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Abstract

These notes are based on the lectures for the Algebra II course on Field and
Galois Theory, delivered by Professor Andy Putman at the University of Notre Dame
during the Spring 2022 semester. The content primarily focuses on the fundamentals
of field theory, extensions, and the Galois correspondence.
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Greyson C. Wesley §1.1: Basics of Fields

§1 Field Theory

§1.1 Basics of Fields

Definition 1.1. A field is a nonzero ring such that for all nonzero x ∈ R there is some
y ∈ R with xy = 1.

Lemma 1.2.

A field R is an integral domain.

Proof. If xz = 0 and x is nonzero then we can multiply by y with xy = 1 to get
yxz = 0 = 1z = z, so z = 0 as desired.

Lemma 1.3.

If R is a field and xy = xy′ = 1 then y = y′.

Proof. We have xy − xy′ = 0 so x(y − y′) = 0, and since R is an integral domain by the
above lemma we have y − y′ = 0 so that y = y′.

Lemma 1.4.

A ring R is a field if and only if ideals of R are exactly 0 and R.

Proof. If R is a field and I ⊆ R is some nonzero ideal then there’s some nonzero x ∈ I,
so 1 = x−1x ∈ I, and hence I = R.

Conversely, let only the ideals of R be zero and R. Then for any nonzero x ∈ R
(x) ̸= 0, so (x) = R by the previous lemma. But then 1 ∈ (x), so there exists a y with
xy = 1 as desired.

Recall that an ideal m ⊆ R is maximal if m ̸= R and the only ideals I with m ⊆ I ⊆ R
are m and R. Zorn’s lemma then implies that any ideal J ⊊ R with J ̸= R, is contained
inside some maximal ideal m of R. Indeed, since we can pick a maximal element of the
partially ordered set (by inclusion), i.e. by Zorn’s lemma we can choose a maximal element
from. {I ⊆ R : I an ideal, J ⊆ I, I ̸= R}.

Lemma 1.5.

If R is a ring with an ideal I ⊊ R then I is maximal if and only if R/I is a field.

Proof. By one of the isomorphism theorems (or the correspondence theorem) there’s a
bijection from proper ideals of J ⊊ R. Then the latter contains 0 and R/I if and only if
the former contains I and R.
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Greyson C. Wesley §1.2: Field Extensions

1.1.1 Characteristic of a field

It is easy to show that for any ring R there’s a unique ring homomorphism φ : Z→ R,
namely the one determined by φ(1) = 1R (so that φ(n) = 1R + · · ·+ 1R). Kernels of ring
homomorphisms are equivalently ideals, so the kernel of this homomorphism is the ideal
(n) for some n ∈ Z (since Z is a PID).

We can say even more about this when the ring is a field.

Proposition 1.6.

If F is a field and φ : Z→ F is a ring homomorphism then kerφ ∈ {(0), (p)}, where p
is a prime.

Proof. φ induces an injection Z/(n) ↪→ F . F has no zero divisors, so Z/(n) doesn’t either.
If n ̸= 0 or a prime then we can write n = k, ℓ with k, ℓ ̸∈ {±1, 0}.

Definition 1.7 (Field characteristic). The generator of the kernel of a ring homomorphism
Z→ F , denoted charF, is called the characteristic of F.
Definition 1.8 (Prime Field). If F has characteristic p for a prime p, then the image
of the injective ring homomorphism Z/pZ ↪→ F is called the prime field, and it is a
subfield of F .

If F has characteristic 0 then Z ↪→ F , and since F is a field this extends to a unique
homomorphism Q ↪→ F . We call the image of the injection Q ↪→ F the prime field of F .

§1.2 Field Extensions

Definition 1.9 (Field extension). Given fields F1 and F2, the only ring homomorphism
f : F1 → F2 are 0 or injections (ker(f) is an ideal in F1, so either ker(f) = 0, i.e. f is
an injection, or ker(f) = F1, i.e. f = 0). If f is an injection, then we can identify F1

with f(F1). So F1 ↪→ F2. We call F2 a field extension of F , and we write F1 ⊆ F2 (or
sometimes F2/F1).
Example 1.10. Every field is a field extension of its prime field.
Example 1.11. Main examples:

1. Number fields, e.g. fields K with Q ⊆ K ⊆ C (note this necessitates charK = 0).
For instance, K = Q,Q[i], Q[

√
2] are all number fields.

2. Finite fields k, i.e. |k| < ∞, which necessitates char(k) = p. Fp ⊆ K. We will
soon show that for each r there’s a unique finite field K with |K| = pr (and these
are all the finite fields). Warning: For r ≥ 2, Z/prZ is not a field.

3. Function fields, i.e. extensions of Q(t) =
{
f(t)
g(t)

: f, g ∈ Q[t], g ̸= 0
}

. These, of
course, require charF = 0.
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Greyson C. Wesley §1.2: Field Extensions

1.2.1 Algebraic and Transcendental Elements of Field Extensions

Definition 1.12. Let K ⊆ L be a field extension and let α ∈ L. We say α is algebraic
over K if there exists some nonzero polynomial f ∈ K[x] with f(α) = 0. If α is not
algebraic, we say α is transcendental.

Example 1.13.
√
2 ∈ Q is algebraic over Q, π ∈ R is transcendental over Q, 2πi ∈ C is

algebraic over R (since it’s a zero of x2 + 4π2).
The observation here is that algebraic vs transcendental depends on the base field

we’re working in.

Notation 1.14. Let K ⊆ L be a field extension.
• k[α] is the ring generated by k and α, given by

k[α] = {c0 + c1α + c2α
2 + · · ·+ cnα

n : n ≥ 0 and c1, . . . , cn ∈ k}.

• k(α) is the field generated by k and α, given by

k(α) =

{
f(α)

g(α)
: f, g ∈ k[x], g(α) ̸= 0

}
.

Lemma 1.15.

Let K ⊆ L be a field extension. If α ∈ L is transcendental over k then k(α) ∼= k(t).

Proof. We have φ : k[t]→ t, f(t) 7→ f(α) is a ring homomorphism. Since α is transcenden-
tal, we have kerφ is trivial, i.e. φ is injective. Hence φ induces an injection ψ : k(t)→ L,
f
g
7→ φ(p)

φ(g)
with imψ = k(α).

The above lemma therefore reduces the study to field extensions made by adjoining
transcendental elements to the study of polynomial rings.

Proposition 1.16.

If K ⊆ L is a field extension and α ∈ L, then both k[α] and k(α) are vector spaces
over k.

Proof. Trivial.

Lemma 1.17.

If K ⊆ L be a field extension with α ∈ L then α is algebraic over k if and only if the
k-vector space k[α] is finite dimensional.
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Greyson C. Wesley §1.2: Field Extensions

Proof. For the forward direction assume α is algebraic and cnαn+ cn−1α
n−1 + · · ·+ c0 = 0

with ci ∈ k, cn ̸= 0. Thus

αn =
cn−1

cn
αn−1 + · · ·+ c0

cn
, (†)

and hence the set {1, α, α2, . . . , αn−1} span k[α] as a k-vector space. (Use (†) to express
αm with m ≥ n as a sum of lower order terms.)

Conversely, if the dimension over k of k(α) is finite then the infinite set {1, α, α2, . . . , }
is linearly dependent. Hence we can find for sufficiently large n that

c0 + c1α
1 + · · ·+ cnα

n = 0,

i.e. α is algebraic, as desired.

Proposition 1.18.

Let K ⊆ L be a field extension and α ∈ L be algebraic over k. Then k[α] = k(α), i.e.
k[α] is a field.

Proof. We’ll prove the claim in two separate ways.

Proof 1. This proof uses that dimk(k[α]) is finite.
Consider nonzero x ∈ k[α]. We must prove that there’s a y ∈ k[α] such that xy = 1.

Define ψ : k[α]→ k[α], ψ(z) = xz. We must be careful since ψ is not a ring homomorphism
since ψ(z1z2) = xz1z2 ̸= (xz1)(xz2) = ψ(z1)ψ(z2). However, ψ is k-linear—indeed,

ψ(z1 + k2) = x(z1 + z2) = xz1 + xz2 + ψ(z1) + ψ(z2)

and

ψ(kz) = x(kz) = k(xz) = kψ(z).

A key fact here is that since there are no zero divisors, ker(ψ) = 0. Hence ψ is injective
as a linear map from finite-dimensional vector space to itself, and so ψ is an isomorphism.
In particular, we can find y ∈ k[α] with y ∈ k[α] with ψ(y) = 1, i.e. xy = 1.

Proof 2. This proof directly use the fact that α is algebraic.
We have a ring homomorphism φ : k[x]→ k[α] by φ(f) = f(α). φ is not injective and

k[x] is a PID, so there’s some nonzero f ∈ k[x] with ker(φ) = (f) (the ideal generated
by f). We claim f is an irreducible polynomial. Indeed, if f = f1f2 is a nontrivial
factorization (i.e. with both deg f1, deg f2 ≥ 1) then

0 = f(α) = f1(α)f2(α),

so either f1(α) = 0 or f2(α) = 0. Without loss of generality, suppose f1(α) = 0. Then
f1 ∈ kerφ = (f), contradicting the fact that deg(f1) < deg(f) (since the factorization

Page 6 of 110

https://www.greysonwesley.com/home


Greyson C. Wesley §1.2: Field Extensions

is nontrivial). We now make an observation—since f ∈ k[x] is irreducible, the ideal
generated by f , (f), must be a maximal ideal. Indeed, any ideal I with (f) ⊊ I ⊊ k[x]
must be of the form I = (g), and (f) ⊊ (g), so g must be a proper factor of f . Since
(f) is a maximal ideal, we know that k[x]/(f) is a field (has no ideals other than 0 and
itself). But k[α] is the image of the embedding k[x]/(f) ↪→ L, so k[x]/(f) ∼= k[α], and
since k[x]/(f) is a field it follows that k[α] is a field as desired.

Each of the two proofs above give that k[α] is a field, but we don’t yet know whether or
not k[α] coincides with k(α). We have k(α) =

{
f(α)
g(α)

: f, g ∈ [x], g(α) ̸= 0
}

. So an element
of k(α) of the form 1

g(α)
f(x). If we know 1

g(α)
∈ k[α] then 1

g(α)
f(α) ∈ k[α], as desired.

Notation 1.19. For fields K ⊆ L and α1, . . . , αn ∈ L,
• K[α1, . . . , αn] is the subring of L generated by K and α1, . . . , αn (=
(K[α1, . . . , αn−1])[αn]).

• K(α1, . . . , αn) is the subfield of L generated by K and α1, . . . , αn (=
K(α1, . . . , αn−1))(αn).

Theorem 1.20.

For fields K ⊆ L and α1, . . . , αn ∈ L algebraic over K, we have
• K[α1, . . . , αn] = K(α1, . . . , αn) and
• dimK K[α1, . . . , αn] <∞.

Proof. By induction on n. For the base case n = 0, there’s nothing to prove.
Now let n ≥ 1 and assume true for n− 1. The induction hypothesis gives

K[α1, . . . , αn] = (K[α1, . . . , αn−1])[αn] = (K(α1, . . . , αn))[αn] (∗)

Since αn is algebraic over K, it is also algebraic over K(α1, . . . , αn). Hence from last time
we have that (∗) equals (K(α1, . . . , αn−1))(αn) = K(α1, . . . , αn).

We know from last time that dimK(α1,...,αn−1)K(α1, . . . , αn−1)[αn] <∞. But

K(α1, . . . , αn−1)[αn] = K(α1, . . . , αn),

so dimK(α1,...,αn−1)K(α1, . . . , αn) <∞, so the dimension is some finite m. Let b1, . . . , bm
be a basis for K(α1, . . . , αn) as a vector space over K(α1, . . . , αn−1). By induction we
know that dimK K(α1, . . . , αn−1 <∞, so we can find a basis c1, . . . , cℓ for K(α1, . . . , αn−1)
as a vector space over K.

We claim that {cibj : 1 ≤ i ≤ ℓ, 1 ≤ j ≤ m} spans K(α1, . . . , αn) as a vector space over
K. Indeed, consider x ∈ K(α1, . . . , αn). We can write

x = λ1b1 + · · ·+ λmbm (λi ∈ K(α1, . . . , αn))
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For each i we can then write

λi = µi1c1 + · · ·+ µicℓ (µij ∈ K)

Then x =
∑ℓ

j=1

∑m
i=1 µ

i
jcjbi.

(The reverse direction: if dimK [α] <∞ then 1, α, α2, α3, . . . must be linearly dependent,
so we can find λ0, . . . , λn−1 ∈ K with αn + λn−1α

n−1 + · · ·+ α0 · 1 = 0)
(Another argument: Define µ : K[α]→ K[α] by µ(z) = αz. Then µ is a linear map

between finite dimensional vector spaces, so by the Cayley-Hamilton theorem, letting f
be its characteristic polynomial, we have f(µ) = 0. Thus 0 = f(µ)(z) = f(α)z).

Remark 1.21. We change “fields” here, but this is actually just the same as changing
vector spaces since these are vector spaces.

Corollary 1.22.

For a field extension K ⊆ L, if α, β ∈ L are algebraic over K then both α+ β and αβ
are algebraic over K.

Proof. We have

K ⊆ K[α + β] ⊆ K[α, β]

By the above theorem we know dimK K[α, β] <∞, so dimK K[α+ β] <∞. Hence α+ β
are algebraic. The same argument works for αβ.

1.2.2 The minimal polynomial of algebraic elements

Definition 1.23 (minimal polynomial). For fields K ⊆ L and α ∈ L algebraic, the
minimal polynomial of α over K is a monic polynomial f ∈ K[x] of minimal possible
degree with α as a root.

Proposition 1.24.

Consider an algebraic element α of a field extension K ⊆ L. Then we have the following
points.

1. The minimum polynomial for α is unique.

2. The minimal polynomial for α is irreducible.

3. If g(α) = 0 for some g ∈ K[x] then f divides g.

Proof. We prove each point.
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1. The minimal polynomial generates the kernel of the map K[x]→ L with g 7→ g(α).
Since this kernel is an ideal in K[x] (thanks to g 7→ g(α) being a homomorphism)
and K[x] is a PID, we can show that the minimal polynomial is unique—indeed, if
f1, f2 are monic polynomials that generate the ideal, i.e. (f1) = (f2), then f1 divides
f2 and f2 divides f1, forcing f1 = f2.

2. The minimal polynomial f is irreducible in K[x]. Indeed, if f = f1f2 with f1, f2
nonconstant, then 0 = f(α) = f1(α)f2(α), so since K[x] is an integral domain we
have that either f1(α) = 0 or f2(α) = 0, contradicting the minimality of the degree
of f .

3. If f is the minimal polynomial of α and g is another polynomial with g(α) = 0 then
f divides g. Indeed, g ∈ ker(K[x]→ L, g 7→ g(α)). But this kernel is generated by
f as shown in an observation above, so g ∈ (f), and hence f divides g.

This completes the proof.

Example 1.25 (minimal polynomial of
√
i over different fields). Consider

√
i ∈ C. There

are two of them, but they are only defined up to multiplication by ±1. We’ll choose one.
We now find the minimal polynomial of

√
i over given fields:

• Over Q? Let x =
√
i. Then x2 = i, so x4 = −1. Thus f = x4 + 1. (However, this

should be proven more rigorously)
• Over the Gaussian rationals Q[i]? Well, if x =

√
i then x2 = i so x2 − i = 0, so we

can take g = x2− i. This is different from x4+1. So the minimal polynomial depends
on the base field. (Note that x2 − i divides x4 + i in Q[i].)

• Over C? Well it is linear since we can just take h = x −
√
i (and it is an almost

trivial argument that this is the minimal polynomial).

§1.3 Comparing Field Extensions

Definition 1.26. Let K ⊆ L1 and K ⊆ L2 be two field extensions. A field isomorphism
relative to K (or a K-isomorphism) is a field (ring) isomorphism φ : L1 → L2 such
that φ|K = idK .

Lemma 1.27.

For field extensions K ⊆ L1 and K ⊆ L2, if φ : L1 → L2 is a field isomorphism relative
to K and α ∈ L1 is algebraic with minimal polynomial f ∈ K[x], then φ(α) ∈ L2 is
algebraic and also has minimal polynomial f .

Proof. (version 2 from next class) Since f is irreducible over K is enough to show
f(φ(α)) = 0, we can write f(x) = xn +n−1 x

n−1 + · · · + c0, where ci ∈ K. Then
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Greyson C. Wesley §1.3: Comparing Field Extensions

0 = f(α) = αn + cn−1α
n−1 + · · ·+ c0, so applying φ gives

0 = φ(α)n + φ(cn−1)φ(α)
n−1 + · · ·+ φ(c0)

= φ(α)n + cn−1φ(α)
n−1 + · · ·+ c0

= f(φ(α)),

completing the proof.

Theorem 1.28.

Let K ⊆ K[α] and K ⊆ K[β] be field extensions with α, β ∈ L algebraic over K for
some L with K ⊆ L. Then K[α] is isomorphic to K[β] relative to K if and only if α
and β have the same minimal polynomial over K.

Proof. (⇒) This is the previous lemma.
(⇐) Let f ∈ K[x] be the common minimal polynomial of α and β. Thus (f) ⊆ K[x]

is the kernel of the map K[x] ↠ K[α] with g 7→ g(α). Thus by the (first) homomorphism
theorem we have an isomorphism ψα : K[x]/(f)

∼=−→ K[α]. Similarly, we have ψβ :

K[x]/(f)
∼=−→ K[β]. Define φ : K[α]→ K[β] via the composition

φ : K[α]
ψ−1
α−→ K[x]/(f)

ψβ−→ K[β].

Then φ is an isomorphism relative to K.

Definition 1.29. Given a field extension K ⊆ L, the degree of L over K is [L : K] :=
dimK(L), where L refers here to the vector space over K.

Lemma 1.30.

Assume charF ̸= 2 and let K ⊆ L be a degree 2 (quadratic) field extension. Then
L = K[

√
d] for some d ∈ K that is not a perfect square.

Proof. We first prove K[
√
d] has degree 2. To do this we note that

K[
√
d] =

{
a+ b

√
d : a, b ∈ K

}
,

meaning dimK K[
√
d] ≤ 2. But it is not one since d is not a square, and hence K[

√
δ] has

degree 2. These are all possibilities since, given a degree 2 extension K ⊆ L, if we have
α ∈ L with α ̸∈ K then since dimK(L) = 2 the set {1, α} must be a vector space basis.

In particular, we can write α2 = −bα− c for some b, c ∈ K, or that α2 + bα+ c = 0.
That is, f(x) = x2 + bx+ c is the minimal polynomial of α. By the quadratic formula,
the roots of f are

x =
−b±

√
b2 − 4c

2
. (since we can divide by 2 because charF ̸= 2)
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α is one of these, so L = K[α] = K[
√
b2 − 4c].

Remark 1.31. The previous lemma is false in higher degrees. For instance, there exist
degree three field extensions K ⊆ L such that L is not of the form K[ 3

√
d]. We will later

be able to give examples of such extensions.

Lemma 1.32.

Consider a field extension K ⊆ L with L = K[α]. Let f ∈ K[x] be the minimal
polynomial of α. Then

[L : K] = deg(f).

Proof. We have

f(x) = xn + cn−1x
n−1 + · · ·+ c0,

so

αn = −cn−1α
n−1 − · · · − c0,

i.e. αn is a linear combination of some lower degree alphas. Thus {1, . . . , αn−1} span
L = K[α] as a K-vector space, and moreover this set is linearly independent—indeed, a
nontrivial linear dependence dn−1α

n−1+d01 = 0 gives a lower degree polynomial vanishing
at α.

Example 1.33. Let L = Q[
√
2,
√
3]. This is a degree 4 extension because all elements

take the form

a+ b
√
2 + c

√
3 + d

√
6,

where a, b, c, d ∈ Q. (This can be checked by showing that the product of elements of the
above form is also of this form.) We claim that in fact

L = Q[
√
2 +
√
3].

It is enough to show that
√
2 +
√
3 is a root of an irreducible degree 4 polynomial. We

have

(
√
2 +
√
3)0 = 1,

(
√
2 +
√
3)1 =

√
2 +
√
3,

(
√
2 +
√
3)2 = 5 + 2

√
6,

(
√
2 +
√
3)3 = 11

√
2 + 9

√
3,

(
√
2 +
√
3)4 = 49 + 20

√
6.
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Thus (
√
2 +
√
3)4 = 10(

√
2 +
√
3)3 − 1. Hence our candidate is f := x4 − 10x2 + 1. Since

f is irreducible over Q, we have that Q[
√
2,
√
3] = Q[

√
2 +
√
3 ∼= Q[x]/(x4 − 10x2 + 1).

This result means that we can write
√
2 and

√
3 in Q[

√
2 +
√
3]. How do we do this?

We know that (
√
2 +
√
3)1 =

√
2 +
√
3 and (

√
2 +
√
3)3 = 11

√
2 + 10

√
3. Hence

√
2 =

(
√
2 +
√
3)3 − 10(

√
2 +
√
3)1

2
,

and similarly for
√
3.

In the above example we found f by expanding out powers of (
√
2+
√
3)n for 0 ≤ n ≤ 4.

These all sit in the 4-dimensional vector space

Q(
√
2,
√
3) =

{
a+ b

√
2 + c

√
3 + d

√
6 : a, b, c, d ∈ Q

}
.

What is a more general situation? For instance, how do we know that 1,
√
2,
√
3,
√
6 are

linearly independent in this vector space? We will give general tools for this on the coming
homeworks.

More generally, consider a field extension K ⊆ L and algebraic elements α, β ∈ L
over K with minimal polynomials f, g ∈ K[x], respectively. How do we find the minimal
polynomial of α + β? It would help to study the vector space K[α, β]. Let d = deg(f)
and e = deg(g). Then we know that αd is in the vector space with basis (1, α, . . . , αd−1)
(for instance, the polynomial f = x4 − 3x3 − 2x2 + 1 gives α4 = 3α3 + 2α2 − 1). Similarly,
βe is in the vector space with basis (1, β, . . . , βe−1). Our question: How do we get a basis
for K[α, β]?

Lemma 1.34.

In the above notation, K[α, β] is spanned as a K-vector space by

S := {αnβm : 0 ≤ n ≤ d− 1, 0 ≤ m ≤ e− 1}.

Warning: These are not always linearly independent!

Proof. It is clearly spanned by T := {αnβm : n,m ≥ 0}. But if αnβm ∈ T ∖S then we can
use the fact that αd ∈ spanK{1, . . . , αd−1} and βe ∈ spanF{1, . . . , βe−1} to write αnβm
as a linear combination of αn′ and βn

′ with either n′ < n, m′ ≤ m or n′ ≤ n, m′ < m.
Representing this, express all elements of T as linear combinations of elements of S.

Remark 1.35 (Why the above lemma does not give a basis). We can now expand
out powers of (α + β)k and write as linear combinations of members of the set
{αnβm : 0 ≤ n ≤ d− 1, 0 ≤ m ≤ e− 1}. By linear algebra, we can write (α + β)de as
a linear combination of (α + β)k, where 0 ≤ k ≤ de− 1.

But f might not be irreducible! The issue is that the lemma only provides a spanning
set, not a basis. So some though must be put into it after this to make sure it works out
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and is indeed a basis. To do this, we must factor f into a product of irreducibles in order
to find the minimal polynomial.

Example 1.36. Consider the roots α1, α2, α3 of f = x3 − 2 in Q[x]. These are α1 =
3
√
2,

α2 = ω 3
√
2, α3 = ω2 3

√
2, where ω = e2πi/3 is a third primitive root of unity. The lemma

then gives us that a spanning set for Q[α1, α2] is {αn1 , αm2 : 0 ≤ n ≤ 2, 0 ≤ m ≤ 2}. Note
that this actually has nine elements. However, we can write Q[α1, α2] in a different way.
Namely, since ω = α2/α1, we have ω is a root of g = x3 − 1 = (x − 1)(x2 + x + 1), so
the minimal polynomial of ω is x2 + x+ 1. Applying the lemma to Q[α1, ω], we get the
K-spanning set {αn, ωm : 0 ≤ n ≤ 2, 0 ≤ m ≤ 1}

Q[α1, α2] = Q[α1, ω]

So the original 9 elements are not linearly independent. In fact, we will later show
[Q : Q[α1, ω]] = 6.

Theorem 1.37: Multiplicative Property of the Degree.

Given nested field extensions K ⊆ L ⊆M , we have

[M : K] = [M : L][L : K].

Proof. If either [K : L] or [L :M ] =∞ then this is easy, so we assume all are finite. Let
d := [K : L], e = [L : M ]. Find a basis (m1, . . . ,me) for M as an L-vector space and
(ℓ1, . . . , ℓd) for L as a K-vector space. Define

S := {ℓimj : 1 ≤ i ≤ d, 1 ≤ j ≤ e}.

Claim 1: S spans M as a K-vector space. Indeed, consider x ∈ M . Write x =
λ1m1 + · · ·+ λeme with λi ∈ L. Then write λi = ci,1ℓ1 + · · ·+ ci,dℓd with cij ∈ K.
Then X =

∑e
i=1

∑d
j=1 cijℓjmi, as desired.

Claim 2: S is linearly independent. Indeed, assume
∑

i=1,...,e
j=1,...,d

cijℓjmi = 0. Then

0 =
(∑d

j=1
c1jℓj

)
m1 + · · ·+

(∑d

j=1
cejℓj

)
me.

Each parenthesized term above is in L, so since (m1, . . . ,mℓ) form a basis for M
over L, we must have that each

∑d
j=1 cijℓj = 0. Since ℓj is a basis for L over K, we

conclude cij = 0.
This gives that S forms a basis for M as a K-vector space, and hence the result.

Example 1.38. Consider the roots of f(x) = x2 − 2, namely α1 = 3
√
2, α2 = ω 3

√
2,

α3 = ω2 3
√
2, where ω = e2πi/3 is a primitive third root of unity, we claim that

[Q : Q[α1, α2, α3]] = 6.
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We have a sequence of extensions Q ⊆ Q[ω] ⊆ Q[ω, α1] and Q ⊆ Q[α1] ⊆ Q[ω, α1]. We
know by the spanning lemma that [Q : Q[ω, α1]] ≤ 6 by the old lemma. But using the
theorem we get that both 2 = [Q : Q[ω]] and 3 = [Q : Q[α1]] divide it by the previous
theorem, that it must be exactly 6, as previously claimed.

Example 1.39. Let α be a root of x4 − 12x3 + 15x2 − 3. This is irreducible (since this is
Eistenstein at p = 3). Set β := 3

√
2. Set L = Q[α, β]. The same reasoning shows first that

[Q : l] ≤ 12 because we’re adjoining a degree 4 thing and a degree 3 thing, and also that it
must be divisible by both 4 and 3. And hence the degree is exactly equal to 12, as desired.

Example 1.40. Let K = Q[ 4
√
3, i]. We know that [Q : K] ≤ 4 · 2 = 8, but naively

applying the theorem gives that this is divisible by 2 and 4, which is not good enough to
show equality. So what do we have to show? Well, we have a chain of extensions

Q ⊆ Q[
4
√
3] ⊆ Q[

4
√
3, i].

The left extension above has degree 4, so we must show that the right extension above
Q[ 4
√
3, i] has degree 2. Then the total degree is the product of 4 and 2, i.e. 8. That is, we

must show that the minimal polynomial x2 + 1 stays irreducible over Q[ 4
√
3]. But this is

easy since Q[ 4
√
3] ⊆ R, so it does not contain ±i.

§1.4 Constructions of Fields

Up until now, all the field extensions we have constructed are of the form Q ⊆ L for
some L ⊆ C, e.g. Q(

√
2). But what can we do if we don’t have a large ambient field like

C?
For instance, we may want to consider extensions of finite fields like Fp or the field of

rational functions Q(t)? We need to develop a technology to do this.

Lemma 1.41.

If K is a field and f ∈ K[x] is a monic irreducible then the quotient ring

L := K[x]/(f)

is a field extension of K, and f has a root in L.

Proof. If f(x) = xn + cn−1x
n−1 + · · · + c0 then K[x]/(f) is an n-dimensional K-vector

space (since in it we have xn = −cn−1x
n−1 − · · · − c0). Let z ∈ K[x]/(f) be nonzero. We

desire an inverse for z. Note that φz : K[x]/(f)→ K[x](f) by φz(g) := zg is a linear map
between finite-dimensional K-vector spaces. We claim φz is injective. Indeed, K[x]/(f)
has no zero divisors—if it did then we could find g, h ∈ K[x] that are not in (f) such that
gh ∈ (f), i.e. such that gh = λf for some λ ∈ K[x]. But then f divides g and h in K[x],
so since f is irreducible we must have that f divides g or f divides h. But then g ∈ (f)
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or h ∈ (f), a contradiction. Since φz is injective, it must be an isomorphism. That is, we
can find some w ∈ K[x]/(f) such that zw = 1. This shows that K[x]/(f) is a field.

We now show that K[x]/(f) is a field extension of K. Let α ∈ K[x]/(f) be the image
of x. Then f(α) = 0 in K[x]/(f), so K ⊆ K[x]/(f) is indeed a field extension of the form
K(α), where α is a root of f .

Example 1.42 (Construction of C from R). Note that the complex numbers C =
{a+ bi : a, b ∈ R} is obtained from R by adjoining a

√
−1, that is, by adjoining a root

of an irreducible polynomial x2 + 1. That is, C = R(
√
−1). Per the above, we have in

particular that

C = R[x]/(x2 + 1),

and define i ∈ C to be the image of x under the canonical map R[x] 7→ R[x]/(x2+1) =: C,
giving the desired result that C = R(

√
−1).

Example 1.43 (Construction of F4 from F2). Consider the irreducible polynomial f ∈
F2[x] given by f(x) = x2 + x+ 1. Define L := F2[x]/(f), and let α ∈ L be the image of x.

By the above we know L is a new field, and

L = {a+ bα : a, b ∈ F2}.

Thus |L| = 4, and we have the multiplication rule

(a+ bα)(c+ dα) = ac+ (ad+ bc)α + bdα2.

= ac+ bd+ (ad+ bc+ bd)α. (since α2 = α + 1 in F2(α))

It turns out this is the only field of order 4, which we denote by F4. In fact, we will soon
be able to construct all finite fields. It should go without saying that F4 ≠ Z/4Z (since
Z/4Z has zero divisors and is thus not even a field!).

Lemma 1.44.

Let K ⊆ L be a field extension and f, g ∈ K[x] with g ̸= 0. If division with remainder
in K[x] gives f = qg+ r for some q, r ∈ K[x] and division with remainder in L[x] gives
f = q′g + r′, then q′ = q and r′ = r.

Proof. q and r are the unique polynomials with f = qg + r and deg(r) < deg(g). This
still holds when K is extended to L. (WHY?)

Corollary 1.45.

If K ⊆ L is a field extension with f, g ∈ K[x] then g divides f in K[x] if and only if g
divides f in L[x].
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Proof. g divides f means that f = qg + r has r = 0. But division with remainder in L
yields exactly what is yielded by division with remainder in K[x], so the remainder in
K[x] iff the remainder in L[x] is zero.

Corollary 1.46.

If K ⊆ L is a field extension and f, g ∈ K[x] then the greatest common divisor of f
and g are the same in K[x] and L[x].

Proof. We find gcd(f, g) using the Euclidean algorithm. Recall that to do this we set

f = q1g + r1 (deg(r1) < deg(g))

Anything that divides both f and g must also divide r1, so we then have that g = q2r1+ r2
with deg(r2) < deg(r1)

f = q1(q2r1 + r2) + r1. (deg(r2) < deg(r1))

Repeating, we get r1 = q3r2 + r3 where deg(r3) < deg(r2), we get

f = q1(q2(q3r2 + r3) + r2) + (q3r2 + r3), (deg(r3) < deg(r2))

and so on, until we get

rn−1 = qnrn + 0,

which implies that rn = gcd(f, g). At each step we divided with remainder, which doesn’t
depend on whether we work in K[x] or L[x] per the previous results, as desired.

Lemma 1.47.

