
Graph Tools and Polynomials

Graph Tools: fpxqÞÑfp´xq reflect ab y-axis. fpxqÞÑ´fpxq: re-
flect ab x-axis. fpxq ÞÑ ´fp´xq:reflect ab xandy-axes (180˝rot ab
origin). fpxqÞÑf´1pxq: reflect ab y“x. Polynomials: Finding
roots: Try ˘1. Let r be a root. Divide by x ´ r to find more.
f P Zrxs ñ rational roots P t˘divisors ofa0u{t˘divisors of anu. Vieta:
Σroots “ ´an´1{an; Πroots “ p´1qna0{an. fprq “ 0 ô λfprq “ 0.
r of multip. k ô fprq,...,f pk´1qprq “ 0, f pkqprq ‰ 0. f monic ñ
|r| ă maxp|ai|q`1. Descartes’ Rule of Signs: # of positive roots
of f “ anxn`an´1xn´1`¨ ¨ ¨`a0 is the # sign changes of the con-
secutive nonzero coefficients of fpxq (reading from left to right), or
an even number less; # of negative roots of f is the # of sign changes
of fp´xq, or an even number less. (e.g. fpxq “ 2x5´8x´7 has 1 sign
change so must have one positive root, and fp´xq “ ´2x5 ´ 8x` 7
has 0 sign changes, so must have zero negative roots, so f has 1 real
root in total, the rest being complex.)
Trigonometric Identities

sin odd, cos even. sinpπ{2´xq “ cosx. cospπ{2´xq “ sinx. tanpα˘
)
¯
“ ptanα ˘ tan )

¯
{p1 ¯ tanα tan )

¯
. tanp2xq “ 2 tanx{1´ tan2 x.

sin2 x “ 1
2
p1 ´ cosp2xqq. cos2 x “ 1

2
p1 ` cosp2xqq. sinx “

tanx{
?
1` tan2 x. cosx “ 1{

?
1` tan2 x. Bxpx log x ´ xq “ log x.

Bx log | tanpx{2q| “ cscx.
Geometry/Precalculus/Some Differential Calculus

Pyramid/ConeVol: Bh{3,Bbase area(e.g.πr2h{3). Trapezoid vol:
pa ` bqh{2. Hero’s formula: △abc, s “ pa ` b ` cq{2, then
A “

a

sps´ aqps´ bqps´ cq. Law of cosines: c2 “ a2 ` b2 ´
2ab cospCq. Law of sines: a{ sinpAq “ b{ sinpBq “ c{ sinpCq “ 2R,
R radius of circumscribed circle. Circumscribe circle of shape
S “circle s.t. vertices of S lie on circumference. Inscribed cir-
cle of S: circle tangent to each edge of S. x2 ` y2 “ L2 ñ

xpdx{dtq ` ypdy{dtq “ 0. 9Vsphere “ Asphere. logb x “ loga x{ loga b;
logb a “ 1{ loga b. Bx arcsinpxq “ 1{

?
1´ x2 “ ´Bx arccospxq.

Bx arctanpxq “ 1{1` x2. Bx arcsecpxq “ 1{p|x|
?
x2 ´ 1q. If f is

hard to differentiate and logpfq is easier to differentiate, use that
f 1 “ plogpfqq1f . Tools for finding limF include l’Hôpital’s Rule,
Taylor expansion, or eL, where L “ limplogpF qq.
Integral Calculus
ş

tan “ ´ log | cos |.
ş

cot “ log | sin |.
ş

sec “ log | sec` tan |.
ş

csc “ ´ log | csc` cot |.
ş

1{pa2 ` x2qdx “ a´1 arctanpu{aq.
ş

1{
?
a2 ´ u2 “ arcsinpu{aq. If something has the form fpxq ´

fp0q, think of setting up integral
şx
0 f 1.

