Graph Tools and Polynomials

Graph Tools: f(z)—f(—z) reflect ab y-axis. f(z)——f(z):
flect ab z-axis. f(z) — —f(—=x):reflect ab zandy-axes (180°rot ab
origin). f(x)—f"1(x): reflect ab y=x. Polynomials: Finding
roots: Try +1. Let r be a root. Divide by z — r to find more.
f € Z|x] = rational roots € {taivisors ofag }/{tdivisors of an }. Vieta:
Yroots = —ap—1/an; Hroots = (—1)"ag/an. f( )=0< Af(r) =0.
r of multip. k < f(r),...f* V() =0, fE)(r) £ 0. f monic =
|r] < max(]a;|)+ 1. Descartes’ Rule of Signs: # of positive roots
of f = anx™ +an_12" 1+ +ag is the # sign changes of the con-
secutive nonzero coefficients of f(z) (reading from left to right), or
an even number less; # of negative roots of f is the # of sign changes
of f(—x), or an even number less. (e.g. f(x) = 22°—8x—7 has 1 sign
change so must have one positive root, and f(—z) = —2z° — 8z + 7
has 0 sign changes, so must have zero negative roots, so f has 1 real
root in total, the rest being complex.)

Trigonometric Identities

sin odd, cos even. sin(m/2—x) = cosz. cos(m/2—x) = sinz. tan(at

(tana + tan )/(1F tanatan) tan(29:) 2tanz/1 — tan? z.
sin? (1 — cos(2x)). cos?x 5(1 + cos(2z)). sinz =
tanx/\/l + tan2 x. cosx = 1/4/1+ tan2 z. Oz(zlogz — x) = logw.

0z log | tan(z/2)| = cscx.
Geometry/Precalculus/Some Differential Calculus
Pyramid/ConeVol: Bh/3,Bbase area(e.g.wr2h/3).
(a + b)h/2. Hero’s formula: Aabe, s = (a
= /s(s—a)(s—b)(s—c). Law of cosines:
2abcos(C). Law of sines: a/sin(A) = b/sin(B) = ¢/sin(C) = 2R,
R radius of circumscribed circle. Circumscribe circle of shape
S =circle s.t. vertices of S lie on circumference. Inscribed cir-
cle of S: circle tangent to each edge of S. 22+ 42 = 1?2 =
:E(d$/dt) + y(dy/dt) = 0. ‘/sphere = Asphere- 10gbx = IOga $/ IOga b;
logya = 1/log,b. Ogarcsin(z) = 1/4/1—122 = —0, arccos(z).
Oy arctan(x) = 1/1 + 2. 0y arcsec(z) = 1/(|z|v/a2 —1). If f is
hard to differentiate and log(f) is easier to differentiate, use that
f' = (log(f))'f. Tools for finding lim F' include I’'Hépital’s Rule,
Taylor expansion, or e”, where L = lim(log(F)).
Integral Calculus

Trapezoid vol:
+ b + ¢)/2, then
2 = a4+ b2 —

ftan = —log|cos|. {cot = log|sin|. {sec = log|sec+ tan|.

fesc = —log|esc+cot|. §1/(a®+22)dz = a~!arctan(u/a).

