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Conventions

We read composition in 3D graphical calculus for ⊠ as back-to-front, for ⊗ as left-to-right, and for
◦ as bottom-to-top.
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1. Categories, functors, natural transformations, and modifications

1.1. Categories. The following subsections in their totality should emphasize that one
obtains a fully weak algebraic n-category as a “weakly enriched” fully weak algebraic (n−1)-
category. Amonoidal n-category is an (n+1)-category with exactly one object, often thought
of as just an n-category with extra structure.

1.1.1. 0-categories. A 0-category A is a set.
1.1.2. 1-categories. A 1-category C consists of the following data.

• A collection of 0-cells a ∈ C.
• For each pair of 0-cells a, b ∈ C, a 0-category C(a→ b) of 1-cells.
• For each triple of 0-cells a, b, c ∈ C, a 1-composition 0-functor ◦ : C(b→ c)×C(a→ b)→
C(a→ c).

• For each 0-cell a ∈ C, an identity 1-cell ida ∈ C(a→ a) (often also denoted a when clear).
These data are subject to the following conditions.
• The ◦ are strictly associative.
• The ◦ strictly preserve identity 1-cells in the left and right slots.
1.1.3. 2-categories. A 2-category (C,⊗, 1;α, λ, ρ) consists of the following data.

• A collection of 0-cells a ∈ C.
• For each pair of 0-cells a, b ∈ C, a hom 1-category C(a→ b) of 1-cells and 2-cells.
• For each triple of 0-cells a, b, c ∈ C, a 1-composition 1-functor ⊗ : C(a→ b)×C(b→ c)→
C(a→ c).

• For each 0-cell a ∈ C, an identity 1-cell 1a ∈ C(a→ a) (often also denoted a when clear).
These data are subject to the following conditions.
• The ⊗ are associative up to a 1-natural isomorphism α : −⊗(−⊗−)

∼=⇒(−⊗−)⊗− (the
associator).

• The ⊗ preserve identity 1-cells in the left and right slots up to 1-natural isomorphisms
λ : 1(−) ⊗−

∼=⇒− and ρ : −⊗1(−)

∼=⇒− (the left and right unitors) respectively.
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The above are subject to the following coherence conditions.
• The component 1-cells of the following diagram strictly commute.

−⊗(−⊗(−⊗−)) (−⊗−)⊗ (−⊗−) ((−⊗−)⊗−)⊗−

−⊗((−⊗−)⊗−) (−⊗(−⊗−))⊗−

α

α

α

α

α

• The component 1-cells of the following diagrams strictly commute.

1(−) ⊗ (−⊗−)

(1(−) ⊗−)⊗−

−⊗−

α

λ

λ

(−⊗−)⊗ 1(−)

−⊗(−⊗1(−))

−⊗−

α

ρ

ρ

1.1.4. 3-categories. A 3-category (𝒞,⊠,1;α, λ, ρ; π,m, ℓ, r) consists of the following
data.
• A collection of 0-cells a ∈ 𝒞.
• For each pair of 0-cells a, b ∈ 𝒞, a hom 2-category 𝒞(a→ b) of 1-cells, 2-cells, and 3-cells.
• For each triplet of 0-cells a, b, c ∈ 𝒞, a 1-composition 2-functor ⊠ : 𝒞(a → b) × 𝒞(b →
c)→ 𝒞(a→ c).

• For each 0-cell a ∈ 𝒞, an identity 1-cell 1a ∈ 𝒞(a→ a) (often also denoted a when clear).
These data are subject to the following conditions.
• The ⊠ are associative up to a 2-isomorphism α : −⊠(−⊠−)

∼=⇒ (−⊠−)⊠− (the asso-
ciator).

• The ⊠ preserve identity 1-cells in the left and right slots up to 2-isomorphisms λ : 1(−) ⊠
−

∼=⇒− and ρ : −⊠1(−)

∼=⇒− (the left and right 1-unitors) respectively.
The above are subject to the following coherence conditions.
• The component 1-cells of the following pentagon commute up to a component 2-cell of
an invertible 2-modification π (the pentagonator), as illustrated.

−⊠(−⊠(−⊠−)) (−⊠−)⊠ (−⊠−) ((−⊠−)⊠−)⊠−

−⊠((−⊠−)⊠−) (−⊠(−⊠−))⊠−

α

α

α

α

απ

• The component 1-cells of the following triangles commute up to a component 2-cell of
invertible 2-modifications m, ℓ, and r (the middle, left, and right 2-unitors) respectively,
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as illustrated.

1(−) ⊠ (−⊠−)

(1(−) ⊠−)⊠−

−⊠−

α

λ

λ

ℓ

(−⊠1(−))⊠−

(−⊠1(−))⊠−

−⊠−

α

ρ

λ

m

(−⊠−)⊠ 1(−)

−⊠(−⊠1(−))

−⊠−

α

ρ

ρ

r

• The non-abelian 4-cocycle condition [JY21, 11.2.14, p. 326]1 is satisfied.
• The left and right normalization conditions [JY21, 11.2.16–7, p. 327]2 are satisfied.

1.2. Functors. An n-functor is a morphism of n-categories.
1.2.1. 0-functors. A 0-functor is a set function f : A→ B.
1.2.2. 1-functors. A 1-functor F : C → D consists of the following data.

• For each 0-cell a ∈ C, of a 0-cell F (a) ∈ D.
• For each pair of 0-cells a, b ∈ C, a local hom 0-functor F : C(a→ b)→ D(F (a)→ F (b)).

These data are subject to the following conditions.
• The local hom 0-functors strictly preserve ◦.
• The local hom 0-functors F strictly preserve identity 1-cells.
1.2.3. 2-functors. A 2-functor F : C→ D consists of the following data.

• For each 0-cell a ∈ C, a 0-cell F (a) ∈ D.
• For each pair of 0-cells a, b ∈ C, a local hom 1-functor F : C(a→ b)→ D(F (a)→ F (b)).

These data are subject to the following conditions.

• The local hom 1-functors preserve ⊗ up to a 1-natural isomorphism µ : F (−)⊗ F (−)
∼=⇒

F (−⊗−) (the 1-compositor).
• The local hom 1-functors preserve identity 1-cells up to a 1-natural isomorphism

ν : F (id(−))
∼=⇒ idF (−) (the 1-unitor).3

The above are subject to the following coherence conditions.
• The following diagram strictly commutes in D.

F (−)⊗ (F (−)⊗ F (−)) F (−)⊗ F (−⊗−) F (−⊗(−⊗−))

(F (−)⊗ F (−))⊗ F (−) F (−⊗−)⊗ F (−) F ((−⊗−)⊗−)

µ

α

µ

F (α)

µ µ

• The following diagrams strictly commute in D.

1F (a) ⊗ F (−) F (−)

F (1a)⊗ F (−) F (1a ⊗−)

λ

ν

µ

F (λ)

F (−)⊗ 1F (a) F (−)

F (−)⊗ F (1a) F (−⊗1a)

ρ

ν

µ

F (ρ)

1.3. Natural transformations. An n-natural transformation is a morphism of n-functors.
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1.3.1. 1-natural transformations. A 1-natural transformation η : F ⇒ G consists of the
following data.
• For each 0-cell a ∈ C, a 1-cell ηa ∈ D(F (a)→ G(a)).