If K ⊆ L is a field extension and f, g ∈ K[x] have a common root α ∈ L then f and g
are not relatively prime in K[x].

In particular, this means we can write f = hf1 and g = hg1 with h irreducible. It
will follow from the proof that then h(α) = 0.

Proof. Suppose for a contradiction that f and g are relatively prime in K[x]. We can
then write

1 = a(x)f(x) + b(x)f(x),

with a, b ∈ K[x]. Then

1 = a(α)f(α) + b(α)g(α) = 0 + 0 = 0,

a contradiction.
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Notation 1.48 (Terminology). Let K be a field and let f ∈ K[x] have deg(f) ≥ 1. A
splitting field for f is a field L containing K such that f splits into linear factors

f(x) = c(x− λ1) · · · (x− λn)

where c, λi ∈ L and for which L is generated by λi. (Note that c is the leading coefficient
of f and so in fact c ∈ K).

Proof. Write

f = f1 · · · fn (∗)

with fi ∈ K[x] are irreducible. If deg(fi) = 1 for each i then we’re done. Otherwise let
L1 be an extension of K such that one of of the fi with deg(fi) > 1 has a root. In L1,
fi factors as (x− λ)gis. So the irreducible factorization of f in L[x] strictly refines the
factorization (∗). Continuing this process, we extend

K ⊆ L1 ⊆ L2 ⊆ · · · ⊆ Lm

such that at each step (∗) factors further. We’re done when only linear factors remain.

§1.5 Ruling out separability

1.5.1 Formal Derivative of a Polynomial

Let K be a field and f ∈ K[x]. Writing f = cnx
n + cn−1x

n−1 + · · · + c0, define the
derivative of f , denoted f ′, by the expected formal procedure, namely

f ′ := ncnx
n−1 + (n− 1)cn−1x

n−2 + · · ·+ c1.

The derivative satisfies the usual formal properties that are expected, e.g. (fg)′ = f ′g+fg′

and the chain rule. The reason we introduced derivatives is because of the very useful
following lemma. First recall that, where K ⊆ L is a field extension, an element α ∈ L is
a multiple root of f if f = (x− α)kh for some k ≥ 2, h ∈ K[x].

Lemma 1.49.

Let K be a field with f ∈ K[x], α ∈ K. α is a multiple root of f if and only if α is a
root of both f and f ′.

Proof. If α is a multiple root we have f = (x − α)kh for some k ≥ 2 and h ∈ K[x], so
f(α) = 0 and f ′ = k(x− α)k−1h+ (x− α)kh′, so f ′(α) = 0k−1h(α) + 0kh′(α) = 0.

Conversely, if f(α) = f(α′) = 0 then f(α) = 0 implies f = (x−α)g for some g ∈ K[x].
Then f ′ = g + (x − α)g′, so 0 = f ′(α) = g(α) + 0, i.e. g(α) = 0, so we can write
g(x) = (x− α)h, and hence f = (x− α)2h.
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1.5.2 Separable Polynomials

Definition 1.50. For a field K, we say f ∈ K[x] is separable if f has no multiple roots
in any field extension K ⊆ L.

The following lemma helps us detect separability in polynomials.

Lemma 1.51.

If K is a field and f ∈ K[x] then f is separable if and only if f and f ′ are relatively
prime.

Proof. For the reverse implication, if f, f ′ are relatively prime then we can write 1 =
rf + sf ′ for some r, s ∈ K[x]. Then for any field extension K ⊆ L and any α ∈ L we
cannot have that f(α) = f ′(α) = 0 since then we would have 1 = r(α)f(α)+s(α)f ′(α) = 0,
a contradiction, meaning α cannot be a multiple root.

For the forward implication, suppose f, f ′ are not relatively prime. Then there’s an
irreducible polynomial φ ∈ K[x] that divides both f and f ′. But if we consider a field
extension K ⊆ L with φ having a root α ∈ L (i.e. if we take L = K[x]/(φ)) then φ(α) = 0,
so since φ divides both f and f ′ we have f(α) = 0 and f ′(α) = 0, so α is a multiple root
of f .

But is is possible to have an irreducible polynomial that is not separable?

Corollary 1.52.

If K is a field then an irreducible polynomial f ∈ K[x] is separable if and only if
f ′ ̸= 0.

Proof. If f ′ ̸= 0 then f, f ′ are relatively prime since any common factor φ ∈ K[x] must
be a factor of f and f ′. But then φ is a factor of f ′ means deg(φ) ≤ deg(f ′) < deg(f),
which contradicts f is irreducible.

Example 1.53 (nonseparable irreducible polynomial). Consider Fp(t), the field of rational
functions with coefficients in the characteristic p field Fp. (Note this is an infinite field of
characteristic p.) Define f := xp − t ∈ Fp(t)[x]. Then f is irreducible since there is no pth
root of t in this field, but f ′(x) = pxp−1 − 0 = 0, so f is irreducible but not separable!

1.5.3 Separable Field Extensions

Definition 1.54 (separable element/separable field extension). Let K ⊆ L be a field
extension and let α ∈ L.

• We say that α is separable over K if α is algebraic over K and the minimal
polynomial f ∈ K[x] of α does not have a multiple root at α.
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• We say that K ⊆ L is a separable field extension if every element is separable.

Notice that α being separable is “better” than being algebraic. Moreover, just as
being algebraic, we will not prove this, but the set of separable elements are closed under
addition and multiplication and α 7→ 1/α (so the set of separable elements form a subfield,
just as the algebraic elements do).

We will present a non-separable extension here and then never study separable exten-
sions again since they can be a nightmare.

Example 1.55 (non-separable field extension). As in the previous example consider the
field K = Fp(t). Let L := K[ p

√
t] = K[x]/(xp − t). Then L is an inseparable extension of

K since the pth root of t has minimal polynomial that is not a separable polynomial as
we showed in the example of a nonseparable polynomial.

1.5.4 Perfect Fields

The fields we will study are referred to as perfect fields, which avoid examples such as
in the above.

Definition 1.56 (perfect field). A field K is perfect if any algebraic field extension is
separable over K.

Lemma 1.57.

A field K is perfect if and only if all irreducibles f ∈ K[x] have f ′ ̸= 0.

Proof. For the converse, note that if any f ∈ K[x] has f ′ ̸= 0 then f is separable. This
applies to the minimal polynomials of all elements of an algebraic field extensions K ⊆ L,
so L is a separable extension.

For the forward direction, if K is perfect then consider an irreducible polynomial
f ∈ K[x]. We want to show f ′ ̸= 0. Define L = K[x]/(f). Then L is an algebraic
extension and hence separable. Letting α ∈ L be the image of x we have that the minimal
polynomial of α is f , and thus by separability we must have f is a separable polynomial.
Thus the derivative f ′ ̸= 0, as desired.

Given the previous examples is not hard to see that Fp(t) is a non-perfect field. Luckily,
most of the fields we care about are perfect, as is shown by the following lemma which
shows that whenever the field characteristic is zero, deg(f ′) is exactly one less than deg(f).

Lemma 1.58.

If char(K) = 0 then K is perfect.

Proof. If f = cnx
n + · · ·+ c0 is irreducible with cn ̸= 0 then f ′ = ncnx

n−1 + · · ·+ c1, and
ncn ̸= 0 since charF = 0.
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We will eventually use perfect fields to prove the primitive element theorem, which
says that if K ⊆ L is a finite separable field extension then it has a primitive element, i.e.
there’s some element α with L = K[α].

1.5.5 The Frobenius Homomorphism

Let K be a field of characteristic p. Recall the “freshman’s dream” identity for fields
of characteristic p: when a, b ∈ K, we have (a+ b)p = ap + bp. Indeed,

(a+ b)p = ap +

(
p

1

)
ap−1b1 +

(
p

2

)
ap−2b2 + · · ·+

(
p

p− 1

)
a1bp−1 + bp,

where (
p

k

)
=

p!

k!(p− k)!
=
p(p− 1) · · · (p− k + 1)

k(k − 1) · · · (1)
.

But if 1 ≤ k ≤ p− 1, all the terms appearing except for p are ≤ p− 1, so they are not
divisible by p. Hence, the p in each such term never cancels out, meaning all these terms
are identically zero since K is a field of characteristic p. This is what makes characteristic
p fields special and interesting. As a consequence of this, we can define a set map

F : K −→ K,

a 7−→ ap

Then F is a ring homomorphism! Indeed, it is straightforward that
• F (ab) = apbp = F (a)F (b)
• F (a+ b) = (a+ b)p = apbp = F (a) + F (b) (shown above)
• F (0) = 0p = 0
• F (1) = 1p = 1

The ring homomorphism F is called the Frobenius homomorphism. The Frobenius holds
the secrets of the characteristic p field. We will use this extensively in the next section,
where we completely characterize perfect fields.

1.5.6 Characterization of Perfect Fields

Lemma 1.59.

If char(K) = p and a ∈ K has no pth root then f = xp − a is irreducible in K[x].

Proof. The hypothesis gives f has no roots (equivalently, that f has no linear factors), so
it suffices to show f cannot have any higher degree factors.

Suppose g is an irreducible factor of xp − a and set

L = K[ p
√
a] = K[x]/(g).
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Let b ∈ L be p
√
a. Then f(b) = 0. In fact, we have something even better: by Frobenius

we have

(x− p)p = xp − bp = xp − a.

Thus all irreducible factors in L are just (x− b). it follows that the only possible factors
of f in K[x] are (x− b)k with 1 ≤ k ≤ p. Since (x− b)k = xk − kbxk−1 plus lower order
terms and b ̸∈ K and k ∈ K, it follows that we must have kb = 0 (if it werent zero then
we could just divide by k and it would work out). Hence k = p.

We now have enough to achieve our goal.

Theorem 1.60: Characterization of Perfect Fields.

A field K is perfect if and only if char(K) = 0 or char(K) = p with all a ∈ K having
a pth root.

Proof. Suppose a ∈ K has no pth root. Then xp − a is an irreducible in K[x], so
K ⊆ K[ p

√
a] = K[x](xp − a) is a non-separable extension because, letting b := p

√
a, the

minimal polynomial of b is xp − a = xp − bp = (x− b)p.
Conversely, if all a ∈ K have a pth root then consider a polynomial f ∈ K[x] with

f ′ = 0. To show K is perfect, it suffices to show that f(x) is not irreducible (since f is
perfect if and only if no irreducible polynomial f has f ′ = 0).

Now, since f ′ = 0, all the exponents appearing in f must be multiples of p. So
f = anx

pn + an−1x
p(n−1) + · · ·+ a1x

p + a0. Let bi be a pth root of ai. Then by Frobenius
we have

(bnx
n + · · ·+ b0)

p = bpnx
pn + bpn−1x

p(n−1) + · · ·+ bp0
= anx

pn + · · ·+ a0

= f(x),

contradicting f is irreducible.

Corollary 1.61.

All finite fields are perfect.

Proof. We need to show all elements of K have a pth root. That is, we must show that
the Frobenius ring homomorphism F : K → K by F (a) = ap. F is a ring homomorphism
with ker(F ) = 0, so F is injective. Since K is finite, F must be surjective.

We now know that fields of characteristic zero and finite fields are all perfect fields.
Since these are perfect fields, it is safe to say that, for our purposes, we can rule out the
use of imperfect fields going forward.
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§1.6 Classification of Finite Fields

Theorem 1.62.

If K is a field then a finite subgroup G of K× is is cyclic.
In particular, F×p = Fp ∖ {0} is a finite cyclic group under multiplication.

Proof. Set n := |G|. For d | n, elements of {x ∈ G : xd = 1} are all roots of xd − 1. So
the set has ≤ d elements, so it suffices to prove the following lemma.

Lemma 1.63.

If |G| = n and card({g ∈ G : gd = 1}) ≤ d for d | n then G is cyclic.

Proof. For d | n, let Gd := {g ∈ G : (ordG(g) =)|g| = d}. (Note that Gd is not a subgroup
of G). For y ∈ Gd, there are d elements in the cyclic group ⟨y⟩ generated by y. Since
we’re given that card({g ∈ G : gd = 1}) ≤ d, we have that

⟨y⟩ = {g ∈ G : g4 = 4},

meaning Gd is the set of generators for ⟨y⟩. Thus Gd is the set of generators for ⟨y⟩ ∼= Cd,
the cyclic group of order d. This implies that |Gd| = ϕ(d), where ϕ is the Euler totient
function, which we recall is the total number of m such that 1 ≤ m ≤ d with gcd(m, d) = 1.
We then know that either Gd = ∅ or |Gd| = ϕ(d). Note

n = |G| =
∑

d|n
|Gd|

(by just arranging the set of elements of G according to their order)

≤
∑

d|n
ϕ(d)

= n, (∗)

where we still need to prove (∗). Assuming (∗) for now, the above gives that the inequality
on the second line must be equality, and hence all the Gd are nonempty. In particular,
Gd ̸= ∅ so G has an element of order n, which is the order of G itself, so G is cyclic.

It then only remains to prove (∗), that is, that
∑

d|n ϕ(d) = n. To show this, we run
the proof for G = Cn, the cyclic group of order n, but we now know that none of the
Gd are empty, so in this group there exist elements of order d for all d dividing n. Thus
|G|d = ϕ(d) for all d, so n = |G| =

∑
d|n |Gd| =

∑
d|n ϕ(d).

This completes the proof of the theorem.

Let F be a finite field. Then char(F) must be some prime p, so Fp ⊆ F is a finite
extension. Our goal is to classify all such fields F. F is a finite-dimensional vector space
over Fp, so |F| = |Fnp | = pn for some n ≥ 1. Before proving the main theorem we present
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some examples. The basic construction is to pick an irreducible polynomial f ∈ F[x] and
set F = Fp[x]/(f). If n = deg(f) then |F| = pn (WHY?). Although it is not obvious, we
will eventually we’re going to show that all finite fields are products of this construction.

Example 1.64 (p = 2). Let f = x2+x+1 ∈ F2[x]. f is irreducible since it has no root in
F2 and is quadratic. Then let F := F2[x]/(f), where we identify x in this quotient with the
element α ∈ F. Then F = {x+ yα : x, y ∈ F2}. And α2 = −α− 1 = α+1. This gives the
multiplication rule (x+yα)(z+wα) = xz+(xw+yz)α+ywα2 = (xz+wy)+(xw+yz+yw)α.
This is similar to multiplying elements of Q[i], where i2 = −1.
Example 1.65 (p an odd prime). Let p be an odd prime and r ∈ Fp an element that is
not a square, e.g. in F3 we have 02 = 0, 12 = 1, 22 = 1, so we can take r = 2. Then the
polynomial x2 − r is irreducible in Fp[x]. Then set

F := Fp[x]/(x2 − r) = Fp[
√
r]

So F = {x+ y
√
r : x, y ∈ Fp}. We multiply using (

√
r)2 = r. At first glance this gives

many fields of size p2, but it turns out that they are all isomorphic, and it is a good
exercise to show why. Note that we can also have C = R[

√
−1] = R[

√
−2], etc.

That was for degree 2. For degree 3 there are two irreducible cubics in F2[x]. One is
f(x) = x3 + x+ 1 the other is x2 + x+ 1. If these were irreducible they would have linear
factors but these have no roots in F2, so these are irreducible. This gives us two fields of
size 23 = 8, namely

F = F2[x]/(f) F′ = F2[x]/(g),

where we understand α in F to be the image of x in F(?) and β to be the image of x in F.
Then α3 = α + 1, β3 = β2 + 1, which allows multiplication in this field. It turns out that
F2[α] ∼= F′ = F2[β], and it is left as an exercise to the reader to verify this.

Theorem 1.66: Classification of Finite Fields.

There exists a unique field of order pn for each prime p and n ≥ 1.

Proof. Let p be a fixed prime, n a fixed number, q := pn Our goal is to construct such a
field and show it is unique. We prove the theorem in a series of steps.

Lemma 1: If F is a field of size q = pn then for all x ∈ F we have xq = x.

Proof. This clearly holds for x = 0, so consider nonzero x. F× = F ∖ {0} an abelian
group of order q − 1. We proved last time that F× is cyclic of order q − 1. It follows
that for x ∈ F× the order of x must divide q−1. Thus xq−1 = 1, meaning xq = x.

Lemma 2: Let F be a field of size q which is equal to pn. Then the polynomial xq − x
factors into a product of linear factors. Moreover,

xq − x =
∏

α∈F
(x− α). (∗)
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Proof. By the previous lemma we know that each α ∈ F is a root of xq−x, so x−α
is a factor for all a ∈ F. Since q choices of α, we see that (∗) must hold.

Lemma 3: Let Fp ⊆ L be a field extension such that xq − x splits in L[x] as a product
of linear factors. Set

F := {α ∈ L such that αq − α = 0}.

Then F is a subfield of L with |F| = q.

Proof. We have to show that F, the set of all roots, is closed under addition,
multiplication, multiplication by −1, and inversion (α 7→ 1/α). The first three shows
it is a ring and the final one shows it is a field.

• Addition: Assume αq − α = 0 and βq − β = 0. Then (α+ β)q = ((α+ β)p)p
n−1 ,

which by Frobenius is (α + β)p
n−1 . Continuing this process inductively, we

conclude α + b. This shows addition.
• Multiplication: If αq − α = 0 and βq − β = 0, then (αβ)1 = αqβq = αβ.

For multiplication by −1, we must check that −1 is a root of xq − x:
– If p = 2 then −1 = 1 and q1 = 1, so we’re good.
– If p is odd then q is odd and so (−1)q = −1.

• Inversion: If αq = α and α ̸= 0 then (1/α)q = 1/αq = 1/α.
Thus F is a field.

Lemma 4 (Uniqueness): Let F and F′ be fields with |F| = |F′| = q. Then F ∼= F′.

Proof. Last class we showed that F× is isomorphic to the cyclic group of order q − 1.
Let α ∈ F× be a generator. Then every element of F× is of the form αk for some k.
Generators of this type are called primitives. This implies that F = Fp[α]. Let
f ∈ Fp[x] be the minimal polynomial of α. α is an algebraic element since α is a
root of xq − x, so this is a finite extension. This implies

F ∼= Fp[x]/(f).

Also we know that in our other field F′ we have the polynomial xq − x has q roots.
In particular, f has a root β ∈ F′ (so f is the minimal polynomial of β). This
implies Fp[β] ⊆ F′. But Fp[x]/(f) ∼= Fp[β] ⊆ F′. Since ⟨Fp[x]/(f)⟩ = q = |F′|, we in
fact have that the subset must be an equality, meaning

F′ ∼= Fp[x]/(f) ∼= F,

giving the result.

This completes the proof of the classification theorem for finite fields.

As a consequence of the main theorem and its proof we have two things summarized
in the following corollary which follows immediately from the above proof.
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Corollary 1.67.

We have the following two points.
• All finite fields come from the construction presented at the beginning of the

section.
• For all n ≥ 1 there exists an irreducible f ∈ Fp[x] with deg(f) = n.

§1.7 Proof of the Primitive Element Theorem

Example 1.68. Consider the field extension Q ⊆ Q[
√
2,
√
3]. We proved before that√

2 +
√
3 is a primitive element of this field with the following procedure.

• Finding the minimal polynomial f for
√
2 +
√
3 by looking at powers (

√
2 +
√
3)n.

• We noticed that deg(f) = 4, so Q ⊆ Q[
√
2 +
√
3] is a degree 4 extension, so since

Q ⊆ Q[
√
2,
√
3] also is a degree 4 extension, it must be that Q[

√
2+
√
3] = Q[

√
2,
√
3].

Theorem 1.69: Primitive Element Theorem.

If K ⊆ L is a separable field extension of finite degree then there exists some γ ∈ L
such that

L = K[γ].

We call any such element γ a primitive element.

Proof. The proof in the case the field is finite is different than the proof in the case the
field is infinite. In fact, we’ve already proven the finite case—although we didn’t make
this explicit. We do this now:

Case 1: K is a finite field. Then K ⊆ L is a finite extension, so L is finite (WHY?),
say |L| = n, where n is a power of p = char(K). We know that L× = L ∖ {0} is
a group under multiplication. Then L× is a cyclic group as we’ve proven in the
section on fields and groups. Let γ ∈ L× be a generator for this cyclic group, that
is, a primitive element of this cyclic group. Thus K[γ] contains γn for all n ≥ 1,
so it contains all nonzero elements of L. Hence K[γ] = L. (Note we never used
separability but we’ve already proven that every element of n is a pth root.)

Case 2: K is an infinite field. First consider a finite separable extension K ⊆ L, so
we can write L = K[α1, . . . , αn].
We’ll prove by induction on n. Of course the base case n = 1 gives that K = K[α1],
so γ := α1 is a primitive element. For the induction step, assume N ≥ 2 and that
the theorem holds for fewer elements. By the induction hypothesis we can write

K[α1, . . . , αn−1] = K[α].
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(Where α is the primitive element for K[α1, . . . , αn−1] given by the induction hy-
pothesis.) Let β := αn, so that K[α1, . . . , αn] = K[α, β]. We’ll prove that for all
but finitely many choices of nonzero c ∈ L, γ := α+ cβ is a primitive element for
K[α1, . . . , αn]. Then we use that K is infinite to conclude there must exist a c ∈ L
for which γ as defined is a primitive element.
Let f, g ∈ K[x] be the minimal polynomials of α, β. Now let a different field L be
a splitting field for the product fg. f and g split into linear factors in L[x]. Let
α = α1, . . . , αh and β = β1, . . . , βk be the roots of f and g in L. Define

h(x) := f(γ − cx) ∈ (K[γ])[x]

Now we attempt to answer the question which asks what the common roots of h
and g are. There is an obvious one—h(β) = f(γ − cβ), but γ = α + cβ means that
α = α+ cβ − cβ = γ − cβ so that h(β) = f(γ − cβ) = f(α). We will prove that if
we exclude finitely many bad choices of c then β is the only common root. This will
then imply that γ is a primitive element because f and g split in L[x] into linear
factors. So h(x) = f(γ − cx) also splits into linear factors, and thus in L[x] we can
compute the gcd, namely

gcd(h, g) =
∏

common
roots λ

(x− λ) = x− β.

We are using here that g has no repeated roots because our extension is given to
be separable. h, g ∈ (K[γ])[x]; we have proven that we can compute the gcd by
repeatedly using the Euclidean algorithm, and moreover we can do this in either the
extension field or the smaller field. We will use the smaller field K[γ]. So we have

x− β ∈ (K[γ])[x] =⇒ β ∈ K[γ] =⇒ α = γ − cβ ∈ K[γ] =⇒ K[γ] = K[α, β].

So, what do we need from c for β to be the only common root of g and h(x) =
g(γ − cx)? Well, we know that α = α1, . . . , αh are the roots of f and β = β1, . . . , βk
are the roots of g. We now study the roots of h: We need that γ − cx = αi. We
have that α1 + cβ1 − cx = αi, i.e. that x = 1

c
(α1 + cβ1)− αi). Hence we need for all

choices of i and j with j ≥ 2 that
1

c
(α1 + cβ1 − αi) ̸= βj.

Rearranging, this is equivalent to needing for each i and j with j ≥ 2, we exclude
one value of c (since this is a linear equation and hence has one solution), namely
c = αi−α1

β1−βj (since α1 + cβ1 − αi = cβj implies c(β1 − βj) = α).
Hence, since βj ̸= β1 for j ≥ 2, we’re done since this excludes only finitely many.

This completes the proof of the primitive element theorem.
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§1.8 Algebraically Closed Fields

Definition 1.70 (algebraically closed field). A field K is algebraically closed if for all
nonconstant f ∈ K[x] there’s some a ∈ K with f(a) = 0.

Equivalently, for all monic f ∈ K[x], we can write f(x) = (x − a1) · · · (x − an) for
some a1, . . . , an ∈ K.

Theorem 1.71: Fundamental Theorem of Algebra.

C is algebraically closed.
Equivalently, if R ⊆ K is a finite field extension then [K : R] = 1 or 2.

If [K : R] = 2 then letting α ∈ K be a primitive element (so K = R[α]), which always
exists by the primitive element theorem (since charR = 0 and hence R is perfect). Then
the minimal polynomial f of α has degree 2, i.e. f = x2+bx+c and α = 1

2

(
−b±

√
b2 − 4c

)
implies K = R[α] = R[

√
b2 − rc] ∼= C, where b2 − 4c < 0 since f has no roots in R.

The easy step in the proof:

Theorem 1.72.

R has no odd degree extensions (other than 1)

Proof. If [K : R] = n is odd then we’ll show n = 1. Let α ∈ K be primitive for the
extension. Then K = R[α], and if f is the minimal polynomial for α then deg(f) is odd.
f is irreducible over R, so it has no real roots. But since f is an odd degree polynomial we
have f →∞ as x→∞ and f → −∞ as f → −∞. Then the intermediate value theorem
says x has a root, contradicting f is irreducible. Hence f must be of even degree.

To rule out even extensions, we need Galois theory (and the Sylow theorems).

Definition 1.73. Let K be a field. An extension K ⊆ L is an algebraic closure if L is
algebraic over K (equivalently, every element of L has a minimal polynomial) and L is
algebraically closed over K.

Example 1.74. Some examples.
• Assuming the fundamental theorem of algebra, C is an algebraic closure of R.
• C is not an algebraic closure of Q since C is not an algebraic extension of Q (e.g.

there are elements in C such as π which are transcendental over Q, i.e. not algebraic
over Q).
Let Q = {α ∈ C : α is algebraic over Q}. This is a field (since Q is exactly the
algebraic numbers, which we have shown is a field). Hence the field extension Q ⊆ Q
is an algebraic closure.
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Theorem 1.75: Steinitz.

For a field K there exists an algebraic closure K ⊆ L, and if K ⊆ L, and K ⊆ L2 are
both algebraic closures, there exists isomorphisms φ : L1 → L2 such that φ|K = idK .

Proof. We first prove existence and then uniqueness up to isomorphism.
Proof of Existence: Let 𝒫 be the set of all monic polynomials over K. Let {tf}f∈𝒫 be

the set of formal symbols (that is, the set of “variables,” each one corresponding to
a unique polynomial p ∈ 𝒫). Then define

R := K
[⋃

f∈𝒫
tf

]
(so R is the ideal generated by the variables tf for each f ∈ 𝒫). Then R is a (huge)
polynomial ring in infinitely many variables. Let I be the ideal of R generated by
f(tf ) for all monic f ∈ K[x]. (For instance, if K = Q then I contains the elements
like (tx2+1)

2 + 1, and elements like (tx3−x+2)
3 − tx3−x+2 + 2.)

We now show that I is a proper ideal of R. Indeed, suppose otherwise, i.e. that we
can write

1 = a1f1(tf1) + · · ·+ anfn(tfn) (†)

for some a1, . . . , an ∈ R and monic polynomials f1, . . . , fn ∈ K[x]. Pick an algebraic
extension K ⊆ L such that there are λ1, . . . , λn ∈ L with fi(λi) = 0 for 1 ≤ i ≤ n.
Define a ring homomorphism φ : R→ L which satisfies

• φ|K is the inclusion map K ↪→ L,
• φ(tfi) = λi for 1 ≤ i ≤ n, and
• φ(tg) = 0 for all g ∈ 𝒫 that are not one of the f1, . . . , fn.

Then using (†), we have

1 = φ(1) = φ(a1)φ(f1(tf1)) + · · ·+ φ(an)φ(fn(tfn))

= φ(a1)f1(φ(tf1)) + · · ·+ φ(an)fn(φ(tfn))

= φ(a1)f1(λ1) + · · ·+ φ(an)fn(λn)

= 0,

contradicting the fact that 1 ̸= 0. Hence I is a proper ideal as claimed.
Recall that if I is a proper ideal of R then it is contained inside some maximal ideal
m ⊆ R by Zorn’s lemma. Let F := R/m, which is a field since m is a maximal
ideal of R. We now know that K ⊆ F is a field extension and that for all monic
polynomials f ∈ K[x] there’s an a ∈ F with f(a) = 0, namely a is the canonical
image of tf ∈ R in F . The reason is that we can choose I to be an ideal in R
generated by f(tf ) for all monic f ∈ K[x] such that f(tp) goes to 0 in R/I.
We now want to show that F is in fact algebraically closed. It seems like it, but F
may not be algebraically closed since as of now we can only talk about polynomials
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over K, and hence so too in F = R/m.
But this doesn’t guarantee F is algebraically closed (WHY?). Thus we will iterate
this construction to get a sequence of field extensions K = K1 ⊆ K2 ⊆ K3 ⊆ · · ·
such that for all monic f ∈ Kn[x] there exists a ∈ Kn+1 with f(a) = 0.
Define

F :=
⋃∞

n=1
Kn.

Then F is a field and K ⊆ F is a field extension. We claim F is algebraically closed.
Indeed, any monic f ∈ F[x] lives in some Kn[x]„ so we can find some a ∈ Kn+1 ⊆ F
with f(a) = 0.
But F might be a transcendental extension (that is, it may contain transcendental
elements over K). Thus

K = {a ∈ F : a is algebraic over K}.

Proof of Uniqueness: We first prove an auxiliary lemma.

Lemma 1.76.

If K ⊆ K is an algebraic closure and K ⊆ L is an algebraic extension then there
is some field homomorphism φ : L → K such that φ|K = idK (so kerφ is a
proper ideal of L), so kerφ = 0 and φ is injective.

Proof. We will again use Zorn’s lemma. Define

𝒫 =
{
(F, ψ) : K⊆F⊆L are field extensions and ψ:F→K

is a field homomorphism with ψ|K=idK

}
.

Note that 𝒫 is a partially ordered set with order (F1, ψ1) ≤ (F2, ψ2) iff F1 ⊆ F2 and
ψ2|F1 = ψ1. We will show that 𝒫 contains (L, φ) for some φ.
Observe that if C ⊆ P is a linearly ordered chain then C has an upper bound,
namely F =

⋃
(Fi,ψi)∈C Fi and ψ : F → K is given by ψ|Fi = ψi for each (Fi, ψi) ∈ C.

Note that 𝒫 is not the empty set because (K, the inclusion map K ↪→ K) ⊆ 𝒫.1
Then by Zorn’s lemma 𝒫 has a maximal element, call it (F, ψ).
We now claim F = L. To show this, suppose that instead F ̸= L. Then K ⊆ F ⊊ L.
Pick α ∈ L such that α ̸∈ F . Let g ∈ F [x] be the minimal polynomial of α. Thus
ψ(g) ∈ K[x] splits completely, say as ψ(g) = (x−λ1) · · · (x−λn) with λ1, . . . , λn ∈ K.
Define

F ′ := F [x]/(g),

ψ1 : F 1 → K,ψ1|F = ψ, ψ1(α) = λ1.

1We need to show 𝒫 if we wish to apply Zorn’s lemma since the empty set is a partially ordered set
that does not have a maximal element since it doesn’t have any elements at all.
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Since ψ1(α) is a root of ψ(g), this makes sense. Then (Fψ) <
x
(F 1, ψ1), contradicting

maximality.

The previous lemma then has as a consequence the following corollary:

Corollary 1.77.

If K is a field and both K ⊆ K1 and K ⊆ K2 are both algebraic closures of K, then
there exists a field isomorphism φ : K1 → K2 with ψ|K = idK .

Proof. By the lemma, there exists a field homomorphism φ : K1 → K2 with φ|K = idK .
φ is necessarily injective, and φ(K1) ⊆ K2 is an algebraic extension. Since K1

∼= φ(K1)
is algebraically closed, must have φ(K1) = K2, i.e. φ is surjective.

§2 Galois Theory

§2.1 The Cubic Formula

We now tone back the abstractness and revisit something more familiar to us.

Lemma 2.1.

If f := xn + cn−1x
n−1 + · · ·+ c0 ∈ K[x] splits as (x− λ1) · · · (x− λn) then

cn−1 = −(λ1 + · · ·+ λn).

Proof. Just expand out (x− λ1) · · · (x− λn).

Corollary 2.2.

If f := xn + cn−1x
n−1 + · · ·+ c0 and f(x− d) = xn + c′n−1x

n−1 + · · ·+ c′0 then

c′n−1 = cn−1 − nd.