?
a2 ´ x2: x “ a sin θ.?

a2 ` x2:x “ a tan θ.
?
x2 ´ a2:x “ a sec θ. Polar: Area from

θ P ra, bs of r “ fpθq: 1
2

şb
a fpθq2dθ. Arc length from x P ra, bs:

şb
a

a

1` f 1pxq2dx, or from t P ra, bs:
şb
a

a

pdx{dtq2 ` pdy{dtq2dt. Vol-
ume rotate f ď g about x-axis from x P ra, bs:π

şb
apgpxq

2´ fpxq2qdx.
Int. by parts preference for what u is: ILATE (inverses,
logarithms, algebraic (i.e. polynomials/rational functions), trig,
exponentials). Tabular method of int. by parts: (left col-
umn is u [decided w/ ILATE] and successive derivatives; right
column is dv and its successive primitives. Example: ñ
ş

x3exdx “ x3ex ´ 3x2ex ` 6xex ´ 6ex/ Integral tricks if
stuck:

şb
a fpxqdx “

şb
a fpa ` b ´ xqdx (so that

şb
a fpxqdx “

1
2

şb
apfpxq ` fpa ` b ´ xqqdx). f evenñ

şa
´a

fpxq

1`ex
dx “

şa
0 fpxqdx.

ş

fpsinx, cosxqdx “
ş

fp 2t
1`t2

, 1´t2

1`t2
q 2
1`t2

dt, t “ tanpx{2q. Dif-
ferentiation under the integral sign (Feynman’s trick): If
you want Ipαq “

şb
a F px, αqdx (usually α is a constant, e.g. 1)

and I 1pαq “
şb
a Fαpx, αqdα is easier to integrate, then Ipαq “

ş

I 1pαqdα. If
ş8

a
fpαxq´fpx

¯
q

x
dx cvgs @a ą 0 and limxÑ0 fpxq “ a

then
ş8

0
fpαxq´fpx

¯
q

x
dx “ A logp/

¯
αq.

ş8

8
fpxqdx “ 1

2

ş8

´8
pfpxq `

fp´xqqdx “
ş8

0 pfpxq ` fp´xqqdx. Series Convergence Tests:
Geometric Series Test: Σxn cv ô |x| ă 1. p-Series Test:
Σ1{np converges ô p ą 1. Ratio Test: r :“ lim |an`1{an| then:
r ă 1ñ Σan cnverges (absolutely), r ą 1ñ Σan divgs, r “ 1ñ in-

conclusive. Root Test: r :“ lim |an|1{n then p˚q. Integral Test: f
cts, ě 0, decreasing on r1,8q then Σfpnq cvgô

ş8

1 f cvg. Alternat-
ing Series Test: an Ñ 0ñ Σp´1qnan cvg. Cauchy Condensation
Test: an ě 0, an Ñ 0 then

ř

an cvgs ô
ř

a2n2n.
Expansions/Approximations

1{p1´ xq “ 1` x` x2 ` x3 ` ¨ ¨ ¨ . ex “ 1` x` x2{2!` x3{3!` ¨ ¨ ¨ .
logp1`xq “ x ´ x2{2 ` x3{3 ´ ¨ ¨ ¨ . sinx “ x ´ x3{3! ` x5{5! ´ ¨ ¨ ¨ .
cosx “ 1´ x2{2!` x4{4!´ ¨ ¨ ¨ . arctanpxq “ x´ x3{3` x3{5´ ¨ ¨ ¨ .
arctanpxq “ π{2´arctanp1{xq.

?
1` x “ 1`x{2´x2{8`x3{16´¨ ¨ ¨ .

n! „
?
2πnpn{eqn. p1 ` xqr « 1 ` rx ` rpr´1q

2
x2 `

rpr´1qpr´2q

6
x3.