These data are subject to the following conditions.
• η is strictly compatible with 1-composition ⊗, i.e., for all f ∈ C(a → b), the following
diagram strictly commutes in D.

F (a) F (b)

G(a) G(b)

F (f)

ηa ηb

G(f)

1.3.2. 2-natural transformations. A 2-natural transformation η : F ⇒ G consists of the
following data.
• For each 0-cell a ∈ C, a 1-cell ηa ∈ D(F (a)→ G(a)).

These data satisfy the following conditions.
• η is compatible with 1-composition ⊗ up to an invertible 2-cell ηf of the following type.4

F (a) F (b)

G(a) G(b)

F (f)

ηa ηb
ηf

G(f)

The above are subject to the following coherence conditions.
• For all 0-cells a ∈ C, the following equation holds.

F (a) F (a)

F (a) F (a)

G(a) G(a)

G(a) G(a)

F (1a)

1F (a)

ηa
ηa

ηa

η1a

G(1a)

1G(a)

νG

=

F (a) F (a)

F (a) F (a)

G(a) G(a)

G(a) G(a)

F (1a)

1F (a)

ηa ηa ηa

G(1a)

1G(a)

νF

ρ

λ

• For all 0-cells a, b, c ∈ C and 1-cells f ∈ C(a → b) and g ∈ C(b → c), the following
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equation holds.

F (a) F (c)

F (a) F (b) F (c)

G(a) G(c)

G(a) G(b) G(c)

F (f⊗g)

F (f)

ηa

F (g)

ηb

ηc

ηf⊗g

G(f⊗g)

G(f) G(g)
µG

=

F (a) F (c)

F (a) F (b) F (c)

G(a) G(c)

G(a) G(b) G(c)

F (f⊗g)

F (f)

ηa

F (g)

ηc

G(f⊗g)
ηf

G(f)

ηg

G(g)

µF

ηb

1.4. Icons. We call parallel 2-functors F,G : C → D iconic if F = G on 0-cells and there
is an icon α : F ⇒ G, that is, an identity-component oplax 2- natural transformation. Thus
an icon consists of the following data.
• For each 1-cell f ∈ C(a→ b), a 2-cell5 αf ∈ D(F (f)⇒ G(f)).

These data satisfy the following conditions.
• For each 2-morphism η ∈ C(f ⇒ g), the following diagram strictly commutes in D.

F (f) F (g)

G(f) G(g)

F (η)

αf αg

F (η)

• For each object a ∈ C, α1a ∈ D(F (f) ⇒ G(f)) is the identity 2-cell id1a (up to the
unitors of F and G, which I will omit here for clarity).

F (a) F (b) F (c)

G(a) G(b) G(c)

F (f) F (g)

G(f) G(g)

αf αg =

F (a) F (b) F (c)

G(a) G(b) G(c)

F (f) F (g)

αg◦f

G(f) G(g)

.

1.5. Modifications. An n-modification is a morphism of n-natural transformations.
1.5.1. 2-modifications. A 2-modification m : ρ ⇛ σ consists of the following data.

• For each 0-cell a ∈ C, a 2-cell mc : ρc ⇒ σc.
These data are subject to the following conditions.
• For all 0-cells a, b ∈ C and 1-cells f ∈ C(a→ b) commute up to 2-natural transformation

F (a) F (a) F (b) F (b)

G(a) G(a) G(b) G(b)

σa

F (f)

ρa

ρf

ρb ρb

G(f)

mb =

F (a) F (a) F (b) F (b)

G(a) G(a) G(b) G(b)

σa

F (f)

ρa ρb

ρf

ρb

G(f)

ma
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1.6. Equivalences.
1-equivalences. A 1-equivalence of 1-categories is a 1-functor F that is invertible up to

2-natural isomorphism. Equivalently, this means F is essentially surjective on 0-cells and
fully faithful on 1-cells.6

2-equivalences. A 2-equivalence of 2-categories is a 2-functor F that is invertible up to
2-natural equivalence.7 Equivalently, this means F is essentially surjective on 0-cells and
fully faithful on 0- and 1-cells.8

1.7. Skeletal categories.
Skeletal 1-categories. A 1-category is skeletal if it has no non-identity isomorphisms. The

skeleton of a 1-category is a skeletal subcategory whose inclusion is an equivalence.9

Skeletal 2-categories.10 A 2-category C is 1-skeletal if the hom categories C(x → y) are
skeletal for each pair of objects x, y ∈ C; C is 0-skeletal if x is equivalent to y if and only
if x = y. Finally, C is skeletal if it is both 0-skeletal and 1-skeletal. A symmetric monoidal
2-category is k-skeletal if it underlying 2-category is k-skeletal.11

In what follows, the n-th strictification mentioned is the “best” (currently known) faithful
strictification of the corresponding algebraic fully weak n-categories above. Note 0- and 1-
categories are strict as defined, and that every 2-category is equivalent to a strict 2-category.
Often, semistrict n-category refers to the “most strict” notion of n-category that is still
equivalent to the notion of fully weak n-category.
1.8. Semistrict 3-categories. Unfortunately, for a general 3-category 𝒞, it is possible
that 𝒞 is not equivalent to any strict 3-category. However, [Gur13, Corollary 9.15] proves 𝒞
is equivalent to a semistrict 3-category (i.e., a strict and cubical 3-category, i.e., the Gray-
enriched (1-)category), where Gray is the monoidal 1-category of strict 2- categories and
strict 2-functors with the Gray monoidal structure, which is the universal monoidal structure
⊠ for which 2Catstr(𝒞⊠𝒟→ ℰ) ≃ 2Catstr(𝒞→ 2Funstr(𝒟→ ℰ))). That is, any 3-category
is equivalent to a semistrict 3-category (𝒞, (−)⊠, (−)⊠,1, ϕ), which consists of the following
data.12

• A collection of 0-cells a ∈ 𝒞.
• For each pair of 0-cells a, b ∈ 𝒞, a strict hom 2-category 𝒞(a→ b) of 1-cells, 2-cells, and
3-cells.

• For each 0-cell c ∈ 𝒞 and each 1-cell f ∈ 𝒞(a→ b), a 1-postcomposition strict 2-functor
f ⊠ (−) =: f⊠ : 𝒞(b→ c)→ 𝒞(a→ c).

• For each 0-cell a ∈ 𝒞 and each 1-cell g ∈ 𝒞(b → c), a 1-precomposition strict 2-functor
(−)⊠ g =: g⊠ : 𝒞(a→ b)→ 𝒞(a→ c).

• For each 0-cell a ∈ 𝒞, an identity 1-cell 1a ∈ 𝒞(a→ a).
• For each pair of 2-cells γ ∈ 𝒞(afb ⇒ af

′
b), ξ ∈ 𝒞(bgc ⇒ bg

′
c), an invertible 3-cell

ϕγ,ξ ∈ 𝒞((ξ ⊠ f ′)⊗ (g ⊠ γ) ⇛ (g′ ⊠ γ)⊗ (ξ ⊠ f)) (the interchanger).
The above data are subject to the following conditions.
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• For composable 1-cells f, g in 𝒞, f⊠(g) = g⊠(f) =: f ⊠ g.
• The (−)⊠ and (−)⊠ strictly preserve 1-composition, i.e., (−⊠−)⊠ = (−)⊠ ⊠ (−)⊠ and
(−⊠−)⊠ = (−)⊠ ⊠ (−)⊠.