§1/v/a? —u2? = arcsin(u/a). If something has the form f(z) —

£(0), think of setting up integral (% f’. +a2 —22: = = asiné.
0

Va2 ¥+ z2:2 = atanf. 2 —aZ:x = asech. Polar: Area from

6 € [a,b] of r = f(0): 1S f(6)%d6. Arc length from z € [a,b]:
S 1+ f'(z)%dz, or from t € [a, b]: S 4/ (dz/dt)? dy/dt )2dt. Vol-
ume rotate f g about z-axis from z € [a, b]:m S (9(x)? — f(x)?)d=.
Int. by parts preference for what u is: ILATE (inverses,
logarithms, algebraic (i.e. polynomials/rational functions), trig,
exponentials). Tabular method of int. by parts: (left col-
umn is u [decided w/ ILATE] and successive derivatives; right
column is dv and its successive primitives. Example: — =
[z3evdr = x3e® — 3I26z + 6xe® — 6e”/ Integral trlcks if
stuck Sfa:)dm = Sfa+b—x)dx (so. thatSf =
s§.(f(x) + fla+b— x))d:t:) f eyen= {* {le = f
ff (sinz,cosz)dz = { f( 1+t2, 1+t2)1+2t2dt t = tan(m/Q) le—
ferentiation under the integral sign (Feynman’s trick):
you want I(a S F(z,a)dr (usually « is a constant, e.g. 1)
and I'(a) = ojc()doc is easier to integrate, then I(a) =
§I'(a)da. f&‘x) ) da cvgs Va > 0 and limg;_0 f(:p) =a
then SOC Mdm = Alog(/a) §2 f(z)yde = 157 (f
foc (—z))dz. Series Convergence Tests:
Geometrlc Serles Test Yz™ cv < |z| < 1. p-Series Test:
31/nP converges < p > 1. Ratio Test: r := lim|an+1/an| then:
r < 1= Ya, cnverges (absolutely), r > 1 = Xa, divgs, r = 1 = in-

conclusive. Root Test: r := lim |a,|/™ then (). Integral Test: f
cts, = 0, decreasing on [1,0) then X f(n) cvg < S;D f cvg. Alternat-
ing Series Test: ap — 0 = X(—1)"a, cvg. Cauchy Condensation
Test: a, = 0, an, — 0 then Zan cvgs < > agn2™.
Expan510ns/Approx1mat ions
1/l—z)=14+z+22+2%+- T =1+z+22/2! +23/3 +
log(l4+z) =z —x2/2 + 23/3 —---. sinx = z — 23/3! + 25/5! —
cosx =1—a2/2' +2%/4 — ... arctan(z) =z — x3/3 + 23/5 — -
arctan(z) =7/2— arctan(l/:c) Vitz= 1+33 2— $2/8+z / 6—--

~ Vamn(n/e)r. (1+a)" ~ 1+ ra + WZHg2 4 rrl- 2) 48,
S fl@)de = limp o0 D7 4 Axf(a + iAz), where Az = (bna) (usu—
ally a =0,1 and Az = 1/n or something simple).
Linear Algebra
m X n matrix E is in row echelon form if (1) all zero rows are
below all nonzero rows, and (2) the first nonzero entry of a row is
in a column strictly to the right of that of the first nonzero entry
of any previous row. If F in echelon form then we say F is in re-
duced row echelon form if (3) any first nonzero entries are 1,
and (4) each column containing a leading 1 has zeros in all its other
entries. The row echelon form of A, Ac (resp. the reduced row
echelon form of A), denoted Ae (resp. Are), is any matrix in row
echelon form (resp. reduced row echelon form) obtained by ele-
mentary row operations, which are (7) scalar multiplication of
a row, (T2) swapping any two rows, or (73) adding a scalar multiple
of one row to another row. A. is not unique, while Aye is unique.
A system of eqns [A|b] is consistent if 3 > 1 soln x. A system
of eqns [A|b] is inconsistent if # soln x. Ax = b inconsistent <
last column of echelon form of augmented matrix [A|b] has pivot.
Cols of A form a basis < all rows and all columns of Ae have pivot
< 3 wunique soln for Ax = b < A invertible. Cols of A span-
ning < A surj < every row of Ae has pivot. Cols of A L.i. < A
inj < every column of A. has pivot. Matrix properties: A is
m xn & Bisn x p, then AB is (m x n)(n x p) = m X p (think
of inner ones vanishing, e.g. n in this case). A, B square and A
left(or right) invertible w/ left inverse B then B is the full inverse
of A (le. then AB = BA=1). A= (2 b= A"1= (4 =),
ch(A)=1? — [tr(A)+det(A).2l; = tr. TIl; = det. Cramer’s Rule:
A square, Ax = b = x; = det A;/det A, where A; is A w/ col j
replaced by b. Determinant trick for any 3 x 3: .
blue, subtract red. A" = 0= ([ —-A) 1 =T+A+ .-
The four fundamental subspaces are im(A) (column space),
ker(A) (nullspace), im(A?) (row space), ker(A?). Finding bases
for row/col(img)/ker spaces: Basis for col space im(A) is the
cols Aj of 4 s.t. the corresponding (Ae); have pivot. Basis for row
space im(A') is rows of Ae with pivot (or j/ use basis of the col
space of A?). Basis for nullspace ker(A) is solution set of linear eqns
Ax = 0. # any shortcut for the subspace ker(A!); you need to find