Proof. Extend the field such that f splits completely, say as (x− λ1) · · · (x− λn). Then
f(x− d) = (x− (d+ λ1)) · · · (x− (d+ λn)), and then apply the lemma above.

A consequence is that given a polynomial f ∈ K[x] where K is a field of characteristic
zero, we can always do a linear change of variables, namely f 7→ f(x− cn−1/n), such that

f = xn + cn−2x
n−2 + · · ·+ c0,

where in particular f has no term of order n− 1. If we apply this reasoning to a quadratic
then we reduce to solving something of the form x2 + c0 = 0, which gives x = ±√c0, and
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re-substituting back in the original x before changing variables gives us the quadratic
formula). So in a sense, the above consequence is a higher order version/generalization of
completing the square.

2.1.1 Solving the cubic

Our next goal is to solve a cubic equation, which we now see reduces to solving
equations of the form

x3 + bx+ c = 0.

To solve, let us substitute x = y + z and try to separate into single variable equations
of y and z. We get

0 = (y + z)3 + b(y + z) + c = y3 + 3y2z + 3yz2 + z3 + by + bz + c = 0,

so

(y3 + z3 + c) + (3yz + b)(y + z) = 0.

It is enough for both y3 + z3 + c = 0 and 3yz + b = 0. Then y3 + z3 = −c and yz = −b/3.
Cubing the latter gives y3z3 = −b3/27, so we know what both the sum and the product

of y3 + z3. Making the substitution s = y3, t = z3, we have[
s+ t = −c
st = −b3/27

]
.

We then know s and t are the roots of some quadratic equation, namely of the quadratic
(in variable w given by (w + s)(w − t) = w2 − (s+ t)w + st = 0. Using the system gives

w2 + cw − b3/27 = 0,

which of course gives two roots; y3 = s and z3 = t means y and z are cube roots of s
and t, respectively. But each has three cube roots, giving nine possible choices, but there
are only supposed to be three solutions! This is resolved by the fact that we only take
solutions with yz = −b/3 rather than y3z3 = −b3/27 since we cubed the former to get
the latter.

2.1.2 Quartic Equation

There is a quartic equation (similar, but more complicated), though it is most easily
understood using algebraic geometry.

§2.2 The First Triumph of Galois Theory

There does not exist a similar solution to polynomials of degree ≥ 5. This was first
proven by Abel and Ruffini without explicitly using Galois theory, and soon after Galois
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developed his theory to put the methods of their proof into a broader context. We now
develop this theory.

Definition 2.3. A field extension K ⊆ L is called solvable if it can be factored into a
sequence of extensions

K = K0 ⊆ K1 ⊆ · · · ⊆ Kn = L

such that Ki+1 = Ki

[
ri
√
di
]
, where ri ≥ 2 and di ∈ Ki does not have an rith root in Ki.

(More precisely, K1 = Ki[x]/(x
ri − di).

Example 2.4. Some examples.
• Q ⊆ Q[

√
2]

• Q ⊆ Q[
√
2] ⊆ Q[

3
√√

2 + 7]

By the quadratic equation, the roots of x2 + bx+ c sit inside either Q or Q[
√
b2 − 4c]

depending on whether b2 − 4c is a square in Q or not. Then the roots of a quadratic
equation lie in a solvable extension, either in the trivial extension of a quadratic extension.
What about a cubic extension? By our solution to the cubic equation x3+ax2+bx+c = 0,
we solved by

• Step 1: Making a linear change of variables
• Step 2: Solving a quadratic equation
• Step 3: Taking two cube roots (of y and z)

Hence, in the worst case, the solutions sit inside a field extension

Q linear change
= Q

quadratic equation
⊆ Q[

√
?]

taking cube roots
⊆ Q[

√
?,

3
√
??,

3
√
???].

Thus the roots of a cubic equation sit inside a solvable extension.
The same is true for the roots of a quartic equation. But we have the following, which

we will be able to prove after developing Galois theory.

Theorem 2.5: Galois.

For all n ≥ 5 there exist degree n polynomials f ∈ Q[x] whose roots do not sit in a
solvable extension of Q.

This is one of the triumphs of nineteenth-century mathematics and was the impetus
for the development of abstract algebra (e.g. groups, etc.). In fact, similar treatment will
show the following:

Theorem 2.6.

R has no degree n ≥ 3 extensions. In particular, we show the fundamental theorem of
algebra.

How would you prove such theorems?
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Definition 2.7. Given a finite field extension K ⊆ L, the Galois group of the extension,
Gal(L/K), is the set of automorphisms

Gal(L/K) := {φ : L→ L : φ is a field automorphism and φ|K = idK}.

Example 2.8. For instance, consider the following examples:
• Gal(C/R) ∼= C2, where the generator is the complex conjugation map φ(a+bi) = a−bi.
• Gal(Q[

√
d])/Q) ∼= C2 for d not a square, where the generator is the map φ(a+b

√
d) =

a− b
√
d.

We will soon prove that Gal(L/K) is always a finite group, and for sufficiently
interesting field extensions K ⊆ L, which we will call Galois extensions, there is a
bijection between intermediate fields F—that is, K ⊆ F ⊆ L—and subgroups of
Gal(L/K). This is significant since it reduces questions about field extensions to questions
about group theory.

2.2.1 Symmetric Polynomials

A symmetric polynomial in n variables over a field K is a polynomial f ∈
K[x1, . . . , xn] such that the value of f is unchanged by permuting variables. More precisely,
letting Sn be the symmetric group on n generators (so Sn =

{
σ : {1, . . . , n}

∼=→ {1, . . . , n}
}

)
we require f(xσ(1), . . . , xσ(n)) = f(x1, . . . , xn) for all σ ∈ Sn.
Example 2.9. We give some examples of symmetric polynomials:

• x1 + · · ·+ xn (symmetric in n variables)
• xm1 + · · ·+ xmn (symmetric in n variables)
• x1x2 + x1x3 + x2x3 (symmetric in 3 variables)

We now demonstrate a process to construct several symmetric polynomials. Given
any g ∈ K[x1, . . . , xn], define the symmetrization of g to be

f(x1, . . . , xn) :=
∑

σ∈Sn

g(xσ(1), . . . , xσ(n)).

Example 2.10. The symmetric polynomial xm1 + · · · + xmn from the previous example
is almost the symmetrization of g := xm1 , but the symmetrization of xm1 is (n− 1)!(xm1 +
· · ·+ xmn ).

For instance, in 3 variables we have

S3 = {id, (12), (13), (23), (123), (132)}.

Symmetrizing x41 ∈ K[x1, . . . , xn] gives

x41 + x4(12).1 + x4(13).1 + x4(23).1 + x4(123).1 + x4(132).1 = x41 + x42+

x43 + x41 + x42 + x43 = 2(x41 + x42 + x3)
4.
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2.2.2 Elementary Symmetric Polynomials

What are all the symmetric polynomials? To answer this question we first notice that
the symmetric polynomials over K, denoted K[x1, . . . , xn]

Sn , a subset of K[x1, . . . , xn], is
a ring. The goal theorem is to show that there exist symmetric polynomials s1, . . . , sn
such that K[x1, . . . , xn]

Sn ∼= K[s1, . . . , sn], where si are themselves symmetric polynomials.
We can see this concretely with the following example:

Example 2.11 (1 variable). K[x1]
S1 = K[x1], so we see that here s1 = x1.

Example 2.12 (2 variables). K[x1, x2]
S2 = K[x1 + x2, x1x2] (we will prove this soon).

Definition 2.13. The elementary symmetric polynomials in n variables are

sk =
∑

1≤i1<i2<···<ik≤n
xi1xi2 · · ·xin .

For instance, s1 = x1 + · · ·+ xn and s2 =
∑n

1≤i<j≤n xi.

Example 2.14 (3 variables). We have then that s1 = x1+x2+x3, sn = x1x2+x1x3+x2x3,
s3 = x1x2x3.

Why are we doing this? Well, the answer to that depends on the following fundamental
observation: Consider a1, . . . , an ∈ K and write

(z − a1) · · · (z − an) = zn + cn−1z
n−1 + · · ·+ c0.

Then cn−1 = −s1(a1, . . . , an) = −(a1 + · · · + an). cn−2 = s2(a1, . . . , an) = a1a2 + a1a3 +
· · · , . . . , cn−k = (−1)ksk(a1, . . . , an), . . . , c0 = (−1)nsn(a1, . . . , an) = (−1)na1 · · · an.
Rephrasing this observation, this gives us another way to define the elementary symmetric
polynomials.

Remark 2.15 (important observation). A polynomial is a function of its roots over a
field containing them. More precisely, if we regard a polynomial as a function of its roots
then the coefficients are the elementary symmetric functions, up to sign.

Theorem 2.16: Gauss.

The elementary symmetric polynomials form a basis for the symmetric polynomials.

Proof. We prove the theorem by induction on the number of variables. The base case
n = 1 is K[x1] = K[s1], where s1 = x1 is symmetric in one variable (since all polynomials
of one variable are symmetric).

For the induction step, we assume the claim holds for n − 1 variables and seek to
prove the claim for n variables. We do this by induction on the degree of the polynomial
(so induction within an induction). The base case is degree 0, in which case there is
nothing to prove (since the polynomial is just a constant and hence are symmetric). For
the induction step, we assume the case of degree m − 1 holds and we desire to prove
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the case of degree m. Consider a degree m symmetric polynomial f ∈ K[x1, . . . , xn].
Define f0 = f(x0, . . . , xn−1, 0) ∈ K[x1, . . . , xn−1]. Letting sk,0 := sk(x1, . . . , xn−1, 0), we
note that sk,0 is the kth elementary symmetric polynomial in n− 1 variables (for instance,
n = 3 and k = 2 gives s2 = x1x2 + x1x3 + x2x3, s2,0 = s2(x1, x2, 0) = x1x2). Invoking the
induction hypothesis, there exists a g ∈ K[x1, . . . , xn−1] such that f0 = g(s1,0, . . . , sn−1,0).
We can regard g as an element of K[x1, . . . , xn] that doesn’t involve xn. Our first
guess is that f = g(s1, . . . , sn), which of course is not true, but we note that if we
set h := f − g(s1, . . . , sn) then h is a symmetric polynomial and h(x1, . . . , xn−1, 0) =
f0(x1, . . . , xn−1)− g(s1, 0, . . . , sn−1,0) = 0. By symmetry, h(x1, . . . , xn) is 0 wherever you
set any of the xk to 0. This implies that you get 0 when you plug in xk = 0, which
implies h = xkq for some q. Thus h = x1 · · ·xnφ(x1, . . . , xn) = snφ(x1, . . . , xn). φ
is then a symmetric polynomial of degree at most m − n since deg h ≤ deg(f) = m.
Applying our induction hypothesis we get that we can write h = g1(s1, . . . , sn) for some
g1 ∈ K[x1, . . . , xn]. This implies f = g(s1, . . . , sn) + h = g(s1, . . . , sn) + g1(s1, . . . , sn), as
desired. This completes the proof up to uniqueness.

But if we trace through each step of the proof, each choice we could make was unique,
so the result g + g1 is unique. This completes the proof of the theorem.

Example 2.17. Consider x21+ · · ·+x2n = (x1+ · · ·+xn)2−2(x1x2+x1x3+ · · ·+xn−1xn) =
s21 − 2s2.

Example 2.18. We want to write f := x1x
2
2 + x1x

2
3 + x2x

2
1 + x2x

2
3 + x3x

2
1 + x3x

2
2 as a

polynomial of the elementary symmetric polynomials.
First guess: We have s1s2 = (x1 +x2 +x3)(x1x2 +x1x3 +x2x3). This has all the terms

of f , along with some extra terms. For instance, we don’t want the product of x1 (from
the left parenthesized term) and x2x3 (from the right parenthesized term). There are
three terms of this form, namely xi from the first parenthesized term and xjxk from the
second parenthesized term. We then get f = s1s2 − 3s3.

We now make an important observation. If we expand out the polynomial (z −
a1) · · · (z − an) ∈ K[z]. The coefficients are symmetric polynomials in the ai since if we
expand this out we get zn + c1z

n−1 + c2z
n−2 + · · · + cn, the coefficients are symmetric

polynomials in the ai. In fact,

(z − a1) · · · (z − an) = zn − s1(a1, . . . , an)zn−1

+ s2(a1, . . . , an)z
n−2 − · · · ± sn(a1, . . . , an).

As a consequence, the elementary symmetric polynomials are the roots of the polynomial.
This gives the following.
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Corollary 2.19.

Given a polynomial f ∈ K[x], pick any extension K ⊆ L in which f factors completely,
say as f = (x − a1) · · · (x − an). Then any symmetric function h(a1, . . . , an) is a
polynomial in the coefficients of f . In particular, h(a1, . . . , an) ∈ K.

Proof. (of the corollary). We can write our symmetric function h as

h(a1, . . . , an) = g(s1(a1, . . . , an), . . . , sn(a1, . . . , an)).

The coefficients of f sit inside K, and hence so does the above.

Example 2.20. Let the roots of f := x3 + bx + cx + d in some extension field L be
a1, a2, a3 ∈ L. Then we have

a1 + a2 + a3 = −b.

Also note a22 + a22 + a23 ≠ b2 = (a1 + a2 + a3)
2, so we need to get rid of the extra cross

terms. After doing this we get since c = a1a2 + a1a3 + a2a3 that

a22 + a22 + a23 = b2 − 2c.

2.2.3 The Discriminant

Let f ∈ K[x] be monic. The discriminant of f , denoted ∆(f) ∈ K, is defined by
taking an extension field K ⊆ L so that f splits completely, say as f = x(x−a1) · · · (x−an)
with the ai ∈ L, and setting

∆(f) :=
∏

1≤i<j≤n
(ai − aj)2.

Note that in particular, this is a symmetric function in the roots, so this is in K. We,
therefore, know from before that ∆(f) can be written as a polynomial in the coefficients
of f , but this is hard to do.

Example 2.21. Consider f := x2+bx+c. Let f have roots a1 and a2. Then b = −a1−a2
and c = a1a2. Thus ∆(f) = (a1 − a2)2 = a21 − 2a1a2 + a22 = b2 − 4c. In summary,

∆(ax2 + bx+ c) = b2 − 4c.

In general, finding a formula for ∆(f) in the coefficients of f is hard for higher-degree
polynomials. However, there is an exception. If f is a cubic without a quadratic term. In
particular,

∆(x3 + px+ q) = −4p3 − 27q2.

This is indeed, a homogeneous2 degree six polynomial in the ai, namely p = a1a2 + a1a3 +

2We mean homogeneous degree six to mean that all terms have degree six.
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a2a3, q = a1a2a3, so p3 has degree six and q2 has degree six. We will not do the explicit
calculation, but we will describe how to do it, that is a general technique. We know the
discriminant is a degree six monic in the ais and is also a polynomial in p and q. p has
degree 3 and q has degree 2. Thus a monomial pnqm has degree 3n+2m, which can be six
only if (n,m) ∈ {(2, 0), (0, 3)}. We thus know ∆(f) = λp3+δq2 for some constants λ and δ.
We can solve for λ and δ by trying specific polynomials, e.g. f := x(x+1)(x− 1) = x3−x,
so

∆(f) = (0− 1)2(0 + 1)2(1 + 1)2 = 4.

Then q = 0 and p = −1 and thus 4 = ∆(f) = λp + δq = λ(−1) = −λ, so we see that
λ = −4 as desired. δ may be found by doing the same thing with other polynomials,
noting that we must choose one where q is nonzero.

Properties of the discriminant:
• ∆(f) ∈ K is a polynomial in the coefficients of f .
• ∆(f) = 0 iff f has a multiple root in some field extension (i.e. iff f is not separable

over K).

Example 2.22. f := x2 + bx+ c has ∆(f) = b2 − 4c, which is zero iff x has a multiple
root, i.e. iff

x =
−b±

√
b2 − 4c

2
=
−b
2
± 0,

which are the same.

2.2.4 Splitting Fields

Recall that given field extensions K ⊆ L and K ⊆ L′, an isomorphism relative
to K from L1 to L2 is a field isomorphism φ : L1

∼=→ L2 such that φ|K = idK . An
automorphism of K ⊆ L relative to K is a field isomorphism φ : L → L with
φ|K = id. The Galois group of extensions K ⊆ L is

Gal(L/K) = {automorphisms of L relative to K},

which is also denoted Aut(L/K).

Example 2.23 (midterm, letting d = −1). Complex conjugation φ : C → C with
φ(z) = z is an element of Gal(C/R), and in fact Gal(C/R) = {id, φ} ∼= Z/(2). More
generally, if d ∈ K is not a square then

Gal(K[
√
d]/K) = {id, φ} ∼= Z/(2),

with φ : K[
√
d]→ K[

√
d], φ(a+ b

√
d) = a− b

√
d.

Basic construction: If K ⊆ L1 = K[α] and K ⊆ L2 = K[β] and if α, β have the same
minimal polynomial f ∈ K[x] then we can define an isomorphism relative to K in the
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following way, namely with

φ : L1 → L2

K[x]/(f) ∼= K[α] = L1
φ−→ L2 = K[β] ∼= K[x]/(f),

and if f1 is the left isomorphism and f2 is the right isomorphism then

φ(x) = f−1
2 (f1(x)) ∈ L2.

For a monic polynomial f ∈ K[x], a splitting field for f is an extension K ⊆ L such
that f = (x− a1) · · · (x− an) for a1, . . . , an ∈ L, and L = K[a1, . . . , an]. In other words,
L is the smallest field extension of K such that f splits completely.

Recall that we can construct a splitting field L above by adjoining roots of irreducible
factors of f until it splits completely.

Lemma 2.24.

If K ⊆ F is a field extension and f ∈ K[x] then there exists at most one splitting field
K ⊆ L for f with L ⊆ F .

Proof. If a splitting field exists inside F then we can write f = (x− a1) · · · (x− an) with
a1, . . . , an ∈ F and the splitting field must be K[a1, . . . , an].

Theorem 2.25.

If K is a perfect field, f ∈ K[x] is monic, then if K ⊆ L1 and K ⊆ L2 are splitting
fields for f then there exists an isomorphism φ : L1

∼=→ L2 relative to K.
In other words, then f has a unique splitting field up to isomorphism.

Proof. Since K is perfect there’s a primitive element γ ∈ L1 so that L1 = K[γ]. Let
the minimal polynomial for γ be g ∈ K[x]. Let L2 ⊆ F be a field extension such that
there is some γ′ ∈ F with g(γ′) = 0. We can use the basic construction (of fields from
quotienting out ideals generated by irreducible polynomials) to find an isomorphism
φ : L1 = K[γ]→ K[γ′] ⊆ F relative to our base field K.

In fact, im(φ) ∼= L1 and L2 are subfields of F that are splitting fields for f . But then
the trivial lemma above implies that im(φ) = L2, so φ : L1 → L2 is an isomorphism
relative to K.

We will soon show something shocking about splitting fields.

Lemma 2.26.

Let K ⊆ L be any finite extension. Then we can find an extension L ⊆ F such that
K ⊆ F is a splitting field for some f ∈ K[x].
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Proof. K ⊆ L is a finite extension, so there exist elements a1, . . . , an ∈ L such that
L = K[a1, . . . , an]. Let fi be the minimal polynomial of ai, and set g := f1f2 · · · fn. We
can adjoin roots of g to L to make L ⊆ F such that g splits completely, so K ⊆ F is a
splitting field for g.

Theorem 2.27: Fundamental Theorem of Splitting Fields.

If K ⊆ L is a splitting field for some f ∈ K[x] then any monic irreducible with a root
in L splits completely in L.

Proof. L is a splitting field for f , so L = K[a1, . . . , an] with f = (x− a1) · · · (x− an). We
can find some p1 ∈ K[x1, . . . , xn] such that β = p1(a1, . . . , an).

Let p1, . . . , pℓ (ℓ = n!) be all the ways of reordering the variables inside the pis.
For instance, if n = 3 and p1 = x21 + x2x3 then p1 = x21 + x2x3, p2 = x21 + x3x2,

p3 = x22 + x3x1, p4 = x22 + x3x1, p5 = x23 + x1x2, p6 = x23 + x2x1 (corresponding to the six
different orderings of (123).

Set βi := pi(ai, . . . , an) so that β = β1. Key observation: Regard the βi as functions
of the aj. Then any symmetric function φ(β1, . . . , βm) is also symmetric in the ajs
(that is, permuting the ajs just permutes the pis and thus the βis). Thus, letting
h := (x− β1) · · · (x− βm) ∈ L[x]. The coefficients of h are symmetric functions of the βis,
and thus are also symmetric functions in the ajs. In other words, if c is a coefficient of
h(x) then we can write c = φ(β1, . . . , βm), where φ is a symmetric polynomial, and thus

c = φ(p1(a1, . . . , an), . . . , pm(a1, . . . , an))

is a symmetric function evaluated at a1, . . . , an. Since f = (x− a1) · · · (x− an) ∈ K[x],
any symmetric function in the ajs is a polynomial in the coefficients of f , and thus sits in
K. Hence the coefficients of h sit inside K.

Now, we’re given that g ∈ K[x] is irreducible and shares a root β = β1 with h ∈ K[x].
Thus, g must divide h, and in particular, the roots of g are among the roots of h (though
of course h may have more roots overall than g). In other words, g factors as a product of
some of the linear factors of h = (x− β1) · · · (x− βm).

This is devilishly clever.

Convention 2.28.

Henceforth all fields are perfect unless otherwise stated.

Fix a field F of characteristic zero (and assume for today that all fields are characteristic
zero unless otherwise stated). Recall the Galois group of K/F , denoted Gal(K/F ), is the
group F -automorphisms of K.
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Definition 2.29 (Galois extension). A finite field extension K/F is a Galois extension
if [K : F ] = |Gal(K/F )|.
Definition 2.30 (fixed field). If K is a field and H is any group of automorphisms of K,
then the fixed field of H, denoted KH , is the set of elements of K which are fixed by
every element of H. It is easy to check that KH is a subfield. It is also easy to check that
H is a subgroup of Gal(K/KH).

We will soon show that H actually coincides with the Galois group.

Theorem 2.31: Artin Theorem 16.5.2.

Let F := KH . Where K is a field, H is a finite group of automorphisms of K, and
β1 ∈ K. What is the orbit of β1 ∈ K in H? If (β1, . . . , βr) is the orbit of β1 under H
(which must be finite since H is finite), then we have the following points:

(1) The minimal polynomial of β1 over F is f(x) = (x− β1) · · · (x− βr).

(2) β1 is algebraic over F , deg β1 over F is r, and r divides |H|.

Proof. That (2) implies (1) follows from the orbit-stabilizer theorem (with the group H
acting on the set G), the details for which are left to the reader.

We now prove (1). If f = xr + b1x
r−1 + b2x

r−2 + · · · + br. The bi are symmetric
functions of the βi. If σ ∈ H then since σ permutes the set {β1, . . . , βr} we have σ(f(x)).
Hence the “roots” of f are in KH = F . Thus f ∈ F [x] as claimed.

We now want to show that f is irreducible. Let h ∈ F [x] such that h(β1) = 0. We
will show f(x) divides h(x). We want to show that each factor of f is a factor of h over
K. h(β1) = 0, so (x− β1) is a factor of h. To get that the other linear factors (x− βi)
of f are factors of h, we let the σ ∈ H act on the {β1, . . . , βr}. More precisely, if σ is an
element of the automorphism group then since h is a polynomial over F we know σ fixes
the coefficients of H, so from h(β1) = 0 we get σ(h(β1)) = σ(0) = 0, and since σ fixes the
coefficients of h this gives that h(σ(β1)) = 0. Hence for every i in the orbit h(βi) = 0, so
(x− βi) divides h in K[x]. Thus f divides h(x) in K[x].

Since f, h ∈ F [x] it follows that f divides h over F , so in other words f(x) generates
the principal ideal of polynomials that have β1 as a root, so f is the minimal polynomial
of β1 over F .

Recall that a field extension K/F is algebraic if all its elements are algebraic over K.

Lemma 2.32.

Let [K : F ] =∞ be an algebraic field extension. Then there exist elements in K that
have arbitrarily large degree over F .
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This is not an obvious assertion. The above lemma may not be true in general, and
it is almost surprising that it is true even for characteristic zero. The reason this is not
obvious is that in principle we could think of adding field extensions of an element of
some bounded degree k countably many times so that each time it increases the degree of
the field extension while keeping bounded the degree of the elements.

Proof. Let α1 ∈ K, α1 ̸∈ F . Consider the extension F ⊆ F (α1). α1 is algebraic over F
by assumption, so the degree [F (α1) : F ] <∞. In particular, F ⊆ F (α) ⊊ K ((∗) where
the right extension is proper because F (α) has finite degree over F and K has infinite
degree over F , so F (α) ̸= K). Thus we can find α2 ∈ K with α2 ̸∈ F (α1). Consider

F ⊆ F (α1) ⊆ F (α1, α2) ⊊ K.

The left extension has finite degree > 1. The middle extension has finite degree > 1. The
next extension is proper by applying (∗) above to F (α1, α2).

We then proceed inductively to construct an infinite sequence of finite degree extensions
to get a chain of field extensions,

F ⊊ F1 ⊊ F2 ⊊ F3 ⊊ · · · ,

and since charF = 0 we know that for each i there is some βi ∈ Fi such that Fi = F (βi).
Hence the degree of βi over F is [Fi : F ] and, by construction, [Fi : F ] can be made
arbitrarily large.

Theorem 2.33: Fixed Field Theorem.

If K is a field, H is a group acting on K is a finite automorphism group and F = KH .
Then F ⊆ K is a finite extension and in fact [K : F ] = |H|.

Proof. Set n := |H|. We use the previous theorem to get that every element of K has
degree over F dividing n. Then every element of K is algebraic over F , so K/F is an
algebraic extension. Notice [K : F ] <∞, so we don’t have elements of arbitrarily large
degree by the above point, so K has a primitive element since this is a finite extension
(on a field of characteristic zero). Let γ be such a primitive element. Then K = F (γ).

Let σ ∈ H. What is σ(γ)? Either if fixes or moves γ, so for a moment let’s consider
the case that σ fixes γ. In this case we have σ = idK (since K = F (γ) and σ|F = id), so
the stabilizer of γ is {1} (the identity of the group). Then the orbit of γ under H has
order n, so by the first theorem from today we have that the degree of γ over F = KH is
the order of the orbit of γ, so the degree of γ over F is n, so [K : F ] = [F (γ) : F ] = n.

If σ doesn’t fix γ then it moves it to n different places so we’re good.

Then we immediately have
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Corollary 2.34.

In the above notation, we have Gal(K/FH) ∼= H.

§2.3 Galois Extensions

Convention 2.35.

Henceforth unless otherwise stated, all fields are perfect (e.g. finite fields or of zero
characteristic)

We will frequently use that
(1) Irreducibles f ∈ K[x] have no repeated roots in any extension field.
(2) All finite extensions K ⊆ L have primitive elements, i.e. γ ∈ L with L = K[γ].
Recall the fundamental theorem of splitting fields, which states that for finite field

extension K ⊆ L, the following are equivalent:
(a) If f ∈ K[x] irreducible and f has root in L, then f splits completely in L[x].
(b) L splitting field for some g ∈ K[x].
Finally recall the fixed field theorem, that if L is a field and G is the finite group of

automorphisms of L, and K = LG = {x ∈ L : g(x) = x for all x ∈ G}, then K ⊆ L is a
finite extension with |G| = [L : K].

Lemma 2.36.

If K ⊆ L is a finite extension and G = Gal(L/K) then |Gal(L/K)| divides [L : K].

Proof. We want to apply the fixed field theorem, so we need to show that G is finite. Let
γ1 be a primitive element of K ⊆ L. Let f be the minimal polynomial for γ1 over K. Let
γ1, . . . , γr be the roots of f in L. For g ∈ G, g(γi) a root of f for all i, so g permutes
{γ1, . . . , γr}. Moreover, if g1(γ1) = g2(γ2), then g−1

1 g2(γ1) = γ1, so g−1
1 g2 fixes L = K[γ1]

and thus g1 = g2, so |G| ≤ r.
We now apply the fixed field theorem. Let F = LG, so K ⊆ F ⊆ L. We have by

the fixed field theorem that |G| = [L : K] = [L : F ][F : K], we conclude |G| divides
[L : K].

Lemma 2.37.

If G is a finite group of automorphisms of a field L and K = LG then G = Gal(K/L).
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Proof. We know G ⊆ Gal(K/L) and by the fixed field lemma |G| = [L : K], but the
above lemma shows that |Gal(K/L)| divides [L : K]. Thus |G| = |Gal(K/L)|, so they
must coincide.

Lemma 2.38.

Let K ⊆ L be a finite extension with primitive element γ1 ∈ L, so L = K[γ1]. Just as
above, let γ1, . . . , γr be the roots of f that sit in L.

Then G = Gal(L/K) has order r, and for 1 ≤ i ≤ r there exists a unique g ∈ G
with g(γ1) = γi.

Proof. Running the proof of the previous claim above, we see it is enough to prove the
second claim, namely that 1 ≤ i ≤ r exists and g ∈ G with g(γ1) = γi.

Since γi and γ1 have the same minimal polynomial, there exists an isomorphism
φ : K[γ1](= L)→ K[γi](⊆ L) (since K[γ1] ∼= K[x]/(f) ∼= K[γi]).

Since φ fixes the subfield K, we know that the index [K[γ1] : K] = [K[γi] : K].
Thus we must have that K[γ1] = L. Hence φ ∈ Gal(L/K).

Theorem 2.39: Definition/Characterization of Galois Extension.

Let K ⊆ L be a finite extension and let G be its Galois group, i.e. G := Gal(L/K).
Then the following are equivalent.

(a) |G| = [L : K] (probably most unintuitive)

(b) LG = K (says the Galois group isn’t too small)

(c) K ⊆ L is a splitting field (easiest to check/work with, i.e. of more practical use)

A finite extension K ⊆ L is a Galois extension if any of the three (equivalent)
conditions above hold.

Proof. We first prove (a) iff (b). Let F be the fixed field of G, i.e. F = LG. Then
K ⊆ F ⊆ L. Then the fixed field theorem says |G| = [L : F ]. Thus K = F = LG iff
|G| = [L : K].

We now prove (a) iff (c). Let γ1 be a primitive element for K ⊆ L and f ∈ K[x] be
its minimal polynomial. Thus deg(f) = [L : K] (where L = K[γ1]. So (a) is equivalent to
|G| = deg(f). But by a previous lemma the order |G| is the number of roots of f that sit
inside L. Thus |G| = deg(f) iff f splits completely in L[x], i.e. iff L is a splitting field
over K. (Note that this argument requires perfection of the field since we rely on the
assumption that f has no repeated roots inside L).

Galois theory is the study of Galois extensions.
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Lemma 2.40.

For any finite extension K ⊆ L there exists an L ⊆ F such that K ⊆ F is a Galois
extension.

Proof. We proved earlier that all field extensions can be extended to splitting fields.

The above lemma tells us that being Galois just means that the extension isn’t too
small. Everything can be made a bit bigger to make it a Galois extension.

Lemma 2.41.

If K ⊆ L is a Galois extension and K ⊆ F ⊆ L is a subfield then F ⊆ L is a Galois
extension.

Proof. This is true for splitting fields, so since perfect fields are splitting fields if and only
if they are Galois extensions the result follows.

Remark 2.42. In the above, the Galois group Gal(L/F ) is a subgroup of Gal(L/K),
since an automorphism of F fixing L definitely fixes K since K is smaller. We will actually
prove that these subgroups are actually in one-to-one correspondence with intermediate
fields, which will be known as the fundamental theorem of Galois theory.

Definition 2.43. Let Sn be the symmetric group on {1 . . . , n}. A subgroup G of Sn is
called transitive if it acts transitively on {1, . . . , n}. That is, if for all i, j ∈ {1, . . . , n}
there exists some g ∈ G with g(i) = j.

Informally, then, a subgroup H of S3 acts transitively on a set X if any two elements
are “connected” by some h ∈ H.

Remark 2.44 (Important Observation). Let K ⊆ L be a Galois extension with n = [L :
K]. Then Gal(L/K) is isomorphic to a transitive subgroup of Sn.