• The (−)⊠ and (−)⊠ strictly preserve identity 1-cells, i.e., −⊠1(−) = 1𝒞(a→b) = 1(−) ⊠−.
• The ϕ−,− strictly preserve identity 2-cells in each slot, i.e., for each 1-cell f ∈ 𝒞(a→ b),
ϕ−,1f = −⊠1f and ϕ1f ,− = 1f ⊠−.

• The ϕ strictly preserve the ⊗, i.e., for g ξ⇒ g′
ξ′⇒ g′′ and f

γ⇒ f ′ γ′
⇒ f ′′, the following hold

whenever they make sense.

ϕξ′⊗ξ,γ = (ϕξ′,γ ⊗ (ξ ⊗ f)) ◦ ((ξ′ ⊗ f ′)⊗ ϕξ,γ),

ϕξ,γ⊗γ′ = ((g′ ⊗ γ′)⊗ ϕξ,γ) ◦ (ϕξ,γ′ ⊗ (g ⊗ γ)).

• The ϕ−,− are natural, i.e., for 1-cells g, g′ ∈ 𝒞(b → c), 2-cells ξ, ξ′ ∈ 𝒞(g ⇒ g′), and
a 3-cell Ξ ∈ 𝒞(ξ ⇛ ξ′); and for 1-cells f, f ′ ∈ 𝒞(a → b), γ, γ′ ∈ 𝒞(f ⇒ f ′), and a
3-cell Γ ∈ 𝒞(γ ⇛ γ′), we have ϕξ′,γ ◦ ((Ξ ⊗ f ′) ⊗ idg⊗γ) = (idg′⊗γ ⊗ (Ξ ⊗ f)) ◦ ϕξ,γ and
ϕξ,γ′ ◦ (idξ⊗f ′ ⊗ (g ⊗ Γ)) = ((g′ ⊗ Γ)⊗ idξ⊗f ) ◦ ϕξ,γ.

• The ϕ−,− strictly respect the (−)⊠ and (−)⊠, i.e., for 1-morphisms f, g, h and 2-morphisms
σ, ξ, γ, the equations ϕh⊠ξ,γ = h⊠ ϕξ,γ, ϕσ⊠g,γ = ϕσ,γ ⊠ g = ϕσ,g⊠γ, and ϕσ,ξ⊠f = ϕσ,ξ ⊠ f
hold when they make sense.

2. Enrichment

Fix a monoidal category (V ,⊗V , 1V). (It is helpful to think of (V,⊗V , 1V) as (Vec,⊗C,C).)
2.1. Enriched 0-categories. A V-enriched 0-category is a set A of elements of V . Thus a
0-category is a (Set,×, pt)-enriched 0-category.
2.2. Enriched 1-categories. A V-enriched 1-category consists of the following data.
• A collection of 0-cells a ∈ C.
• For each pair of 0-cells a, b ∈ C, a hom 0-cell C(a → b) ∈ V ; its elements or 1-cells
f ∈ C(a→ b) are 1-cells f ∈ V(1V → C(a→ b)).

• For each triplet of 0-cells a, b, c ∈ C, a 1-composition 1-cell ◦ ∈ V(C(b → c) ⊗V C(a →
b)→ C(a→ b)).

• For each 0-cell a ∈ C, an identity element ȷa ∈ V(1V → C(a→ a)).
These data are subject to the following conditions.
• The ◦ are strictly associative.
• The ◦ strictly preserve identity 1-cells in the left and right slots.
2.2.1. From a module category to an enriched category. From a finite semisimple left

V-module category M, one can build a V-enriched category M̂ by showing M(−▷m →
n) : Vop → Set is representable and defining the internal hom object M̂(m→ n) ∈ V to be
its representing object.
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2.3. Enriched 0-functors.
2.4. Enriched 1-functors. Fix a monoidal 1-category (V ,⊗V , 1V). A V-enriched 1-functor
F : C → D consists of the following data.
• For each 0-cell a ∈ C, of a 0-cell F (a) ∈ D.
• For each pair of 0-cells a, b ∈ C, a local hom V-enriched 0-functor F ∈ V(C(a → b) →
D(F (a)→ F (b)).

These data are subject to the following conditions.
• The local hom 0-functors strictly preserve ⊗.
• The local hom 0-functors strictly preserve identity 1-cells.

Thus a V-enriched 1-functor of V-enriched 1-categories is simply a functor in the usual sense
of the underlying categories.13

2.5. TODO: Tensored vs. Enriched vs. Module categories. TODO: I should
follow Kelly05 for this

3. Toward multitensor categories

3.1. Linear categories.
3.1.1. Linear 1-categories. A 1-category C is called linear if it is locally linear14 and

1-composition ◦ is bilinear.15
3.1.2. Linear 2-categories. A 2-category C is called linear if it is locally linear and 1-

composition ⊗ is bilinear.
3.2. Linking algebras.

3.2.1. Linking 1-algebras. Given n objects x1, . . . , xn ∈ C, the n-fold linking algebra

L(x1, . . . , xn) is the algebra
⊕r

i,j=1 C(xj → xi) =
[
C(xj → xi)

]
(i,j)

whose elements are formal

matrices with product given by matrix multiplication.1617

3.2.2. Linking 2-algebras. TODO: A linking E1-algebra is an algebra in Vec over the
(Top = T = CGWH-enriched) E1-operad.
3.3. Presemisimple categories.

3.3.1. Presemisimple 1-categories. A linear 1-category C is called presemisimple if all
n-fold linking algebras are finite-dimensional and semisimple. (If C admits finite direct
sums, then this is equivalent to the endomorphism algebras being finite-dimensional and
semisimple.)

A presemisimple 1-category is finite if Irr(C) is a finite set.
3.3.2. Presemisimple 2-categories. A linear 2-category C is presemisimple if all n-fold

linking algebras are semisimple multitensor categories.
A presemisimple 2-category is finite if all n-fold linking algebras are multifusion and

there is a global bound on the dimensions of End(1) for the centers of all linking algebras.18

3.4. Additive completeness.
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3.4.1. 1-additive completeness. A 1-category C is additive complete if C admits all finite
direct sums (i.e., C is additive complete).

3.4.2. 2-additive completeness.
3.5. Idempotent completeness.