şb
a fpxqdx “ limnÑ8

řn
i“1 ∆xfpa ` i∆xq, where ∆x “ pb´aq

n
(usu-

ally a “ 0, 1 and ∆x “ 1{n or something simple).
Linear Algebra

m ˆ n matrix E is in row echelon form if (1) all zero rows are
below all nonzero rows, and (2) the first nonzero entry of a row is
in a column strictly to the right of that of the first nonzero entry
of any previous row. If E in echelon form then we say E is in re-
duced row echelon form if (3) any first nonzero entries are 1,
and (4) each column containing a leading 1 has zeros in all its other
entries. The row echelon form of A, Ae (resp. the reduced row
echelon form of A), denoted Ae (resp. Are), is any matrix in row
echelon form (resp. reduced row echelon form) obtained by ele-
mentary row operations, which are pT1q scalar multiplication of
a row, pT2q swapping any two rows, or pT3q adding a scalar multiple
of one row to another row. Ae is not unique, while Are is unique.
A system of eqns rA|bs is consistent if D ě 1 soln x. A system
of eqns rA|bs is inconsistent if E soln x. Ax “ b inconsistent ô
last column of echelon form of augmented matrix rA|bs has pivot.
Cols of A form a basis ô all rows and all columns of Ae have pivot
ô D unique soln for Ax “ b ô A invertible. Cols of A span-
ning ô A surj ô every row of Ae has pivot. Cols of A l.i. ô A
inj ô every column of Ae has pivot. Matrix properties: A is
m ˆ n & B is n ˆ p, then AB is pm ˆ nqpn ˆ pq “ m ˆ p (think
of inner ones vanishing, e.g. n in this case). A,B square and A
left(or right) invertible w/ left inverse B then B is the full inverse
of A (i.e. then AB “ BA “ I). A “

´

a b
c d

¯

ñ A´1 “
´

d ´b
´c a

¯

.
chpAq“l2 ´ l trpAq`detpAq.Σli “ tr. Πli “ det. Cramer’s Rule:
A square, Ax “ b ñ xi “ detAj{detA, where Aj is A w/ col j
replaced by b. Determinant trick for any 3 ˆ 3: ñ add
blue, subtract red. An “ 0 ñ pI ´ Aq´1 “ I ` A ` ¨ ¨ ¨ ` An´1.
The four fundamental subspaces are impAq (column space),
kerpAq (nullspace), impAtq (row space), kerpAtq. Finding bases
for row/col(img)/ker spaces: Basis for col space impAq is the
cols Aj of A s.t. the corresponding pAeqj have pivot. Basis for row
space impAtq is rows of Ae with pivot (or j/ use basis of the col
space of At). Basis for nullspace kerpAq is solution set of linear eqns
Ax “ 0. E any shortcut for the subspace kerpAtq; you need to find
basis for x s.t. Atx “ 0.
Affine and Analytic Geometry

cos θ “ a¨b
a¨a

. projapbq “ a cos θ “ a¨b
a¨a
qa. Vector from a to b

(i.e. head at a and tail b) is a ´ b. Line through p, q is
tp` p1´ tqq. Plane through x0 normal to n is n ¨ px´x0q “ 0,
i.e. n1x` n2y ` n3z “ n ¨ x0. Plane through 3 pts x1,x2,x3 is
v ¨x “ d, where v, d satisfy v ¨x1 “ d, v ¨x2 “ d, v ¨x3 “ d (expand
dot products and solve w/ row-reductn). Graphing Tools: Cylin-
der: x2 ` y2 “ a2. Cone: x2 ` y2 “ z2. Sphere: x2 ` y2 ` z2 “ a2.
We can substitute x2`y2 Ñ r to reduce to a two-dimensional graph
of z (or whatever variable is not involved) and r, by “unwrapping”
the 3D graph around the z-axis. Circles around the z-axis are then
level-curves, too.
Multivariable Differentiation:

Tangent plane of graph z “ fpx, yq at px0, y0, z0 “ fpx0, y0qq:
z ´ z0 “ fpx0, y0q ` fxpx0, y0qpx ´ x0q ` fypx0, y0qpy ´ y0q. Par-

tial Derivative Chain Rule: If u “ fpx, yq, v “ gpx, yq then
partial derivatives of F “ F pu, vq are BF