Proof. Indeed, let γ1 ∈ L be a primitive element and let f ∈ K[x] be its minimal
polynomial. Then we know n = deg(f), and f splits completely in L[x] since it is a
splitting field.

We proved earlier that Gal(L/K) acts transitively on the set {γ1, . . . , γn} of roots of
f(x) in L, so this identifies the Galois group Gal(L/K) with a transitive subgroup of
Sn.

Notation 2.45. For a polynomial f ∈ K[x], the Galois group of f is the Galois group of
the splitting field for f . This is written Gal(f).
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§2.4 Main Theorem of Galois Theory

Theorem 2.46: Main Theorem of Galois Theory.

If K ⊆ L is a Galois extension and G := Gal(L/K). Then there is a bijection

{fields F : K ⊆ F ⊆ L} ∼←→ {subgroups of G},
LH 7−→H
F 7−→ Gal(L/F )

This bijection is called the Galois correspondence.

Proof. Consider K ⊆ F ⊆ L. Set H = Gal(L/F ). We must prove F = LH . K ⊆ L
is a Galois extension (e.g. since K ⊆ L is a splitting field, so is F ⊆ L, and another
characterization of Galois is LGal(L/F ) = F .

Consider a subgroup H of G. Set F = LH . We must show H = Gal(L/F ). Again,
F ⊆ L is a Galois extension and yet another characterization of a Galois extension is that
|Gal(L/F )| = [L : F ]. Then by the fixed field theorem we have |H| = [L : LH ] = F since
H is a subgroup of Gal(L/F ) and |H| = |Gal(L/F )|, so we have H = Gal(L/F ).

If K ⊆ L is Galois and K ⊆ F ⊆ L then K ⊆ F need not be a Galois extension. But
the question is—when is it? There is a beautiful answer to this in terms of the Galois
correspondence: it turns out that Galois extensions correspond to normal subgroups!

Theorem 2.47.

Let K ⊆ L be a Galois extension and let F be an intermediate field K ⊆ F ⊆ L. Let
G := Gal(L/K) and let H := Gal(L/F ) (so H is a subgroup of G). Then

H is a normal subgroup of G ⇐⇒ K ⊆ F is a Galois extension

Moreover, if K ⊆ F is Galois, then The Galois group is isomorphic to the quotient
group of G by H, that is, Gal(F/K) ∼= G/H.

Proof. Let γ1 be a primitive element of K ⊆ F and suppose f ∈ K[x] is its minimal
polynomial. The assumption that K ⊆ L is a Galois extension and f(γ1) = 0 implies that
f splits completely in E[x]. Let γ1, . . . , γn be its roots. Since γ1 ∈ F , K ⊆ L is Galois (i.e.
is a splitting field) if and only if γ1, . . . , γn ∈ F . So our first goal is to show the following:

Claim 2.48. γ1, . . . , γn ∈ F if and only if H is a normal subgroup of G.

Proof. G = Gal(L/K) acts transitively on {γ1, . . . , γn}. Let Gγ be the G-stabilizer of γ1,
F = K[γ1], and H = {g ∈ G : gF = id} (part of the Galois correspondence). For g ∈ G
we have g(γ1) ∈ F if and only if F = K[g(γ1)], so since F = LH we have g(γ1) ∈ F if and
only if Gg(γ1) = H.

Page 45 of 110

https://www.greysonwesley.com/home


Greyson C. Wesley §2.4: Main Theorem of Galois Theory

We have the key fact that Gg(γ1) = gGg(γ1)g
−1, which is because

gGg(γ1)g
−1(g(γ1)) = gGg(γ1)(γ1) = g(γ1).

Therefore, g(γ1) ∈ F if and only if H = gGγ1g
−1 = gHg−1 since all γi are of this form sit

in F if and only if gHg−1 = H for all g ∈ G, i.e. H is a normal subgroup.

Now, assume K ⊆ F is Galois so that γ1, . . . , γn ∈ F . For g ∈ G, the action of g on
L takes F = K[γ1] to K[g(γ1)] = F , i.e. restricting the action of G on L to F gives a
homomorphism φ : G→ Gal(F/K).

φ is surjective, since it is an element of Gal(F/K) determined by where it sends the
generator γ1, and G can send γ1 to any root γi of f . Also, ker(φ) = H by definition.
implies φ descends to an isomorphism G/H ∼= Gal(F/K).

Corollary 2.49.

For any finite extension K ⊆ L there are finitely many intermediate fields F

Proof. We can enlarge L, so assume K ⊆ L is a splitting field and hence a Galois extension.
Thus G = Gal(L/K) is a finite group, so it has finitely many subgroups by the fundamental
theorem for Galois theory. (Note that this argument fails if K is not perfect, and in fact,
the claim is false in the case K is not perfect.

2.4.1 Applications of the Galois Correspondence

The Galois correspondence has several features.

(1) A field corresponding to the trivial subgroup is LI = L itself.

(2) The field F corresponding to H = G is LG = F .

(3) More generally, the correspondence reverses inclusions: For H1, H2 subgroups of G,
we have

H1 ⊆ H2 ⇔ LH2 ⊆ LH1 .

(4) With regards to topology, this should remind you of the correspondence between
covers and subgroups of the fundamental group π1. This is no accident...

Example 2.50. The only Galois groups we know right now are the quadratic extensions,
namely if d ∈ K is not a square then K ⊆ K[

√
d] is a quadratic extension, and its Galois

group Gal(K[
√
d]/K) are 1 and Z/(2) ∼= C2, which as no nontrivial intermediate fields.

To get a more interesting example, however, we can adjoin two square roots.
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Example 2.51. The extension Q ⊆ Q[
√
2,
√
3] is a degree 4 extension, and it is the

splitting field for f := (x2 − 2)(x2 − 3), and hence is a Galois extension.
Let G := Gal(Q[

√
2,
√
3]/Q). We know |G| = 4, and the only groups of order 4 are

Z/(4) = {0, 1, 2, 3} ∼= C4 or C2 ⊕ C2
∼= V , the Klein-4 group.

Which one is it? Well, C4 has only one nontrivial subgroup, namely {0, 2} ∼= C2. On
the other hand, C2 ⊕ C2 has three nontrivial subgroups, namely C2 ⊕ 0, 0⊕ C2, and the
diagonal subgroup ⟨(1, 1)⟩ ∼= C2.

There are at least three intermediate fields:

Q ⊆
Q[

√
2]

Q[
√
3]

Q[
√
6]

⊆ Q[
√
2,
√
3].

Each corresponds to a subgroup of G, so, therefore, it must be the case that G ∼= C2⊕C2,
since this is the unique group of order 4 with three nontrivial subgroups.

As an application of this, we have for any a, b ∈ Q that the intermediate field
Q[a
√
2 + b

√
3] must be one of the three fields. If a, b ̸= 0, then it can’t be any of Q[

√
2],

Q[
√
3], or Q[

√
6].

To see why e.g. it is not Q[
√
6], note that if a

√
2 + b

√
3 ∈ Q[

√
6 then we have

a
√
2 + b

√
3 = c

√
6 + d, which is not possible for any a, b ∈ Q. Similar reasoning rules out

Q[
√
2] and Q[

√
3]. It therefore must be that Q[a

√
2 + b

√
3] = Q[

√
2,
√
3] if a, b ̸= 0.

§2.5 Cubic Polynomials Revisited

Example 2.52. Let f := x3 + ax2 + bx+ c be an irreducible cubic in Q[x]. Let L be the
splitting field of f .

Q ⊆ L is a Galois extension since it is a splitting field. The goal here is to understand
G := Gal(L/Q). Let α1, α2, α3 ∈ L be roots of f , so f = (x− α1)(x− α2)(x− α3). Since
α1 + α2 + α3 = −a ∈ Q, we have L = Q[α1, α2, α3] = Q[α1, α2] since Q3 = −a− α1 − α2.
G acts transitively on {α1, α2, α3}, so G is a subgroup of S3, the symmetric group on
three elements. It is a transitive subgroup. There are two transitive subgroups of S3,
those being S3 itself (corresponding to a degree six extension) and A3 (corresponding to a
degree three extension), where A3 = ker(S3

σ→ {±1}) ∼= C3
∼= ⟨(123)⟩. Thus

Q
deg=3

⊆ Q[α1] ⊆ Q[α1, α2] = L,

where the second inclusion has an arrow saying “in Q[α1] min. poly of α2 is (x−α2)(x−α3)
since f(x) = (x− α1)(min poly of α2).” The degree is either 1 or 2 depending on whether
(x− α2)(x− α3) has a root in Q(α1). Thus G = S3 if and only if Q[α1] ⊆ Q[α1, α2] = L
is a nontrivial extension.

Example 2.53. f(x) = x3 + 3x+ 1 is a strictly increasing since f ′ = 3x2 + 3. Has one
real root α1 and two complex roots α2, α3 that are complex conjugates of each other.
Q[α1] ⊆ R, so cannot contain α2, α3, so the Galois group is isomorphic to S3.
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Note that the complex conjugation map C→ C restricts to an element φ ∈ Gal(L/Q)
of order 2, and φ(α1) = α1, φ exchanges α2 and α3 since Gal contains order 2 element
cannot be A3

∼= C3. L{iα,φ} ∼= C3.

Let f ∈ Q[x] be a monic irreducible cubic, L its splitting field, and α1, α2, α3 its roots.
Then L = Q[α1, α2, α3]. Writing f = x3 + ax2 + bx+ c, α1 + α2 + α3 = −α ∈ Q. Then

Q
deg=3

⊆ Q[α1]
deg=?

⊆ L.

Claim 2.54. Q[α1] ⊆ Q[α1, α2] has degree 1 or 2 in (Q[α1])[x].

Proof. f = (x−α1)g(x) with α2, α3 roots of g(x), g(x) quadratic. Degree 2 if g irreducible,
degree 1 if g factors, so α2 ∈ Q[α1]. G = Gal(L/Q) and G acts transitively on {α1, α2, α3},
so G ⊆ S3. Transitivity implies G = S3 or A3

∼= C3, A3 being generated by the three-cycle
(123).

Example 2.55. Last time we proved G = S3 for f = x3 + 3x+ 1. f = x3 − 3x+ 1 has
three real roots. What is the nature of these roots? Let α be a root of f . By tedious
algebra we can show that α2 − 2 is also a root:

f(α2 − 2) = (α2 − 2)3 − 3(α2 − 2) + 1

= (α3 − 3α− 1)(α3 − 3α + 1) = 0.

It follows that the roots are α, α2 − 2, (α2 − 2)− 2 = α4 − 4α2 + 2. Hence, the splitting

field is Q
deg=3

⊆ Q[α] = L, and therefore G = Gal(L/Q) = A3
∼= C3.

Is there a more general way to tell whether G = S3 or A3, i.e. how do we tell whether
or not there is an algebraic relationship between the roots?

Well, if Gal(L/Q) = S3 then it has A3 as a normal subgroup. Then we can consider
K := LA3 , so Q ⊆ K ⊆ L, and since A3 is normal we know by a recent theorem that
Q ⊆ K is a Galois extension with Gal(K/Q) = S3/A3

∼= C2. This implies Q ⊆ K is a
quadratic extension.

In fact, the converse is also true—if we have Q ⊆ K ⊆ L with Q ⊆ K a quadratic
extension, then we know that the degree of Q ⊆ L must be even by the multiplicative
property of the degree. Hence the Galois group can’t be A3

∼= C3, so it must be S3.
Recall the discriminant of f , ∆(f) = (α1 − α2)

2(α1 − α3)
2(α2 − α3)

2. We know
∆(f) is a symmetric function, and we know that if we take any symmetric function
then we get a rational number, so the discriminant of f is a rational number. Define
λ := (α1 − α2)(α1 − α3)(α2 − α3). Then λ is a square root of the discriminant, so λ ∈ L
and λ2 = ∆(f) ∈ Q.

It follows that if ∆(f) ∈ Q is not a square then λ does not sit in Q, and

Q
deg=2

⊆ Q[λ] = Q[
√
∆(f)] ⊆ L.
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Therefore, if f ∈ Q[x] is an irreducible cubic with ∆(f) ∈ Q is not a square, then the
Galois group of its splitting field in S3.

This is wonderful since we know how to compute the discriminant. But we can know
even more—although not obvious, the converse is also true.

Claim 2.56. If f ∈ Q[x] is an irreducible cubic whose discriminant ∆(f) ∈ Q is a square
then the Galois group of the splitting field is A3.

Proof. Let L be the splitting field for f . If ∆(f) is a square, then λ = (α1 − α2)(α1 −
α3)(α2 − α3) is rational. Thus, since elements of the Galois group Gal(L/Q) must fix
the base field Q, we know λ ∈ Q is fixed by the action of the Galois group Gal(L/Q)
does nothing to λ. Using a transpose as opposed to only three cycles would have the
action of swapping one of α1 and α2, α1 and α3, or α2 and α3, which multiplies λ by
−1, so the action of Gal(L/Q) on {α1, α2, α3} cannot include a transposition. Hence
Gal(L/Q) ∼= C3.

§2.6 Quartic Polynomials

Exercise 2.57. As an assignment, read the section in Artin on degree 4 polynomials. It
is not “hard”, though it is similar to this. It involves Lagrange resolvant, etc. It is too
intricate to lecture about clearly, so it is better to read it on your own. The next problem
set will contain problems on this topic.

§2.7 Finite Fields Revisited

Recall that if p is prime and n ≥ 1 then there exists a unique field Fpn of order pn.
We found the following key facts:

• F×pn = Fpn ∖ {0} is a cyclic group under multiplication, and so has order pn = 1. Let
τ ∈ F×pn be a generator.

• Recall the Freshman’s dream: (x+ y)p = xp + yp for all x, y ∈ Fpn which holds since
all other terms in the binomial expansion have terms divisible by p.

Theorem 2.58.

Fp ⊆ Fpn is a Galois extension, and

Gal(Fpn/Fp) ∼= Cn.

Proof. Define f : Fpn → Fpn by f(x) = xp. As a result of the Freshman’s dream, we know
f is a field automorphism, which we recall is called the Frobenius.

For x ∈ Fp we have that xp = x since F×p is cyclic of order p − 1 (and 0p = 0),
so f |Fp = idFp . Thus f ∈ Gal(Fpn/Fp). Since f(0) = 0 and for x ∈ F×pn we have
fn(x) = xp

n
= x, we know f has order at most n. We claim that f in fact has order n. In
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the above notation, the generator τ ∈ F×pn has order exactly pn, in fact fm(τ) = τ p
m ̸= τ

for 1 ≤ m < n. Thus f must have order exactly n, as claimed.
Since |Gal(Fpn/Fp)| ≤ [Fpn : Fp] = n, with equality if and only if the extension is a

Galois extension. It is a Galois extension, and the Galois group Gal(Fpn/Fp) is the cyclic
group of order n generated by the Frobenius.

§2.8 Fundamental Theorem of Algebra Using Galois Theory

In this section, we strive to prove the fundamental theorem of algebra with the tools
from Galois theory. Before we do this, however, we review some concepts from group
theory.

2.8.1 Group theory background

Recall the Sylow theorems, namely that if p is prime and |G| = pkm for some m
relatively prime to p and then there’s a subgroup H < G with |H| = pk. (H is called a
p-Sylow subgroup).

Example 2.59. Consider the group G := S8. Then |G| = 8!, which is 32m for some
m such that 3 ∤ m. G has a subgroup H = ⟨(123), (456)⟩ (these commute) ∼= (Z/(3))2.
|H| = 9, and H is a 3-Sylow subgroup.

Challenge: |S9| = 34m. Find the 3-Sylow subgroup...

Lemma 2.60.

If G is a finite group with |G| = pk with p prime. Let Z(G) be the center of G. That
is, {g ∈ G : gh = hg for all h ∈ G}. Then Z(G) ̸= 1.

Proof. Let C0, C1, . . . , Cr be the conjugacy classes of G, ordered such that C0 = {1}. G
acts on Ci transitively, so letting x ∈ Ci we have

|Ci| = [G : CG(x)] =
|G|
|CG(x)|

= pni ,

with ni = 0 iff CG(x) = G, i.e. x ∈ Z(G). We have G = C0 ⊕ C1 ⊕ · · · ⊕ Cr, so
|G| =

∑r
i=0 |Ci| = 1 +

∑r
i=1 p

ni , where 1 corresponds to |C0|. Since p | |G| but p ∤ 1, we
must have p ∤

∑r
i=1 p

ni . We therefore must have ni0 = 0 for some 1 ≤ i0 ≤ r, i.e. |Ci0| = 1.
Letting x ∈ Ci0 , we have that x ∈ Z(G) is nontrivial.

Corollary 2.61.

If |G| = pc for p prime and k ≥ 1 then there exists a surjection φ↠ Z/(p).

Page 50 of 110

https://www.greysonwesley.com/home


Greyson C. Wesley §2.8: Fundamental Theorem of Algebra Using Galois Theory

Proof. We induct on k, the base case k = 1 being trivial since then G ∼= Z/(p). For the
induction step, let k ≥ 2 and suppose the claim holds for smaller groups. If G is abelian
then the corollary follows from the classification of finitely generated abelian groups. If G
is not abelian then Z(G) ̸= G, and the lemma says Z(G) ̸= 1. Thus since G′ := G/Z(G)
is a finite group with |G′| = pk

′ for some 1 ≤ k′ ≤ k.
Then by the induction hypothesis we can find φ′ : G′ ↠ Z/(p), so we define φ : G↠

Z/(p) by G↠ G/Z(G)
φ′
−→ Z/(p).

Corollary 2.62.

If |G| = pk then there exists a chain of normal subgroups

1 = G0 �G1 � · · ·�Gk = G

such that Gi/Gi−1
∼= Z/(p) for all 1 ≤ i ≤ k.

Proof. Set Gk = G. By the previous corollary we can find Gk−1 �Gk, namely the kernel
of the surjective homomorphism Gk ↠ Z/(p), with Gk/Gk−1

∼= Z(p). |Gk−1| = pk−1.
Applying the corollary again, we can find Gk−2 �Gk−1.

We now see an example of a filtration tool.

Example 2.63. Consider the Heisenberg group, given by

G =
{[

1 x z
0 1 y
0 0 1

]
: x, y, z ∈ Fp

}
.

Note |G| = p3. Observe that

1 = G0 �G1 =
[
1 0 ∗
0 1 0
0 0 1

]
�G2 =

[
1 ∗ ∗
0 1 0
0 0 1

]
�G3 =

[
1 ∗ ∗
0 1 ∗
0 0 1

]
= G,

and indeed G ∼= Z/(p) with center G/G1
∼= (Z/(p))2 generated by

[
1 1 0
0 1 0
0 0 1

]
and

[
1 0 0
0 1 1
0 0 1

]
.

2.8.2 The Proof

Theorem 2.64: Fundamental Theorem of Algebra.

C is algebraically closed.

Proof. It suffices to show that if R ⊆ L is a nontrivial finite field extension then [L : R] = 2,
and thus L ∼= C. Without loss of generality, suppose R ⊆ L is a Galois extension (since
we can always enlarge it to be). Set G := Gal(L/R). We seek to show G ∼= Z/(2). We
will use the Sylow theorem, the corollary of the corollary, and the Galois correspondence.

We’ll first use the Sylow theorems to show |G| = 2n for some n. Let H < G be
a 2-Sylow subgroup (which exists since every group has a 2-Sylow subgroup, and in
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particular if the group has odd order then the 2-Sylow subgroup is trivial. We want to
show G = H. Let F denote the fixed field of H, i.e. F := LH . Then R ⊆ F ⊆ L and
F ⊆ L is a Galois extension with Gal(L/F ) = H. Thus [L : F ] is the maximal power of 2
dividing |G| = [L : R]. Since [L : R] = [L : F ][F : R], it follows that [F : R] is odd. Let
γ ∈ F be a primitive element and let f ∈ R[x] be its minimal polynomial. If F ̸= R then
the degree of γ is an odd number, but by the intermediate value theorem we have since
f is cubic it must have a real root. Hence f has a linear factor in R and thus f is not
irreducible. Hence f has a linear factor in R and is thus not irreducible, contradicting the
irreducibility of f . Thus we must have deg(f) = 1, so F = R, forcing H = G. (Note that
using the intermediate value theorem to show that any odd-degree polynomial has a real
root is the only piece of analysis in this proof.)

We now claim that in fact |G| = 2. Since |G| = 2n, the corollary to the corollary gives
us that there exists a chain of normal subgroups

1 = G0 �G1 � · · ·�Gn = G

such that Gk/Gk−1
∼= Z/(2) for all k. Then by the Galois correspondence, we have a chain

of subgroups corresponding to the chain of subfields, namely

R = Ln ⊆ Ln−1 ⊆ · · · ⊆ L0 = L,

where Li = LGi . Moreover, since Gk−1�Gk, we have that Lk ⊆ Lk−1 is a Galois extension
with Gal(Lk−1/Lk) = Gk/Gk−1 = Z/(2). Thus Lk ⊆ Lk−1 is a degree 2 extension for all k.
We, therefore, have a chain of degree 2 extensions

R = Ln ⊆ Ln−1 ⊆ · · · ⊆ L0 = L.

It follows that Ln−1
∼= C. Since C has no degree 2 extensions by the quadratic formula, it

follows that this terminates at Ln−1, so n = 1 as desired. Thus G ∼= (Z/(2))1 = Z/(2).

§2.9 Roots of Unity Revisited

Notation 2.65. The nth roots of unity are

µn = {z ∈ C : zn = 1}.

For instance, µ1 = {1}, µ2 = {±1}, µ4 = {±1,±i}, etc.
Letting

ζn := e2πi/n,

we have µn = {ζkn : 0 ≤ k < n}, that is, µn = ⟨ζn⟩ is the cyclic group of order n generated
by ζn. In other words, ζn generates the primitive nth roots of unity, which are elements
of

{ζkn : 0 ≤ k < n, gcd(k, n) = 1}
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2.9.1 Cyclotomic Fields

The nth cyclotomic field is Q[µn] = Q[ζn]. This is the splitting field for xn−1 ∈ Q[x],
so Q ⊆ Q[µn] is a Galois extension.

Our goal is to prove Gal(Q[µn]/Q) ∼= (Z/(n))×. This is abelian, and although we won’t
prove it we present the following amazing and deep theorem.

Theorem 2.66: Kronecker-Weber.

If Q ⊆ K is a finite Galois extension with abelian Galois group Gal(K/Q) then
K ⊆ Q[µn] for some n.

For instance, this implies for all square-free d ∈ Z that Q[
√
d] ⊆ Q[µn] for some n. We

will prove this directly. Of course, Gal(Q[µn]/Q) acts on µn. What are the orbits? We
claim

orbits←→ irreducible factors of xn − 1.

Example 2.67. For instance
• x1 − 1 is irreducible and µ1 = {1}.
• x2 − 1 = (x+ 1)(x− 1), µ2 = {±1}. The Galois group of Q[µ2] = Q over Q is trivial,

so two orbits.
• x4 − 1 = (x2 + 1)(x + 1)(x − 1). Q[µ4] = Q[i]. Gal(Q[u]/Q) ∼= C2, with generator

complex conjugation. Then the orbits are {±i}, {1}, and {−1} (the latter two
meaning the orbit is just fixing it)

• xp − 1 for p prime has

xp − 1 = (x− 1)(xp−1 + xp−2 + · · ·+ 1).

Recall that if ϕp = xp−1 + · · ·+ 1 then we proved ϕp(x+ 1) is Eisenstein at p = 2, so
ϕp(x+1) and hence ϕp is irreducible. It follows that the Galois group acts transitively
on the roots of xp−1 + · · ·+ 1. It follows that the Galois group acts transitively on
the roots of xp−1 + · · ·+ 1 = ϕp since all have the same minimal polynomial (Why?).
Thus the orbits on µp are {1} and the roots of ϕp, i.e. the primitive pth roots of
unity.

Define

Φn :=
∏

ζ∈µn
ζ primitive

(x− ζ).

The Galois group of Q[µn] permutes the primitive nth roots of unity, so it must fix the
coefficients of Φn. Hence ϕn ∈ Q[x] since the only elements of Q[µn] fixed by the Galois
group are the base field Q. Thus Φn is a factor of xn − 1 ∈ Z[x] in Q[x], so by Gauss’s
lemma on factoring we have Φn ∈ Z[x].
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Theorem 2.68.

Φn is irreducible for all n ≥ 1.

Proof. (Van der Waerden? Emmy Noether?) We first need an auxiliary lemma.

Lemma 2.69.

Let ζ ∈ µn and p be a prime not dividing n. Let f ∈ Q[x] be the minimal polynomial
for ζ. Then f is also the polynomial of ζp.

Proof. Assume this is false, so f(ζ) = 0 but f(ζp) ̸= 0. If g ∈ Z[x] is the minimal
polynomial for ζp then g ̸= f then f and g are distinct factors of xn− 1. Thus we can find
h ∈ Z[x] such that xn − 1 = fgh. Reducing modulo p, we have xn − 1 = f(x)g(x)h(x) in
Fp[x]. p does not divide n, so the derivative of xn − 1 is nonzero. Hence xn − 1 has no
repeated roots in Fp[x]. It follows that (†) f and g are relatively prime in Fp[x].

We now show that this is a problem. We have g(ζp) = 0 implies ζ is a root of g(xp),
so since f is the minimal polynomial of ζ we have that f divides g(xp) in Z[x].

Write g(xp) = f(x)φ(x) for some φ ∈ Z[x]. Again reducing modulo p, we find that
f(x)φ(x) = g(xp), which by the Freshman’s dream is (g(x))p ∈ F[x]. This contradicts (†),
which says gcd(f, g) = 1.

Recall that Φn(x) =
∏

ζ∈µn
ζ primitive

(x − ζ) ∈ Z[x] and also recall that ζn = e2πi/n. We
now return to the proof of the theorem that Φn is irreducible for all n ≥ 1, so µn =
{ζan : 0 ≤ a < n, gcd(a, n) = 1}. It suffices to show all such ζan have the same minimal
polynomial.

Write a as a product of primes pi, i.e. a = p1 · · · pr, where pi ∤ n. By the lemma we
know that the following have the same minimal polynomial: ζn, ζp1n , ζp1p2n , . . . , ζp1···prn = ζan,
completing the proof.

The above theorem would be insane without Galois theory. Although the theorem
doesn’t use the Galois correspondence, we used properties of the orbits of the Galois
group.

Corollary 2.70.

The irreducible factorization of xn − 1 ∈ Q[x] is

xn − 1 =
∏

d|n
Φn(x).

Proof. We have

xn − 1 =
∏

ζ∈µn
(x− ζ)
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=
∏

d|n

(∏
ζ∈µd,ζ primitive

(x− ζ)
)
= =

∏
d|n

Φd(x).

(each ζ ∈ µn is a primitive dth root of unity for some d | n)

Example 2.71. x6 − 1 = Φ1Φ2Φ3Φ6 = (x− 1)(x+ 1)(x2 + x+ 1)(x2 − x+ 1), the last
factor reelfecting the fact that there are exactly two primitive sixth roots of unity, those
being ζ6, ζ5.

Our goal is to compute G := Gal(Q[µn]/Q). Q[µn]/Q is Galois since it is the splitting
field for xn − 1 over Q. We first start by analyzing things we know about this extension:

Lemma 2.72.

If σ ∈ G then σ(ζ) = ζa for all ζ ∈ µn and some a ≥ 1 with gcd(a, n) = 1

Proof. We have σ(ζn)n = σ(ζn)n) = σ(1) = 1 and σ(ζn)
k ≠ 1 for 1 ≤ k ≤ n, so σ(ζn) is

a primitive nth root of unity. Hence σ(ζn) = ζan for some a ≥ 1 with gcd(a, n) = 1. All
other ζ ∈ µn are ζ = ζkn for some k, so

σ(ζ) = σ(ζkn) = (ζan)
k = ζa.

This completes the proof

Note that this is well-defined modulo n and sits in (Z/(n))× since gcd(a, n) = 1. We
will write a(σ) := a ∈ (Z/(n))×.

Lemma 2.73.

The map G→ (Z/(n))× by σ 7→ σ(a) is an injective homomorphism.

Proof. σ1, σ2 ∈ G and a(σ1σ2) is characterized by (ζa(σ2)n )(aσ1) = σ1(ζ
a(σ2)
n ) = σ1σ2(ζn) =

ζa(σ1σ2)n .

Thus a(σ1σ2) = a(σ2)a(σ1), so it is a homomorphism. It is injective since for σ ∈ G in
the kernel we have 1 = σ(ζn) = ζa(σ1)n , so a(σ) is identically zero modulo n.

Corollary 2.74.

G := Gal(Q[µn]/Q) is abelian.

Remark 2.75. The same proof works to show that for any perfect field for K that
Gal(K[µn]/K) ↪→ (Z/(n))× is abelian. Of course, K[µn]/K is also a Galois extension
(because it is the splitting field for xn − 1 over K).

However, the following theorem is special for Q:
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Theorem 2.76.

For any n ≥ 1 we have

Gal(Q[µn]/Q) ∼= (Z/(n))×

Proof. The primitive nth roots of unity are given by {ζan : a ≥ 1, gcd(a, n) = 1}, i.e. a ∈
(Z/(n))×. Thus what we want to show is that for any primitive nth root of unity ζ, there
exists a σ ∈ G with σ(ζn) = ζ. But this follows from the fact that ζn and ζ are both roots
of the irreducible polynomial Φn, i.e. have the same minimal polynomial over Q.

Remark 2.77. More on the proof: For primitive ζ ∈ µn, µn = {ζk : k ≥ 1}, so

Q[µn] = Q[ζ] ∼= Q[x]/(Φn), (minimal polynomial of ζ is Φn)

and the same is true for ζn, so the element of G that we seek is

Q[µn] = Q[ζn] ∼= Q[x]/(Φn) ∼= Q[ζ] = Q[µn]

Remark 2.78. The above theorem is false if Q is replaced by, say, R. For n ≥ 3, R[µn],
ζn ∈ C ∖ R, so R[µn] = C and Gal(R[µn]/R) ∼= C2 since we’re just reproducing the
complex numbers, i.e. |R[µn] : R| = 2.

This is a nice concrete place to think about subgroups of the Galois group and
intermediate fields.

Example 2.79 (Example of the Galois Correspondence). Let p be an odd prime and
G := Gal(Q[µp]/Q) ∼= (Z/(p))× the cyclic group of order p − 1 generated by some
t ∈ (Z/(p))×.

(Z/(p))× = {tk : k ≥ 1}

This contains an index 2 subgroup H, where

H = {t2k : k ≥ 1} ⊆ G

It is normal since it has index 2 (or alternatively since G is abelian). Let F be the fixed
field F = (Q[µp])

H . Then Q ⊆ F ⊆ Q[µp], and Q ⊆ F is a Galois extensions (which
follows from the fact that H is a normal extension) with

Gal(F/Q) ∼= G/H ∼= C2,

meaning Q ⊆ F is a quadratic extension. In other words, we have the following theorem.

Theorem 2.80.

In the above notation, if p ≡ 1 (mod 4) then F = Q[[
√
p].

If p ≡ 3 (mod 4) then F = Q[
√
−p].
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Proof. Rather than providing the proof in whole, we give a special case. The whole proof
is the special case but with more cumbersome notation.

Example 2.81 (p = 7). If p = 7 then p ≡ 3 (mod 4), so we should get F = Q[
√
−7.

G = Gal(Q[µn]/Q) ∼= (Z/(7))× is a cyclic group of order 6 generated by 3, namely

G = ⟨3⟩ = {3, 2 = 9, 6, 4 = 18, 5 = 12, 11 = 15},

so our subgroup H is generated by 32 = 9 to get

H = ⟨9⟩ = {2, 4, 1 = 8}.