3.5.1. 1-idempotent completeness. In a 1-category C, a 1-idempotent (c, e) consists of an
object c ∈ C and a morphism e : c→ c with e ◦ e = e. A 1-idempotent (c, e) splits if there is

an object a ∈ C and morphisms a
i→ c

p→ a such that p ◦ i = ida and i ◦ p = e. We call C
idempotent complete if all 1-idempotents split.19

3.5.2. 2-idempotent completeness. For a 2-category C, a (unital) algebra20 (A, µ, ι) in
End(a) consists of a 1-morphism A = ∈ C(a → a) and 2-morphisms µ = ∈ C(A ⊗
A ⇒ A) (“multiplication”) and ι = ∈ C(1A ⇒ A) (“the unit”) satisfying associativity
( = ) and unitality ( = = ). We call an algebra (A, µ, ι) separable when
equipped with an (A,A)-bimodule map ∆ = ∈ C(A ⇒ A ⊗ A) (meaning = =

) that splits µ (meaning = ). An algebra (A, µ, ι,∆) = ( , , , ) is
called Frobenius if ∆ admits a counit ε = making (A,∆, ε) a (counital) coalgebra21. A
condensation algebra (A, µ, ι,∆, ε) = ( , , , , ) is just a separable Frobenius
algebra. A separable adjunction for a 1-morphism X ∈ C(a → b) consists of a 1-morphism
X∨ ∈ C(b → a) and 2-morphisms ev ∈ C (X∨ ⊗X ⇒ 1b) and coev ∈ C(1a ⇒ X ⊗ X∨)
satisfying the zig-zag equations and such that ev admits a right inverse ε ∈ C(1b ⇒ X∨⊗X).
For any separable adjunction X ⊣ X∨, we can canonically endow X⊗X∨ with the structure
of a unital condensation algebra. Indeed, one can just check that µ = , ∆ = ,
ι = , and ε = works. A condensation algebra (A, µ, ι,∆, ε) = ( , , , , )
splits if it is isomorphic to such a condensation algebra X ⊗X∨ as algebras in EndC(a).

22

A 2-category C is said to be 2-idempotent complete (or condensation complete) if all
condensation algebras split.
3.6. Cauchy completeness.

3.6.1. 1-Cauchy completeness. A 1-category is 1-Cauchy complete if it has all direct
sums and all idempotents split.

3.6.2. 2-Cauchy completeness. A 2-category is 2-Cauchy complete if it has finite 2-direct
sums and all 2-idempotents split.
3.7. Semisimplicity.

3.7.1. 1-semisimplicity. A presemisimple 1-category C is semisimple if it is 1-Cauchy
complete.23

3.7.2. 2-semisimplicity. A presemisimple 2-category C is semisimple if it is 2-Cauchy
complete.
3.8. Rigidity.

3.8.1. 1-rigidity. In a monoidal 1-category (C,⊗, 1), an object c∗ is a right dual,24 of an
object c, or equivalently c is a left dual of c∗, if there are 1-morphisms ev ∈ C(c∗⊗ c→ 1)⊗ c
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and coev ∈ C(1 → c ⊗ c∗) satisfying the snake equations (c ⊗ ev) ◦ (coev ⊗ c) = idc and
(ev ⊗ c∗) ◦ (c∗ ⊗ coev) = idc∗ . We call C rigid if each 0-cell admits a left and right dual.

3.8.2. 2-rigidity. In a monoidal 2-category (C,⊠,1), an object c# is a right dual of an
object c, or equivalently c is a left dual of c#, if there are 1-morphisms25 ev ∈ C(c#⊠ c→ 1)
and coev ∈ C(1→ c⊠ c#) satisfying the snake equations up to coherent26 invertible 2-cells27

cusp ∈ C((coev ⊠ c) ⊗ (c ⊠ ev) ⇒ 1c) and cocusp ∈ C(1c# ⇒ (c# ⊠ coev) ⊗ (ev ⊠ c#)). We
call C rigid if each 0-cell admits a left dual and a right dual and each 1-cell admits a left
adjoint and a right adjoint.2829

3.9. (Multi)tensor and (multi)fusion categories.
3.9.1. (Multi)tensor and (multi)fusion 1-categories. A multitensor category is a rigid

semisimple linear monoidal category (C,⊗, 1).30 A tensor category (AKA infusion category)
is a multitensor category with simple monoidal unit 1. A (multi)fusion category is a finite
(multi)tensor category.

3.9.2. (Multi)tensor and (multi)fusion 2-categories. A (pre)fusion 2-category is a finite
(pre)semisimple rigid linear monoidal 2-category with simple monoidal unit 1.31

3.10. Dual functors.
3.10.1. Dual 1-functors. When a multitensor 1-category C is rigid, a choice of duality

data (c∨, evc, coevc) for every c ∈ C assembles into a dual 1-functor, which is a monoidal 1-
functor ∨ : C → C⊗op,◦op given by “180 degree rotation” of 1-cells using “cups” (coev’s) and
“caps” (ev’s). For any monoidal functor between rigid multitensor categories with a choice of
dual functor, F : (C,∨C)→ (D,∨D), we have a canonical natural isomorphism F ◦∨ ⇒ ∨◦F
given here, Def. 2.13, p. 30.

3.10.2. Dual 2-functors. The obvious first choice of generalization of dual 1-functor from
multitensor 1-categories (C,⊗, 1) to multitensor 2-categories (C,⊠,1) is to ask that all the
hom 1-categories are equipped with a dual functor (now called an adjoint functor by a
previous footnote) that is coherently compatible with ⊠. However, we could instead ask
that the objects of C have duals whose evaluation and coevaluation 1-morphisms satisfy
snake equations up to an appropriate coherence condition. To avoid confusion, we will refer
to the former of these (that is, to a choice of adjoints for 1-morphisms) as adjoint 2-functor
or alternatively as a planar dual 2-functor, and use transverse dual 2-functor for the latter.
We will then define a dual 2-functor 32 to be a choice of planar dual 2-functor together with a
choice of transverse dual 2-functor that satisfy compatibility conditions between each other.
Note that our terminology here is nonstandard.

Object dual 2-functor. When a multitensor 2-category is rigid33, a choice of dual
(c#, ev, coev, cusp, cusp#) for every c ∈ C assembles into a dual 2-functor, which is a monoidal
2-functor #: C→ C⊠op,⊗op that sends c to c# for each c ∈ C.

TODO: A dual 2-functor
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Planar 2-functor. When a multitensor 2-category is rigid,34 a choice of adjoint
(f∨, ev, coev) for every 1-cell f that preserves ⊠ up to coherent isomorphism35 in C assembles
into a planar dual 2-functor, which is a monoidal 2-functor #: C → C⊠op,⊗op TODO: . A
dual 2-functor TODO:
3.11. Pivotal structures.

3.11.1. 1-pivotal structures. A pivotal structure (∨, φ) on a multitensor 1-category C is
a choice of dual functor ∨ : C → C⊗op,◦op together with a monoidal natural isomorphism

φ : idC ⇒ ∨◦∨. Two pivotal structures (∨1, φ1) and (∨2, φ2) are equivalent if φ1 = ◦φ2.

When a multitensor category C admits a pivotal structure, the set of pivotal structures is a
torsor36 for Aut⊗(idC) ∼= Hom(UC → C×).

A monoidal functor between pivotal categories F : (C,∨C, φC) → (D,∨D, φD) is called
pivotal if δ∨c ◦φD

F (c) = δc∨ ◦F (φC
c ) for all c ∈ C.37 Pivotal functors preserve left/right quantum

traces. By TODO: Pen20, Proposition 3.45, F is pivotal if and only if δc is unitary for
all c ∈ C.

