
Classical field theories [very unfinished]

Greyson Wesley

March 24, 2025

Contents

1 Classical field theories 2
1.1 Fields and field equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Principle of least action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Lagrangian field theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Continuous transformation of a field theory . . . . . . . . . . . . . . . . . . . 3
1.5 Euler–Lagrange equations for Lagrangian field theories . . . . . . . . . . . . 3

2 Symmetries and Noether’s theorems 5
2.1 Types of symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Internal and external symmetries . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Continuous and discrete symmetries . . . . . . . . . . . . . . . . . . . 5
2.1.3 Local (gauge) and global symmetries . . . . . . . . . . . . . . . . . . 5
2.1.4 Examples of symmetries . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.5 Other types of symmetry . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Noether’s first theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Noether’s second theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Gauge theories 7
3.1 Choosing a gauge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Gauge transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 Gauge fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.4 Gauge field strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.5 Intertwiners and conservation laws . . . . . . . . . . . . . . . . . . . . . . . 10

1



Greyson C. Wesley §1.3: Lagrangian field theories

1. Classical field theories

1.1. Fields and field equations. A field theory is a pair (π,ℱ) consisting of a smooth
fiber bundle π : E → M and a collection ℱ of fields, which are just sections ϕ ∈ Γ(M,E).
Here E is called the total space (AKA configuration space, internal space1) and M is called
the spacetime (AKA parameterization space, external space).

Often a field theory comes with a field equation, which is a map E : ℱ → Cr for some
r > 0. A field ϕ ∈ ℱ is on-shell if it satisfies Eϕ = 0, and ϕ is off-shell otherwise. We write
ℱshell for the collection of on-shell fields ϕ ∈ ℱ. Note that ℱshell is also called the phase space
or trajectory space. An observable of a field theory (π,L) is a smooth map O : ℱshell → X
and the observations are just the values of O on M .
1.2. Principle of least action. The main tool to study field theories is to use the action
principle. The action principle (AKA the principle of least action) asserts that there is a
smooth function S : ℱ → R, called the action functional, such that a field ϕ ∈ ℱ is on-shell
if and only if ϕ is a critical point of S.

It is usually easier to construct and study a field theory with action functionals rather
than directly from its field equations. For example, a diffeomorphism Φ: ℱ → ℱ acts
naturally on functions on ℱ (i.e., on observables of the theory) by pullback, so Φ is a
symmetry of the field theory with action functional S if Φ∗S = S. It follows that Φ(ℱshell) =
ℱshell. Conversely, if the symmetries are known, then the requirement for S to be invariant
heavily restricts the possible action functionals.
1.3. Lagrangian field theories. A Lagrangian field theory (π,L) consists of a smooth
fiber bundle a smooth map

L : Γ(M,J1(π)) → Γ(M,DensM),

called the Lagrangian density, from the collection of 1-jet prolongations jkϕ of fields ϕ ∈ ℱ
into the line of (weight 1) densities on M . Using the canonical isomorphism J1(π) ∼= E ⊕
Ω1(M ;E) given by j1σ 7→ (σ, dσ), we will henceforth write (x, σ(x), dσ(x)) to mean (j1σ)x,
the value at x of the 1-jet prolongation.

From the Lagrangian density, we define the action of a field ϕ ∈ ℱ by the scalar

S(ϕ) B
∫
M

L(j1ϕ), (1)

which in turn defines a map S : ℱ → R called the action functional.2

1Usually “internal space” refers to the standard fiber of the fiber bundle rather than the total space E.
2From here, pp. 91–2: “The precise space of functions upon which the functional (1) is to be extremized

will depend on any boundary conditions which may be imposed — e.g., the Dirichlet conditions u = 0 on ∂Ω
as well as smoothness requirements. More generally, although this is beyond our scope, one may also impose
additional constraints, e.g., holonomic (meaning the fields ϕ are jet prolongations j1ϕ), non-holonomic,
integral, etc.”
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Greyson C. Wesley §1.5: Euler–Lagrange equations for Lagrangian field theories