Then F = Q[µ7]
H is generated by α1 = ζ7 + ζ27 + ζ47 ,

(??) and the powers not in H are summed in α2 = ζ37 + ζ57 + ζ6n(??).
Recall that x7 − 1 = (x− 1)(x− ζ7)(x− ζ7)2 · · · (x− ζ7)6, and expanding this out we

find α1 + α2 = −1 since 1 = ζ07 + α1 + α2 = −(coefficient of xp − 1 in x7 − 1) = 0.
The product α1α2 = (ζ7 + ζ27 + ζ47 )(ζ

3
7 + ζ57 + ζ67 ). Expanding this out we get this is

equal to 2ζ07 + (ζ07 + ζ17 + · · ·+ ζ67 ) = 2. This implies that (x− α1)(x− α2) = x2 + x+ 2.
Therefore, using the quadratic formula on x2 + x+ 2 knowing that the roots must be α,
we find α1, α2 =

−1±
√
1−8

2
= −1±

√
−7

2
.

Exercise 2.82. Note that Artin does two more numerical examples and they are worth
looking at. It would be useful to look at these to see how this works and get a feeling for
the Galois correspondence.

If we were to be able to continue to develop Galois theory, we need to look at class
field theory , which classifies abelian (i.e. abelian Galois group) extensions of nice fields
K (e.g. K = Q on a finite extension of Q). This is the crowning achievement of early
20th-century developments in this field.

Informally, the Langlands program is an attempt to generalize class field theory
from abelian extensions to non-abelian extensions! What we will talk about today is a
baby case, i.e. the easiest case of this. This is called Kummer theory .

For fields K of characteristic zero (there is another theory by a different name for
the characteristic p version of this) such that K contains a primitive nth root of unity,
this classifies Galois extensions K ⊆ L such that Gal(L/K) is abelian and all elements
g ∈ Gal(L/K) satisfy gh = id. We won’t do this today—if we had an extra lecture we
would. But we will do the easiest case of this—the one in which the Galois group is cyclic.

Our goal: Understand such extensions K ⊆ L such that Gal(L/K) ∼= Cn.

Definition 2.83 (character). For an abelian group G and a field K, a character of G is
a homomorphism χ : G→ K× (= K ∖ {0}).
Example 2.84. For any nonzero a ∈ K we have a character (letting G = K×, which is of
course an abelian group since multiplication is commutative) χ : K×→ K× via χ(x) := ax.
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Given a field extension K ⊆ L and σ ∈ Gal(L/K), we can define a character χ : L×→
L× with χ(x) := σ(x).

Example 2.85. For a prime p, we have a character χ : (Z/(p))×→ {±1} (⊆ C×) such
that χ(x) is given by a Legendre symbol, i.e.

χ(x) :=

(
x

p

)
=

[
1 if x is a square
−1 otherwise

]
Showing this is a homomorphism is an exercise.

We have the following wonderful fact about characters thanks to Dedekind, which
comes with a beautiful proof:

Theorem 2.86: Dedekind.

Let G be an abelian group and K be a field. Suppose χ1, . . . , χn :→ K× be distinct
characters. Then the χi are linearly independent, i.e. if c1, . . . , cn ∈ K satisfy

c1χ1(g) + · · ·+ cnχn(g) = 0

for all g ∈ G, then c1 = · · · = cn = 0.

Proof. Suppose otherwise. Choose c1, . . . , cn so that

c1χ1 + · · ·+ cnχn = 0 (†)

but the ci are not all zero such that there is the minimal number of nonzero ci.
Since χi ̸= 0 (by definition of a character), there must be at least two nonzero ci.

Relabel the indices such that c1 ̸= 0 and c2 ̸= 0. The χi are distinct, so χ1 ̸= χ2; then we
can find h ∈ G such that χ1(h) ̸= χ2(h).

For g ∈ G, we have

0 = c1χ1(hg) + · · ·+ ckχn(hg)

= c1χ1(h)χ1(g) + · · ·+ cnχn(h)χn(g).

Then

c1χ1(h)χ1 + c2χ2(h)χ2 + · · ·+ cnχn(h)χn = 0. (∗)

Multiplying through (†) by χ1(h) (̸= 0) gives that

c1χ1(h)χ1 + c2χ1(h)χ2 + · · · = 0. (∗∗)

Subtracting (∗) from (∗∗) gives us that

0χ1 + c2(χ1(h)− χ2(h))χ2 + · · · = 0.

This has fewer nonzero coefficients than (†). By minimality, all coefficients of this must be
zero. In particular, c2(χ1(h)− χ2(h)) = 0. Since χ1(h) ̸= χ2(h), this implies that c2 = 0,
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a contradiction.

Example 2.87. For distinct nonzero a1, . . . , an ∈ K, looking at the characters χi : Z→
K×, χi(k) = aki (which is indeed a character since it is a group homomorphism), we
conclude that only c1, . . . , cn ∈ K such that

c1a
k
1 + · · ·+ cna

k
n = 0

for all k ∈ Z are c1 = · · · = cn = 0.

The following corollary of linear independence of characters is the baby version of
Hilbert’s theorem 90:

The reason this is called Hilbert’s theorem 90 is that he write an account of number
theory/Galois theory as were known at the time. In this piece, his theorems were numbered
consecutively, and this (a more generalized version of this) was the 90th one.

The real version says that, given a field with cyclic Galois extension, characterizes
when you can write element of the field of quotient sigma(x)/x, and the condition is when
the “absolute norm” of the element is one (which the roots of unity have).

Corollary 2.88: Baby Hilbert’s Theorem 90.

Let K be a field and ζn a primitive nth root of unity. Consider the Galois extension
K ⊆ L such that Gal(L/K) ∼= Cn, generated by σ. Then there exists x ∈ L such that

ζn =
σ(x)

x
.

Proof. Regard L as a vector space over K. The automorphism σ : L→ L is K-linear since
for all c ∈ K and x, y ∈ L we have σ(x+ y) = σ(x) + σ(y) and σ(cx) = σ(c)σ(x) = cσ(x),
the last equality since σ|K = id.

What we need to show is that ζn is an eigenvalue of σ (since then σ(x) = ζnx, giving
the result).

Let p ∈ K[x] be the minimal polynomial of σ. Since σn = id (because the Galois group
is cyclic of order n, i.e. isomorphic to Cn), we have σn − 1 = 0. So p(x) divides xn − 1.

We now claim p(x) = xn − 1. Indeed, this follows from the linear independence
of characters—σ0 = id, σ1, . . . , σn−1 : L → L are distinct characters since σ generates
Gal(L/K) ∼= Cn. Thus they’re linearly independent, so we cannot find c0, . . . , cn−1 ∈ K
such that when c0 + c1σ

1 + · · ·+ cn−1σ
n−1 = 0 we have c0, . . . , cn−1 are not all zero. Thus

the minimal polynomial p has degree at least n, so p(x) = xn − 1. But this implies
|L : K| = n, so dimK(L) = n, so it follows that the characteristic polynomial of σ must
be xn − 1.

Then since the characteristic polynomial of σ has degree n, by Cayley-Hamilton, we
know since f(σ) = 0. In particular, ζn is a root of the characteristic polynomial, and
hence an eigenvalue.
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Recall Baby Hilbert 90 shows how the Galois group of a cyclic extension acts.

Corollary 2.89.

If K is a field and ζn ∈ K a primitive nth rot of unity and K ⊆ L with Gal(L/K) ∼=
Z/(n) then there exists some a ∈ K such that

L = K[ n
√
a]

Proof. Let σ be a generator of the Galois group Gal(L/K). Then by Hilbert 90 there
exists an t ∈ L× with σ(t) = ζnt. Thus σ(tn) = (σ(t))n = ζnn t

n = tn. σ generates the
Galois group, so tn is fixed by the Galois group. But then tn must sit in the base field
since σ (which generates the whole Galois group) fixes it and hence all of the Galois group
fixes it.

Let a = tn, i.e. t = n
√
a. Then we have K ⊆ K[t] = K[ n

√
a], it is enough to prove

that K ⊆ K[t] is an extension of degree n. The element t is a root of xn − a. To show
K ⊆ K[t] has degree n, we need to show xn − a is the minimal polynomial of t. We can
factor

xn − a = (x− t)(x− ζnt)(x− ζ2nt) · · · (x− ζn−1
n t).

But ζit = σi(t) by observation of the definitions of t and σ, so the above becomes

xn − a = (x− t)(x− σ(t))(x− σ2(t)) · · · (x− σn−1(t)).

If this could factor, then the roots of the factorization must be permuted by Gal(L/K).
But σ fixes them, so we conclude that we cannot nontrivially factor, so xn−a is irreducible,
as desired.

Remark 2.90. The converse is almost true. More precisely, we can show that if K is a
field containing a (primitive ) nth root of unity and a ∈ K then K ⊆ K[ n

√
a] is a Galois

extension with Galois group Z/(m) for some m dividing n.

Proof. Probably on the final exam (with hints, though not that hard).

§2.10 Inverse Galois Problem

The inverse Galois problem is a famous open problem that asks the following
question: For any finite group G, do there exist finite extensions Q ⊆ K such that
Gal(K/Q) = G?

If we are free to choose any field instead of Q then this is not hard to show. Though
some things are known here, we will focus on explaining the baby case of this.

If Q ⊆ K is a Galois extension of degree n with primitive element a ∈ K, so K = Q[a],
then letting f(x) be the minimal polynomial of a, the Galois group acts transitively on
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the roots {a1, . . . , an} of f(x). f(x) is then a degree n polynomial and has at least one
root a = a1. This gives a group homomorphism φ : Gal(K/Q) → Sn. This is injective
since if σ ∈ kerφ then σ(a) = a, so σ = id since K = Q[a]. The image of φ is a transitive
subgroup of Sn, and so we ask the question: Can φ be surjective (so that Gal(K/Q) = Sn)?

The answer is yes! This is the first case of the inverse Galois problem that was solved,
and this was even known in the nineteenth century. However, the proofs of this are still
very complicated (e.g. look it up). So, we will just prove a special case of this:

Theorem 2.91: Subcase of a Special Case of the Inverse Galois Problem.

Fix a prime p. Let f ∈ Q[x] be an irreducible polynomial of degree p such that f has
p− 2 real roots and 2 (complex conjugate) roots, counting multiplicities. If K is the
splitting field of f , then Gal(K/Q) ∼= Sp.

Proof. Set G := Gal(K/Q). Then G ≤ Sp (when both are understood by their actions on
the roots of f). We have |G| = |K : Q| from the characterization of a Galois extension.
Letting the roots of f be

{
a1, . . . , ap−2, b, b

}
, we know that Q ⊆ Q[a1] has degree p (since

f is the monomial polynomial of a). Q ⊆ Q[a1] ⊆ K, we conclude that the degree of the
extension Q ⊆ K is divisible by p, so p divides |G| by the first Sylow theorem. Hence G
has an element of order p.

Recall that every element of Sp has a decomposition into cycles —e.g. in S5, writing
elements in the fashion of (2, 3)(1, 4, 5)), which has order lcm(2, 3) = 6. Since p is a prime,
the only element of order p in Sp is a p-cycle, so we know G contains a p-cycle.

We also know that G contains an involution since complex conjugation is an element
of G which fixes a1, . . . , ap−2 (since these are the real roots as we said in the beginning).,
and ϕ and ϕ, i.e.. is a 2-cycle.

It follows from this that it suffices to show for prime p that σ ∈ Sp a p-cycle and
τ ∈ Sp a transposition.

We can choose the ordering on {1, . . . , p} such that σ = (1, 2, ,̇p) and τ = (i, j) for
some 1 ≤ i < j ≤ p.

Then considering the group generated by G := σ, τ , i.e. ⟨σ, τ⟩, it suffices to show
that G contains all transpositions.. σ(1, . . . , p)(i, j)(1, . . . , p) = (i + 1, j + 1) ∈ G, so
σkτσ−k = (i+ j, j + k) ∈ G. Translating all the way to the left, we have for m = j − i
that (1,m) ∈ G. We also have (m, 2m− 1) ∈ G. Since (m, 2m− 1)(1,m) = (1, 2m− 1).
We have (1, 2m− 1) ∈ G. This can be shifted to give (2m− 1, 3m− 2) since we added
m− 1 to it, so (2m− 1, 3m− 2)(1, 2m− 1) = (1, 3m− 2 ∈ G. Repeating this process, we
get (1, cm − c + 1) ∈ G, and cm − c + 1 = c(m − 1) + 1 for all c. Since p is prime and
m − 1 ̸≡ 0 (mod p), we can find c such that c(m − 1) + 1 ≡ 2 (mod p). Thus (1, 2) ∈ G,
shifting we can get (2, 3) ∈ G, (3, 4) ∈ G< etc., with adjacent transpositions. For
1 ≤ a < b ≤ p, we have (a, b) = (b− 1, b)(b− 2, b− 2) · · · (a, a+ 1).
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Last time we constructed a Galois extension Q ⊆ K such that Gal(K/Q) ∼= Sp for a
given prime p. The other thing we did was to show a field K containing a primitive nth
root of unity and a Galois extension K ⊆ L with Gal(L/K) ∼= Cn, there exists an a ∈ L
such that L = K[ n

√
a]. We also asserted the following lemma:

Lemma 2.92.

Let K be a field and ζn ∈ K be a primitive nth root of unity. Let a ∈ K and let
L = K[ n

√
a]. Then K ⊆ L is Galois, and Gal(L/K) ∼= Cm for some m with m | n.

Proof. K ⊆ L is a Galois extension since it is generated by the nth root of a and is a
splitting field for xn − a since

xn − a =
∏n−1

k=0
(x− ζknt).

For σ ∈ Gal(L/K), we have σ(t) = ζφ(σ)n t for some φ(σ) ∈ Cn. For σ1, σ2 ∈ Gal(L/K),
we have

ζφ(σ2)+φ(σ1)n t = ζφ(σ2)n ζφ(σ1)n t = ζφ(σ2)n φ(t) = σ1(ζ
φ(σ2)
n t) = σ1σ2(t) = ζφ(σ1σ2)n t,

so φ(σ1σ2) = φ(σ1) + φ(σ2), i.e. φ : Gal(L/K)→ C2
∼= Z/(n) is a group homomorphism.

φ is injective since σ ∈ ker(φ). We must fix t, so fixes L = K[t] for t = n
√
a and σ = id.

Thus Gal(L/K) ∼= im(φ) ⊆ Z(n), so isomorphic to Z/(m) for some m | n since the
subgroups of Z/(n) are exactly these.

This is all the beginnings of Kummer theory.

§2.11 Insolvability of the Quintic

2.11.1 Solvable Galois Extensions

A Galois extension Q ⊆ L is solvable if there exists a sequence of Galois extensions

Q ⊆ K0 ⊆ K1 ⊆ · · · ⊆ Kr = L

such that for 1 ≤ i ≤ r, there is some element a ∈ Ki−1 and ni ≥ 2 such that Ki =
Ki−1[ ni

√
a]. This should remind the reader of Kummer theory.

We say a polynomial f ∈ Q[x] is solvable if the splitting field of f is solvable.

Example 2.93. The quadratic formula implies that all degree two f ∈ Q[x] are solvable.

Example 2.94. The solution to the cubic shows that for a degree three polynomial
f ∈ Q[x], the splitting field of f is of the form

Q ⊆ Q[∆(f)] ⊆ (Q[∆(f)])[ 3
√
−],

so f is solvable.
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More generally, solvability for f is a precise way of saying that there is some formula
for the roots of f(x) just involving iterated taking of nith roots for some nis.

2.11.2 The Quintic

Our final goal this semester is to give a group-theoretic condition that completely
characterizes the Galois group of L/Q is equivalent to Q ⊆ L being solvable (this condition
is what we will see the notion of a solvable group is, cf. below). We will prove two things:
that every subgroup of S4 is solvable (and so there exists a “formula” for the solution
of a degree 4 polynomial), but no Sn is solvable for n ≥ 5 (and consequently for degree
5 polynomials f with splitting field S5 there is no “formula” for the roots of a degree 5
polynomial).

Our goals:

1. Find group theoretic condition for solvability (which will remind us of Kummer
theory and actually use Kummer theory to prove that it is equivalent to solvability
in the polynomial sense)

2. Every subgroup of S4 is solvable

3. Prove for each n ≥ 5 that Sn is not solvable.

Definition 2.95 (solvable group). A group G is solvable if there exists a sequence of
subgroups

1 = G0 �G1 �G2 � · · ·�Gr = G

such that Gk+1/Gk is abelian for all 0 ≤ k ≤ r − 1.

Example 2.96. Obviously, any abelian group is solvable. Meanwhile, the only abelian
symmetric groups are S1 and S2.

Example 2.97. S3 is solvable. Recall that A3 = ker(S3 ∋ σ
sign7−→ {±1}). Recall that

A3
∼= C3 and is generated by the cycle (123).
Then notice that

1� A3 � S3

and S3/A3
∼= C2, A3/(1) ∼= C3, all of which are abelian, so S3 is solvable.

Example 2.98. S4 is solvable. Note A4 = ker(S4 ∋ σ
sign7−→ {±1}). Set

V := {1, (12)(34), (13)(24), (14)(23)}.

Then V is a subgroup, e.g. ((12)(34))((13)(24)) = (14). In fact, for σ1, σ2 ∈ V that are
not the identity, we have that σ1σ2 = σ3, where V = {1, σ1, σ2, σ3}. Thus V ∼= C2 ⊕ C2,
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the Klein-4 group, and is abelian. In fact, (12)(34) 7→ (1, 0), (13)(24) 7→ (0, 1), (14)(23) 7→
(1, 1).

Observe that V is a normal subgroup of S4 and hence also of A4. V is a normal
subgroup of S4 (and hence also of A4), e.g. for σ ∈ S4 we have

σ(12)(34)σ−1 = (σ(1)σ(2))(σ(3)σ(4)).

We have |A4| = 12 and |V | = 4, so |A4/V | = 2, so A4/V ∼= Z/(3) ∼= C3, which is abelian.
Thus

1� V � A4 � S4

and S4/A4
∼= C2, A4/V ∼= C3, V/1 ∼= C2 ⊕ C2, all of which are abelian, so S4 is solvable.

Lemma 2.99.

If G is a solvable group then any subgroup H of G is solvable.

Proof. Let G be solvable. Then there’s a chain

1 = G0 �G1 � · · ·�Gr = G

such that Gi/Gi−1 is abelian for each 1 ≤ i ≤ r − 1. Then by the (group) isomorphism
theorems, we have

1 = G0 ∩H �G1 ∩H � · · ·�Gr ∩H

and also that (Gi ∩ H)/(Gi−1 ∩ H) is a subgroup of Gi/Gi−1, the latter being abelian.
Subgroups of abelian groups are abelian, so H is solvable by definition.

Note that the following lemma is false for infinite solvable groups:

Lemma 2.100.

Let G be a finite solvable group. Then there exists a chain of subgroups

1 = G0 �G1 � · · ·�Gr = G.

such that each Gi/Gi−1 is cyclic. We call groups G with this property polycyclic
groups.

Proof. For any finite abelian group H, we can find a chain 1 = H0 �H1 � · · ·�Hs = H
such that each Hi/Hi−1 is cyclic. (e.g. H = C2 ⊕ C2 with 1� C2×{0}� C2 ⊕ C2).

We can thus find a chain

Gi−1 = G0
i−1 �G1

i−1 � · · ·�Gs(i)
i−1 = Gi

such that each Gj
i/G

j−1
i is cyclic (just as above on Gi/Gi−1, since we can find such chains

in the quotient and then just pull them back). Add those to our chain.
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Next time we’ll show that S5 is not solvable, and the problem comes from the fact
that there are no subgroups of A5 since A5 is a simple group.

Recall that a group G is solvable if it has a solvable series, that is, groups

1 = G0 �G1 �G2 � · · ·�Gr = G

such that each Gi/Gi−1 is abelian. We have seen several examples of solvable groups, so
it is time we present a (very important) non-example:

Theorem 2.101.

Sn is not a solvable group for any n ≥ 5.

Proof. It is enough to show that
1. The only H � Sn such that H ̸= Sn with Sn/H abelian is H = An.
2. There does not exist H � An with H ̸= An and An/H abelian.
For 1: Consider a homomorphism φ : Sn → Γ for some abelian group Γ. It is enough

to show An ⊆ ker(φ) (since kernels are normal subgroups). (This is true for all n ≥ 2.)
To show An ⊆ ker(φ), it suffices to show that for all transpositions (i, j) and (k, ℓ) we
have that

φ((i, j)(k, ℓ)) = 0.

Pick σ ∈ Sn such that σ(i) = k, σ(j) = ℓ. Together with the fact that φ((i, j)(k, ℓ)) =
φ((i, j), this implies the ability for the following calculation:

σ(i, j)σ−1 = (k, ℓ) =⇒ σ(i, j)σ(i, j)σ−1

= φ((i, j)) + φ(σ) + φ((i, j))− φ(σ) (additive notation since Γ is abelian)
= 2φ((i, j) = φ((i, j)2) = φ(id) = 0.

For 2: Consider a homomorphism ψ : An → Γ with Γ abelian. We must show An ⊆
ker(ψ), i.e. we need to show that for transpositions (i, j) and (k, ℓ) thatψ((i, j)(k, ℓ)) = 0.
Since n ≥ 5, we can pick some σ ∈ An such that σ(i) = k and σ(j) = ℓ. Then

ψ((i, j)(k, ℓ)) = ψ((i, j)σ(i, j)σ−1)

The rest is an exercise.

We now want to show that having a solvable field extension is equivalent to having a
solvable Galois group.

Lemma 2.102.

If G is a solvable group and f : G↠ H is a surjective group homomorphism then H is
solvable.
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Proof. For a solvable series we have

1 = G0 �G1 � · · ·�Gr = G,

the series

1 = f(G0)� f(G1)� · · · f(Gr) = H

is a solvable series, completing the proof.

Remark 2.103. The following theorem shows that there is no general formula for the
roots of a quintic. Note that its converse is also true—but we won’t prove that here.

Theorem 2.104.

If Q ⊆ L be a solvable field extension then Gal(L/Q) is a solvable group.

Proof. Set G := Gal(L/Q). By definition, Q ⊆ L is a Galois extension and

Q = K0 ⊆ K1 ⊆ · · · ⊆ Kr = K

such that ther eexists ai ∈ Ki and ni ≥ 2 with

Ki+1 = Ki[ ni
√
ai].

[We can’t immediately use Kummer theory since we need an nth root of unity, but there
might not be roots of unity here. We need to somehow put the roots of unity in here so
that we can use Kummer theory.]

Let N = n1n2 · · ·nr and define

L′ := L[primitive Nth root of unity].

Claim 2.105. Q ⊆ L′ is a Galois extension.

Proof. Let β ∈ L be primitive, so L = Q[β]. Let f ∈ Q[x] be the minimal polynomial of
β. Then L is the splitting field for f and L′ is the splitting field for (xN − 1)f . Then since
L′ is a splitting field for some polynomial, it follows that Q ⊆ L′ is a Galois extension.

Let G′ := Gal(L′/Q). Then Q ⊆ L ⊆ L′ and Q ⊆ L is Galois. Thus by a corollary to
the Galois correspondence, we have Gal(L′/L) is a normal subgroup of G′ and

G = G′/Gal(L′/L).

This implies that G is a surjective image of G′, namely via the quotient map π : G′ → G
with g 7→ gGal(L′/L). It therefore follows from the lemma that G′ is solvable, so we
deduce that G is solvable. Now set

Q = F−1 ⊆ F0 ⊆ F1 ⊆ · · · ⊆ Fr = L′,
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where F0 adjoins a primitive Nth root of unity to E1 = Q. Thus E1 ⊆ F0 is a cyclotomic
extension, so Gal(F0/F−1) is abelian (since we know that cyclotomic extensions have
abelian Galois groups).

We now want to build up the rest of the field. We will follow the same procedure as
before—for i ≥ 0, we will take

Fi+1 := Fi[ ni
√
ai].

Since Fi contains a primitive Nth root of unity, it also contains a primitive nith root of
unity.

Thus we can apply Kummer theory—Kummer theory thus implies that the extension
Fi ⊆ Fi+1 is a Galois extension with cyclic Galois group (Gal(Fi+1/Fi)). (In fact, it is
isomorphic to Cm with m | ni.)

The Galois extension then turns the chain of field extensions

Q = F−1 ⊆ F0 ⊆ F1 ⊆ · · · ⊆ Fr = L′

into a sequence of groups

1 = Gal(L′/Fr) ⊆ Gal(L′/Fr−1) ⊆ Gal(L′/Fr−2) ⊆ · · ·Gal(L′/F−1) = Gal(L′/Q) = G′.

If we set Gi := Gal(L′/Fi) then we can rewrite the above as

1 = Gr ⊆ Gr−1 ⊆ Gr−2 ⊆ · · · ⊆ G−1 = G′.

But by the above, each Fi−1 ⊆ Fi is a Galois extension with Gal(F)i/Fi−1) is abelian.
Thus Gi �Gi−1, and since

Gi−1/Gi
∼= Gal(Fi/Fi−1),

we have G/i−1/Gi is abelian. It follows that

1 = Gr ⊆ Gr−1 ⊆ Gr−2 ⊆ · · · ⊆ G−1 = G′

is a solvable series.

This proves that we cannot solve the quintic by taking iterated roots.

§3 Homeworks

§3.1 Algebra 4 Homework 5

Exercise 3.1 (Artin 15.2.1). Let α be a complex root of the polynomial x3− 3x+4. Find
the inverse of α2 + α + 1 in the form a+ bα + cα2, with a, b, c in Q.

Proof. Note

(α2 + α + 1)(a+ bα + cα2) = aα2 + bα3 + cα4 + aα + bα2 + cα3 + a+ bα + cα2
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= cα4 + (b+ c)α3 + (a+ b+ c)α2+)a+ b)α + a.

We’re given α3 = 3α− 4, so α4 = αα3 = 3α2 − 4α. Hence we can rewrite the above as

c(3α2 − 4α)+(b+ c)(3α− 4) + (a+ b+ c)α2 + (a+ b)α + a

= 3cα3 − 4cα + 3bα− 4b+ 3cα− 4c+ aα2 + bα2 + cα2 + aα + bα + a

= (3c+ a+ b+ c)α2 + (−4c+ 3b+ 3c+ a+ b)α + (−4b− 4c+ a)

= (a+ b+ 4c)α3+)a+ 4b− c)α + (a− 4b− 4c).

We need this be 1, so we have the system a+ b+ 4c = 0
a+ 4b− c = 0
a− 4b− 4c = 1

,
and solving the system yields α−1 = 17

49
− 5

49
α− 3

49
α2.

Exercise 3.2 (Artin 15.2.2). Let f(x) = xn − an−1x
n−1 + · · · ± a0 be an irreducible

polynomial over F , and let α be a root of f in an extension field K. Determine the
element α−1 explicitly in terms of α and of the coefficients ai.

Proof. We assume α ̸= 0 since if α = 0 then α−1 doesn’t exist. We’re given αn =
an−1α

n−1 − · · · ∓ a0, so multiplying through by α−1 and isolating a0α−1 we get

a0α
−1 = αn−1 − an−1α

n−1 + · · · ∓ a1.

a0 ̸= 0 since otherwise f = xg for some g ∈ F [x] of degree ≥ 1, contradicting f is
irreducible. Then we can multiply through by a−1

0 to conclude

α−1 = a−1
0 (αn−1 − an−1α

n−2 + · · · ∓ a1)

whenever f is irreducible.

Exercise 3.3 (Artin 15.3.2). Prove that the polynomial x4 + 3x+ 3 is irreducible over
the field Q[ 3

√
2].

Proof. Let f := x4 + 3x+ 3 and set K := Q[ 3
√
2]. Note that f is irreducible over Q since

f is Eisenstein at p = 3. Let α be a root of f . Then since f is a monic irreducible over Q
with α as a root, we have by uniqueness that f is the minimal polynomial for α over Q.
It follows from this that [Q : Q[α]] = deg(f) = 4.

It suffices to show that [K : K[α]] = 4 so that the degree 4 polynomial f is also the
minimal polynomial for α over K, which immediately gives that f is irreducible over K. We
know that [Q : Q[α]] = 4 since f is irreducible and we also know [Q : K] = 3. We have the
nested field extensions Q ⊆ K ⊆ K[α], and by the multiplicative property of the degree we
know [Q : K[α]] = [Q : Q[α]][Q[α] : K[α]] and [Q : K[α]] = [Q : K][K : K[α]]. The first
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of these gives [Q : K[α]] = 4[Q[α] : K[α]] and the second gives [Q : K[α]] = 3[K : K[α]].
But then

4[Q[α] : K[α]] = 3[K : K[α]]]. (∗)

But Q ⊆ K ⊆ K[α], so by Corollary 15.3.8 we have [Q[α] : K[α]] ≤ 3 and [K : K[α]] ≤ 4,
and the only positive integer solution to (∗) abiding by these conditions has [K : K[α]] = 4
as desired.

Exercise 3.4 (Artin 15.3.8). Let α and β be complex numbers. Prove that if α + β and
αβ are algebraic numbers, then α and β are also algebraic numbers.

Proof. Let α, β ∈ C be algebraic. We know that the sum and product of algebraic numbers
are algebraic. We have (α− β)2 = (α+ β)2− 4αβ is algebraic, so α− β is algebraic. This
gives that (α + β) + (α− β) = 2α (resp. (α + β)− (α− β) = 2β) is algebraic, so α (resp.
β) is algebraic.

Exercise 3.5 (Artin 15.3.9). Let α and β be complex roots of irreducible polynomials f
and g in Q[x]. Let K = Q[α] and L = Q[β]. Prove that f(x) is irreducible in L[x] if and
only if g(x) is irreducible in K[x].

Proof. Denote by M the field K[β] = L[α] = Q[α, β]. We then have the nested field
extensions Q ⊆ K ⊆ M and Q ⊆ L ⊆ M . By the multiplicative property of the degree
we have

[Q : K][K :M ] = [Q :M ] = [Q : L][L :M ],

so
[K :M ]

[Q : L]
=

[L :M ]

[Q : K]

Using M = K[β] = L[α] this is rewritten as

[K : K[β]]

[Q : Q[β]]
=

[L : L[α]]

[Q : Q[α]]
.

Note that f is irreducible over Q[β] if and only if [Q[β] : Q[α, β]] = [Q[α] : Q] = deg(f),
which is equivalent to [Q : Q[α, β]] = [Q : Q[α]][Q : Q[β]]. Then we get the result because
we know f is irreducible over L[x] if and only if the the right side above is 1, or equivalently
if the left side above is 1, which similarly holds if and only if g is irreducible in K[x]. This
completes the proof.

Exercise 3.6 (Artin 15.4.1). Let K = Q[α], where α is a root of x3 − x− 1. Determine
the irreducible polynomial for γ = 1 + α2 over Q.
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Proof. Set f := x3 − x− 1. f is irreducible over Q since it is a monic irreducible in F2[x].
Hence, since α is a root of f , f is the minimal polynomial of α over Q.

We claim [Q[α] : Q[γ]] = 1. Indeed, clearly Q[γ] ⊆ Q[α], and conversely notice that

γ − 1 = α2 ⇒ α(γ − 1) = α + 1⇒ α(γ − 2) = 1⇒ α =
1

γ − 2
,

so α ∈ Q[γ], so it follows that Q[α] = Q[γ], giving the desired.
It then follows from the multiplicative property of the degree of the field extension

that [Q : Q[γ]] = 3, so the minimal polynomial for γ is cubic. We’re given γ = α2 +1, and
using that α3 = α+ 1 we compute γ2 = 3α2 + α+ 1 and γ3 = 7α2 + 5α+ 2. It follows
that γ3 − 5γ2 + 8γ − 5 = 0, so the minimal polynomial for γ must be the cubic monic
x3 − 5x2 + 8x− 5 by uniqueness.

Exercise 3.7 (Artin 15.4.2). Determine the irreducible polynomial for α =
√
3 +
√
5 over

the following fields.

(a) Q.

Proof. Q[α] is a degree 4 extension since

α2 = 8 + 2
√
15,

α3 = 18
√
3 + 14

√
5,

and α4 = 124 + 32
√
15 = 16(α2 − 8) + 124 and hence (1,

√
3,
√
5,
√
15) form a basis

for Q[α] as a Q-vector space. α is a root of the monic x4 − 16x2 + 4 has α as a
root, so by uniqueness it is the minimal polynomial for x over Q (if it weren’t then
it could be factored, lowering its degree, contradicting the degree of the extension
Q ⊆ Q[α] is 4).