Bx
“ BF

Bu
Bu
Bx
` BF

Bv
Bv
Bx

, and
simil. for BF

By
. f :R2ÑR. Then ∇f “ pfx, fyq, so approx near

px0, y0q is fpx, yq « fpx0, y0q ` ∇f ¨ x. Direction of maximized
slope is the direction pv “ ∇f{ }∇f} (with slope }∇f}). Then the
minimal slope is ´pv (with slope ´}∇f}). Local Extrema: (1)
Find p s.t. ∇fppq “ 0 (the crit. pts). (2) Determine Hessian for
each p: Hf ppq “ fxxppqfyyppq ´ fxyppq2. (3) Hf ppq ą 0 and
fxxppq ą 0 (resp. fxxppq ă 0) then p is local min (resp. local
max). Hf ppq ă 0 ñ p a sattle point. Hf ppq “ 0 ñ inconclu-
sive. Global Extrema: (1) Find local extrema. (2) Check the
boundaries (usually single-variable functions). If fpx, yq is linear
(i.e. ax` by ` cz “ d) then extrema are always on the boundaries.
Extrema Subject to Constraint: Find min/max of fpx, yq such
that gpx, yq “ 0: F px, y, lq :“ fpx, yq ´ λgpx, yq. Then crit. pts. p
for F are the candidate extrema (i.e. find z in trms of x, y, then solve
the system Fxpx, y, lq “ Fypx, y, lq “ gpx, yq “ 0). Then compare
values.
Multivariable Integration

Line Integral of the First Kind: Gets area under z “ fpx, yq
and above a curve C parameterized by gpxptq, yptqq “ 0 for t P ra, bs:
şb
a fpxptq, yptqq

a

9x2ptq ` 9y2ptqdt. Line Integral of the Second
Kind: Gets the net work done by the vector field Fpx, yq “
pP px, yq, Qpx, yqq on a particle moving along a curve C parame-
terized by r “ pxptq, yptqq, t P ra, bs:

ş

C F ¨ dr “
şb
apP pxptqq `

Qpyptqqdtp“
ş

C F ¨ dr “
ş

C Pdx ` Qdyq. Direction matters here
but not the specific param. E.g. C unit circle oriented ccw by r “
pcos t, sin tq ñ

ş

C xdx` ydy “
ş2π
0 pcos tp´ sin tq ` sin tpcos tqqdt “ 0.

FTOC for Line Integrals of the Second Kind: If Fpx, yq is
gradient of g (i.e. F is gradient field),

ş

CaÑb F ¨ dr “ gpbq ´ gpaq.
Green’s Theorem: A bounded by closed curved C, simple (no
self-intersct), ccw-orient, P,Q P C1pAq ñ

ű

C Pdx`Qdy “
ş

ApQx´

PyqdA. Divergence/Gauss Thm: Divergence over volume “ sur-
face flux, i.e.

ş

V ∇ ¨ FdV “
ű

A F ¨ pnds. Stokes’ Thm: Domain D
pos. oriented. etc, then

ű

BD F ¨ dr “
ş

¨¨¨
ş

D ∇ˆ FdV .
Stokes’ Thm (Curl Theorem): The line integral of a vector field
over a loop is equal to the flux of its curl through the enclosed sur-
face, i.e.

ť

A ∇ˆ F ¨ pnds “
ű

Fdℓ
Gradient Field Char. F P C1pRq, R smply cnctd ñ F gradi-
ent field ô Py “ Qx ô line int. of F is path-independent ô line
int. around any closed path is zero. Green’s theorem: area of A is
ű

C xdy “ ´
ű

ydx “ 1
2

ű

pxdy ´ ydxq.
Numerical Analysis Topics

Let px1, y1q, . . . , pxN , yN q be pts in plane. Center of Gravity:
X “ 1

N
Σxi, Y “

1
N
Σyi. Least Squares Linear Regression finds

a, b s.t. line y “ ax` b minimizes y-error Σpyi ´ paxi ` bqq2. Goes
through center of gravity. Methods for Finding Solns fpxq “ 0,
f cts: Bisection Method: find pts w/ f ą 0, f ă 0, bisect
them, try w new pt. Newton’s Method: Converges faster than
bisection: f is differentiable then Newton’s method: guess x0, set
xn :“ xn´1 ´ fpxn´1q{f 1pxn´1q. Algorithms:‘if’:piecewise.
Graph Theory

Hamiltonian Walk (resp. cycle): A walk (resp. cycle) going
through each vertex exactly once. Eulerian Walk (resp. cy-
cle): A walk (resp. cycle) going through each edge exactly once.
Eulerian cycle ô all vertex degrees are even. Eulerian walk ô all
or n ´ 2 vertex degrees are even.