basis for x s.t. Alx = 0.
Affine and Analytic Geometry

cosf = % proj,(b) = acosf = g)a. Vector from a to b

(i.e. head at a and tail b) is a — b. Line through p, q is
tp + (1 —t)q. Plane through x¢ normal to nisn-(x —xg) =0,
i.e. n1x + n2y + n3z = n-xo. Plane through 3 pts x1,x2,x3 is
v-x = d, where v, d satisfy v-x1 = d, v-x2 = d, v-x3 = d (expand
dot products and solve w/ row-reductn). Graphing Tools: Cylin-
der: 22 + y2 = a?. Cone: z2 + 32 = 22. Sphere: z2 +y? + 22 = a>.
We can substitute z2 +y2 — r to reduce to a two-dimensional graph
of z (or whatever variable is not involved) and r, by “unwrapping”
the 3D graph around the z-axis. Circles around the z-axis are then
level-curves, too.

Multivariable Differentiation:

Tangent plane of graph z = f(z,y) at (zo,y0,20 = f(xo0,¥0)):
z—z0 = f(zo,y0) + fe(z0,y0)(x — o) + fy(z0,%0)(y — yo). Par-

tial Derivative Chain Rule: If u = f(m,yg, v = g(z,y) then
partial derivatives of F = F(u,v) are a— = —56—" + (z—f%, and

simil. for E—F. f:R2>R. Then Vf = (fz,fy) SO approx near
(z0,y0) is f(yac y) & (aco,yo) + Vf - x. Direction of maximized
slope is the direction v = Vf/|V f| (with slope [V f|). Then the
minimal slope is —V (with slope — |V f])). Local Extrema: (1)
Find p s.t. Vf(p) = 0 (the crit. pts). (2) Determine Hessian for
each p: H(P) = faa(P)fyy(P) — fay(P)®. (3) Hyp(p) > 0 and
fea(P) > 0 (resp. fex(p) < 0) then p is local min (resp. local
max). Hy(p) < 0 = p a sattle point. Hy(p) = 0 = inconclu-
sive. Global Extrema: (1) Find local extrema. (2) Check the
boundaries (usually single-variable functions). If f(z,y) is linear
(i.e. az + by + cz = d) then extrema are always on the boundaries.
Extrema Subject to Constraint: Find min/max of f(z,y) such
that g(z,y) = 0: F(z,y,l) := f(z,y) — Ag(z,y). Then crit. pts. p
for F are the candidate extrema (i.e. find z in trms of z, y, then solve
the system Fy(z,y,l) = Fy(z,y,l) = g(z,y) = 0). Then compare
values.

Multivariable Integration

Line Integral of the First Kind: Gets area under z = f(z,y)
and above a curve C parameterlzed by g(z(t),y(t)) = 0 for t € [a, b]:
S fz(t),y(t))\/22(t) + 92(t)dt. Line Integral of the Second
Kind: Gets the net work done by the vector field F(z,y) =
(P(z,y),Q(z,y)) on a particle movmg along a curve C parame—
terized by r = (z(t),y@t)), t € [a,b]: [, F -dr = S z(t)) +
Qy(t)) SCF dr = SC Pdx + Qdy) Direction matters here
but not the specific param. E.g. C unit circle oriented ccw by r =
(cost,sint) = § wdz + ydy = Sg”(cost(— sint) + sint(cost))dt = 0.
FTOC for Line Integrals of the Second Kind: If F(z,y) is
gradient of g (i.e. F is gradient field), { a_b F -dr = g(b) — g(a).
Green’s Theorem: A bounded by closed curved C, simple (no
self-intersct), ccw-orient, P,Q € C*(A) = § Pdz + Qdy = § ,(Qz —
P,)dA. Divergence/Gauss Thm: Divergence over volume = sur-
face flux, i.e. §{, V-FdV =§, F-fids. Stokes’ Thm: Domain D
pos. oriented. etc, then §, , F -dr = {.--{, V x FdV.