(b) Q[
√
5].

Proof. We know that Q ⊆ Q[α] is a degree 4 extension and that Q[
√
5] is a

quadratic extension, so by the multiplicative property of the degree we know
since [Q : Q[

√
5]] = 2 that [Q[

√
5] : Q[α]] ≥ 2, so it would suffice to find a

quadratic irreducible over Q[
√
5] with root α. In fact, α2 = 8 + 2

√
15, so so

α2− 2α
√
5 = 8+2

√
15− 2(5)− 2

√
15 = −2, so the monic irreducible x2− 2

√
5x+2

is the minimal polynomial for α over Q[
√
5] by uniqueness.

(c) Q[
√
10].
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Proof. Set K := Q[α]. Note that
√
10 ̸∈ Q[α]. Indeed, if it were then

√
10 = a+b

√
5

for some a, b ∈ Q, meaning

10 = a2 + 2ab
√
5 + 5b2,

so since
√
5 is irrational we must have 2ab = 0, i.e. either a or b = 0. But then

either a2 = 10 or 5b2 = 10, both of which are impossible for a, b ∈ Q, so we conclude√
10 ̸∈ Q[α] as claimed.

since. Since
√
10 ̸∈ K, we have that K ⊆ K[

√
10] is a quadratic extension. But

Q ⊆ K is a degree 4 extension, so the field extension Q ⊆ K[
√
10] has degree 8 by

the multiplicative property of the index. But we also have the nested extensions
Q ⊆ Q[

√
10], so

[Q : K[α]] = [Q : Q[
√
10]][Q[

√
10] : K[

√
10]],

that is, 8 = 2[Q[
√
10] : K[

√
10]], so Q[

√
10 ⊆ K[α] is a degree 4 extension, meaning

the minimal polynomial for α over Q[
√
10] is the polynomial from part (a), namely

x4 − 16x2 + 4.

(d) Q[
√
15].

Proof. We have α2 = 8+ 2
√
15, so x2 − (8 + 2

√
15) is the minimal polynomial since

x− (
√
3 +
√
5) is not a polynomial over Q[

√
15].

Exercise 3.8 (Artin 15.6.1). Let F be a field of characteristic zero, f ′ the derivative of
some polynomial in F [x], and g an irreducible polynomial that is a common divisor of f
and f ′. Then g2 divides f .

§3.2 Algebra 4 Homework 6

Proof. g | f iff f = ga for some a ∈ F [x], so it suffices to show g | a. If f = ga then
f ′ = g′a+ ga′. In particular this gives

g′a = f ′ − ga′. (∗)

Obviously g | ga′, so since we’re also given g | f ′ we get g | f ′ − ga′, so by (∗) we have
g | g′a. g is irreducible over the UFD F [x], so g is prime, and hence either g | g′ or g | a.
g | g′ iff g′ = 0, but the below shows this isn’t the case: Recall that F perfect iff all
irreducibles g ∈ F [x] have g′ = 0. charF = 0 implies F is perfect, so since g ∈ F [x] is
irreducible we have g′ ̸= 0. Hence g | a, completing the proof per our initial remark.

Exercise 3.9 (Artin 15.6.2).
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(a) Let F be a field of characteristic zero. Determine all square roots of elements of F
that a quadratic extension of the form F (

√
a) contains.

(b) Classify quadratic extensions of Q.

Proof. (a) Let a ∈ F . We have F (
√
a) = F [t]/(t2−a), where

√
a is the residue of t. We

have the basis {1, a}, so each z ∈ F (
√
a) has z = x+ y

√
a for some x, y ∈ F . We

have z2 = (x2 + y2) + 2xy
√
a, and x2 + y2 ∈ F , so for z to be a root of something

in F we need that 2xy
√
a = 0. Since charF = 0, we have either x = 0, y = 0, or

a = 0. If a = 0 then F (
√
a) ∼= F [t]/(t2), which has zero divisors and is hence not a

field. Hence eiter x = 0 or y = 0, and in particular, either z2 = x2 or z2 = y2a for
x, y ∈ F .

In the former case we have z ∈ F , generaing no new square roots. In the latter case,
z2 = y2a, so the square root y

√
a is generated.

Therefore, all square roots of elements of F that a quadratic extension of the form
F (
√
a) contains are square roots of y2a for all y ∈ F , the roots of which take the

form ±y
√
a for y ∈ F .

(b) Recall that if charF ≠ 2 then F ⊆ K is a quadratic extension of F if and only if
K = F (

√
a) for some a ∈ F such that

√
a ̸∈ F .

charQ ≠ 2, so Q ⊆ K is a quadratic extension if and only if K = Q(
√
a) for some

a = p/q ∈ Q such that
√
a =

√
p/q =

√
p/
√
q ̸∈ Q. In particular this holds if and

only if both √p and √q are not perfect squares.

Exercise 3.10 (Artin 15.6.3). Determine the quadratic number fields Q(
√
d) that contain

a primitive nth root of unity for some integer n.

Proof. Clearly any quadratic number field Q(
√
d) contains the primitive first root of unity

1 and Q(
√
−1) contains the primitive square root of unity i, so we’ll consider |d| ≥ 2.

Q(
√
d) contains a primitive nth root of unity ζ = e2πik/n iff Q(

√
d) ∼= Q[x]/(Φn), where

Φn is the nth cyclotomic polynomial. Φn must have degree 2 so that Q(
√
d) has degree 2

over Q. Recall that the degree of the nth cyclotomic polynomial is ϕ(n), so we need n
such that ϕ(n) = 2. We observe from the Euler product formula ϕ(n) = n

∏
p|n(1− 1/p)

that ϕ(n) = 2 iff n ∈ {3, 4, 6}, so only these could work. We now determine what d has
Q(
√
d) ∼= Q[x]/(Φ3) or Q[x]/(Φ4) or Q[x]/(Φ6). d must be negative to contain ζ ∈ C∖R.

• Case 1: n = 3, ζ = e2πik/n = e2πik/3 = cos
(
2πk
3

)
+ i sin

(
2πk
3

)
for k and 3 coprime.

When k = 1 we have

ζ = cos

(
2π

3

)
+ i sin

(
2π

3

)
= −1

2
+ i

√
3

2
= −1

2
+

√
−3
2
∈ Q(

√
−3).
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• Case 2: n = 4, ζ = e2πik/n = e2πik/4 = cos
(
2πk
4

)
+ i sin

(
2πk
6

)
= cos

(
πk
2

)
+ i sin

(
πk
2

)
for

k and 4 coprime. When k = 1 we have

ζ = cos
(π
2

)
+ i sin

(π
2

)
=

√
2

2
+ i

√
2

2
= −1

2
+

√
−2
2
∈ Q(

√
−2).

• Case 3: n = 6, ζ = e2πik/n = e2πik/6 = cos
(
2πk
6

)
+ i sin

(
2πk
6

)
= cos

(
πk
3

)
+ i sin

(
πk
3

)
for

k and 6 coprime. When k = 1 we have

ζ = cos
(π
3

)
+ i sin

(π
3

)
= −1

2
+ i

√
3

2
=

1

2
+

√
−3
2
∈ Q(

√
−3).

Exercise 3.11 (Artin 15.7.1). Identify the group (F4,+).

Proof. F4
∼= F2[x]/(x

2 + x+ 1), so letting α be the image of x under the canonical map
we have F4 = {0, 1, α, α+ 1}, with addition defined by 1 + 1 = 0 and α2 = α + 1.

(F4,+) is abelian and we know from last semester there’e exactly two abelian groups
of order 4 up to isomorphism, the cyclic group C4

∼= Z/(4) and the Klein-4 group
J ∼= Z/(2) ⊕ Z/(2). (F4,+) ̸∼= C4 because there are no elements of additive order 4,
meaning (F4,+) ∼= J , the Klein-4 group.

Exercise 3.12 (Artin 15.7.7). If K is a finite field then the product of the nonzero
elements of K is −1.

Proof. Let q = pn. Recall that the q − 1 nonzero elements of Fq are roots of xq−1 − 1 =∏
α∈F×q

(x − α). The constant term on the LHS is −1, so −1 must also be the constant
term on the RHS,

∏
α∈F×pn

(−1)|F×q |α =
∏

α∈F×pn
(−1)q−1α. When p is an odd prime we have

q is odd, so (−1)q−1 = 1 and hence the result follows.
We now show the result holds in the case p = 2. If q is a power of 2 then elements of

F2n are the 2n different linear combinations of the vector space {1, α, α2, . . . , αn} over F2.
Hence +1 = −1 in F2n , so∏

α∈F×2n
(−1)2n−1α =

∏
α∈F×2n

(+1)2
n−1α =

∏
α∈F×2n

α,

so just as in the case of odd primes we get the result.

Exercise 3.13 (Artin 15.7.8). The polynomials f := x3 + x+ 1 and g := x3 + x2 + 1 are
irreducible over F2. Let K be the field extension obtained by adjoining a root of f , and let
L be the extension obtained by adjoining a root of g. Describe explicitly an isomorphism
from K to L, and determine the number of such isomorphisms.

Proof. Let α be a root of f and let β be a root of g. The minimal polynomial of α (resp.
β) is f (resp. g) since f and g are monic irreducibles and the minimal polynomial is
unique. Notice g(α + 1) = 0. Indeed, since α3 + α + 1 = 0 we have that

(α + 1)3 = α3 + 3α2 + 3α + 1 = (α3 + α + 1) + 3α2 + 2α = 3α2 + 2α = α2
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in F2(α), and

(α + 1)2 = α2 + 2α + 1 = α2 + 1,

and hence

(α + 1)3 + (α + 1)2 + 1 = 2α2 + 1 + 1 = 0

in F2(α). It follows that α+1 is a root of the monic irreducible g ∈ F2[x], so by uniqueness
of the minimal polynomial we have g is the minimal polynomial for α + 1. It follows that
L = F2[x]/(g) with α+1 the image of x under the canonical map F2[x]→ F2[x]/(g). This
gives a map σ : L→ K given by β 7→ α+ 1 where we set σ|F2 := idF2 . We now show this
is an isomorphism of fields extensions over F2.

We now give an explicit isomorphism σ : L → K per the above observations. Note
that L = F2(β), which is F2[β] (since β is algebraic over F2), so any x ∈ L takes the form
c0 + c1β + c2β

2 for some c0, c1, c2 ∈ F2 because β has degree 3 over F2. Then set

σ(c0 + c1β + c2β
2) := c0 + c1(α + 1) + c1(α + 1)2.

σ is well-defined: If x = c0+ c1β+ c2β
2, x′ = c′0+ c

′
1β+ c

′
2β

2 ∈ L are equal then necessarily
c0 = c′0, c1 = c′1, c2 = c′2 since {1, β, β2} is linearly independent in L. Hence σ(x) = σ(x′),
so σ is well-defined.

σ is a ring homomorphism: We have σ(1) = 1 since 0, 1 ∈ F2 and if x, x′ ∈ L then

σ(x+ x′) = σ((c0 + c1β + c2β
2) + (c′0 + c′1β + c′2β

2))

= σ((c0 + c′0) + (c1 + c′1)β + (c2 + c′2)β
2)

= (c0 + c′0) + (c1 + c′1)(α + 1) + (c2 + c′2)(α + 1)2

= σ(x) + σ(x′)

and it is clear from how σ acts on {1, β, β2} that σ preserves field multiplication.
σ is bijective: it is an injection as the kernel is is clearly trivial, and a surjection

because any c0+c1α+c2α2 has c0+c1(α−1)+c2(α−1)2 = α2c2+α(c1 − 2c2)+c0−c1+c2,
so choose the corresponding element in L to be x = c0− c1 + c2 + (c1− 2c2)β + c2β

2. This
gives σ is a bijection.

Finally, σ is an isomorphism of field extensions because σ|F2 = idF2 follows from
σ(c0) = c0 for any c0 ∈ F2 by definition of σ.

We know K ∼= L are finite fields of order 2deg(f) = 2deg(g) = 8, so since there is a
unique field of order q = pn for each prime p and n ≥ 1 we know that the number of such
isomorphisms is the size of the automorphism group of F8.

Recall that if α ∈ K and β ∈ L for field extensions K,L ⊆ F then there is an
isomorphism of field extensions F (α) and F (β) of F that is the identity on F if and only
if the irreducible polynomials for α and β over F coincide. We just showed this is the
case, so this is indeed an isomorphism. In this case we know K ∼= L, so it follows that so
long as α and β are distinct roots of the irreducible f = x3 + x2 + 1 then there exists a
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field isomorphism from α to K. α = β2 and β2 + β are the two other (distinct) roots of f
distinct from its third root β , so since f is the irreducible polynomial for all three we
conclude that there are exactly three automorphisms for this field, and if there is another
such isomorphism then it must be one of these.

Exercise 3.14 (Artin 15.7.9). Work this problem without appealing to Artin Theorem
15.7.3.

(a) Determine the number of monic irreducible polynomials of degree 2 in Fp[x].

(b) Let f ∈ Fp[x] be a quadratic irreducible polynomial. Prove that K := Fp[x]/(f) is a
field of order p2 and that its elements have the form a + bα, where a, b ∈ Fp and
α is a root of f in K. Moreover, every such element with b ≠ 0 is the root of an
irreducible quadratic polynomial in Fp[x].

(c) Show that every polynomial of degree 2 in Fp[x] has a root in K.

(d) Show that all the fields K constructed as above for a given prime p are isomorphic.

Proof. We prove each point.

(a) Let f ∈ F2[x] be monic. f is reducible iff f splits completely as (x − a)(x − b)
for some a, b ∈ Fp. There are p(p − 1)/2 + p unordered pairs {a, b} for a, b ∈
Fp, so the remaining p2 − (p(p − 1)/2 + p) = must be irreducible, so there are
p2 − (p(p− 1)/2 + p) = p(p− 1)/2 monic irreducible f ∈ Fp[x] of degree 2.

(b) Let f ∈ F2[x] be a quadratic irreducible and set K := Fp[x]/(f). Recall that the
principal ideal (f) in a polynomial ring over a field is maximal if and only if f is
irreducible, so we have that K, the quotient ring Fp[x]/(f), is a field. Where α is
a root of f in K we have α is the residue of x mod (f), so since f is a quadratic
irreducible the field extension F2 ⊆ K is quadratic. Hence the elements of K take
the form a + bα, where a, b ∈ F2. K has order p2 because there are p2 distinct
elements that may take this form.

Moreover, if x = a+ bα ∈ K has b ≠ 0 then x must be the root of an irreducible
quadratic polynomial in F2 because any element of this form has degree 2 over F2

since α ̸∈ F2[x]⇒ bα ̸∈ F2 for any nonzero b ∈ F2, so the minimal polynomial of x
is quadratic, and hence x is a root of a quadratic irreducible.

(c) There are p(p − 1)/2 monic quadratic irreducibles in Fp[x]. If g is one of them
then the remaining p(p− 1)/2− 1 have at most twice as many roots in K, namely
p(p− 1)− 2 of them The set K ∖ F has cardinality p(p− 1), so it contains at least
two elements that are not the root of any polynomial monic quadratic irreducibles
in F [x]. By part (b) we know each of the p(p − 1) elements is the root of one of
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the p(p− 1)/2 monic quadratic irreducibles in Fp[x] (since we can clear the leading
coefficient to make it monic). Thus they are roots of g. This holds for all monic
irreducible quadratic g and so so all quadratic polynomials that are irreducible in
F [x] have a root in K, and the reasoning gives that the same holds for those that
are reducible, giving the result.

(d) Let f, g ∈ Fp[x] be irreducible quadratics and set K := Fp[x]/(f), L := Fp[x]/(g).
By part (c) we know since f is a polynomial of degree 2 in Fp[x] that L contains
a root of f , call it β. Then L = Fp(β) and K = Fp(α). But f is the irreducible
polynomial of both α and β since both are roots and f is irreducible over Fp[x].
Hence K = F (α) ∼= F (β) = L, as desired.

Exercise 3.15 (Artin 15.M.4).

(a) Let p be an odd prime. Prove that exactly half of the elements of F×p are squares
and that if α and β are nonsquares, then αβ is a square.

(b) Prove the same assertion for any finite field of odd order.

(c) Prove that in a finite field of even order, every element is a square.

(d) Prove that the irreducible polynomial for γ :=
√
2 +
√
3 over Q is reducible modulo

p for every prime p.

Proof. We prove each point.

(a) Let p be an odd prime. We know F×p is cyclic, say with generator α. First we show
that F×p = {1, α, . . . , αp−1}, g = αj ∈ F×p a square if and only if j is even. Indeed, the
reverse implication is immediate, while for the forward implication we note g = αia
square iff there’s αi with αiα2 = α2i = αj iff 2i = 2+ n|F×p| = j + nt, where t is even
since p is an odd prime, so t must be even. Since the set of possible αj ∈ F×p with j
even is half of them, we conclude exactly half of F×p are squares.
From the above we conclude that if a, b are nonsquares then a = αodd and b = αodd,
so ab = αoddbodd = α, so ab = αeven, a square.

(b) All finite fields of odd order have order q = pn for an odd prime p and n ≥ 1. Then
the same proof verbatim (other than replacing p with q = pn) as in part (a) above
works since we know F×q is also cyclic.

(c) K is a finite field of even order iff K = F2n , which again we recall is cyclic. Hence
any x ∈ K has x = αj for some j. If j is even then αj/2 ∈ K is the square root of αj ,
affirming the claim. If j is odd, say 2ℓ+ 1 for some integer ℓ, then (αt)2 = α2t is the
square root of α2ℓ+1 iff 2t ≡ 2k + 1 (mod 2n − 1). Then 2t = 2ℓ+ 1 + k(2n − 1) for
some integer k, so t = ℓ+ 1

2
+ k2n−1 − k

2
, which is even when k is chosen to be odd.
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(d) Recall the irreducible polynomial for γ over Q is f := x4 − 10x + 1. f cannot
have linear factors since none of ±(

√
2 +
√
3) or ±(

√
2−
√
3) are in Fp. Hence f

must split into quadratic factors. Hence it suffices to show that any combination
of f = (x−

√
2 +
√
3)(x−

√
2−
√
3)(x+

√
2 +
√
3)(x−

√
2 +
√
3) into a product

of quadratic polynomials is a valid factorization of f over Fp[x]. The three such
combinations are (x2 − 1− 2

√
2)(x2 − 1 + 2

√
2), (x2 + 1− 2

√
3)(x2 + 1+ 2

√
3), and

(x2 − 5− 2
√
6)(x2 − 5 + 2

√
6). At least one of these works since at least one of

√
2,√

3, or
√
6 is in Fp since the product of two non-squares is a square when p is odd,

completing the proof.
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Exercise 3.16 (Artin 15.8.2). Determine all primitive elements for the extension K =
Q(
√
2,
√
3) of Q.

Proof. We show that γ = a + b
√
2 + c

√
3 + d

√
6 is primitive if and only if at least two

elements of {b, c, d} are nonzero.
We first show the forward direction. [K : Q] = [K : Q(

√
2)][Q(

√
2) : Q] = 4, so if

γ = a + b
√
2 + c

√
3 + d

√
6 is primitive for K over Q then its minimal polynomial has

degree 4. If γ is primitive then so is γ + q for any q ∈ Q, so it suffices to characterize
primitive elements for K of the form γ = b

√
2 + c

√
3 + d

√
6. The minimal polynomial

of γ must have degree 4, so at least two elements of {b, c, d} must be nonzero (since
otherwise K = Q(γ) = Q(b

√
2) or Q(c

√
3) or Q(d

√
6) which are either degree 1 or degree

2 extensions depending on b, c, d.
For the reverse direction, let at least two of b, c, d be nonzero. We may assume a = 0 as

before, so it suffices to show γ =
√
x+s
√
y+t
√
z for s, t ∈ Q and distinct x, y, z ∈ {2, 3, 6}.

In the case s (or instead t) is zero, we recall from lecture that all but finitely many t
(or, respectively, s) is primitive, and in particular such t must be such that at least two of
±x± t

√
z (resp. ±x± s√y) coincide, which is impossible given that x, y, z are distinct.

If all three coefficients are nonzero then we can reduce to the case above for exactly
two nonzero coefficients by noticing that, where γ =

√
x + s

√
y + t

√
z for s, t ∈ Q and

distinct x, y, z ∈ {2, 3, 6} as above, we have when K ∈ Q that

γ2 −Kγ =
√
x
(
−K + 2s

√
y + 2t

√
z
)
+
√
y
(
2st
√
z −Ks

)
−Kt

√
z + s2y + t2z + x

and an appropriate choice makes one of
√
x, √y, or

√
z vanish, reducing us to the above

case. This completes the proof.

Exercise 3.17 (Artin 15.10.1). Prove that the subset of C consisting of the algebraic
numbers is algebraically closed.
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Proof. Let A ⊆ C be the algebraic numbers over Q. A is algebraically closed if all
nonconstant f ∈ A[x] have a root in A. Suppose for a contradiction f ∈ A[x] is
nonconstant without any roots in A. Then f has an irreducible factor of degree ≥ 2, so we
can assume without loss of generality that f is that irreducible. Then A ⊆ A[x]/(f) = A(τ)
is a field extension of A of degree deg f ≥ 2. But τ is transcendental since τ ̸∈ A (since
otherwise f(τ) = 0, contradicting f has no roots in A), whereas f(τ) = 0 over (A(τ))[x],
and so τ is algebraic over A. Hence meaning [A(τ) : A] < +∞, so τ is algebraic over
A. But then there’s some polynomial g ∈ A[x] with g = a0 + a1x + a2x

2 + · · · + anx
n,

where ai ∈ A, such that g(τ) = 0. It follows that τ is algebraic over Q(a1, . . . , an), so
[Q(τ) : Q(a0, . . . , an)] < +∞. But each ai being algebraic means that [Q(a0, . . . , ai+1) :
Q(ai)] < +∞ for each 0 ≤ i ≤ n− 1, so by the multiplicative property of the degree we
have

[Q(τ) : Q] = [Q(τ) : Q(a0, . . . , an)][Q(a0, . . . , an) : Q(a0, . . . , an−1)] · · · [Q(a0) : Q]

is finite, contradicting [Q(τ) : Q] = +∞ since τ is transcendental.

Exercise 3.18 (Artin 15.M.1). Let F (τ) be a field extension generated by a transcendental
element τ and let β be an element of F (τ) that is not in F . Prove that τ is algebraic over
F (β).

Proof. Recall if τ is transcendental then F (τ)
∼=→ F (x), with x the image of τ . β ∈ F (τ),

so there’s f, g ∈ F [x] with β = f(τ)/g(τ), where g is nonzero. Then βg(τ) = f(τ), so
βg(τ)− f(τ) = 0. We claim h := βg − f ∈ F (β)[x], since then h(τ) = 0 and hence τ is
algebraic over F (β) as desired. For this it suffices to show that h is not constant. Indeed,
g ̸= 0 means that β has a term axk for some nonzero k ≥ 1, and β ̸∈ F means βa ̸∈ F ,
meaning βg − f has nonzero coefficient on xk, as desired.

Exercise 3.19 (4). Let K be a field and f ∈ K[x] be monic of degree n. Let K ⊆ L be a
splitting field for f . Prove that [L : K] divides n!.

Proof. We induct on the degree of f ∈ K[x].
Base case (n = 1 or n = 2): f is monic of degree n, so since L is a splitting field for f

we have

K ⊆ K1 ⊆ · · · ⊆ Kℓ = L,

where ℓ ≤ n. This is clear, as we can construct such Ki by starting with K, adjoining
a root of f , α ̸∈ K, to get f = (x − α)dq, where d is the multiplicity of α and
q ∈ F [x] is some degree n− d polynomial. If deg q = 1 then we’re done since d = n
implies K1 = L = K(α) is a degree n extension over K, which divides n!. Otherwise
we proceed by adjoining a root of q. Such a root β has an irreducible factor of q
as its minimal polynomial by uniqueness and hence has degree ≤ deg(q) = n− d.
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Hence the field extension K1 ⊆ K2 = K(α, β) is a degree n − d extension, so
K ⊆ (K1 ⊆ K2 =)L is a degree n(n− d) extension, which divides n!.

Case 1: f is reducible:
Suppose the claim holds for some 1 ≤ k ≤ n. If f is reducible then f = f1f2, with
f1, f2 ∈ K[x] nonconstant polynomials. If deg(f1) = b and L′ is the splitting field
over K of f1, L is the splitting field of f2 over L′ then, by the induction hypothesis,
we have [L′ : K] divides b! and [L : L′] divides (n− b)!. Thus by the multiplicative
property of the index we know [L : K] divides b!(n− b)!, which divides n! (as the
denominator of definition of

(
n
b

)
, which are integers).

Case 2: f is irreducible:
Where α is a root of p, we have [K(α) : K] = k. Then we have f = (x− α)q over
K(α), where deg(q) ≤ n− 1. Taking L to be the splitting field of q over K(α), we
have by our induction hypothesis that [L : K(α)] divides (n− 1)!. Thus the degree
[L : K] = [L : K(α)][K(α) : K] divides (n− 1)!n = n!, completing the proof.

Exercise 3.20 (5). Let F be a field of characteristic p and let F ⊆ K be a finite field
extensions such that p does not divide [K : F ]. Prove that F ⊆ K is a separable field
extension.

Proof. If charF = p and F ⊆ K has finite degree then K is separable iff the minimal
polynomial f for α is separable for each α ∈ K, which holds iff f ′ ̸= 0 for each such f .
If α ∈ K ∖ F then 2 ≤ degα ≤ [K : F ]. We have degα = deg f = [F (α) : F ], so since
p ∤ [K : F (α)] = [K : F (α)][F (α) : F ] = [K : F (α)] degα, we have fore each n ∈ N that
[K : F (α)] degα ̸= pn implies degα ∤ p, so since degα ≥ 2 and degα ∤ p we have f ′

α has
nonzero coefficient for xdegα−1 modulo p, i.e. f ′ ̸= 0, meaning f is separable, proving the
claim.

Exercise 3.21 (6). Let f : R→ R be a field automorphism.

(a) Prove that f(q) = q for all q ∈ Q.

(b) Prove that if x > 0 then f(x) > 0, and prove that this implies f is increasing.

(c) Prove that if |x− y| < 1/n for some n ≥ 1 then |f(x)− f(y)| < 1/n. Then prove
this implies f is continuous.

(d) Prove that f(x) = x for all x ∈ R. In other words, the group of field automorphisms
of R is the trivial group.

Proof. (a) For a field automorphism R
∼=→ R we require f(1/n)f(n) = 1 = f(1) and hence

f(1/n) = f(1)/f(n), so m/n =
∑m

1 f(1/n) = f(
∑m

1 1/n) = f(m/n), so f(m/n) = m/n
as desired.
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(b) Note x > 0 iff there’s nonzero α ∈ R with α2 = x, so f(x) = f(α)f(α) = f(α)2 > 0
since f(α) ∈ R∖ {0} means its square is positive, and indeed f(α) ̸= 0 because f must be
injective and hence have trivial kernel. This implies f is increasing because x > y implies
x− y > 0 and so f(x− y) > 0, so f(x) > f(y).

(c) First note |f(x)− f(y)| = |f(x− y)|. |f(x− y)| ≤ f(|x− y|) since if |x− y| < 1/n
then −1/n < x− y < 1/n then f(−1/n) < f(x− y) < f(1/n) since f is increasing, and so
−1/n < f(x− y) < 1/n by part (a) ,so |f(x− y)| < 1/n. Hence for ε > 0 choose δ = 1/n
for some n such that 1/n < ε.

(d) Continuous functions are uniquely determined by their values at rational points,
so by (a) and (c) we’re done by the limit characterization of continuity which gives
f = id.

§3.4 Algebra 4 Exam 2

Lemma 3.22: A.

Let R be a ring and a ∈ R. Then the translation map τa : R[x] → R[x] via f =
f(x) 7→ τaf := f(x− a) is a ring homomorphism.

Proof. τa is well-defined since if f := anx
n + · · ·+ a0 ∈ R[x] is arbitrary then τaf ∈ R[x].

τa is a ring homomorphism—we have τa(1) = 1 is immediate, that for g = bmx
m + · · ·+

b0 ∈ R[x] then τa(f + g) = (f + g)(x − a) = f(x − a) + g(x − a) = τaf + τag, and
τa(fg) = (fg)(x− a) = f(x− a)g(x− a) = (τaf)(τag), giving the result.

Lemma 3.23: B.

Let R be a ring and a ∈ R, and f := anx
n + · · · + a0 ∈ R[x] for an nonzero. Then

f(x+ a) is an irreducible element of R[x] if and only if f is an irreducible element of
R[x].

Proof. We prove the contrapositive, that if f is reducible, then f(x − a) is reducible.
Suppose that f = gh for some g, h ∈ R[x] is a proper factorization of f in R[x]. Since
the factorization in R[x] is proper, both g and h have positive degree and deg(f) =
deg(g) + deg(h).

The translation map f 7→ τaf is a ring homomorphism by Lemma A above, so since
f = gh we have τaf = (τag)(τah). deg(τaf) = deg(τag) deg(τah).

We now show that for any p ∈ R[x], deg(τap) ≤ deg(p). Indeed, each term of f(x− a)
is of the form

ak(x− a)k = ak
∑k

j=0

(
k

j

)
(−1)jxjak−j, (since R is a commutative ring)
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which can have terms of degree at most k ≤ n, so

(τaf) = deg
(∑n

k=0
ak(x− a)k

)
≤ max{deg(a0), deg(a1(x− k)), . . . , deg((an(x− a)n)}
≤ max{0, 1, . . . , n} (per the above observation)
= n = deg(f),

as claimed. Our assumption that an ̸= 0 gives that deg τaf = deg f . This forces
deg(τag) = deg g and deg(τah) = deg h, since if one has strict inequality then the other
must increase to compensate, which again is not possible by the above argument. Therefore
the factorization τaf = (τag)(τah) is proper, meaning τaf is irreducible as claimed. Hence,
by the contrapositive, if τaf is an irreducible element of R[x] then so is f .

The reverse implication comes from applying the result established just above, and
then considering τ−aτaf (since −a ∈ R whenever a ∈ R).

Exercise 3.24 (1). For a field extension K ⊆ L, define Gal(L/K) to be the group of all
field isomorphisms ϕ : L → L such that ϕ|K = idK . Fix a square-free integer d ≥ 2, so
elements of Q[

√
d] can be uniquely written as a + b

√
d for a, b ∈ Q. Define a set map

ϕ : Q[
√
d]→ Q[

√
d] via the formula

ϕ(a+ b
√
d) = a− b

√
d

Do the following:

(a) (5 points) Prove that ϕ is an element of Gal(Q[
√
d]/Q). [Hint: the most important

thing to prove is that ϕ is actually a homomorphism of fields!]

Proof. Let a+ b
√
d and r + s

√
d be arbitrary elements of Q[

√
d]. ϕ is well-defined

because a+b
√
d = r+s

√
d implies a−b

√
s = r−s

√
d. We also observe that ϕ|Q = idQ

because d being a square-free integer implies
√
d ̸∈ Q and so a+ b

√
d ∈ Q iff b = 0

(since
{
1,
√
d
}

are linearly independent in the Q-vector space Q[
√
d], whereas b = 0

gives ϕ(a+ b
√
d) = ϕ(a) = a so that ϕ = id when a+ b

√
d ∈ Q). We now show ϕ is

a ring homomorphism.
– We have ϕ(1) = ϕ(1 + 0

√
d) = 1− 0

√
d = 1, so ϕ preserves the identity.