The action functional S : ℱ → R is smooth at a field ϕ if for all variations Φ: R×M → E,
the composite SpΦ: R → ℱ → R is smooth, where pΦ is obtained from Φ by currying. A field
ϕ ∈ ℱ is a critical point of S if S is smooth and δS = 0.
1.4. Continuous transformation of a field theory. Consider a a classical field theory
(π, E) with set of fields ℱ. A continuous transformation of a field ϕ ∈ ℱ consists of smooth
maps Φ: R × M → E and the flow Ψ: R × M → M , which we write as s 7→ Φs and
ε 7→ Ψε respectively, such that Ψ is the flow of a smooth vector field X ∈ X(M), Φ0 = ϕ
and Ψ0 = idM . Any such map is called a variation and a flow respectively. For a fixed point
x ∈ M , this induces a two-parameter smooth map (s, t) 7→ Φs(Ψε(x)) defined on a small
open neighborhood of the origin in R2, so by the chain rule

d

dε

∣∣∣∣
ε=0

h(ε, ε) =
∂h

∂ε

∣∣∣∣
(0,0)

+
∂h

∂s

∣∣∣∣
(0,0)

=
d

dε

∣∣∣∣
ε=0

h(ε, 0) +
d

ds

∣∣∣∣
s=0

h(0, s) =
dΨε

dε

∣∣∣∣
ε=0

+
dΦs

ds

∣∣∣∣
s=0

.

Therefore, for the operators

δ B
dΨε

dε

∣∣∣∣
ε=0

and d B
dΦs

ds

∣∣∣∣
s=0

,

the operator ∆ B δ + d gives the “total variation” under the “infinitesimal transformation”
associated to the continuous transformation of our field theory at hand.

The following result describes how fields can vary under transformations of Lagrangian
field theories.

Lemma 1. For a Lagrangian field theory with space of fields ℱ, Lagrangian density L, and
action functional S. with space of fields ℱ, a field ϕ ∈ ℱ and the action functional S,

• ∆ϕ = δϕ+ℒXϕ where ℒXϕ is the Lie derivative of ϕ along the flow of the infinitesimal
generator X;

• ∆L = δL+ℒXL; and

• ∆S =
∫
M
∆L =

∫
M
(δL+ℒXL).

Proof. See here for the details.

1.5. Euler–Lagrange equations for Lagrangian field theories. Recall that, given a
continuous transformation of a field theory and a field ϕ ∈ ℱ, we defined the operators
d, δ, and ∆. By noting the behavior of L(ϕ) and S(ϕ) under the infinitesimal continuous
transformation ∆ϕ, we obtain definitions for ∆L and ∆S. Here we work to better understand
the behavior of fields ϕ that are critical points of the action functional on a fixed coordinate
chart U ⊆M .

Suppose L is a Lagrangian density. Fix a precompact subset K ⊆ M with smooth
boundary and let ℱK denote the collection of fields ϕ ∈ ℱ that vanish outside K. For
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Greyson C. Wesley §1.5: Euler–Lagrange equations for Lagrangian field theories

simplicity, we assume K is contained in the coordinate chart U ⊆ M . Now, for fields
ϕ, η ∈ ℱK , we can compute the first variation by noting that we can integrate the Lagrangian
over K instead of M , as L is local and if (x, ϕ(x), dϕ(x)) is constant for all x outside of K,
the variation and thus the integral is zero. We can thus write δS as

δS =
d

ds

∣∣∣∣
s=0

∫
K

Φ∗
sL =

∫
K

d

ds

∣∣∣∣
s=0

Φ∗
sL =

∫
K

δL.