Traces and quantum dimension. A pivotal multitensor 1-category (C,∨, φ) admits

End(1C)-valued traces trL/R : End(c) → End(1C) given by trφL(f) := f

φ−1
c

c∨ and trφR(f) := φc

f
c∨

called the left/right quantum trace. If c ∈ C is simple, then where 1C = ⊕r
k=11k, we have

c = 1C⊗c⊗1C =
⊕r

i,j=1(1i⊗s⊗1j) = 1s(c)⊗c⊗1t(c), we define the left/right quantum dimen-

sion as dim∨,φ
L/R(c) := trL/R(ps(t)⊗idc⊗pt(c)) where pk ∈ End(1C) is the projection obtained by

splitting the idempotent id1k . Note that dimL(c) = dimR(c
∨). If (C,∨, φ) is pseudounitary,

meaning all quantum dimensions are positive, then dimφ
L(c) = dimφ

R(c) = FPdim(c) for all
simple c ∈ C.

3.11.2. 2-pivotal structures.
Planar pivotal structures. A planar pivotal structure (φ,∨,#) on a multitensor 2-

category (C,⊗,1) consists of a monoidal 2-natural isomorphism φ : ididC ⇒ #. A planar
pivotal 2-category is a multitensor 2-category equipped with a monoidal TODO: See here.

A pivotal structure on a 2-category TODO: See here.
3.12. Sphericality.

3.12.1. 1-sphericality. A spherical multitensor 1-category is a pivotal multitensor cat-
egory (C,∨, φ) such that for every simple object c ∈ C, dim∨,φ

L (c) = dim∨,φ
R (c). Thus for

example pseudounitary pivotal multitensor categories are spherical.
3.12.2. 2-sphericality. A spherical 2-category is a pivotal 2-category such that the front

and back 2-spherical traces agree. TODO: See here.
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4. Module structures

5. Dagger (and other) structures

5.1. Dagger 0-categories. A dagger 0-category is a ∗-algebra A, i.e., a finite-dimensional
associative algebra A with a strict anti-involution, that is, with a map (−)∗ : A→ Aop such
that (ab)∗ = b∗a∗ for all a, b ∈ A, (a∗)∗ = a for all a ∈ A, and 1∗ = 1.

A C∗-0-category is a C∗-algebra, i.e., a Banach (meaning Cauchy complete in the norm)
∗-algebra A satisfying the C∗-identity ∥x∗x∥ = ∥x∥2 for all x ∈ A.

A unitary 0-category is a unitary algebra, i.e., a finite-dimensional C∗-algebra. A unitary
0-category is equivalently a C∗-0-category.

5.1.1. H∗-algebras. An H∗-algebra38 (A,TrA) consists of a unitary algebra A and a faith-
ful positive trace Tr: A→ C.3940 Thus A is simultaneously a unitary algebra and a Hilbert
space A = L2(A,TrA) with inner product ⟨a|b⟩ := TrA(a

†b).
5.1.2. H∗-modules. H∗-algebras are the “correct” objects to act on Hilbert spaces:

TODO:
5.2. Dagger 1-categories. A dagger 1-category (C, †) is a linear 1-category C with a
conjugate-linear functor † : C → Cop that is strictly anti-involutive on 1-cells and the identity
on 0-cells. Thus a dagger 1-category C is a vertical categorification of a ∗-algebra.

5.2.1. C∗-1-categories. A C∗-1-category C is a vertical categorification of a C∗-algebra,
i.e., a dagger 1-category C such that (C∗1) for all f ∈ C(a → b), there is a g ∈ C(a → a)
with f † ◦ f = g† ◦ g,41 and (C∗2) for each f, g ∈ C(a → b), the function ∥−∥ : C(a →
b) → [0,∞] given by ∥f∥2 := sup

{
|λ| ≥ 0

∣∣ f † ◦ f − λida is not invertible
}

is a complete

submultiplicative42 norm satisfying (C∗)
∥∥f † ◦ f

∥∥ = ∥f∥2 for all f ∈ C(a → b).43 A W∗-1-
category C is a C∗-1-category whose hom Banach spaces have a predual.

5.2.2. Unitary 1-categories. A unitary 1-category is a dagger category C such that every
n-fold linking algebra is unitary.44 A unitary category is called finite if there is a global
bound on the dimensions of the centers of all linking algebras.

5.2.3. Pre-2-Hilbert spaces. A pre-2-Hilbert space (C,TrC) is a finite unitary 1-category

C equipped with a unitary trace TrC, which is a collection of linear maps TrCc : EndC(c)→ C
for each c ∈ C such that (i) TrCc (gf) = TrCd(fg) for all f ∈ C(c → d) and g ∈ C(d → c) and
(ii) the sesquilinear form ⟨f |g⟩c→d := TrCc (f

†g) on C(c→ d) is positive-definite.45

An isometry between pre-2-Hilbert spaces is a fully faithful †-functor strictly preserv-
ing the unitary trace. Two pre-2-Hilbert spaces are isometrically equivalent if there is an
essentially surjective isometry between them.46

5.2.4. 2-Hilbert spaces. A 2-Hilbert space is a Cauchy complete47 pre-2-Hilbert space.

In this case, for simple s ∈ C, we define its quantum dimension ds := TrCs (ids).
A †-equivalence F : (C,TrC)→ (D,TrD) between 2-Hilbert spaces is isometric if and only
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if it preserves quantum dimensions, i.e., for all c ∈ Irr(C), dF (c) = dc.
5.3. Dagger monoidal 1-categories. A dagger monoidal 1-category (C, †,⊗, 1;λ, ρ) is a
dagger 1-category (C, †) with a monoidal structure such that ⊗ : C × C → C is a linear
†-1-functor and all associators and unitors are unitary.

5.3.1. C∗-monoidal 1-categories. A C∗-monoidal 1-category is a unitary category C
equipped with a dagger monoidal structure.48

5.3.2. Unitary multitensor 1-categories. A unitary (multi)tensor (resp. unitary
multi(fusion)) 1-category is a multi(tensor) (resp. multi(fusion)) 1-category C whose
monoidal structure is C∗.

A C∗-monoidal 1-category is a unitary 1-category C with a monoidal structure such
that ⊗ : C × C → C is a †-functor and all associators and unitors are unitary.49 A unitary
(multi)tensor (resp. unitary (multi)fusion) category is a C∗-monoidal 1-category C that is
(multi)tensor (resp. (multi)fusion).

5.3.3. Unitary dual functors. A unitary dual 1-functor on a unitary multitensor category

is a dual functor ∨ : C → C⊗op,◦op for which the canonical maps c → c∨∨ given by φc :=
c

coev†c

c∨

c∨∨

assemble into a monoidal natural isomorphism φ : idC ⇒ ∨ ◦ ∨.50 By TODO: cite Pen20,
Theorem A, for a unitary multitensor category C, there are canonical bijections between
(1) pseudounitary pivotal structures up to monoidal natural isomorphism (that is then nec-
essarily unique), (2) unitary dual functors up to unitary monoidal natural isomorphism (that
is then necessarily unique), and (3) groupoid homomorphisms UC → R>0.