– We have

ϕ(a+ b
√
d) + ϕ(r + s

√
d) = a− b

√
d+ r − s

√
d

= ϕ((a+ r) + (b+ s)
√
d),

so ϕ preserves addition.
– We have

ϕ(a+ b
√
d)ϕ(r + s

√
d) = (a− b

√
d)(r − s

√
d)
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= ar − as
√
d− br

√
d+ bsd

= (ar + bsd)− (as+ br)
√
d

= ϕ((ar + bsd) + (as+ br)
√
d)

= ϕ((a− b
√
d)(r − s

√
d)),

so ϕ preserves multiplication.
Hence ϕ is a ring homomorphism. Lastly we observe that ϕ is an involution, i.e.
ϕ−1 = ϕ◦ϕ since ϕ◦ϕ(a+b

√
d) = ϕ(a−b

√
d) = ϕ(a)+ϕ(−b)ϕ(

√
d) = a+b

√
d. Hence

ϕ is a bijection, as we have exhibited an explicit inverse. We have now shown that
ϕ is a field isomorphism with ϕ|Q = idQ, so in particular ϕ is a field automorphism
relative to K. We therefore conclude ϕ ∈ Gal(Q[

√
d]/Q).

(b) (5 points) Prove that the only elements of Gal(Q[
√
d]/Q) are ϕ and id.

[Hint: think about where an element of Gal(Q[
√
d]/Q) must send

√
d.]

Proof. Let ψ ∈ Gal(Q[
√
d]Q). Then ψ is a field automorphism relative to Q, so

ψ(
√
d)2 = ψ(d) = d since d ∈ Q. Hence ψ(

√
d) = ±

√
d. Thus we’re done if we show

ψ(
√
d) = +

√
d (resp. ψ(

√
d) = −

√
d) then ψ = id (resp. ψ = ϕ). Indeed, ψ(

√
d) =

+
√
d implies that for any r, s ∈ Q we have ψ(r+s

√
d) = ψ(r)+ψ(s)ψ(r

√
d) = r+s

√
d

(resp. ψ(r+s
√
d) = ψ(r)+ψ(s)ψ(

√
d) = r−s

√
d), so ψ = id (resp. ψ = ϕ) as claimed.

We thus conclude Gal(Q[
√
d]/Q) is the group {id, ϕ} (and hence Gal(Q[

√
d/Q) ∼= C2,

the cyclic group of order 2).

Exercise 3.25 (2). (10 points) Let K ⊆ L be an algebraic field extension and let T be
such that K ⊆ T ⊆ L and such that T is closed under addition and multiplication (so T
is a ring). Prove that T is a field.

[Hint: you have to prove that for t ∈ T nonzero we have 1/t ∈ T . How can you use
the fact that elements of L are algebraic over K to prove this?]

Proof. K ⊆ T and K is a field means its identity is inherited by T . This together with the
closure of T under addition and multiplication along with the distributivity/associativity
by virtue of these operations in K,L gives that T is a ring. T is not the zero ring
since K ⊆ T and K ̸= {0} since K is a field. Let t ∈ T be nonzero. t ∈ T ⊆ L
implies t ∈ L, so t is algebraic over K since L is an algebraic extension of K. Let
f = xn − an−1x

n−1 + · · · ± a0 ∈ K[x] be the minimal polynomial for t ∈ L over K.
Working in the algebraic field extension K ⊆ L, we showed in Artin Exercise 15.2.2 (from
Homework 5)3 that L ∋ t−1 = a−1

0 (tn−1−an−1t
n−1+ · · ·∓a1) (where we know a0 ̸= 0 since

f is irreducible—if a0 = 0 then we f would reduce as f = xq for some q ∈ F [x] of smaller
3(Artin 15.2.2). Let f(x) = xn − an−1x

n−1 + · · · ± a0 be an irreducible polynomial over F , and let α
be a root of f in an extension field K. Determine the element α−1 explicitly in terms of α and of the
coefficients ai.
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degree than f). Hence each scalar here is in T since it is inherited from K (including a−1
0

since a0 ̸= 0 is in K and K is a field), so we have since T is closed under addition and
multiplication that t−1 = pa−1

0 (tn−1 − an−1t
n−2 + · · · ∓ a1) is also in T . Hence T is a ring

with all nonzero t ∈ T units, and thus T is a field as claimed.

Exercise 3.26 (3). Do the following:

(a) (5 points) Let K ⊆ L be a field extension such that [L : K] is prime. Prove that there
are no fields F with K ⊊ F ⊊ L.

Proof. If [L : K] = p is prime and there were some proper intermediate field F such
that K ⊊ F ⊊ L are nested field extensions then [L : F ] ≥ 2 (resp. [F : K] ≥ 2)
since F = L iff [L : F ] = 1 (resp. K = F iff [F : K] = 1). By the multiplicative
property of the degree we have

p = [L : K] = [L : F ][F : K],

so since p is prime the only possibilities are (i) [L : F ] = p and [F : K] = 1 or (ii)
[L : F ] = 1 and [F : K] = p, but both cases contradicting the assumptions that
K ̸= F and F ̸= L.

(b) (5 points) Let K ⊆ L be a field extension and let u ∈ L be an element that is algebraic
over K and such that the minimal polynomial f ∈ K[x] for u has odd degree. Prove
that K[u] = K[u2].

Proof. Set F := K[u2]. We have K ⊆ F ⊆ K[u] and [K[u] : K], which we know is
the degree of the minimal polynomial f for u over K, is given to be odd. We have

[K[u] : K] = [K[u] : F ] [F : K]

by the multiplicative property of the degree, so since the product [K[u] : K] is odd
we know both factors [K[u] : F ] and [F : K] must be odd.
F ⊆ K[u] and u2 ∈ F , so we have that the extension F ⊆ F [u] is at most a quadratic
extension: indeed, the minimal polynomial g for u over F divides h := x2−u because
h(u2) = 0, and hence g has degree ≤ 2. [K[u] : F ] ̸= 2 since we know by the above
that [K[u] : F ] is odd, so [K[u] : F ] = 1, giving K[u] = F = K[u2] as desired.

Exercise 3.27 (4). Compute the minimal polynomials over Q of the following algebraic
numbers:

(a) (2 points) 1 +
√
2

Proof. Let α = 1 +
√
2. Note α(α − 2)− 1 = α2 − 2α − 1 = 0, leading us to claim

f := x2 − 2x − 1 = 0 is the minimal polynomial for α over Q. If f were reducible
then it must split into two linear factors in Q[x], one of which must be (x− (1+

√
2)).

But 1 +
√
2 ̸∈ Q, so f is a monic irreducible with root α. Thus by uniqueness of such

a polynomial we conclude f is the minimal polynomial for α over Q.
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(b) (3 points)
√

1 +
√
2

Proof. In the above notation, we claim the minimal polynomial for
√

1 +
√
2 =
√
α

over Q is g := f(x2) = x4 − 2x2 − 1, where f and α are as above. g(
√
α) = f(α) = 0,

so since the minimal polynomial divides all elements of Q[x] with β as a root, the
minimal polynomial has degree at most four.
If we show the quartic g is irreducible then it follows that g is a monic irreducible
with

√
α as a root, so as before we are done by uniqueness as such a polynomial. By

Lemma B from the first page it suffices to show g(x− 1) is an irreducible element
of Q[x]. Noting that g(x − 1) = x4 − 4x3 + 4x2 − 2, if p = 2 then a4 = 1 doesn’t
divide p but p divides the remaining coefficients, and p2 doesn’t divide the constant
term. Thus g(x− 1) is irreducible by Eisenstein’s criterion, and consequently g is an
irreducible element in Q[x], so per our previous remarks we conclude g is the minimal
polynomial for

√
a over Q.

Exercise 3.28 (5). Consider the polynomials f(x) = x2 + 1 and g(x) = x2 + 2x− 1 in
F3[x].
(a) (3 points) Prove that f(x) and g(x) are irreducible.

Proof. f is quadratic, so if f were reducible then it would split into two linear terms
in F3[x], meaning f must have a root in F3. But f(0) = 1, f(1) = 2, and f(2) = 2, so
no such root exists, so f is irreducible Similarly, quadratic g has g(0) = 2, g(1) = 2,
and g(2) = 1, so g is irreducible by the same argument.

(b) (7 points) Let K be obtained by adjoining a root α of f(x) to F3, and let L be obtained
by adjoining a root β of g(x) to F3. In other words, K = F3[α] and L = F3[β], and

f(α) = α2 + 1 = 0 and g(β) = β2 + 2β − 1 = 0

Give an explicit isomorphism ϕ : F3[α]→ F3[β].
[Hint: the most important thing to decide is what ϕ(α) ∈ L should be - make this
explicit and easy to find in your solution, and make sure you explain what you check
to make sure that your choice works!.]

Proof. f (resp. g) is a monic polynomial with root α (resp. β) that is irreducible by
part (a), so α (resp. β) has minimal polynomial f (resp. g) by uniqueness of such a
polynomial. Note that

f(β + 1) = (β + 1)2 + 1 = β2 + 2β + 2 = (β2 + 2β − 1) + 3,

and since we’re given β2 − 2β − 1 = 0 and we know 3 = 0 in F3, it follows that
f(β+1) = 0, i.e. β+1 is a root of f . Thus, again invoking uniqueness of the minimal
polynomial, we have since f is a monic irreducible that β+1 has minimal polynomial
f as well. This leads us to claim

ϕ : F3[α]→ F3[β]
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ϕ(c0 + c1α) := c0 + c1(β + 1) (∗)

is an isomorphism of fields. To show this, consider arbitrary x := c0 + c1α and
x′ := c′0 + c′1α (that is, arbitrary elements of F3[α], since [F3[α] : F3] = deg f = 2,
the degree of the minimal polynomial of α over F3, meaning {1, α} is a basis for the
F3-vector space F3[α], so any element of F3[α] is written in this way).
We first note ϕ is well-defined, since if x = x′ then necessarily c0 = c′0 and c1 = c′1
since {1, α} is linearly independent in K so that ϕ(x) = ϕ(x′) by (∗) above, as needed.
We now show ϕ is a homomorphism of fields:

– We have ϕ(1) = ϕ(1 + 0α) = 1 + 0(β + 1) = 1, so ϕ preserves the identity.
– We have

ϕ(x+ x′) = ϕ((c0 + c′0) + (c1 + c′1)α)

= (c0 + c′0) + (c1 + c′1)(β + 1)

= ϕ(x) + ϕ(x′),

so ϕ preserves addition.
– First note that

xx′ = (c0 + c1α)(c
′
0 + c′1α)

= c0c
′
0 + c0c

′
1α + c1c

′
0α + c1c

′
1α

2

= (c0c
′
0 − c1c′1) + (c0c

′
1 + c1c

′
0)α,

where we used that α2 = −1 in K. Hence ϕ(xx′) = (c0c
′
0 − c1c

′
1) + (c0c

′
1 +

c1c
′
0)(β + 1). On the other hand, we have

ϕ(x)ϕ(x′) = (c0 + c1(β + 1))(c′0 + c′1(β + 1))

= c0c
′
0 + c0c

′
1(β + 1) + c1c

′
0(β + 1) + c1c

′
1(β + 1)2

= c0c
′
0 + c0c

′
1 + c1c

′
0 + c1c

′
1 + c0c

′
1β + c1c

′
0β + c1c

′
1β

2 + 2c1c
′
1β

= (c0c
′
0 + c0c

′
1 + c1c

′
0 + c1c

′
1) + β(c0c

′
1 + c1c

′
0 + c1c

′
1β + 2c1c

′
1)

= β(c1c
′
0 + c0c

′
1) + c0c

′
0 + c1c

′
0 + c0c

′
1 + 2c1c

′
1

= (c0c
′
1 + c1c

′
0)(β + 1) + (c0c

′
0 − c1c′1),

where we used that 2 = −1 in F3 and β2 = 1−2β. This coincides with the above,
so we have shown ϕ(xx′) = ϕ(x)ϕ(x′), and hence ϕ preserves multiplication.

We now show ϕ is bijective. ϕ is injective because ϕ(x) = 0 iff c0 = c1 = 0, so ϕ has
trivial kernel. ϕ is surjective because the observation that ϕ(a+ bα) = a+ bβ + b =
a+ b+ bβ implies by the definition of ϕ in (∗) that each c0 + c1β ∈ L is the image
of (c0 − c1) + c1α ∈ K. We therefore conclude F3[α] ∼= F3[β] as witnessed by the
isomorphism of fields ϕ.
(We make an additional observation that in fact ϕ|F3 = idF3 : Indeed, if x ∈ F3 then
x = c0 + 0α, so ϕ(x) = c0 + 0(β + 1) = c0, meaning ϕ|F3 = idF3 since x ∈ F3 is
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arbitrary. Since deg(α) = 2 and F9 = F3[α] ∼= F3[x]/(f), we have by uniqueness of
finite fields of order Fq for q = pk that in fact ϕ ∈ Gal(F9/F3).)

Exercise 3.29 (6). (5 points) Construct a primitive element for the extension Q[
√
2, 3
√
2]

over Q. Make sure to justify your answer!

Proof. Let L := Q[
√
2, 3
√
2]. We have nested field extensions Q ⊆ Q[

√
2] ⊆ L and

Q ⊆ Q[ 3
√
2] ⊆ L. [Q[

√
2] : Q] = 2 and [Q[ 3

√
2] : Q] = 3, so by Artin’s Corollary 15.3.8 we

have that both 2 and 3 are divisors of and have product at most than N := [Q[
√
2, 3
√
2] : Q],

meaning N = 6.
We claim γ :=

√
2 + 3
√
2 is a primitive element for the field extension Q ⊆ L. γ ∈ L,

so it suffices to show the degree of its minimal polynomial is six (that is, [Q[γ] : Q] = 6),
since then this forces Q[γ] = L. We have by the multiplicative property of the degree that

[Q[γ] : Q] = [Q[γ] : Q[
√
2]] [Q[

√
2] : Q] = [Q[γ] : Q[

√
2]](2),

so it only remains to show [Q[γ] : Q[
√
2]] = 3. Notice that (γ −

√
2)3 = 2, leading us to

claim f := (x−
√
2)3 − 2 is the minimal polynomial for γ over Q[

√
2].

By Lemma B from the first page it suffices to show τ−
√
2f = ((x+

√
2)−
√
2)3−2 = x3−2

is irreducible over Q[
√
2]. Indeed, if τ−√

2f were reducible then it would have a linear
factor (x− (r + s

√
2)) for some r, s ∈ Q satisfying

2 = (r + s
√
2)3 = r3 + 3

√
2r2s+ 6rs2 + 2

√
2s3

= r3 + 6rs2 + (3r2s+ 2s3)
√
2

= r(r2 + 6s2) + s(3r2 + s3)
√
2,

so since
{
1,
√
2
}

is linearly independent in the Q[
√
2]-vector space Q[

√
2, 3
√
2] we have the

following system of equations: [
r(r2 + 6s2) = 2
s(3r2 + s2) = 0

]
.

The bottom equation forces either s = 0 or 3r2+s2 = 0, so s = 0 in any case. Then the top
equation gives r3 = 2, but no such r ∈ Q exists. It follows that the cubic polynomial τ−√

2f
has no linear factors, so per our prior remarks we conclude that the monic polynomial
f is irreducible, and since it has γ as a root we conclude by uniqueness of the minimal
polynomial that γ is the minimal polynomial for γ over Q[

√
2], so by our previous remarks

we have γ is a primitive element for the field extension Q ⊆ Q[
√
2, 3
√
2].

§3.5 Algebra 4 Homework 8

Exercise 3.30 (Artin 16.1.1). 1.1. Determine the orbit of the polynomial below. If the
polynomial is symmetric, write it in terms of the elementary symmetric functions.
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(a) u21u2 + u22u3 + u23u1 (n = 3),
(b) (u1 + u2)(u2 + u3)(u1 + u3) (n = 3),
(c) (u1 − u2)(u2 − u3)(u1 − u3) (n = 3),
(d) u31u2 + u32u3 + u33u1 − u1u32 − u2u33 − u3u31 (n = 3),
(e) u31 + u32 + · · ·+ u3n.

Proof. Given each part, let f be its given polynomial, and take τ, σ ∈ S3 denote τ = (12)
and σ = (123).

(a) Observe (12).f = u22u1 + u21u3 + u23u1 ̸= f , so since similar reasoning holds for
arbitrary transpose τ ∈ S3 we have that f is not symmetric since it has nontrivial orbit.
Any 3-cycle σ has σf = f , so a transpose τ is the only permutation in S3 which generates
nontrivial orbit, so we have found the orbit of f in all cases to be order 2 as given.

(b) This is symmetric. Per lecture, we have

f = (s1 − u1)(s1 − u2)(s1 − u3) = s31 − s1s21 + s2s1 − s3 = s1s2 − s3.

(c) This is similar (a), the orbits being of order 2 and (f, τ.f) for a transpose τ ∈ S3.
Notice that f = ∆((x− u1)(x− u2)(x− u3)) so f is again fixed by A3. τ just changes the
sign of f , so the orbit S3f = {±f}.

(d) This is essentially previous part, as σf = f and τf = −f so the orbit is S3f = {±f}.
(e) f is symmetric and so has trivial orbit. Clearly we only need s1, s2, s3 in our

linear combination in terms of the elementary symmetric polynomials, and we observe
that for each i we have u3i = s1u

2
i − s2ui + s3, so

∑
u3i = s1

∑
u2i − s2

∑
ui +

∑
s3 =

s1(s
2
1 − 2s2)− s1s2 + ns3.
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Exercise 3.31 (2). Let K be a field and let f(x) ∈ K[x] be a monic degree n polynomial.
Assume that K ⊆ L is a field extension such that L contains all the roots α1, . . . , αn of f ,
counted with multiplicity. Prove that the discriminant of f(x) satisfies the identity

∆(f) = (−1)(
n
2)
∏n

i=1
f ′(αi)

Proof. Where f =
∏n

k=1(x− αk) ∈ K[x], we apply the product rule for n factors to get
that

f ′(x) =
d

dx

(∏n

k=1
(x− αk)

)
=

∑n

k=1

∏
1≤j≤n
j ̸=k

(x− αj).

Thus f ′(αi) =
∑n

k=1(αi−αk)
∏

1≤j≤n
j ̸=k

(αi−αj). The product above is zero if k ̸= i, leaving
only the k = i term in the sum. Thus,∏n

i=1
f ′(αi) =

∏n

i=1

∏
1≤j≤n
j ̸=i

(αi − αj)

=
∏n

i=1

((∏
1≤j<i

(αi − αj)
)(∏

i<j≤n
(αi − αj)

))
=

∏n

i=1

(
(−1)i−1

(∏
1≤j<i

(αj − αi)
)(∏

i<j≤n
(αi − αj)

))
= (−1)(

n
2)
∏n

i=1

((∏
1≤j<i

(αj − αi)
)(∏

i<j≤n
(αi − αj)

))
= (−1)(

n
2)
(∏n

i=1

∏
1≤j<i

(αj − αi)
)(∏n

i=1

∏
i<j≤n

(αi − αj)
)

(index flip)

= (−1)(
n
2)
(∏n

j=1

∏
1≤i<j

(αi − αj)
)(∏n

i=1

∏
i<j≤n

(αi − αj)
)

(index flip)

= (−1)(
n
2)
(∏

1≤i<j≤n
(αi − αj)

)(∏
1≤i<j≤n

(αi − αj)
)

= (−1)(
n
2)
∏

1≤i<j≤n
(αi − αj)2 = (−1)(

n
2)∆(f),

and multiplying through by (−1)(n2) gives the result.
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Exercise 3.32 (3). Let f(x) = x5 + px+ q, with p, q elements of a field K. Prove that
the discriminant of f satisfies ∆(f) = 55q4 + 44p5.

Proof. First consider the case 0 is a root of f . Then q = 0, so f(αi) = 0 implies
α5
i + pαi = 0, so αi = 0 or α4

i = −p. Then the previous exercise gives

∆(f) = (−1)(
5
2)
∏5

i=1
f ′(αi) = (−1)10

∏n

i=1
(5α4

i + p) = p
∏5

i=1
(−4p) = 45p5 + 55q4,

affirming the claim. Now suppose f has nonzero roots. Then q ≠ 0, so if αi is a root then
f(αi) = α5

i + pαi = −q, so 5α5
i + 5pαi = −5q, so αi(5α4

i + p) = −4pαi − q, which gives
that 5α4

i + p = −4p− qα−1
i = −q−4pαi

αi
= 1

αi
(4p)(− q

4p
− αi). Thus

∆(f) = (−1)(
5
2)
∏5

i=1
f ′(αi) =

45p5∏5
i=1 αi

∏5

i=1
(− q

4p
− αi)

=
45p5

(−1)5q
f(−q/4p) = 55q4 + 44p5,

as desired.
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Exercise 3.33 (4). Say that a field extension K ⊆ L is a normal extension if all
irreducible polynomials f(x) ∈ K[x] which have a root in L split into linear factors in L.
If K ⊆ L is finite, we proved in class that this holds if and only if K ⊆ L is the splitting
field of some polynomial. Let α ∈ R satisfy α4 = 5.

Are the following extensions normal or not?
(a) Q ⊆ Q(iα2)
(b) Q(iα2) ⊆ Q(α + iα). You should also justify that this is indeed a field extension.
(c) Q ⊆ Q(α + iα).

Proof. (a) f := x2 + 5 splits completely over Q(iα2) and any field in which f does so
must contain iα2, so by the characterization we conclude this is a normal extension.

(b) First notice α ∈ R, so α2 ∈ R, and since α2 > 0 and α2 squares to 5, we conclude
α2 =

√
5. Thus Q(iα2) = Q(

√
−5). Now, Q(

√
−5) ⊆ Q(α + iα) is a field extension

because (α + iα)2 = 2
√
−5 ∈ Q(

√
−5).

This is a normal extension since the minimal polynomial for α+ iα over Q(
√
−5) is

g := x2
√
−5 + 10 since g(α + iα) =

√
−5(α2)(1 + i)2 + 10 = 0, and g is irreducible

over Q(
√
5). Clearly −α − iα is also a root and is in the extension, so g splits

completely, and that it is a splitting field is obvious since the field is Q(α + iα) and
we are concerned with the minimal polynomial of α+ iα, so the extension is normal.

(c) We claim this is not a normal extension. Since i ̸∈ R and Q(α) ⊆ R thanks to α ∈ R,
we know that Q[α] is a splitting field for f := x4 − 5 ∈ Q[x] (which is irreducible by
Eisenstein), and hence [Q(α) : Q] = 4], so [Q(α, i) : Q] = 8. Now, it suffices to show
that γ := α(1 + i) has minimal polynomial g over Q which does not split completely
in Q(γ).

First note γ4 = −20 and so x4+20 ∈ Q[x] has γ as a root. Thus [Q(γ) : Q] ≤ 4. But
Q(α, i) = Q(α(1 + i), i) = Q(γ)(i), whereas x2 + 1 ∈ Q(γ)[x]. Hence 8 = [Q(α, i) :
Q] = [Q(γ)(i) : Q(γ)] = 2 and [Q(γ) : Q] = 4, whereas i ̸∈ Q(γ), but g(iγ) = 0,
meaning g does not split completely over Q.
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Exercise 3.34 (Artin 16.3.2). Determine the degrees of the splitting fields of the following
polynomials over Q:

(a) x3 − 2, (b) x4 − 1, (c) x4 + 1.

Proof. (a) Note 3
√
2 is a root of f := x3 − 2, but Q( 3

√
2) ⊆ R so that the complex roots

of f are not in this extension, so the degree of the splitting field is strictly greater than
deg(f) = 3. Recall that we showed on the last homework that if f ∈ K[x] is a monic of
degree n and K ⊆ L is a splitting field for f then [L : K] divides n!. so the degree of the
splitting field divides 3! = 6, forcing the degree of the splitting field to be six.

(b) Note f := x4 − 1 = (x2 + 1)(x2 − 1) has roots ±i,±1, so the extension is at most
quadratic since these sit in Q(i), a degree 2 extension. It can’t be a degree 1 extension
since i ̸∈ Q, so we conclude the degree is 2.

(c) Where ω is a primitive eighth root of unity, notice that ω, ω3, ω5, ω7 are distinct
roots of x4 + 1. Any field L ⊇ Q containing one, therefore, contains the other three;
therefore—hence Q[ω] is a splitting field for x4 + 1. We conclude that the extension is
degree 4 since we know the minimal polynomial for ω has degree 4 over Q.
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Exercise 3.35 (Artin 16.4.1). (a) Determine all automorphisms of the field Q( 3
√
2), and

of the field Q( 3
√
2, ω), where ω = e2πi/3.

(b) Let K be the splitting field over Q of f := (x2 − 2x− 1)(x2 − 2x− 7). Determine
all automorphisms of K.

Proof. (a) Q( 3
√
2): Where f := x3 − 2, we know since Q ⊆ Q( 3

√
2] is a real extension and

3
√
2 is the only real root of f that since any such automorphism σ maps roots to roots it

then must map 3
√
2 to itself. hence σ = id.

Q( 3
√
2, ω): ω3 = 1, so x3− 1 = (x− 1)(x2 + x+1) has ω as a root. Any automorphism

σ maps roots to roots, so since σ is determined by the image of 3
√
2 and ω, there are

six possibilities (since σ( 3
√
2) is either 3

√
2 or one of the two complex roots of x3 − 2 and

σ(ω) = ±ω.
We have the nested field extensions Q ⊆ Q( 3

√
2) ⊆ Q( 3

√
2, ω). If σ ∈

Gal(Q( 3
√
2, ω)/Q( 3

√
2) then 3

√
2 → 3

√
2 is forced and either ω 7→ ω or ω 7→ ω2, so the

Galois group of this extension is isomorphic to the subgroup {1, τ} of S3, where τ ∈ S3 is
a transposition.

Also note that Q(ω) is an intermediate field extension, i.e. Q ⊆ Q(ω) ⊆ Q( 3
√
2, ω), so

the automorphisms in Gal(Q( 3
√
2, ω)/Q(ω)) all have ω 7→ ω and there are three choices

of the image of 3
√
2, each corresponding to the roots of x3 − 2, so this Galois group is

isomorphic to the subgroup {1, σ, σ2}, where σ ∈ S3 is a (the) cyclic permutation. It
follows that (3)(2) divides the order of Gal(Q( 3

√
2, ω)/Q), and since |S3| = 6 we conclude

it must be six, and hence isomorphic to S3, i.e. for τ ∈ S3 and σ ∈ S3 as given we have
Gal(Q( 3

√
2, ω)/Q) ∼= {1, σ, σ2, τ, στ, σ2τ} = S3.

(b) Note f splits completely in Q[
√
2] since f has roots 1±

√
2 and 1± 2

√
2 which

are in Q[
√
2], and any field containing these roots must contain

√
2, so this is indeed the

splitting field. 2 is a square-free element of Q, so we recall from the first midterm that
Gal(Q[

√
2]/Q) = {id, ϕ}, where ϕ is the conjugation map a+ b

√
2 7→ a− b

√
2, so these

are the only two such automorphisms.

§3.6 Algebra 4 Homework 9

Exercise 3.36 (Artin 16.6.1). Let α be a complex root of the polynomial x3 + x+ 1 over
Q, and let K be a splitting field of this polynomial over Q. Is

√
−31 in Q(α)? Is it in K?

Proof. f := x3 + x+ 1 is irreducible over Q since its projection into F2[x] is irreducible
is irreducible F2[x], so the minimal polynomial of α over Q is f . Thus |Q(α) : Q| =
deg(f) = 3, whereas for β :=

√
−31 we have |Q(β) : Q| = 2. Then by the multiplicative

property of the degree we have

|Q(α, β) : Q(α)| = |Q(α, β) : Q|
|Q(α) : Q|

and |Q(α, β) : Q(β)| = |Q(α, β) : Q|
|Q(β) : Q|

,
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so

|Q(α, β) : Q(α)| = |Q(α, β) : Q|
2

̸= |Q(α, β) : Q|
3

= |Q(α, β) : Q(β)|.

Thus |Q(α, β) : Q(α)| ≠ |Q(α, β) : Q(β)|, so β ̸∈ Q(α).
On the other hand, ∆(f) = −4(1)3 − 27(1) = −31 and the square root of the

discriminant is a product of differences of elements in K (since f splits completely over
K), so

√
−31 =

√
∆(f) ∈ K.
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Lemma 3.37.

If K is perfect and L = K(
√
d1, . . . ,

√
dn) for pairwise coprime square-free di ∈ K then

L/K is a Galois extension of degree 2n and

Gal(L/K) = ⟨σ1, · · · , σn⟩ ∼=
⊕n

i=1
C2,

where σi : L→ L the field automorphism determined by σ(
√
di) := −

√
di.

Proof. We first show L is a splitting field over K. If f := (x2 − d1) · · · (x2 − dn) then
f splits completely in L, so it suffices to show any intermediate field in which f splits
completely is a subfield of L. If F were such a subfield then

√
d1, . . . ,

√
dn ∈ F , so since

K ⊆ F implies L = K(
√
d1, . . . ,

√
dn) ⊆ F (

√
d1, . . . ,

√
dn). Then F ⊆ L and L ⊆ F ,

F = L, so L is a splitting field over K per our initial remark. Since K is perfect the
extension is Galois.

We now show |L : K| = 2n and Gal(L/K) ∼=
⊕n

i=1C2 by induction on n ≥ 1. We first
show the base case n = 1. We already know K ⊆ K(

√
d1) for square-free d1 ∈ K is a

quadratic extension, so |L : K| = 2. The extension L/K is Galois by the above argument,
so |G| = |L : K| = 2, forcing G ∼= C2. We know that the Galois group of a quadratic
extension K ⊆ K(

√
d1) is {id, σ1}, so the base case holds.

For the induction step we begin by setting K ′ := K(
√
d1, . . . ,

√
dn−1). Because the√

di are pairwise we know K ′ ⊆ K ′(
√
dn) = L is a proper quadratic extension. Then by

the multiplicative property of the degree and the induction hypothesis we have

|L : K| = |L : K ′||K ′ : K| = 2(2n−1) = 2n (∗)

and Gal(K ′/K) = ⟨σ1, · · · , σn−1⟩ ∼=
⊕n−1

i=1 C2. We note that Gal(K ′/K) < G with
|G : Gal(K ′/K)| = |L : K ′| = 2. For each σ ∈ Gal(K ′/K) we have that both σ, σσn ∈ G.
This gives us 2n automorpshims in G, and hence is all of G since |G| = |L : K| = 2n (by
(∗)). From this and the fact that Gal(K ′/K) = ⟨σ1, . . . , σn−1⟩ by the induction hypothesis,
we have G = ⟨σ, σn : σ ∈ Gal(K ′/K)⟩ = ⟨σ1, . . . , σn⟩. The σi act nontrivially on the
disjoint subfields K(

√
di) of L, and hence the σi commute. Hence G = ⟨σ1, . . . , σn⟩ =

⟨σ1, . . . , σn−1⟩ ⊕ ⟨σn−1⟩, where the direct sum is understood as each σ ∈ G takes the
form σ = ab for some a ∈ ⟨σ1, . . . , σn⟩ ∼=

⊕n−1
i=1 C2 and b ∈ ⟨σn⟩ ∼= C2. It follows that

G ∼=
⊕n−1

i=1 C2 ⊕ C2 =
⊕n

i=1C2. This completes the proof of the lemma.
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Exercise 3.38 (Artin 16.6.2). Let K = Q(
√
2,
√
3,
√
5). Determine |K : Q|, prove that

K is a Galois extension of Q, and determine its Galois group.

Proof. As an immediate application of the above lemma, K is a Galois extension of Q
with |K : Q| = 23 = 8 and Gal(K/Q) ∼= C2 ⊕ C2 ⊕ C2.
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Exercise 3.39 (Artin 16.7.2). Let K/F be a Galois extension such that Gal(K/F ) ∼=
C2 ⊕ C12. How many intermediate fields

F ⊆ L ⊆ K

are there in the following cases?

(a) |L : F | = 4.

Proof. Set G := Gal(K/F ). An intermediate field F ⊆ L ⊆ K corresponding to
a subgroup H < G satisfies |L : F | = |G : H|, so |G : H| = 4, so 4|H| = |G|,
giving |H| = 6. There are exactly three such subgroups of G, namely {0} ⊕ C6,
C2 ⊕ C3, and ⟨(1, 2)⟩ = {(0, 0), (1, 2), (0, 4), (1, 6), (0, 8), (1, 10)}. Hence there are
exactly three intermediate fields F ⊆ L ⊆ K with |L : F | = 4.