Where xµ are local spacetime coordinates on chart U , we have

L(x, ϕ(x), dϕ(x)) = L(x, ϕ(x), dϕ(x))
∣∣dx0 ∧ · · · ∧ dxn

∣∣
for some L ∈ C∞(J1(M,E)). We call L the Lagrangian with respect to this local coordinate
system. In these coordinates we can use the multivariable chain rule to write

δL =
d

ds

∣∣∣∣
s=0

L(x,Φs(x), dΦs(x))
∣∣dx0 ∧ · · · ∧ dxn

∣∣
=

[
∂L

∂ϕ
· δϕ+

∂L

∂(dϕ)
· d(δϕ)

]
(x,ϕ(x),dϕ(x))

∣∣dx0 ∧ · · · ∧ dxn
∣∣

where · denotes real scalar multiplication. Thus

δS =

∫
K

[
∂L

∂ϕ
· δϕ+

∂L

∂(dϕ)
· d(δϕ)

]
(x,ϕ(x),dϕ(x))

∣∣dx0 ∧ · · · ∧ dxn
∣∣ .

Using integration by parts on the second term, namely that
∫
d(uv) =

∫
u dv+

∫
v du where

u B ∂L
∂(dϕ)

and v B δϕ, we obtain

δS =

∫
K

[[
∂L

∂ϕ
− d

(
∂L

∂(dϕ)

)]
· δϕ+ d

(
∂L

∂(dϕ)
δϕ

)]
(x,ϕ(x),dϕ(x))

∣∣dx0 ∧ · · · ∧ dxn
∣∣ . (1)

By our hypotheses on K we can invoke Stokes’ theorem to find that the integral of the second
term is equal to ∫

∂K

ι∂K

[
∂L

∂(dϕ)
· δϕ

]
(x,ϕ(x),dϕ(x))

∣∣dx0 ∧ · · · ∧ dxn
∣∣ ,

which is zero because δϕ = 0 on ∂K. Thus (1) reduces to

δS =

∫
K

[
∂L

∂ϕ
− d

(
∂L

∂(dϕ)

)]
(x,ϕ(x),dϕ(x))

· δϕ
∣∣dx0 ∧ · · · ∧ dxn

∣∣ . (2)

Therefore, by the fundamental lemma of the calculus of variations,

δS = 0 ⇐⇒ ∂L

∂ϕ
− d

(
∂L

∂(dϕ)

)
= 0

The following theorem summarizes our discussion.

Theorem 3 (Euler–Lagrange). A fields ϕ ∈ ℱ is a critical point for the action functional of
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Greyson C. Wesley §2.1: Types of symmetries

a Lagrangian field theory (π,L) if and only if ϕ satisfies the Euler–Lagrange equation for L,

(EL)(ϕ) B ∂L

∂ϕ
− d

(
∂L

∂(dϕ)

)
= 0.

Corollary 4. A Lagrangian field theory (π,ℱ,L) is a field theory (π,ℱ) whose field equations
are the Euler–Lagrange equations.

2. Symmetries and Noether’s theorems

A transformation of a field theory (π,ℱ) is a map ℱ → ℱ.
2.1. Types of symmetries. Here we follow here. Here we work with a fixed Lagrangian
field theory (π,ℱ,L). A symmetry is any transformation Ξ of ℱ that preserves the action
functional in the sense that

S(Ξ(ϕ)) = S(ϕ) (1)

for all fields ϕ ∈ ℱ. If Equation (1) merely holds for fields ϕ ∈ ℱshell, then we call Ξ an
on-shell symmetry.

2.1.1. Internal and external symmetries. An internal (resp. external) symmetry is a
symmetry induced by a transformation of the internal space E preserving M (resp. of the
external space M preserving E).

2.1.2. Continuous and discrete symmetries. A symmetry is continuous if there is a ho-
motopy from identity, that is, if there is a homotopy between the identity transformation
and the given transformation. A non-continuous symmetry is called discrete.

From here: For continuous symmetries, i.e., elements g of a Lie group G, we are inter-
ested in invariance under infinitesimal transformations. By “infinitesimal translations” we
mean elements of the Lie algebra g of G: the infinitesimal symmetry corresponding to g
is the element θ = γ̇(0) where γ is a one-parameter subgroup of G (i.e., a smooth group
homomorphism γ : R → G) such that γ(0) = g.