51

5.4. Dagger 2-categories. A dagger 2-category is a 2-category C with a conjugate-linear
2-functor † : C→ C2op that is strictly anti-involutive on 2-cells, the identity on 0- and 1-cells,
preserved under 1-composition 1-functors, and with respect to which unitors and associators
are unitary.

A pre-unitary 2-category is a locally unitary rigid †-2-category C. A unitary 2-category is
a unitarily Cauchy complete pre-unitary 2-category.52 A unitary 2-category is called finite if
it has only finite many unitary equivalence classes of simple objects, and every hom unitary
category is finitely semisimple.53

We then call C (resp. W∗) a C∗–2-category (resp. W∗-2-category) if it is also locally C∗

(resp. if (W∗1) it is locally W∗ and (W∗2) 1-composition ◦ is weak∗ continuous in each slot).
5.5. Dagger 3-categories. A dagger 3-category is TODO: see Gio’s paper

A C∗-3-category is a 3-category whose hom 2-categories are C∗-2-categories and such
that the underlying coherence 2-functors, 2-natural transformations, and 2-modifications
are †-2-functors, †-2-natural transformations, and unitary 2-modifications respectively.

A W∗-3-category is a C∗-3-category such whose hom 2-categories are W∗-2-categories and
such that the 1-composition †-2-functor is weak∗ continuous in each slot.
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6. Dagger functors

6.1. Dagger 0-functors. TODO:
6.2. Dagger 1-functors. A †-functor is a 1-functor that strictly preserves †.
6.3. Dagger 2-functors. TODO:
6.4. Dagger 3-functors. A †-3-functor F : 𝒞→ 𝒟 between C∗-3-categories s a 3-functor
that is locally a †-2-functor and whose underlying coherence 2-natural transformations and
2-modifications are †-natural transformations and unitary 2-modifications respectively.

7. Strictness for dagger stuff

7.0.1. Strict C∗-2-categories. By [here, Thm. 2.9], every C∗- (resp. W∗-) 2-category is
equivalent to a C∗- (resp. W∗-) 2-category with strict underlying 2-category.

7.0.2. Semistrict C∗-3-categories. By [here, Thm. 3.25], every C∗- (resp. W∗-) 3-
category is equivalent to a C∗- (resp. W∗-) Gray-3-category. A C∗-Gray-category is a C∗-
Gray-enriched 1-category. The exact same statement holds with each “C∗” replaced with
W∗.
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8. Homotopy coherent higher categories

8.1. ∞-groupoids. The simplex category ∆ is the category of (nonempty) totally ordered
finite sets and order-preserving set-functions between them. Thus the isomorphism classes
of objects of ∆ consist of [n] := {0 < 1 < · · · < n} for nonnegative integers n. A simplicial
set is a functor X : ∆op → Set. The standard n-simplex is the functor ∆[n] := ∆(− → [n]),
which is a functor ∆op → Set and thus a simplicial set. (Note that this means ∆[n] is the
simplicial set represented by the object [n] ∈ ∆.) The kth horn Λk[n] of the n-simplex ∆[n]
is the boundary ∂∆[n] with the kth face removed.

A simplicial set X : ∆op → Set satisfies the Kan condition if all horns in X (that is,
all simplicial maps Λk[n] → X) extend to the full simplex in the sense that the lift in the
following diagram exists.

Λk[n] X

∆[n]

∀

∃

The following diagram on the left (resp. right) shows an extension, colored blue, of the horn
Λ1[2] (resp. Λ1[3]), colored black, to the 2-simplex ∆[2] (resp. 3-simplex ∆[3]).

0

1

2
0

1

2

3

(We say the unique map X → pt is a Kan fibration, or that X is fibrant, if X satisfies the
Kan condition.) An ∞-groupoid (AKA (∞, 0)-category or Kan complex ) is a simplicial set
satisfying the Kan condition.

Given a topological space X, we can define an ∞-groupoid Π∞(X), called the funda-
mental ∞-groupoid of X, to be the simplicial set {Xn}n≥0 with X0 the points in X, X1 the
paths between points, X2 the homotopies of those paths, X3 the homotopies between those
homotopies, and so on. Conversely, given an ∞-groupoid {Xn}n≥0, there is a functor |−|,
called the geometric realization functor, from simplicial sets to topological spaces that gives
a space X := |{Xn}n≥0|.

The homotopy hypothesis asserts that there is a bijective correspondence between ∞-
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groupoids and topological spaces up to homotopy. More precisely, the bijection is

{topological spaces} ←→ {∞-groupoids} ,
X 7−→ Π∞(X),

|{Xn}n≥0| 7−→ X.

(8.1.1)

0

1

2
0

1

2

3

In any notion of n-category, a k-morphism is a morphism between (k − 1)-morphisms,
which themselves are morphisms between (k − 2)-morphisms, and so on, all the way down
objects. This procedure ends with exactly two objects, namely a source object and a target
object. Thus, any k-morphism can be constructed inductively by starting with the source and
target objects, selecting the 1-morphisms connecting them, then the 2-morphisms between
those, followed by the 3-morphisms between the 2-morphisms, and so on, until level k. We
can actually just skip steps to

A simplicial space is a simplicial object in Top, i.e., a functorX : ∆op → Top. A simplicial
space X satisfies the Segal condition if, up to homotopy, the k-cells of X are precisely the
composites of composable sequences of k morphisms. For example, for any two composable
morphisms, say given as in the following figure, there is a contractible choice of dashed filler
that makes the triangle commute up to homotopy [see above two simplicial sets figures].
By considering iterates of homotopy pullbacks of X1 (morphisms) over X0 (objects), that
is, by choosing composable morphisms for each sequence of n-objects, we find that this is
equivalent to the following.

Let’s show that a Segal space is still not enough to satisfy our desideratum for (∞, 1)-
categories. To see why, suppose it did, and let C be a complete Segal space. A point in our
desideratum TODO: make desideratum and ensure this is one of the items therein
says that the classifying space of the underlying groupoid of C should admit an “inverse”;
that is, the classifying

[From here] For a Segal space X, the objects are elements of Obj(X) := X0, while its 1-
morphisms are elements of the mapping space MapX(x, y) for some objects x, y ∈ X0, which
is defined as the fiber of the map (d0, d1) : X1 → X0 × X0 over (x, y) sending an element
f ∈ X1 to the pair structure. The identity morphism of an object x ∈ X given by the image
of x under the degeneracy map s0 : X0 → X1.
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Two 1-morphisms f and g in X0 are homotopic, written f ≃ g, if they lie in the same
connected component of X0.

Given f ∈ MapZ(x, y) and g ∈ MapX(y, z), there is a composite g ◦ f ∈ MapX(x, z),
and this notion of composition is associative up to homotopy by the Segal condition. The
homotopy category Ho(X) of X has as objects the set Obj(X) and as morphisms between
any two objects x and y, the set MapHo(X)(x, y) := π0MapX(x, y), the set of connected
components (or, by our definition of homotopy in X0, equivalently, homotopy classes) of X0.