ř

vPV degpvq “ 2|E|. T a tree
ô |V pT q| “ |EpT q| ` 1.
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Set Theory and Logic

AĂXñfpAqĂY . BĂYñf´1pBqĂX. fpA1 YA2q “ fpAq Y fpA2q.
fpA1 X A2qĂfpA1q X fpA2q (equality if f inj). f´1pB1 Y B2q “

f´1pB1q Y f´1pB2q. f´1pB1 X B2q “ f´1pB1q X f´1pB2q. f :
A ↠ B surjective ñ |A| ě |B|. g : A ↣ B injective ñ |A| ď |B|.
h : A Ñ B bijection ñ |A| “ |B|. If f, g exist as above then
|A| “ |B|. If A ↣ B and B ↣ A then D a bijection. Cantor:
|PpAq| ą |A|. Ctbl union of ctbl sets is ctbl(e.g.Q – YjPZZ{j). Fi-
nite cartesian product of ctbl sets is ctbl(e.g.QˆQ). A ctbl ñ Arxs
ctbl. Algebraic #s are ctbl. P(ctbl set)“unctbl (bc not in bijection
w/ n by Cantor’s thm). arctan is a bijection from RÑ p´π{2, π{2q.
Modifying this gives bijection from R to any interval. Logic: P Ñ Q
equiv. to ␣P _Q. P Ñ Q is false iff P is true and Q is false simul-
taneously.
Counting

Multinomial Coef :
` n
k1,...,kr

˘

“ n!
k1!k2!¨¨¨kr !

: # ways to put n labld
balls in r labld containers, C1, . . . , Cr, where Ci has exactly ki ele-
ments. raibjckspa` b` cqn “

` n
i,j,k

˘

.

Counting Table
k items n slots No Restrictions ď1 items/slot ě1 items/slot

Lbl. Lbl. nk k!
´

n
k

¯

k!
´

k
n

¯

Unl. Lbl.
´

n`k´1
k

¯ ´

n
k

¯ ´

k´1
k´n

¯

Lbl. Unl.
´

k
1

¯

`¨¨¨+
´

k
n

¯

rk ď ns
´

k
n

¯

Unl. Unl. ppk, 1q`¨¨¨`ppk, nq rk ď ns ppk, nq

Probability
X a set, F a family of subsets of X is a Boolean algebra if
X,∅ P F and A,B P F ñ A X B,A Y B,Ac P F . A prob-
ability function is P : F Ñ r0, 1s s.t. PpXq “ 1, Pp∅q “ 0,
PpA\Bq “ PpAq`PpBq. PpAcq “ 1´P pAq. Events A,B are inde-
pendent if PpAXBq “ PpAqPpBq. A pt x P X is outcome/simple
event. If # possible events is ctbl then say X is discrete. X
discreteñ PpAq “ |A|{|X| “(#outcomes in A)/(#total outcomes).
A random variable is a function V : X Ñ R. For discrete
random vars: Expectation (mean): EpY q “ ΣyPpY “ yq.
Variance: VpY q “ EpY 2q ´ EpY q2 ě 0. FOr non-discrete
random vars Y : A distribution function is FY ptq “ PpY ď

tq “
şt

´8
fY , where fY “ F 1

Y is probability density function.
EpY q “

ş8

´8
sfY psqds, VpY q “no change. Bernoulli Random

Vars: Either 0 or 1. 1 if experiment with probability p is success, 0
otherwise. Exmples: one coin flip, one random binary digit, asking
whether a disk drive crashed. PpX “ 1q “ p, PpX “ 0q “ p1 ´ pq.
EpXq “ p. VpXq “ pp1 ´ pq. Binomial random vars repre-
sent the # of successes in n successive indep. trials of a Bernoulli
experiment. Exmples: the # of heads from n coin flips, the #
of disk drives that crashed in a cluster of 1000 computers, etc.
and # of advertisements that are clicked when 400 are served.
PpX “ kq “

`n
k

˘

pkp1 ´ pqn´k if k P N, 0 ď k ď n (0 otherwise).
EpXq “ np. VpXq “ npp1´pq. Exmpl: X “ # heads appearing in 3
coin flipsñ X “ binom random var, p “ 0.5. What is the probability
of each of the different values of X?: PpX “ 0q “