Stokes’ Thm (Curl Theorem): The line integral of a vector field
over a loop is equal to the flux of its curl through the enclosed sur-
face, i.e. {§, V x F-fids = §Fd¢

Gradient Field Char. F € C!(R), R smply cnctd = F gradi-
ent field & P, = Qz < line int. of F is path-independent < line
int. around any closed path is zero. Green’s theorem: area of A is

zdy = —§ydz = 5& xdy — ydz).
umerical Analysis Topics

Let (z1,y1);.-.,(zn,yn) be pts in plane. Center of Gravity:
X =+ ~ 2T, Y = §2v;. Least Squares Linear Regression finds
a,bs. t line y = ax + b minimizes y-error X(y; — (ax; + b))2. Goes
through center of gravity. Methods for Finding Solns f(z) =0,
f cts: Bisection Method: find pts w/ f > 0, f < 0, bisect
them, try w new pt. Newton’s Method: Converges faster than
bisection: f is differentiable then Newton’s method: guess zg, set
ZTn = Tn—1 — f(@n—1)/f"(xn—-1). Algorithms:‘if”:piecewise.
Graph Theory

Hamiltonian Walk (resp. cycle): A walk (resp.
through each wvertezx exactly once. Eulerian Walk (resp. cy-
cle): A walk (resp. cycle) going through each edge exactly once.
Eulerian cycle < all vertex degrees are even. Eulerian walk < all
or n — 2 vertex degrees are even. Y, . deg(v) = 2|E|. T a tree
& [V(T)| = |E(D)| + 1.

cycle) going
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Set Theory and Logic

Number Theory

AcX=f(A)cY. BcY=f"1(B)cX. f(A1 U As) = f( YU f(A3).
F(A1L A A2)cf(A1) N f(A2) (equality if f inj). f~1(By u Ba) =

“H(B1) v fTH(B2). fTH(B1n B2) = fTH(B1) n fTH(B2). f:
A — B surjective = |A| = |B|. g : A — B injective = |A| < |B].
h : A — B bijection = |A| = |B|. If f,g exist as above then
|A] = |B|. If A B and B » A then 3 a bijection. Cantor:
|P(A)| > |A|. Ctbl union of ctbl sets is ctbl(e.g.Q = UjezZ/j). Fi-
nite cartesian product of ctbl sets is ctbl(e.g.Q x Q). A ctbl = Alz]
ctbl. Algebraic #s are ctbl. P(ctbl set)=unctbl (bc not in bijection
w/ n by Cantor’s thm). arctan is a bijection from R — (—n/2,7/2).
Modifying this gives bijection from R to any interval. Logic: P — Q
equiv. to =P v Q. P — @ is false iff P is true and @ is false simul-

taneously.
Counting

Multinomial Coef: (k ") =
balls in r labld Contamers dl, e

ments. [a*bIck ](a+b+c)" = (”k)

W # ways to put n labld
s where C; has exactly k; ele-

Counting Table

k items n_slots No Restrictions <1 items/slot >1 items/slot
Lbl. Lbl. nk () #(F)
n+k71 n k—1
Onl. LBl k( ) (&) (k;n)
Lbl. Unl. (5)+- +( ) [k < n] @)
Tl Tnl. p(k, VT fp(k,n) [F < n] p(k, n)
Probability