2.1.3. Local (gauge) and global symmetries. A symmetry is global if it is independent
of spacetime, that is, if the same transformation is applied to each point in spacetime. A
symmetry is local3 (AKA a global gauge symmetry) otherwise.

The following facts are immediate from the definitions and make the classification of
symmetries much easier. Local symmetries (AKA gauge symmetries), discrete symmetries,
and internal symmetries are examples of off-shell symmetries.

2.1.4. Examples of symmetries. (From here.) We next list the remaining types of sym-
metry along with examples.

3If you’re a mathematician, this terminology likely isn’t what you expected. After reading the definition,
you’ll probably think it should be called “pointwise” symmetry. However, the two turn out to be equivalent
in the context of smooth bundles.
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Greyson C. Wesley §2.2: Noether’s first theorem

• Discrete external symmetry: Parity (P ), time-reversal (T ), rotations by 2π/N
degrees.

• Discrete internal symmetry: Charge conjugation (C), R-parity in supersymmetric
theories, Z/nZ-symmetry that remains from the color or flavor symmetries in QCD-like
theories (e.g., in confined or chiral-symmetry broken phases).

• Continuous internal symmetry: Flavor symmetry in quark or lepton sectors. Dif-
feomorphisms in generally covariant theories, super-diffeomorphisms in supergravities.

• Continuous external on-shell symmetry: Spacetime translations, rotations,
Lorentz symmetry (or isometries of a given spacetime), conformal symmetry, super-
symmetry.

2.1.5. Other types of symmetry. A symmetry is a divergence symmetry if it transforms
the Lagrangian L as L 7→ L+ divK for some (n− 1)-form K.4

2.2. Noether’s first theorem. Given that all four fundamental forces can be represented
as gauge theories, it essentially states that continuous global symmetries are precisely phys-
ically realized symmetries in nature.

A current on an n-dimensional smooth manifold is an (n − 1)-form j ∈ Ωn−1(M). We
say a current j is conserved if the n-form dj is zero, i.e., if j is closed. Noether’s first
theorem (AKA Noether’s theorem) asserts that for every global symmetry of a Lagrangian
field theory (π,ℱ,L), that is, every global symmetry Ξ: ℱ → ℱ under which the action
functional S : ℱ → R is invariant, there is a conserved current jΞ.

Theorem 1 (Noether’s first theorem). For a Lagrangian field theory (π,L), there is a bijec-
tive correspondence between continuous global symmetries and on-shell conservation laws.

More precisely, if ℱ denotes the set of fields of (π,L), then this correspondence assigns to
a continuous global symmetry Ξ: ℱ → ℱ, written infinitesimally as ϕ 7→ ϕ+∆ϕ, the current

j B
∂L

∂(dϕ)
δϕ,

called the Noether current.

Proof. Suppose we have a continuous global symmetry, i.e., that ∆S = 0. On a coordinate
chart U ⊆M with local coordinates xµ, we can rewrite (1) for on-shell ϕ as

δS =

∫
K

[
d

(
∂L

∂(dϕ)
δϕ

)]
(x,ϕ(x),dϕ(x))

∣∣dx0 ∧ · · · ∧ dxn
∣∣ .

4Some call transformations preserving the Lagrangian density (as opposed to the action functional) a
symmetry and prefer to call what we are calling a divergence symmetry a quasisymmetry. In this language,
Noether’s first theorem asserts that global quasisymmetries are in one-to-one correspondence with conserved
currents.
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Greyson C. Wesley §3.0: Noether’s second theorem

On the other hand, by Cartan’s magic formula, we have

dS =

∫
K

ℒXL(ϕ) =
∫
K

[ιXdL+ dιXL] (ϕ) =
∫
K

dιXL(ϕ) =
∫
K

div(X)L(ϕ).

where we used dL = 0 for the third equality (by the Poincaré lemma, since L is a top form)
and this for the last equality. Thus, in local coordinates,

∆S = δS + dS =

∫
K

[
d

(
∂L

∂(dϕ)
δϕ

)
+ div(X)L

]
(x,ϕ(x),dϕ(x))

∣∣dx0 ∧ · · · ∧ dxn
∣∣ = ∫

K

dj

where

j =
∂L

∂(dϕ)
− div(X)L.