`3
0

˘

p0p1´pq3 “ 1
8
,

PpX “ 1q “
`3
1

˘

p1p1 ´ pq2 “ 3
8
, PpX “ 2q “

`3
2

˘

p2p1 ´ pq1 “ 3
8
,

PpX “ 3q “
`3
3

˘

p3p1 ´ pq0 “ 1
8
. Exmpl of non-discrete random-

var: A normally distributed random variable Y has EpY q “ µ,
VpY q “ σ2, the normal dist. is fY psq “ e´pps´µq{

?
2σq2{σ

?
2π.

PpY ă µq “ 0.5. PpY ă µ ` σ{2q « 0.691. PpY ă µ ` σq « 0.841.
PpY ă µ ` 2σq « 0.977. PpY ` 3σq « 0.999. The Gaussian (bell
curve) is symmetric about the line x “ µ, so e.g. PpY ă µ ´ σq “
PpY ą µ ` σq « 1 ´ 0.841 “ 0.159. It is standard normal dist.
when µ “ 0, σ “ 1. The z-score is # std. devs from the mean,
i.e. z “ px ´ µq{σ, where x is observed value. The t-score is
t “ px ´ µq{ps{

?
nq, where x is mean of sample (i.e. p

ř

xiq{n),
s=std. dev. of sample, s “

a

řn
i“1pxi ´ xq2{

?
n.

Number Theory

gcdpa, bq lcmpa, bq “ ab. Euclidean Algorithm: a “ bq ` r ñ
gcdpa, bq“gcdpb, rq. gcdpx, 0q “ x. Modular Arithmetic: p prime.
ap ” a pmod pq for any a. If a ‰ kp then ap´1 ” 1 pmod pq. If
gcdpa, nq “ 1 then aφpnq ” 1 pmodnq. φpnq “ nΠp|npp´1q{p. Chi-
nese Remainder Theorem: a, b coprime & n1p ` n2q “ 1 and
␣

x ” a pmodn1q
x ” b pmodn2q has soln. x ” apn2qq ` bpn1pq pmod n1n2q. Con-

gruence Equation ax ” b pmodnq: ax ” b pmodnq has soln ô
gcdpa, nq divides b. If a, n coprime then soln. is unique mod n, other-
wise soln. unique modpn{gcdpa, nqq. If looking for bn pmod10q, just
compute cycle of last digit when multiplying by b, e.g. 725 “ p75q5

and 75 ” 7 pmod 1q0, so has last digit 7.
Group Theory

G “ xαy finite cyclic ñ |xαmy| “ n{ gcdpm,nq. Lagrange’s The-
orem: G finite, H ă G ñ |H| divides |G|. G finite, abelian ñ G
has a subgroup of order d for all divisors d of n. G finite, cyclic
ñ G has exactly one (cyclic) subgroup for every divisor d of n.
Cauchy’s Theorem: G finite of order n, p prime dividing n ñ G
has a subgroup of order p. First Sylow Theorem: For any fi-
nite group G and prime p, if pk divides |G|, then G has a subgroup
of order pk. In other words, if G finite of order n “ pkm, p ∤ n
ñ G has subgroup of order pi for all 0 ď i ď k. For cyclic groups,
Cm ‘Cn is cyclic ô gcdpm,nq “ 1, in which case Cm ‘Cn – Cmn

as groups. Classification of Finite Abelian Groups: Shown
by example: Q: What is #(up to isom.) abelian groups of order
600? A: 600 “ p23qp31qp52q is prime factorization, and the ans is
the prod. of the partition numbers of the powers all w/ each other
ppp3q ¨pp1q ¨pp2qq “ 6. σ P Sn an even permutation if σ a product of
evenly many transpositions, and odd permutation defined similarly.
Helpful: partition pp2q “ 2, pp3q “ 3, pp4q “ 5, pp5q “ 7, pp6q “ 11,
remember using that these are the first few primes.
Elementary Complex Analysis