X a set, F' a family of subsets of X is a Boolean algebra if
X, € Fand A\ B e F = An B,Au B,A° € F. A prob-
ability function is P : ' — [0,1] s.t. P(X) = 1, P(@) = 0,
P(Au B) =P(A)+P(B). P(A°) = 1— P(A). Events A, B are inde-
pendent if P(An B) = P(A)P(B). A pt z € X is outcome/simple
event. If # possible events is ctbl then say X is discrete. X
discrete= P(A) = |A|/|X| =(#outcomes in A)/(#total outcomes).
A random variable is a function V : X — R. For discrete
random vars: Expectation (mean): ]E(Y) = SyP(Y = vy).
Variance: V(Y) = E(Y2) — E(Y)? > FOr non-discrete
random vars Y: A distribution functlon is Fy(t) = P(Y <
S_ fy, where fy = FY, is probability density function.
= S sfy(s)ds, V(Y) =no change. Bernoulli Random
Vars Elther Oorl. 1 1f experiment with probability p is success, 0
otherwise. Exmples: one coin flip, one random binary digit, asking
whether a disk drive crashed. P(X = 1) = p, P(X =0) = (1 —p).
E(X) = p. V(X) = p(1 —p). Binomial random vars repre-
sent the # of successes in n successive indep. trials of a Bernoulli
experiment. Exmples: the # of heads from n coin flips, the #
of disk drives that crashed in a cluster of 1000 computers, etc.
and # of advertisements that are clicked when 400 are served.
P(X = k) = ( YpP(1 —p)»~* if k € N, 0 < k < n (0 otherwise).
E(X) = np. V(X) = np(l—p). Exmpl: X = # heads appearing in 3
coin flips= X = binom random var, p = 0.5. What is the probability
of each of the different values of X7 P(X =0) = 'Sg)po(l p)3 =
P(X =1) = ( p(1—p)? = 3 PX =2) = Grra—-pt =3,
P(X = 3) = ) 3(1 —p) = 5. Exmpl of non-discrete random-
var: A normally distributed random variable Y has E(Y) = p,
V(Y) = 02, the normal dist. is fy(s) = e~ ((=#)/V29)% /5 /2.
P(Y < p) =0.5. PY < p+ 0/2) ~ 0.691. IP(Y < p+o) =~ 0.841.
P(Y < p+20) ~ 0977. P(Y + 30) ~ 0.999. The Gaussian (bell
curve) is symmetric about the line z = p, so e.g. P(Y < p— o) =
P(Y > p+o0) ~1—0.841 = 0.159. It is standard normal dist.
when p = 0, 0 = 1. The z-score is # std. devs from the mean,
ie. z = (x — p)/o, where z is observed value. The t-score is
t = (z — p)/(s/a/n), where T is mean of sample (i.e. (3 x;)/n),
s=std. dev. of sample, s = /3" ;(z; — T)2/y/n.

CABO\»—‘

ged(a, b) lem(a,b) = ab. Euclidean Algorithm: a = bg +r =
ged(a, b)=ged(b, 7). ged(z,0) = z. Modular Arithmetic: p prime.
aP = a (modp) for any a. If a # kp then aP~! = 1 (modp). If
ged(a,n) = 1 then a?(™ =1 (modn). ¢(n) = nIlp, (p—1)/p. Chi-
nese Remainder Theorem: a, b coprime & nip + n2q = 1 and
{2=¢ ((,’,’]’;’j,’f;)) has soln. z = a(n2q) + b(ni1p) (mod nin2). Con-
gruence Equation az = b (modn): ax = b (modn) has soln <
ged(a,n) divides b. If a, n coprime then soln. is unique mod n, other-
wise soln. unique mod(n/ged(a,n)). If looking for b™ (mod 10), just
compute cycle of last digit when multiplying by b, e.g. 725 = (7%)5
and 7% = 7 (mod 1)0, so has last digit 7.