Since ∆S = 0,

j = ∆S =

∫
K

[δS + dS] (ϕ) =
∫
K

d

[
∂L

∂(dϕ)
δϕ+ ιXL(ϕ)

]
(x,ϕ(x),dϕ(x))

.

Since ∆S = 0, this integral must vanish for any K, which implies dj = 0. Thus, j is
conserved on-shell, completing the proof.

2.3. Noether’s second theorem.

Theorem 1 (Noether’s second theorem). For a Lagrangian field theory (π,L) with set of
fields ℱ, if a local divergence symmetry ϕ 7→ δϕ transforms the Lagrangian density as L 7→
L+ divK for some (n− 1)-form K ∈ Ωn−1(J1(M,E)), then we have the Noether identity

d(J −K) = 0,

where again J is the Noether current.

Proof. Exercise. Use the Euler–Lagrange equations and the Bianchi identity.

3. Gauge theories

Gauge theory is a language of studying physical systems, usually in the context of (pos-
sibly quantum) Lagrangian field theories, by studying their symmetries. More precisely, a
G-gauged field theory is a field theory (π,ℱ) whose field equations are invariant under bundle
automorphisms of the G-frame bundle of π.

The fundamental principle of gauge theory is that fields are sections of principal G-
bundles P → M and that the laws of physics are differential equations (Euler—Lagrange
equations) that are gauge-invariant, i.e., invariant under the right action of G (called the
symmetry group or the gauge group) in the sense that if a section s ∈ Γ(M,P ) is a solution,
then so is s ◁ g for all g ∈ G. We first need some terminology.
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Greyson C. Wesley §3.2: Gauge transformations

Let G be a Lie group. A field theory (π,ℱ) is G-gauged if the structure group of π can
be reduced to G. A gauge transformation is a G-bundle automorphism P → P , and the
group 𝒢(P ) of gauge transformations is called the gauge group.

Warning 1. In the mathematical literature, the group 𝒢(P ) of principal bundle automor-
phisms of P →M is called the gauge group, whereas in the physics literature the structure
group G is usually called the gauge group. These are not the same in general; indeed, 𝒢(P )
is usually an infinite-dimensional manifold.

In practice, we think of P
π→ M as a frame bundle of the associated bundle P ×G V for

some faithful r-dimensional G-representation ρ : G → GL(V ), so that G acts by change of
basis as a subgroup of GL(V ) and P ×ρ V has structure group G. A section of P ×ρ V is
called a matter field (AKA particle field).

Note that any gauge-related terminology regarding vector bundles should be understood
to mean for their frame bundles, which of course are principal bundles.
3.1. Choosing a gauge. A (local) gauge on P consists of a choice of local trivialization of
each coordinate chart of P . The following result says that we can view these as pullbacks of
principal sections.

Proposition 1. A choice of gauge on P is equivalent to a choice of principal section σ ∈
Γ(U, P ) on each coordinate chart U ⊆M .

Proof. For a local section σ ∈ Γ(U, P ), there is a canonical right G-equivariant isomorphism
ϕU : U ×G→ π−1(U) given by (x, g) 7→ σ(x) ◁ g, which is equivariant for the right G-action
because (x, g) ◁ h = (x, gh) 7→ σ(x) ◁ (gh) = (σ(x) ◁ g) ◁ h, and injective (resp. surjective)
because the right G-action on the fibers is free (resp. transitive), and hence is a local
trivialization of P over U .

Conversely, given a local trivialization of P over U , i.e., a rightG-equivariant isomorphism
ϕU : U ×G → π−1(U), there is a canonical section ϕ0

U ∈ Γ(U, P ), called the identity section
with respect to this local trivialization, given by ϕ0

U(x) B ϕU(x, 1).