z P C has z “ x ` iy for x, y P R (cartesian form) and z “ reiθ

pr P r0,8q, θ P R (polar form). r “ |z| “
a

x2 ` y2, x “ r cos θ,
y “ r sin θ. θ “ argpzq not unique. Argpzq “ arctanpy{xq
or arctanpy{xq ` π (context-dependent). z{w “ zw{|w|2 “

eipθz´θwqrz{rw. Logpzq “ logp|z|q ` iArgpzq. zx`iy “ zxpzyqi.
sinpzq “ peiz ´ e´izq{2i “ ´i sinhpizq. cospzq “ peiz ` e´izq{2 “
coshpizq. | sin |, | cos | unbdd on C. f : C Ñ C. f is diff. at z0 if
f 1pz0q :“ limwÑ0pfpz ` wq ´ fpzqq{w exists. f “ u ` iv, u, v real
fcns. Cauchy-Riemann Equations: ux “ vy , uy “ ´vx. f diff.
at z0 ñ C.R. at z0. C.R. at z0&ux,uy ,vx,vy cts in open nhd of
z0 ñ f diff. at z0. A domain is an open connected subset (of e.g.
C). Let D be a domain. f is holomorphic on domain D if f is diff.
at every z P D. f is holomorphic at z0 P C if f is holomorphic
on some domain containing z0. f can be diff. at z0 but not holo-
morphic at z0! f hol. on D ñ C.R. eqns hold on D and f P C8.
C.R. at z0 P D, ux,uy ,vx,vy cts on D ñ f hol. on D. f : D Ñ C, f
analytic at z0 P D if D power series Σ8

0 anpz ´ z0qn converging to
f in open nhd U of z0. f analytic on D if f analytic at all z P D.
f analytic on D ô f holomorphic on D. Let R be radius of con-
vergence of L “

ř

anpz ´ z0qn. Cauchy-Hadamard Theorem:
1{R “ lim sup |an|1{n. L cvgs (i) absolutely in tz : |z ´ z0| ă Ru, (ii)
uniformly in tz : |z ´ z0| ă R´ εu for any ε ą 0. We cannot say any-
thing ab the boundary |z ´ z0| “ R. f is entire if f is holomorphic
on all of C, e.g. f “ ez ,cos,sin,polys,etc. Logpzq : C ∖ p´8, 0s Ñ C
only analytic where defined. f is meromorphic if analytic ex-
cept at isolated pts, called poles. E.g. f “ ez{z2pz ` 1q has poles
z “ 0,´1, is meromorphic. z0 is a simple pole (i.e. pole of order 0)
if z0 is a removable singularity (i.e. if the limit exists, e.g. sinpzq{z).
z0 is a pole of order n if n is the smallest s.t. pz ´ z0qnfpzq is
analytic at z0. If n “ 8 z0 is called an essential singularity (e.g.
the expansion of e1{z shows it has z0 “ 0 as an essential singu-

larity). Let f be meromorphic but analytic on an (open) annulus
around z0, A “ tr ă |z ´ z0| ă Ru, r P r0,8q, R P pr,8s. The Lau-
rent series of f in an annulus centered at z0 is Σ8

´8anpz ´ z0q´n.
Examples: 1{z about z0 “ 0 (on any annulus w/o 0) is its own
Laurent series. But centered around z0 “ 1, say in annulus A “

t1 ă |z ´ 1| ă 2u, have (by typical power series manipulations) that
1{z “ 1{p1´ p´1qpz ´ 1qq “ pz´ 1q´1´pz´ 1q´2`pz´ 1q´3´¨ ¨ ¨ .
The poles outside the annulus do not contribute to a´1. If asked to
find Laurent series of f which has ě 2 pole, decompose f w/ partial
fractions, do each separately, then sum. If asked to find Laurent
series of 2{pz ´ 2q2, use that 2{pz ´ 2q2 “ ´2 d

dz
1{pz ´ 2q.

Complex Integration

Let C Ă C be an oriented smooth curve zptq “ uptq` ivptq, t P ra, bs,
define

ş

C fpzqdz “
şb
a fpzqz1ptqdt, where z1ptq “ u1ptq ` iv1ptq. i is

treated as any constant. FTOC for Complex Integrals: If F 1 “ f
in a domain D containing C then

ş

Cz1Ñz2 fpzqdz “ F pz2q´F pz1q.
E.g.