Group Theory

G = {(a) finite cyclic = [{a™)| = n/gcd(m,n). Lagrange’s The-
orem: G finite, H < G = |H]| divides |G|. G finite, abelian = G
has a subgroup of order d for all divisors d of n. G finite, cyclic
= G has exactly one (cyclic) subgroup for every divisor d of n.
Cauchy’s Theorem: G finite of order n, p prime dividing n = G
has a subgroup of order p. First Sylow Theorem: For any fi-
nite group G and prime p, if p* divides |G|, then G has a subgroup
of order p*. In other words, if G finite of order n = pFm, p tn
= G has subgroup of order p’ for all 0 < i < k. For cyclic groups,
Cm @ Cy, is cyclic « ged(m, n) = 1, in which case Cp, @ Cp, = Crn
as groups. Classification of Finite Abelian Groups: Shown
by example: Q: What is #(up to isom.) abelian groups of order
6007 A: 600 = (23)(3')(52) is prime factorization, and the ans is
the prod. of the partition numbers of the powers all w/ each other
(p(3)-p(1)-p(2)) = 6. o € Sy, an even permutation if o a product of
evenly many transpositions, and odd permutation defined similarly.
Helpful: partition p(2) = 2,p(3) = 3,p(4) = 5,p(5) = 7,p(6) = 11,
remember using that these are the first few primes.

Elementary Complex Analysis

z € Chas z = x + iy for x,y € R (cartesian form) and z = re®®
(r € [0,00), 0 € R (polar form). r = |z| = \/22 + y2, z = rcos0,

y = rsinf. 6 = arg(z) not unique. Arg(z) = arctan(y/x)
or arctan(y/z) + 7 (context-dependent). z/w = 2w /|wl|? =
e 0==0w)y Jr,. Log(z) = log(|z|) + i Arg(z). 2711 = 27(z¥)7,

sin(z) = (e'* — e7%¥)/2i = —isinh(iz). cos(z) = (&' + e7%)/2 =
cosh(iz). |sin|,|cos| unbdd on C. f: C — C. f is diff. at zo if
f'(20) := limy—o(f(z + w) — f(2))/w exists. f = u+ iv, u,v real
fcns. Cauchy-Riemann Equations: u; = vy, uy = —vz. f diff.
at zo = C.R. at z0. C.R. at zo&uz,uy,vz,vy cts in open nhd of
z0 = f diff. at z0. A domain is an open connected subset (of e.g.
C). Let D be a domain. f is holomorphic on domain D if f is diff.
at every z € D. f is holomorphic at zp € C if f is holomorphic
on some domain containing zg. f can be diff. at zg but not holo-
morphic at zo! f hol. on D = C.R. eqns hold on D and f € C®.
C.R. at z0 € D, ug,uy,ve,vy ctson D = f hol. on D. f: D —C, f
analytic at zo € D if 3 power series X an(z — 20)™ converging to
f in open nhd U of zg. f analytic on D if f analytic at all z € D.
f analytic on D < f holomorphic on D. Let R be radius of con-
vergence of L = Y an(z — z9)". Cauchy-Hadamard Theorem:
1/R = limsup |an|Y/". L cvgs (i) absolutely in {z : |z — 29| < R}, (ii)
uniformly in {z : |z — 20| < R — ¢} for any € > 0. We cannot say any-
thing ab the boundary |z — z9| = R. f is entire if f is holomorphic
on all of C, e.g. f = e?,cos,sin,polys,etc. Log(z) : C\ (—0o0,0] - C
only analytic where defined. f is meromorphic if analytic ex-
cept at isolated pts, called poles. E.g. f = ¢?/2%(z + 1) has poles
z = 0, —1, is meromorphic. z¢ is a simple pole (i.e. pole of order 0)
if zg is a removable singularity (i.e. if the limit exists, e.g. sin(z)/z).
20 is a pole of order n if n is the smallest s.t. (z — 20)" f(2) is
analytic at zg. If n = 00 zg is called an essential singularity (e.g.
the expansion of e'/? shows it has zp = 0 as an essential singu-

larity). Let f be meromorphic but analytic on an (open) annulus
around 29, A = {r < |z — 20| < R}, r € [0,0), R € (r,00]. The Lau-
rent series of f in an annulus centered at 2z is ¥%_an(z — 20) ™"
Examples: 1/z about zp = 0 (on any annulus w/o 0) is its own
Laurent series. But centered around zp = 1, say in annulus A =
{1 < |z — 1] < 2}, have (by typical power series manipulations) that
1/z2=1/01—(-)(z-1)=C-1D"1—(z-1)"2+(z-1)"3—...
The poles outside the annulus do not contribute to a—j. If asked to
find Laurent series of f which has > 2 pole, decompose f w/ partial
fractions, do each separately, then sum. If asked to find Laurent
series of 2/%2 —2)2, use that 2/(z — 2)2 = —20%1/(2 —2).
Complex Integration

