in [a, b]$, define $\int_C f(z)dz = \int_a^b f(z)z'(t)dt$, where z'(t) = u'(t) + iv'(t). *i* is treated as any constant. FTOC for Complex Integrals: If F' = fin a domain D containing C then $\int_{C^{z_1 \to z_2}} f(z) dz = F(z_2) - F(z_1).$ E.g. $\int_C izdz = i \int_C zdz = i(z_2^2/2 - z_1^2/2)$. $\frac{d}{dz} \frac{1}{n+1}(z-z_0)^{n+1} = (z-z_0)^n = 0$ for all $n \in \mathbb{Z} \setminus \{-1\}$ on \mathbb{C} (or $\mathbb{C} \setminus \{z_0\}$ if the power is negative). If $z_0 = x_0 + iy_0$, then $\frac{d}{dz} \operatorname{Log}(z - z_0) = \frac{1}{z - z_0}$ on $\mathbb{C} \setminus (-\infty, x_0] \times$ $\{y_0\}$, but not on all of \mathbb{C} . Let C be a closed smooth simple curve orientd ccw. (1) C encloses $z_0 \Rightarrow \oint_C \frac{1}{z-z_0} dz = 2\pi i$. (2) If C does not enclose z_0 , then $\oint_C \frac{1}{z-z_0} dz = 0$. 3. $\oint_C f(z) dz = 2\pi i a_{-1}$, where a_{-1} is the coefficient of z^{-1} in the Laurent series of f in an annulus around containing C centered at z_0 . Define the **residue** of a pole z_0 of f of order k by $\operatorname{Res}(z_0, f) = \frac{1}{(k-1)!} \lim_{z \to z_0} ((z - z_0)^k f(z))^{(k-1)}$, and for $k = \infty$ set $\operatorname{Res}(z_0, f) = a_{-1}^{(\kappa-1)!}$, the coef. of z^{-1} in the Laurent series of f in an annulus containing C centered at p_i . Residue The**orem:** $\oint_C f(z)dz = 2\pi i \sum_{\text{poles in } C} \operatorname{Res}(z_j, f)$. (Also gives an alternate way to calculate $a_{-1} = \sum_{\text{poles in } C} \operatorname{Res}(z_j, f)$.) Strategy to calculate $\oint_C f(z) dz$: (1) If possible, break f into summands, compute the integrals for every summand separately, and add the results. (2) Identify poles p_i enclosed by C and their orders. (3) Calculate the residues $\operatorname{Res}(p_i, f)$ (with respect to the Laurent series of an annulus containing C, centered at p_i). (4) Eliminate analytic summands of f. Finding a_n of Laurent Series in an annulus around z_0 : $a_0 =$ $\frac{1}{2\pi i}\oint_C \frac{f(z)}{z-z_0}dz = f(z_0)$ (since f analytic at all points within and on simple closed path C containing point z_0 and hence power series at z_0 , $f(z_0) = \sum a_n (z - z_0)^n$, vanishes everywhere except the term $\begin{array}{l} a_0(z-z_0)^0 = a_0, \text{ so } f(z_0) = a_0). \ a_n = \frac{1}{2\pi i} \oint_C f(z)/(z-z_0)^{n+1} dz. \\ a_{-1} = \frac{1}{2\pi i} \oint_C f(z)/(z-z_0)^{-1} dz. \ f^{(n)}(z_0) = \frac{n!}{2\pi i} \oint_C \frac{f(z)}{(z-z_0)^{n+1}} dz \\ \text{(by similar reasoning to the first bullet point, except we multiply} \end{array}$ by n! to account for the product rule bringing the exponents down to make n!). Taking $C = \{z : |z - z_0| = R\}$ and $M = \sup_C |f(z)|$, we obtain $|f^{(n)}(z_0)| \leq \frac{n!}{R^n}M$. Liouville's Theorem: An entire function which is bounded is constant. **ODE Solutions:**

First Order: Separable: $y'(x) = f(x)g(y) \Rightarrow \int \frac{dy}{g(y)} = \int f(x)dx + C$. Homogeneous: $y' = f(y/x) \Rightarrow$ sub. u = y/x to make separable. Linear: $y' + p(x)y = q(x) \Rightarrow y = e^{-\int^x p}(\int e^{\int^x p}q(x)dx + C)$. Exact: P(x,y)dx + Q(x,y)dy, $P_y = Q_x \Rightarrow u(x,y) = C$, where $du = u_x dx + u_y dy = P dx + Q dy$. Solving for u gives an implicit eqn of x and y, as desired. Non-Exact (Special Case): $P_y \neq Q_x, (M_y - N_x)/(M = h(y)$ (is a fcn of $y) \Rightarrow \mu(y) = e^{\int^y h}$; $P_y \neq Q_x, (M_y - N_x)/(-N) = h(x)$ (is a fcn of x, noting the negative sign on $-N) \Rightarrow \mu(x) = e^{\int^x h}$ makes $\mu P dx + \mu Q dy = 0$ exact so that we can solve for u to get an implicit equation of x and y as in the exact case above, as desired. A homogeneous second-order equation with constant coefficients is $ay''(x) + by'(x) + cy(x) = f(x) \Rightarrow y = C_1 e^{r_1 x} + C_2 e^{r_2 x}$ if $r_1 \neq r_2$ and $y = (C_1 + C_2 x) e^{r_1 x}$ otherwise.