ş

C izdz “ i
ş

C zdz “ ipz22{2 ´ z21{2q.
d
dz

1
n`1

pz ´ z0qn`1 “

pz´z0qn “ 0 for all n P Z∖t´1u on C (or C∖tz0u if the power is nega-
tive). If z0 “ x0`iy0, then

d
dz

Logpz´z0q “
1

z´z0
on C∖p´8, x0sˆ

ty0u, but not on all of C. Let C be a closed smooth simple curve
orientd ccw. (1) C encloses z0 ñ

ű

C
1

z´z0
dz “ 2πi. (2) If C does

not enclose z0, then
ű

C
1

z´z0
dz “ 0. 3.

ű

C fpzqdz “ 2πia´1, where
a´1 is the coefficient of z´1 in the Laurent series of f in an annulus
around containing C centered at z0. Define the residue of a pole z0
of f of order k by Respz0, fq “

1
pk´1q!

limzÑz0 ppz ´ z0qkfpzqqpk´1q,
and for k “ 8 set Respz0, fq “ a´1, the coef. of z´1 in the Laurent
series of f in an annulus containing C centered at pi. Residue The-
orem:

ű

C fpzqdz “ 2πi
ř

poles in C Respzj , fq. (Also gives an alter-
nate way to calculate a´1 “

ř

poles in C Respzj , fq.) Strategy to
calculate

ű

C fpzqdz: (1) If possible, break f into summands, com-
pute the integrals for every summand separately, and add the results.
(2) Identify poles pi enclosed by C and their orders. (3) Calculate
the residues Resppi, fq (with respect to the Laurent series of an annu-
lus containing C, centered at pi). (4) Eliminate analytic summands
of f . Finding an of Laurent Series in an annulus around z0: a0 “
1

2πi

ű

C
fpzq

z´z0
dz “ fpz0q (since f analytic at all points within and

on simple closed path C containing point z0 and hence power series
at z0, fpz0q “

ř

anpz ´ z0qn, vanishes everywhere except the term
a0pz ´ z0q0 “ a0, so fpz0q “ a0). an “

1
2πi

ű

C fpzq{pz ´ z0qn`1dz.
a´1 “

1
2πi

ű

C fpzq{pz ´ z0q´1dz. f pnqpz0q “
n!
2πi

ű

C
fpzq

pz´z0qn`1 dz
(by similar reasoning to the first bullet point, except we multiply
by n! to account for the product rule bringing the exponents down
to make n!). Taking C “ tz : |z ´ z0| “ Ru and M “ supC |fpzq|,
we obtain |f pnqpz0q| ď

n!
Rn M . Liouville’s Theorem: An entire

function which is bounded is constant.
ODE Solutions:

First Order: Separable: y1pxq “ fpxqgpyq ñ
ş dy
gpyq

“
ş

fpxqdx`
C. Homogeneous: y1 “ fpy{xq ñ sub. u “ y{x to make separa-
ble. Linear: y1 ` ppxqy “ qpxq ñ y “ e´

şx pp
ş

e
şx pqpxqdx ` Cq.

Exact: P px, yqdx ` Qpx, yqdy, Py “ Qx ñ upx, yq “ C, where
du “ uxdx ` uydy “ Pdx ` Qdy. Solving for u gives an im-
plicit eqn of x and y, as desired. Non-Exact (Special Case):
Py ‰ Qx, pMy ´ Nxq{M “ hpyq (is a fcn of y) ñ µpyq “ e

şy h;
Py ‰ Qx, pMy ´Nxq{p´Nq “ hpxq (is a fcn of x, noting the neg-
ative sign on ´N) ñ µpxq “ e

şx h makes µPdx ` µQdy “ 0
exact so that we can solve for u to get an implicit equation of
x and y as in the exact case above, as desired. A homoge-
neous second-order equation with constant coefficients is
ay2pxq ` by1pxq ` cypxq “ fpxq ñ y “ C1er1x ` C2er2x if r1 ‰ r2
and y “ pC1 ` C2xqer1x otherwise.
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