3.2. Gauge transformations. A gauge transformation (AKA local gauge transformation,
gauge transformation of the second kind, gauge symmetry) is a principal bundle auto-
morphism Φ: P → P , i.e., a right G-equivariant homeomorphism P → P of the form
(x, g) 7→ (x, ϕU(x, g)) for some map ϕU : U ×G→ G.

Proposition 1. A gauge transformation Φ: P → P of a principal G-bundle P over U ⊆M
is equivalent to a map γ : P → G satisfying

γ(p ◁ g) = g−1γ(p)g ∀ p ∈ P, g ∈ G. (2)

Moreover, where σ and σ′ are the identity sections corresponding to the local trivializations
in the source and target of Φ respectively, we have σ′(x) = σ(x) ◁ γ(p).
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Greyson C. Wesley §3.4: Gauge field strength

Proof. Let Φ: P → P be a gauge transformation. Since Φ is a bundle map, it sends fibers
to fibers, meaning πΦ(p) = π(p). Thus, if π(p) = x, Φ(p) ∈ Px, then π(Φ(p)) = p, i.e., p and
Φ(p) lie in the same fiber. Since the right G-action is free and transitive on P , we can write
Φ(p) = p ◁ γ(p) for some γ(p) ∈ G. This gives a map γ : P → G. We can now rephrase the
right G-equivariance of Φ as follows.

Φ(p) ◁ g = Φ(p ◁ g) ⇐⇒ (p ◁ γ(p)) ◁ g = (p ◁ g) ◁ γ(p ◁ g)

⇐⇒ p ◁ (γ(p)g) = p ◁ (gγ(p ◁ g))

⇐⇒ γ(p)g = gγ(p ◁ g) ⇐⇒ γ(p ◁ g) = g−1γ(p)g.

Conversely, given a map γ : P → G satisfying γ(p◁g) = g−1γ(p)g, one can check the map
Φ: P → P given by Φ(p) B p · γ(p) is a bundle isomorphism. This proves the first assertion.

For the second assertion, note that the identity sections σ and σ′ corresponding to the
local trivializations respectively before and after the gauge transformation Φ satisfy σ′(x) =
σ(x) ◁ γ(σ(x)), which can be seen by applying Φ to σ(x) and then using the definition of γ
as the gauge transformation’s action on the fibers.

A choice of gauge (local section ϕ0
U : U → P ) in a principal G-bundle P induces a local

trivialization ψ : U × V → P ×G V over U in any associated vector bundle via ψ(x, v) =
[ϕ0

U(x), v]. Conversely, every local trivialization of P ×G V arises from such a gauge in P .
Furthermore, a gauge transformation Φ: P |U → P |U defined by a map γ : U → G transforms
ψ into a new trivialization ψ′(x, v) = [ϕ0

U(x) · γ(x), v] via the representation ρ : G→ GL(V ).
3.3. Gauge fields. A gauge field (AKA gauge potential is a principal connection 1-form
ω ∈ Ω1(P ; g). Given a gauge field ω, a choice of local gauge σ : U → P |U , induces by pullback
a g-valued 1-form A B σ∗ω ∈ Ω1(M ; g), called a local gauge potential (AKA local potential,
local vector potential). For local coordinates xµ on U and induced local frame ∂µ for TM ,
we write Aµ for the g-valued function A(∂µ) on U .

From here: “In the case of local, dynamical symmetries, associated with every charge is
a gauge field; when quantized, the gauge field becomes a gauge boson. The charges of the
theory “radiate” the gauge field. Thus, for example, the gauge field of electromagnetism is
the electromagnetic field; and the gauge boson is the photon.”