(b) |L : F | = 9.

Proof. Set G := Gal(K/F ). An intermediate field F ⊆ L ⊆ K corresponding to a
subgroup H < G satisfies |L : F | = |G : H|, so |G : H| = 9, so 9|H| = |G| = 24.
Thus H is not a group, meaning there are no such intermediate fields.

(c) Gal(K/L) ∼= C4.

Proof. Set G := Gal(K/F ). If K/L/F and L corresponds to the subgroup H of
G then H ∼= Gal(K/L) ∼= C4, so it suffices to determine how many subgroups of
Gal(K/F ) ∼= C2 ⊕ C12 are isomorphic to C4. There are exactly two such subgroups,
namely ⟨(0, 3)⟩ and ⟨(1, 3)⟩. Hence exactly two intermediate fields F ⊆ L ⊆ K with
Gal(K/L) ∼= C4 exist.
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Exercise 3.40 (Artin 16.7.4). Let F = Q and K = Q(
√
2,
√
3,
√
5). Determine all

intermediate fields F ⊆ L ⊆ K.

Proof.
√
2,
√
3,
√
5 ∈ Q are coprime and square-free, so in the notation of and by the

lemma we have G := Gal(K/F ) = ⟨σ1, σ2, σ3⟩ ∼= C2 ⊕ C2 ⊕ C2.
• The trivial subgroup of G corresponds to K whereas G itself corresponds to F .
• G has exactly seven subgroups H of order 2, namely ⟨σi⟩ (1 ≤ i ≤ 3), ⟨σiσj⟩

(1 ≤ i < j ≤ 3), and ⟨σ1σ2σ3⟩. It follows that there are exactly seven fields L with
F ⊆ L ⊆ K and |K : L| = |G : H| = 4.

• G has exactly seven subgroups H of order 4, namely ⟨σi, σj⟩ (1 ≤ i ≠ j ≤ 3),
⟨σi, σjσk⟩ (1 ≤ i ̸= j ̸= k ≤ 3), and ⟨σ1σ2, σ1σ3⟩. It follows that there are exactly
seven fields L with F ⊆ L ⊆ K and |K : L| = |G : H| = 4.

Since the intermediate in the below table have the given degrees |K : L| and contain
the correct number fields per the above argument, it follows that the table gives all
intermediate fields F ⊆ L ⊆ K.

|K : L| = 1 |K : L| = 2 |K : L| = 4 |K : L| = 8

L Q(
√
2) Q(

√
2,
√
3) F

Q(
√
3) Q(

√
2,
√
5)

Q(
√
5) Q(

√
2,
√
15)

Q(
√
6) Q(

√
3,
√
5)

Q(
√
10) Q(

√
3,
√
10)

Q(
√
15) Q(

√
5,
√
6)

Q(
√
30) Q(

√
6,
√
10)

Table 1: Intermediate Fields of Q ⊆ Q(
√
2,
√
3,
√
5)
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Exercise 3.41 (Artin 16.7.7).

(a) Determine the minimal polynomial for i+
√
2 over Q.

Proof. Note (i+
√
2)4−2(i+

√
2)2+9 = 0, so we claim the monic f := x4−2x2+9 is

the minimal polynomial for (i+
√
2). (i+

√
2)2 = 1+2i

√
2 and (i+

√
2)3 = 5i−

√
2,

so f is not a root of any polynomial in Q[x] of degree ≤ 3. It then only remains to
show f is irreducible. f ∈ K
We now show f is irreducible over Q. Note f = (x2)2−2(x2)+9, so if g := x2−2x+9
then ∆(g) = 4−4(9) < 0, meaning g (and hence f = g(x2)) has no real roots. Thus f
must split into quadratic factors, say as f = (x2+ax+b)(x2+cx+d) for a, b, c, d ∈ Q.
Then f = x4+x3(a+ c)+x2(ac+ b+ d)+x(ad+ bc)+ bd = x4− 2x2+9, so a = −c,
ac+ b+ d = −2, ad = −bc, and bd = 9, which easily leads to a contradiction.

(b) Prove that the set (1, i,
√
2, i
√
2) is a basis for Q(i,

√
2) over Q.

Proof. Q ⊆ Q(i) and Q(i) ⊆ Q(i,
√
2) are quadratic extensions, so it follows that

|Q(i,
√
2) : Q| = 4. Since (1, i,

√
2, i
√
2) spans Q(i,

√
2) as a Q-vector space and has

four elements, it is a basis.
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Exercise 3.42 (Artin 16.7.11). Let α = 3
√
2, β =

√
2, and γ = α+ β. Let L := Q(α, β),

and let K be the splitting field of the polynomial g := (x3 − 2)(x2 − 3) over Q.

(a) Determine the minimal polynomial for γ over Q, and its roots in C.

Proof. Since 2 = α3 = (γ − β)3, we have that 2 = γ3 − 3γ2β + 3γβ2 − β3 =
γ3 − 3γ2β + 6γ − 2β, and so solving for β we find β = (γ3 + 9γ − 2)/(3γ2 + 3),
so γ ∈ Q(α, β), meaning Q(γ) = Q(α, β), so γ has degree six over Q. If we
consider f := ((x − β)3 − 2)((x + β)3 − 2) = x6 − 9x4 − 4x3 + 27x2 − 36x − 23.
It must be the minimal polynomial for γ since we know it has degree 6 and
f(γ) = (α3 − 2)((α + 2β)3 − 2) = 0, f is monic, and it must be irreducible
since otherwise the degree of γ over Q must be less than six. In summary, f ∈ Q[x]
given by

f := x6 − 9x4 − 4x3 + 27x2 − 36x− 23

is the minimal polynomial for γ over Q, and since f = ((x− β)3 − 2)((x+ β)3 − 2)
we see f has roots ωjα± β over C for ω = e2πi/3.

(b) Determine the Galois group of K/Q.

Proof. We first show L = K(i). Observe that L(i) contains α, β and the roots of g are
ω, ω2, 3

√
2, and ±

√
3 for and ω = e2πi/3 = cos(2π/3)+ i sin(2π/3) = −1/2+ i

√
3/2 ∈

K = Q(ω, 3
√
2,
√
3), so L ⊊ K ⊆ L(i), and |L(i) : L| = 2 forces K = L(i). Set

G := Gal(K/Q). We now show |G| = 12. K/Q is a Galois extension since K is
by definition a splitting field over Q, so |G| = |K : Q|. By the above we know
|K : L| = 2 and we already know |L : Q| = 6, so |G| = |K : Q| = |K : L||L : Q| = 12.
Recall that there are exactly five groups of order 12 up to isomorphism, namely
C12, C6 ⊕C2, S3 ⊕C2, A4, or Dic3 = ⟨a, x : a6 = 1, x2 = a3, x−1ax = a−1⟩. We now
study the subgroups of G.

• The intermediate field L = Q(α, β) has degree 6 over Q as argued in part (a), so
its corresponding subgroup H∗ has index |G : H∗| = 6 and hence order 2. The
extension L/Q is not a splitting field since Q ⊆ L is a real extension whereas
the minimal polynomial of α = 3

√
2 must have the complex ω as a root, so L/Q

is not a Galois extension. Therefore, the subgroup H corresponding to L is not
normal in G.

• The intermediate field Q(β) has degree 2 over Q, so its corresponding subgroup
H := Gal(K/Q(β)) has index |G : H| = |Q(β) : Q| = 2. Hence H is a normal
subgroup of G that has order 6.

• The intermediate field Q(α) has degree 3 over Q, so its corresponding subgroup
H ′ := Gal(K/Q(β)) has index |G : H ′| = |Q(α) : Q| = 3, so H ′ is a subgroup
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of G with order 4. Q(α)/Q is not a Galois extension since it is not a splitting
field over Q—indeed, if it were then by the fundamental theorem of splitting
fields we have that the irreducible x3− 2 ∈ Q[x] which has root α in Q(α) splits
completely in Q(α), contradicting that Q ⊆ Q(α) is a real extension and hence
does not contain the complex roots ω, ω2 (ω = e2πi/3 ̸∈ R). It follows that the
subgroup H ′′ := Gal(Q(α)/Q) is a non-normal subgroup of order 6 in G.

• The intermediate field Q(α, ω), the splitting field of x3 − 2, has degree 6 over
Q—indeed, Q(α) ⊆ Q(α)(ω) = Q(α, ω) is a quadratic extension since ω has
minimal polynomial x2 + x + 1 over Q, which gives us that |Q(α, ω) : Q| =
|Q(α, ω) : Q(α)||Q(α) : Q| = (2)(3) = 6 by the multiplicative property of the
degree. The subgroup corresponding to Q(α, ω), H∗∗ := Gal(Q(α, ω)/Q), then
has index |G : H∗∗| = 6 and hence order 2. Q(α, ω) is distinct from the other
intermediate fields since it is the only one which is a splitting field for x3 − 2,
and in particular this gives us that the fixed field of H∗∗ is distinct from the
fixed fields of the subgroups H, H ′, H∗, G, and the trivial subgroup.

G can’t be abelian since by the third point above we know H ′′ is not a normal
subgroup of G (since all subgroups of abelian groups must be normal). It follows that
G ̸∼= C12 and G ̸∼= C3 ⊕ C2 ⊕ C2, leaving only A4, S3 ⊕ C2, and Dic3 as possibilities
(where Dicn ∼= ⟨a, x : a2n = 1, x2 = an, x−1ax = a−1⟩). By the second point we
know G has a subgroup of order 6, ruling out A4 which has no such subgroup.

We showed in the first and last points above that H and H∗∗ are distinct subgroups
of G of order 2, so since Dic3 only has one subgroup of order two it follows that it
follows that G ∼= S3 ⊕ C2.

§3.7 Algebra IV Final

Exercise 3.43 (1). Let L = Q[
√
2,
√
3,
√
5].

(a) (5 points) Prove that Q ⊆ L is a Galois extension and calculate its Galois group G.

Proof. Notice that 2 is square-free in Q, 3 is square-free in Q(
√
2), and 5 is square-

free in Q(
√
2,
√
3). Thus, Q ⊊ Q(

√
2) ⊊ Q(

√
2,
√
3) ⊊ Q(

√
2,
√
3,
√
5) = L is a

chain of quadratic extensions. Then by the multiplicative property of the degree,

|L : Q| = |L : Q(
√
2,
√
3)||Q(

√
2,
√
3) : Q(

√
2)||Q(

√
2) : Q| = 23. (∗)

Thus Q ⊆ L is a finite extension over Q, a field of characteristic zero, and hence a
perfect field. It is then enough to show that L is a splitting field over Q, from which
it will follow that Q ⊆ L is a Galois extension by the splitting field characterization.
Notice that f := (x2 − 2)(x2 − 3)(x2 − 5) ∈ Q[x] splits completely over L. On the
other hand, suppose f splits completely over an extension Q ⊆ K. Then K contains

Page 100 of 110

https://www.greysonwesley.com/home


Greyson C. Wesley May 5, 2022 §3.7: Algebra IV Final

√
2,
√
3,
√
5, so L = Q(

√
2,
√
3,
√
5) ⊆ K(

√
2,
√
3,
√
5) = K. Thus K contains L as

a subfield, so L is a splitting field for f over Q. Thus Q ⊆ L is a Galois extension.
Let G := Gal(L/Q). Q ⊆ L is a Galois extension, so by the degree characterization
and (∗) we know |G| = |L : Q| = 8, so |G| = p3 for p = 2 prime. It follows that
there exists a chain of normal subgroups

1�G1 �G2 �G

such that G/G2
∼= G2/G1

∼= G1/1 ∼= C2, which uniquely determines the group as
G ∼= C2 ⊕ C2 ⊕ C2, corresponding to the three commuting generators σ2, σ3, σ5 ∈ G
of order 2, determined by σ2(

√
2) := −

√
2, σ3(

√
3) := −

√
3, σ5(

√
5) := −

√
5.

(b) (5 points) For each of the following subfields of L, give the subgroup of G corre-
sponding to it under the Galois correspondence:

K1 = Q[
√
10], K2 = Q[

√
6,
√
15], K3 = Q[

√
2 +
√
3], K4 = Q[

√
30]

Proof. The Galois correspondence reverses inclusions, so the trivial subgroup cor-
responds with L itself, whereas G ∼= C2 ⊕ C2 ⊕ C2 corresponds with Q. We now
determine the nontrivial proper subgroups of G in order to determine the correspon-
dences for the intermediate fields K1, K2, K3, K4:

• G ∼= C2 ⊕ C2 ⊕ C2 has exactly seven subgroups of order 2, each of which are
isomorphic to C2 (since there is only one group of order 2 up to isomorphism):

⟨σ2⟩, ⟨σ3⟩, ⟨σ5⟩, ⟨σ2σ3⟩, ⟨σ2σ5⟩, ⟨σ3σ5⟩, ⟨σ2σ3σ5⟩.

It follows that there are exactly seven fields L ⊇ K ⊇ Q with |K : L| = |G :
H| = 4

• G ∼= C2 ⊕ C2 ⊕ C2 has exactly seven subgroups H of order 4:

⟨σ2, σ5⟩, ⟨σ3, σ5⟩, ⟨σ3, σ5⟩, ⟨σ2, σ3σ5⟩, ⟨σ3, σ2σ5⟩, ⟨σ5, σ2σ3⟩, ⟨σ2σ3, σ2σ5⟩.

No subgroup is isomorphic to C4 since this would imply that a single generator
has degree 4, and we know the generators only have degree 2. Since the only
other group of order 4 (up to isomorphism) is the Klein-4 group V ∼= C2 ⊕ C2,
we conclude each of the above subgroups is isomorphic to V . It follows that
there are exactly seven fields L ⊇ K ⊇ Q with |L : K| = |G : H| = 2.

By the Galois correspondence we know that each subgroup H of Gal(L/K) cor-
responds to the intermediate field LH , the field fixed by its elements. We can
immediately rule out the trivial group and G for the correspondences for each of
K1, K2, K3, K4, since all have degree either 2 or 4 over Q (and not 1 or 8, which
would be necessary for this by the Galois correspondence). By accounting for the
images of the generators, we can now determine the Ki and corresponding subgroup
for each i = 1, 2, 3, 4:
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• K1 = Q(
√
10):

√
3 ̸∈ K1, so σ3 fixes K1. Also, σ2σ5(

√
10) = σ2σ5

√
5
√
2 =

(−
√
2)(−

√
5) =

√
10, so K1 corresponds with ⟨σ3, σ2σ5⟩ ∼= C2⊕C2, the Klein-4

group.
• K2 = Q(

√
6,
√
15): First note K2 = Q(

√
6,
√
10); indeed, Q(

√
6,
√
10) ⊆ K2

because (
√
6+
√
15)2 = 21+6

√
10, and K2 ⊆ Q(

√
6,
√
10) since (

√
6+
√
10)2 =

16 + 4
√
15. Note that

√
6 =
√
2
√
3, Then since σ2σ3 fixes

√
6 and σ5 fixes

√
6,

we have σ2σ3σ5 fixes
√
6. Also,

√
10 =

√
2
√
5 and

√
10, so σ2σ5 fixes

√
10 and

σ3 fixes
√
10, so (again using that G is abelian) it follows that σ2σ3σ5 fixes

√
10.

Hence K2 is fixed by ⟨σ2σ3σ5⟩, so again by the Galois correspondence we have
that K2 corresponds with the subgroup ⟨σ2σ3σ5⟩ ∼= C2.

• K3 = Q(
√
2 +
√
3): Recall we have shown before that K3 = Q(

√
2 +
√
3) =

Q(
√
2,
√
3). Then no subgroups of G containing σ2 or σ3 fix K3, so since√

5 ̸∈ K3 we conclude K3 corresponds with ⟨σ5⟩ ∼= C2.
• K4 = Q(

√
30): Since

√
30 =

√
2
√
3
√
5, any combination of σ2σ3, σ2σ5, or σ3σ5

is the identity on
√
30 since it maps exactly two of its three factors

√
2,
√
3, or√

5 to −1, which then cancel, preserving the original sign. Since C2 ⊕ C2 ⊕ C2

is abelian, we can write σ3σ5 as σ3σ5 = (σ2σ2)σ3σ5 = (σ2σ3)(σ2σ5), so the
subgroup corresponding to K4 is ⟨σ2σ3, σ2σ5⟩ ∼= C2 ⊕ C2, the Klein-4 group.
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Exercise 3.44 (2). Let K be a perfect field of characteristic p > 0 and let a ∈ K be such
that f(x) = xp − x− a is irreducible. Let K ⊆ L be an extension of K such that there
exists some λ ∈ L with f(λ) = 0.

(a) (5 points) Prove that λ+m is a root of f(x) for all m ∈ Fp.

Proof. K has prime characteristic (fields either have zero or prime characteristic),
so we may invoke the “freshman’s dream,” that (x+ y)p = xp + yp for all x, y ∈ K.
Suppose m is in the prime field Fp (all fields contain their prime fields). Then
λ + m ∈ L. If m = 0 then the assertion immediately follows since f(λ + m) =
f(λ+ 0) = 0, so we may assume m ̸= 0. Then if λ is a root of f , we have

f(λ+m) = (λ+m)p − (λ+m)− a
= λp +mp − λ−m− a (freshman’s dream)
= f(λ) + f(m) + a = f(m) + a,

so it suffices to show f(m) = −a, that is, that mp −m = 0. m ̸= 0, so m ∈ F×p. But
F×p is a cyclic group of order p− 1, so mp = mmp−1 = m(1) = m, as claimed. This
completes the proof.

(b) (3 points) Prove that K(λ) is a splitting field for f , so K ⊆ K(λ) is a Galois
extension.

Proof. We know from part (a) that f has a root at λ+m for the p-many m ∈ Fp,
so f splits completely over K(λ) as (x − λ)(x − (λ + 1)) · · · (x − λ + (p − 1)). It
follows that K(λ) is a splitting field for f . But f is a monic irreducible with λ as a
root, so f is the minimal polynomial for λ over K by uniqueness. It follows that
|K(λ) : K| = deg(f) = p, so K ⊆ K(λ) is a finite extension, so since K is given to
be perfect we conclude by the splitting field characterization that K ⊆ K(λ) is a
Galois extension.

(c) (2 points) Prove that Gal(K(λ)/K) is cyclic of order p.

Proof. Let Gf := Gal(K(λ)/K). K ⊆ K(λ) is a (finite) Galois extension by part
(b) and K is a perfect field, so by the degree characterization we have |Gf | = |K(λ) :
K| = |K(λ) : K| = deg(f) = p. p is prime and the unique group of order p up to
isomorphism is Cp, so Gf is cyclic of order p.
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Exercise 3.45 (3). Fix a field K of characteristic zero, and let s1, . . . , sn be the elementary
symmetric functions in K[x1, . . . , xn]. Let K(x1, . . . , xn) be the field of rational functions
in the xi and let K(s1, . . . , sn) be the field of rational functions in the si.

(a) (3 points) Show K(x1, . . . , xn) is a Galois extension of K(s1, . . . , sn) with Galois
group Sn.

Proof. Let F := K(s1, . . . , sn) and L := K(x1, . . . , xn). We need to show F ⊆ L is
a Galois extension and Gal(L/F ) ∼= Sn.

We first show that F ⊆ L is a finite extension—indeed, recall that the elementary
symmetric functions are the coefficients of the polynomial with roots x1, . . . , xn,
namely the polynomial xn− s1xn−1 + s2x

n−2− · · · ± sn. We then have a finite chain
of field extensions made by adjoining elements xi, each algebraic over F :

F ⊆ F (x1) ⊆ (F (x1))(x2) ⊆ · · · ⊆ (F (x1, . . . , xn−1))(xn) = L.

Then each extension is of finite degree, so it follows by the multiplicative property
of the degree gives that F ⊆ K is a finite extension.

Since char(K) = 0 implies char(F ) = 0, we know F is perfect. It follows that in
order to show F ⊆ L is a Galois extension with Galois group Sn, it suffices to show
F = LSn by the fixed field characterization.

We claim F is the field fixed by all automorphisms of Sn, where Sn acts on L in the
natural way by permuting the indices of the variables x1, . . . , xn. We first observe
that each element of L takes the form fg−1 for some coprime f, g ∈ K[x1, . . . , xn]
with g ̸= 0.

• (LSn ⊆ F ): Let σ ∈ Sn fix all of L, i.e. suppose σ(fg−1) = fg−1 for all of L.
1 ∈ L, so setting g = 1 gives for arbitrary f ∈ K[x1, . . . , xn] that that σ(f) = f .
f ∈ K[x1, . . . , xn] was arbitrary, so f ∈ K[s1, . . . , sn] since by Gauss we know
K[x1, . . . , xn]

Sn = K[s1, . . . , sn]. If we set f = 1 and let g ∈ K[x1, . . . , xn], g ≠ 0
be arbitrary, then we conclude by the same argument that g ∈ K[s1, . . . , sn]. It
follows that fg−1 ∈ K(s1, . . . , sn) = F , as desired.

• (F ⊆ LSn): If fg−1 ∈ K(s1, . . . , sn) = F then g ̸= 0 and f, g ∈ K[x1, . . . , xn],
so σ fixes fg−1 since then σ(fg−1) = σ(f)σ(g−1) = σ(f)(σ(g))−1 = fg−1.

It follows that F = LSn , concluding the proof per our prior remarks.

(b) (3 points) Suppose that n = 5, and let w = x1x2 + x2x3 + x3x4+ x4x5 + x5x1.
Calculate the Galois group of the extension K(x1, . . . , x5) ⊇ K(s1, . . . , s5, w).

Proof. Let F := K(s1, . . . , s5) and L := K(x1, . . . , x5), so that K(s1, . . . , s5, w) =
F (w) and F (w) ⊆ L (the latter holds since w ∈ L). First note that K,F, F (w), L
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are again perfect for the same reasons as in part (a). Recall that if F ⊆ L is a
Galois extension and F ⊆ K ⊆ L, then K ⊆ L is a Galois extension. Since F ⊆ L
is a Galois extension by part (a), it follows that F (w) ⊆ L is a Galois extension.

Set G := Gal(L/F ). By part (a) we know G ∼= S5, so we will identify G with the
action of its elements on the indices of the variables xi. By the Galois correspondence,
F (w) corresponds to the subgroup of Sn fixing F (w). Note that it suffices to
determine the group of automorphisms fixing w, since we found in part (a) that
the elements of F are invariant under any σ ∈ S5. We claim G ∼= D5, the dihedral
group of order 10.4

• The cycle (12345) and reflection (52)(43) fix w, so all 10 elements of
⟨(12345), (52)(43)⟩ fix w as well.

• These are the only ten; indeed, suppose σ(x1) = xj for some j = 1, . . . , 5. If w
is to remain fixed under σ, then xj must share exactly one term with xj+1 and
exactly one term with xj−1 (where j + 1 is to be understood as j (mod 5) + 1
to account for the indices cycling and starting at 1), giving two further choices.
But this completely determines σ(w), so we conclude that there are no more
than ten possibilities for σ(xi).

It follows that Gal(L/F ) = ⟨σ, τ⟩, where σ and τ act on the indices of the xi as the
permutations (12345) and (52)(43), respectively. Then σ5 = τ 2 = 1, and τστ =
(15432) = s−1, which characterizes D5, so G ∼= D5 = ⟨s, r : s5 = r2 = 1, rsr = s−1⟩,
the dihedral group of order 10.

(c) (4 points) Let G be a finite group. Prove that there exists a Galois extension F1 ⊆ F2

of fields with Galois group G. [Hint: by Cayley’s theorem, all finite groups can be
embedded into Sn for some n.]

Proof. Let G be any finite group and F := K(s1, . . . , sn). G is a finite group,
so by Cayley’s theorem there exists an embedding G ↪→ Sn for some n. Let
F1 := F (x1, . . . , xn)

G and F2 := F (x1, . . . , xn), so that F1 is the subfield of F2 fixed
by G and hence F1 ⊆ F2 is a finite extension, where here we are identifying G with
its embedding in Sn (which acts on the variables x1, . . . , xn as described in part (a)
above). Then, since K is a field of characteristic zero and hence perfect, we conclude
that G is the Galois group of the extension F1 ⊆ F2. Hence, for any finite group G,
there exists a Galois extension F1 ⊆ F2 of fields with Galois group G.

4One could also show this by noting that we can represent w as a labelled cyclic graph with five nodes
labeled 1, . . . , 5. The task is then to determine what actions on the polygon preserves the structure of the
graph, which we know is exactly the group D5, the group of symmetries of a regular pentagon.
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Lemma 3.46.

If L is a subfield of C and Q ⊆ L is a Galois extension, then L is closed under complex
conjugation.

Proof. Let z ∈ L. If z ∈ Q then z = z ∈ Q, in which case the claim follows (since then
both z, z ∈ L, as claimed). Thus we may assume that both z, z ̸∈ Q.

We first show z and z has the same minimal polynomial over Q. Where z = a+ bi,
observe that z − a = bi, so a2 − 2az + z2 = −b2. Thus if z ̸∈ L ∖ Q then g :=
x2−2ax+a2+ b2 = 0 is the minimal polynomial for f , by uniqueness of such a polynomial.
By the quadratic formula g has roots a± bi, i.e. z and z, so if z ̸∈ L then z has minimal
polynomial f as well.

Q ⊆ L is a Galois extension, so L is a splitting field over Q (there is no issue, since Q
is perfect). Since z and z have the same minimal polynomial g over Q. As the minimal
polynomial for z, we know that g is a monic irreducible with a root z in L. Then, by the
fundamental theorem of splitting fields, we conclude g splits completely over L, so z ∈ L.
z ∈ L was arbitrary, so we conclude L is closed under complex conjugation.

Exercise 3.47 (4). Let L be a subfield of C such that Q ⊆ L is a Galois extension with
Galois group Z/(5). Let α be any element of L that does not lie in Q and let f(x) ∈ Q[x]
be the minimal polynomial of α.

(a) (5 points) Prove that α is a primitive element of Q ⊆ L and that f(x) splits
completely in L.

Proof. Let α ∈ L∖Q have minimal polynomial f ∈ Q[x] over Q.

We first show that α is a primitive element for Q ⊆ L. We know α ̸∈ Q, so Q ⊊ Q(α).
We are given that Q ⊆ L is a Galois extension, so 5 = |Gal(L/Q)| = |L : Q|. But on
a previous midterm we showed for extensions K ⊆ L of prime degree that there are
no fields F such that K ⊊ F ⊊ L, so since Q ⊊ Q(α) ⊆ L, we conclude L = Q(α).
Thus α is a primitive element of Q ⊆ L.

We now show f splits completely over L. We’re given Q ⊆ L is a Galois extension,
so L is a splitting field for some polynomial over Q (Q is perfect so this goes through
without issue). f is a minimal polynomial for α ∈ L, so f is a monic irreducible
with a root in L. Then, by the fundamental theorem of splitting fields, f splits
completely over L.

(b) (5 points) Prove that all the roots of f(x) in L lie in R.
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Proof. Q ⊆ L is a Galois extension, so by the lemma we know L is closed under
complex conjugation. In particular, where τ : C→ C is the complex conjugation map
z 7→ z, the restriction τ |L : L→ L is well-defined. Preservation of field operations
under τ |L is then inherited at once from τ . Thus τ |L is a field automorphism of L
relative to Q, that is, τ |L ∈ Gal(L/Q).

Suppose for a contradiction f(z) = 0 for some z ∈ C ∖ R. Then τ |L ≠ idL, so
the orbit ⟨τ |L⟩ is a subgroup of Gal(L/Q) order 2 in Gal(L/Q) (since z = z). But
Gal(L/Q) ∼= C5 is a cyclic group of prime order, which has no nontrivial proper
subgroups, a contradiction. It follows that all roots of f (in L) lie in R.
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Lemma 3.48.

f := x4 − x2 − 1 ∈ Q[x] is irreducible over Q.

Proof. We show f is irreducible over F3. f(0) = −1, f(1) = −1, f(2) = −1, so f has no
monic linear factors, and consequently no monic irreducible cubic factors. Thus f splits
into two monic irreducible quadratic factors. But we know (cf. Artin p. 373) that the
only monic irreducible polynomials of degree 2 over F3 are a := x2 + 1, b := x2 + x− 1,
and c := x2 − x − 1. But multiplying these over F3 gives ab = −1 + x + x3 + x4, ac =
−1 − x − x3 + x4, bc = 1 + x4, none of which are f . Thus f has no monic irreducible
quadratic factors over F3. It follows that f is irreducible over F3, and hence over Q, as
claimed.

Exercise 3.49 (5). (5 points) Let K be the splitting field of f(x) = x4 − x2 − 1 over Q.
Prove that Gal(K/Q) is isomorphic to the dihedral group of order 8. [Hint: figure out the
roots of f(x), and think about how the Galois group can permute them.]

Proof. Note f = g(x2) for g = x2 − x − 1 ∈ Q[x], so by the quadratic formula g has

roots α2 = 1
2
(1 ±

√
5). Then, where φ :=

√
1
2
(1 +

√
5), it follows that f has roots ±φ,

±iφ−1 ∈ K.
We now show K = Q(φ, i). ±φ,±iφ−1 ∈ Q(φ, i). We need to show that any field

containing ±φ,±iφ−1 contains Q(φ, i). Indeed, Q(φ) is the smallest extension containing
φ, but i ̸∈ Q(φ) since Q ⊆ Q(φ) ⊆ R and i ̸∈ R. It follows that Q(φ, i) is contained
in any extension with ±φ,±iφ−1 as elements, so we conclude that K = Q(φ, i) is the
splitting field for f over Q.

Set Gf := Gal(K/Q). We have i ̸∈ Q(φ) since Q ⊆ Q(φ) is a real extension, so
|K : Q| = |K : Q(φ)||Q(φ) : Q| = (2)(4) = 8 by the multiplicative property of the degree.
Then Q ⊆ K is a finite extension, so since K is a splitting field over Q, a perfect field
since char(Q) = 0, we conclude that the extension is Galois. Hence |Gf | = |K : Q| = 8 by
the degree characterization.

Each σ ∈ Gf is determined by the image of the generators of the splitting field
Q(φ, i) in which generators φ and i are linearly independent, so it follows that σ ∈ Gf is
determined by the images σ(φ) and σ(i). Recall that σ permutes the roots of irreducible
polynomials over Q. Then, since ±i are the roots of the irreducible polynomial x2+1 over
Q and as a field automorphism σ maps roots to roots, σ(i) ∈ {±i}. f itself is irreducible
by the lemma, so σ(φ) has all four roots as possible images, that is, σ(φ) ∈ {±φ,±i/φ}.

We now have identified 8 possibilities for σ. Since |Gf | = 8, so these must be all of
them. In particular, there is a τ ∈ Gf such with τ(φ) = φ and τ(i) = −i and a σ ∈ Gf

such that σ(φ) = iφ and σ(i) = i. We claim that Gf = ⟨σ, τ : σ4 = τ 2 = id, τστ = σ−1⟩,
which characterizes the dihedral group of order 8. We can show this by listing the eight
elements of Gf and checking that each relation is satisfied.
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id : φ 7→ φ, i 7→ i τ : φ 7→ φ, i 7→ −i
σ : φ 7→ iφ, i 7→ i στ : φ 7→ iφ, i 7→ −i
σ2 : φ 7→ −φ, i 7→ i σ2τ : φ 7→ −φ, i 7→ −i
σ3 : φ 7→ −iφ, i 7→ i σ3τ : φ 7→ −iφ, i 7→ −i

It now only remains to check that σ4 = τ 2 = id and τστ = σ−1:
• τστ = τ(στ) maps φ 7→ −φ 7→ −φ, i 7→ −i 7→ i, which is exactly the action of σ3,

so τστ = σ3 = σ−1.
• σ4 = σ(σ3) maps φ 7→ −iφ 7→ −i2φ = φ, i 7→ i 7→ i, so σ4 = id.
• τ 2 maps φ 7→ φ 7→ φ, i 7→ −i 7→ i, so τ 2 = id.

Thus Gf = ⟨σ, τ : σ4 = τ 2 = id, τστ = σ−1⟩, so Gf
∼= D4, the dihedral group of order

8.
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