Finally, a map g in MapX(x, y)0 is a homotopy equivalence if there exist maps f, h ∈
MapX(y, x)0 such that g ◦ f ∼ idy and h ◦ g ∼ idx. Any map in the same component as a
homotopy equivalence is itself a homotopy equivalence. Therefore we can define the space
Xhoequiv to be the subspace of X1 given by the components whose 0-simplices are homotopy
equivalences.

Xe then note that the degeneracy map s0 : X0 → X1 factors through Xhoequiv since for any
object x the map s0(x) = idx is a homotopy equivalence. Therefore, we have the following
definition:

Definition 8.1.2. A complete Segal space is a Segal space X for which the map s0 : X0 →
Xhoequiv is a weak equivalence of simplicial sets.

We can now consider some particular kinds of maps between Segal spaces.

Definition 8.1.3. A map f : U → V of Segal spaces is a DK-equivalence if:

(i) For any pair of objects x, y ∈ U0, the induced map

MapU(x, y)→ MapV (fx, fy)

is a weak equivalence of simplicial sets.

(ii) The induced map Ho(f) : Ho(U)→ Ho(V ) is an equivalence of categories.

We are now able to describe the important features of the complete Segal space model
category structure.

Theorem 8.1.4. There is a model structure MsTop on the category of simplicial spaces
such that:

(i) The weak equivalences between Segal spaces are the DK-equivalences.

(ii) The cofibrations are the monomorphisms.

(iii) The fibrant objects are the complete Segal spaces.

What makes the model categoryMsTop so nice to work with is the fact that the weak
equivalences between the fibrant objects, the complete Segal spaces, are easy to identify.

Proposition 8.1.5. A map f : U → V between complete Segal spaces is a DK-equivalence
if and only if it is a levelwise weak equivalence.
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8.2. An-algebras.
8.3. En-algebras.
8.4. Coherence. [Lurie’s HTT, §1.2.6]: A homotopy coherent diagram in C is a functor
F : J → Ho(C) together with all of the extra data (read: choices) that would be available if

we were able to lift F to a functor F̃ : J → C.

9. Appendix

9.1. Disklike n-categories.

(i) [Here, Axm. 6.1.1] (Morphisms): For each 0 ≤ k ≤ n, we have a functor Xk from the
category of k–balls and homeomorphisms to the category of sets and bijections.

(ii) [Here, Lem. 6.1.2] (Boundaries of morphisms) For each 1 ≤ k ≤ n, we have a functor
X→ k−1 from the category of (k − 1)-spheres to the category of sets and bijections.

(iii) [Here, Axm. 6.1.3] (Boundaries) For k–balls X, we have maps of sets ∂ : Xk(X) →
X→ k−1(∂X) assembling into a natural transformation.

9.2. Alternate formulation of multitensor categories. The following presents multi-
tensor categories according to [EGNO15].
9.3. Linear abelian categories. A category is additive if it has a zero object and finite
biproducts (often called direct sums).54 An abelian category is an additive category with all
kernels and cokernels and such that monomorphisms (resp. epimorphisms) are kernels (resp.
cokernels).5556 A subobject of an object x in an abelian category C is a monomorphism a ↪→ x.
A quotient object of x is an object z together with an epimorphism x ↠ z. For a subobject
a ↪→ x, define the quotient object x/a to be the cokernel of the monomorphism a ↠ x.
We call x simple if it admits no nontrivial subobjects.57 Let Irr(C) denote the isomorphism
classes of simple objects in C.

A linear abelian category is an abelian category whose Ab-enrichment is lifted to a Vec-
enrichment. A linear abelian category C is locally finite if hom spaces are finite-dimensional
and objects have finite length.58 A multitensor category is a locally finite linear abelian rigid
semisimple monoidal category (C,⊗, 1) such that ⊗ is bilinear.5960 A tensor category is a
multitensor category with simple unit 1. A (multi)fusion category is a finite semisimple
(multi)tensor category.
9.4. Cusp-flip (swallowtail) equations. By “coherent” here we mean that cusp and
cocusp satisfy the cusp flip (or swallowtail) equations, which assert the following diagrams
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commute.

c∗ c c∗ c

c∗ c

ϕ

cuspc cuspc∗

c c∗ c c∗

c c∗

ϕ

cuspc cuspc∗

9.5. Fusion 0-categories.
9.5.1. Z+-rings. Where Z+ denotes the semiring of nonnegative integers Z≥1 under ad-

dition, a Z+-ring (S,A) consists of a ring A whose underlying abelian group is a finitely
generated free Z-module with basis S = {si}i∈I (whose elements are called simple) for which
si · sj is a nonnegative (i.e., Z+-)linear combination of all the sk ∈ S. Thus (left, say) multi-
plication by si is a matrix Nsi with Z+-valued entries, so by the Frobenius–Perron theorem
it has a positive real eigenvalue dsi =: FPdim(si) of maximal spectral radius, called the
Frobenius–Perron dimension of si. We define FPdim(C) :=

∑
c∈Irr(C) FPdim(c)2.

We call a Z+-ring (S,A) a multifusion ring if 1A ∈ S and for every simple si ∈ S =
{s1, . . . , sn} there exists a unique simple s∗i ∈ S such that

c1si,sj =

{
1 if sj = s∗i ,

0 otherwise

and the quantity c
s∗k
si,sj is invariant under cyclic permutations of si, sj, and sk.

61 If 1 ∈ S,
then (S,A) is called a fusion ring.
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Notes

1. The non-abelian 4-cocycle is the commutativity of the Stasheff associahedron K5 that describes ways to
move parentheses from (((−⊠−)⊠−)⊠−)⊠− to −⊠(−⊠(−⊠(−⊠−))). To read the cited diagram, read
juxtaposition as ⊠ and replace a with α.

2. The left and right normalization conditions compare the ways to move parentheses from (−⊠−) ⊠ − to
−⊠(−⊠−) by using only (α, λ, ρ;π,m, ℓ) and (α, λ, ρ;π,m, ρ) respectively. To read the cited diagram, read
juxtaposition as ⊠, replace a with α, and make the swaps µ↔ m, ρ↔ r, and λ↔ ℓ.

3. If the 1-unitor and 1-compositor are not required to be invertible, we call F a lax 2-functor. If we have a lax
2-functor except the domain and codomain of both µ and ν are reversed, we call F a oplax 2-functor.

4. If the invertibility condition on the 2-cell η is relaxed, i.e., if the (ηa’s and the) ηf ’s need not be invertible,
then we instead call η a lax 2-natural transformation. If η is a lax 2-natural transformation but with the
direction of the 2-cells (ηf ’s) reversed, we instead call η a oplax 2-natural transformation.

5. 2-cells of this type only exist because F = G on 0-cells.

6. That is, a local bijection, meaning a bijection on hom sets.

7. A 2-natural equivalence is a 1-equivalence in the 2-category of 2-functors, 2-natural transformations, and
2-modifications.

8. A 2-functor is fully faithful on 0- and 1-cells if it is an equivalence on the hom 1-functors, meaning a local
equivalence.

9. As an exercise, show that for a general linear monoidal category C, we can ask for at most 2 out of 3 of the
properties strict, skeletal, and Cauchy complete.