We now study the behavior of the principal connection 1-form ω and its the lo-
cal gauge potential A corresponding to a given gauge. A local gauge transformation
Φ: P |U → P |U gives by pushforward another principal connection 1-form Ψ · ω B Ψ∗ω,
so that (Ψ · ω)ϕ(p)((dΦ)v) = ωp(v). If G is a Lie group, one can show (see here, p. 33–4)

(Ψ · A) = ΨU · A ·Ψ−1
U − (dΨU) ·Ψ−1

U (1)

where ΨU : U → G is the map with Ψ(x, g) = (x,ΨU(x, g)). (There is a similar formula
involving the Maurer–Cartan form if G is not a Lie group).
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Greyson C. Wesley §3.5: Intertwiners and conservation laws

3.4. Gauge field strength. Recalling that the curvature Ω of ω is given by the formula
Ω = dω + 1

2
[ω ∧ ω]

∼

Consider the (local) gauge transformation corresponding to an identity section ϕ0
U : U →

GLn(C) with respect to a fixed gauge on U . By considering the composition qγ B ργ : U →
GL(V ) and choosing a local gauge on the associated vector bundle P ×ρ V , we obtain a
matrix field (i.e., a (1, 1)-tensor field) γβα : U → GLn(C). With respect to this local gauge

of the associated bundle, a matter field Φ has local expression Φ⃗, and transforms under this
change of coordinates by Φ 7→ Φ′ where Φ′β = (γ−1)βαΦ

α, where γ−1 is the inverse matrix
to γ in this basis.

This means G acts on the fibers (P ×ρ V )x of the associated bundle by g ∈ G sending
[p, v] ∈ (P ×ρ V )x to [p, ρ(g)−1v] ∈ (P ×ρ V )x, which is a right G-action, and we can simply
write v ◁ g = ρ(g)−1 ▷ v. In other words, for a principal G-bundle P and a G-representation
V , G acts on the fibers of the associated bundle on the right by change of basis dictated by
the change in local trivialization of P .
3.5. Intertwiners and conservation laws. The following is adapted from here, pp. 8–
9. Any physical process caused by a force is described by an intertwining operator for
the G-action, that is, a G-equivariant linear operator. Specifically, if V and W are finite-
dimensional Hilbert spaces on which a group G acts unitarily, then an operator F : V → W
is intertwining if

F (gψ) = gF (ψ) ∀ψ ∈ V, g ∈ G.

In quantum mechanics, symmetries yield conserved quantities: If G is a Lie group with
a unitary representation on V and W , they become representations of g, the Lie algebra of
G, and any intertwining operator F satisfies

F (Tψ) = TF (ψ) ∀T ∈ g, ψ ∈ V.

If ψ ∈ V is an eigenvector of T with eigenvalue iλ, then

TF (ψ) = iλF (ψ),

so λ is “conserved” by F .
Each element T ∈ g acts as a skew-adjoint operator on any unitary representation of

G. Recall that in quantum mechanics, physicists prefer self-adjoint operators, as they have
real eigenvalues. In quantum mechanics, self-adjoint operators are known as “observables”
as they admit real eigenvalues, which are the “observations” or “measurements”. To obtain
an observable, divide T by i, resulting in T/i, which is self-adjoint.
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Mathematics Physics
Principal bundle Instanton sector or charge sector
Structure group Gauge group or local gauge group
Gauge group Group of global gauge transformations or

global gauge group
Gauge transformation Gauge transformation or gauge symmetry
Change of local trivialization Local gauge transformation
Local trivialization Gauge
Choice of local trivialization Fixing a gauge
Functional defined on the space of connec-
tions

Lagrangian of gauge theory

Object does not change under the effects of
a gauge transformation

Gauge invariance

Gauge transformations that are covariantly
constant with respect to the connection

Global gauge symmetry

Gauge transformations that are not covari-
antly constant with respect to the connec-
tion

Local gauge symmetry

Connection Gauge field or gauge potential
Curvature Gauge field strength or field strength
Induced connection/covariant derivative on
associated bundle

Minimal coupling

Section of associated vector bundle Matter field
Term in Lagrangian functional involving
multiple different quantities (e.g., the co-
variant derivative applied to a section of
an associated bundle, or a multiplication of
two terms)

Interaction

Section of real or complex (usually trivial)
line bundle

(Real or complex) Scalar field

Table 1: Comparison of concepts in mathematical and physical gauge theory. Adapted from
here.
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