Let C < C be an oriented smooth curve z(t) = u(t) +iv(t), t € [a, b],
define §, f(z)dz = SZ f(2)2'(t)dt, where 2/(t) = u/(t) + w'(t). 4 is
treated as any constant. FTOC for Complex Integrals: If F/ = f

in a domain D containing C then § -, ., f(2)dz = F(z2) — F(z1).
Eg. (oizdz = i§,zdz = i(23/2 — 23/2). ddz oz - 20)" ! =

(z—20)™ = 0foralln € Z~{— 1} on C (or C\{zo} if the power is nega-
tive). If 20 = zo +14yo, then —Z Log(z—20) = =~ on C\ (—00, z0] %

{yo}, but not on all of C. Let C be a closed smooth simple curve
orientd ccw. (1) C encloses z0 = §o dz = 2mi. (2) If C does
not enclose zp, then §C dz =0. 3 §ZC dz = 2wia—_1, where
a_1 is the coefficient of z~ %in the Laurent series of f in an annulus
around containing C' centered at zg. Define the residue of a pole zg
of f of order k by Res(zo, f) = ﬁ lim,— 5 ((z — 20)* f(2)) D),
and for k = oo set Res(zo, f) = a—1, the coef. of z~! in the Laurent
series of f in an annulus containing C' centered at p;. Residue The-
orem: § f(z)dz = 2mi Ypoles in ¢ Res(25, f). (Also gives an alter-
nate way to calculate a_1 = poles in C Res(zj, f).) Strategy to
calculate §, f(z)dz: (1) If possible, break f into summands, com-
pute the integrals for every summand separately, and add the results.
(2) Identify poles p; enclosed by C and their orders. (3) Calculate
the residues Res(p;, f) (with respect to the Laurent series of an annu-
lus containing C, centered at p;). (4) Eliminate analytic summands
of f- Fmdmg an of Laurent Series in an annulus around zg: ag =
2m §C &) g, = f(z0) (since f analytic at all points within and
on s1rnp1e Olosed path C containing point zp and hence power series

at 20, f(z0) = >, an(z — 20)™, vanishes everywhere except the term
ap(z — zogo = ap, 50 f(20) = ao). an = 5§ f( /(z - zfQ)""'ldz
a-1 = Tm@c F(2)/(z = 20)tdz.  f(™(z0) = 271 c 7n+1d’z

(by similar reasoning to the first bullet point, except we multlply
by n! to account for the product rule bringing the exponents down
to make n!). Taking C = {z:|z — 20| = R} and M = sup¢ |f(2)|,
we obtain [f(™(z0)] < IQT'LM Liouville’s Theorem: An entire
function which is bounded is constant.

ODE Solutions:

First Order: Separable y'(z) = f(z)g(y) = S g(y) = { f(z)dz +
C. Homogeneous y' = f(y/z) = sub. u = y/z to make separa-
ble. Linear: y' + p(z)y = q(z) = y = e~ 1" P({el" Pg(a)dz + C).
Exact: P(z,y)dz + Qa,y)dy, P, = Qo = u(z,y) — C, where
du = ugdr + uydy = Pdr + Qdy. Solving for u gives an im-
plicit eqn of = and y, as desired. Non-Exact (Special Case):
Py # Qu,(My — No)/M — h(y) (is a fon of y) = u(y) — eI’ b
Py # Qz,(My — Ng)/(=N) = h(z ? (is a fen of x, noting the neg-
ative sign on —N) = pu(z) = &' " makes pPdzr + pQdy = 0
exact so that we can solve for u to get an implicit equation of
z and y as in the exact case above, as desired. A homoge-
neous second-order equation with constant coefficients is
ay”(z) + by (z) + cy(z) = f(z) = y = C1e™® + Coe™% if r1 # 12
and y = (C1 + Cax)e™” otherwise.
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