10. From [here, Lemma 2.2]

11. Can you generalize the previous footnote to monoidal 2-categories?

12. This is from here, Notation A.1.

13. For a V-enriched 1-category C, the underlying category CV is the 1-category whose objects are the same
objects as C and whose morphisms are the 1-cells of C as defined above. For f ∈ C(a→ b) and g ∈ C(b→ c),
which by above means f ∈ V(1V → C(a → b)) and g ∈ V(1V → C(b → c)), their composition in CV ,
g ◦ f ∈ C(a→ c) (so g ◦ f ∈ V(1V → C(a→ c))) and the identity morphisms in CV are defined in the obvious
way.

14. Here locally linear means the hom sets are finite-dimensional complex vector spaces.

15. We assume 1-functors of linear 1-categories are linear.

16. The columns correspond to the domain and the rows correspond to the codomain, similar to how a matrix
acts as a linear operator.

17. When C has a dagger structure, L(a, b) is a ∗-algebra with involution ∗ being the †-transpose. Similarly, we
can define the linking algebra L(a1, . . . , an) for n objects a1, . . . , an ∈ C.
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18. That is, there is a K > 0 such that for any linking algebra L = L(a1, . . . , an), dim(End(1Z(L))) < K.

19. A 1-functor F : C → D is dominant if for every object d ∈ D, there is an object c ∈ C and morphisms

d
i→ F (c)

p→ d such that p ◦ i = idd. That is, F is dominant if each F (c) admits some 1-idempotent
e ∈ D(F (c) → F (c)) that splits. A fully faithful functor between 1-idempotent complete categories is an
equivalence if and only if it is dominant.

20. Henceforth, by “algebra” here we will always mean “unital algebra”.

21. To obtain the definition of a (counital) coalgebra, dualize the definition of a (unital) algebra.

22. Equivalently, a condensation algebra splits if there is an adjunction aF b ⊣ bUa of 1-morphisms (F,U, ev : U⊗
F ⇒ 1b, coev : 1a ⇒ F ⊗ U) whose associated monad62 is isomorphic to A as algebras in EndC(a).

23. Equivalently, a linear 1-category is semisimple if it is Cauchy complete and the endomorphism algebra of
every object is semisimple.

24. Here we are adopting the desideratum from TODO: Dualizable Tensor Categories, which is that “in
reasonable settings where something could be called either a dual or an adjoint, the left dual should be the
left adjoint”.

25. Here ev and coev are called folds, since in the three-dimensional diagrammatical calculus for monoidal

2-categories, they look like ev = c# c and coev =
c

c# .

26. By “coherent” here we mean that cusp and cocusp satisfy the cusp flip (or swallowtail) equations.

27. Here cusp and cocusp are called cusps, since in the three-dimensional diagrammatical calculus for monoidal

2-categories, they look like cusp = c and cocusp =
c#

.

28. Here adjoint is used to mean dual in the usual sense. The reason for the difference of terminology is that it
is typical to reserve “dual” for 0-cells and “adjoint” for k-cells for k ≥ 1.

29. Equivalently, a monoidal 2-category is rigid if it is locally rigid and its object admit left and right duals.

30. A multitensor category is indecomposable if it is not equivalent to a direct sum of nonzero multitensor
categories.

31. In this setting, by [here, Prop. 1.2.14], the unit object 1 is simple if and only if its identity (1-)morphism 11
is simple.

32. TODO: I think? Still TBD.

33. Really, we only require here that 0-cells admit duals.

34. Really, we only require here that 1-cells admit adjoints.

35. You can think about what this means if you’d like, but here, Def. 2.2.3 just uses the semistrictification for
monoidal 2-categories to require that ∨ and ev, coev strictly preserve ⊠.

36. Recall that a torsor (AKA principal homogeneous space) for a group G is a nonempty free and transitive
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G-set X. A pivotal 1-category is a multitensor category equipped with a pivotal structure. Thus, to say
the set of pivotal structures for a pivotal multitensor category (C, φ) is a torsor for G means that for any
other pivotal structure φ′, g · φ = φ′ for some g ∈ G, which means the set of pivotal structures for C is
{g · φ | g ∈ G}.

37. Informally, this says “∨δφDF = δ∨FφC”.

38. Recall that given a faithful positive linear functional φ on a (finite-dimensional) unitary algebra A, we get the
GNS Hilbert space L2(A,φ) = A with inner product ⟨a|b⟩ := φ

(
a†b

)
. If φ is also tracial, and we remember

the algebra structure of A, we get the notion of an H∗-algebra.

39. We call a trace TrA : A→ C faithful if for all a ∈ A, TrA(a
†a) = 0 implies a = 0, and positive if for all a ∈ A,

Tr(a∗a) ≥ 0.

40. We often identify H∗-algebras (A,TrA) with their GNS Hilbert space L2(A,TrA).

41. That is, positive morphisms are spectrally positive.

42. That is, for all f ∈ C(a→ b) and g ∈ C(b→ c), ∥g ◦ f∥ ≤ ∥g∥ · ∥f∥.

43. If C admits direct sums, then (C∗1) and (C∗2) together are equivalent to the assertion (C∗) End(a⊕ b) is a
C∗-algebra for all a, b ∈ C.

44. From unitarity of the linking algebras, unitary categories are C∗ and W∗ categories. A unitary category
is semisimple if and only if it is Cauchy complete. A unitary category admits direct sums if and only if it
admits orthogonal direct sums and is idempotent complete if and only if it is projection complete, i.e., all
orthogonal projections split orthogonally. We thus define the Cauchy completion of a unitary category as the
projection completion of the orthogonal additive envelope and say that such categories are unitarily Cauchy
complete.

45. Observe that the inner products ⟨f |g⟩a→b on the Hilbert spaces C(a→ b) satisfy
〈
g
∣∣hg†〉

b→c
= ⟨gf |h⟩a→c =〈

f
∣∣g†h〉

a→b
for all f ∈ C(a→ b), g ∈ C(b→ c), and h ∈ C(a→ c).

46. Note that this definition is equivalent to having isometries both ways together with unitary natural isomor-
phisms from their composites to the appropriate identity functors.

47. Or equivalently, in this case, semisimple.

48. Just as with the adjective tensor, we reserve the desirable adjective “unitary” for rigid C∗-monoidal categories.
(It would make no difference at this categorical level to use “unitary monoidal” category instead of “C∗-
monoidal” category, but when we get to 2-categories we will want the adjective “unitary” to include having
adjoints for 1-morphisms.)

49. In other words, a C∗-monoidal 1-category is a unitary 1-category with a dagger monoidal structure.

50. Equivalently, a ∨ is a unitary dual functor if its canonical tensorators are unitary and ∨† = †∨.

51. Here UC denotes the universal grading groupoid of C.

52. See here for more details.

53. See here for more details.
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54. A functor between additive categories is additive if it preserves the zero object and biproducts up to isomor-
phism.

55. For any category C, a kernel of a morphism f ∈ C(a→ b) is the universal morphism k ∈ C(ker(f)→ a) that
f precomposes to 0. A cokernel is the kernel in Cop.

56. Functors of abelian categories are assumed additive.

57. For linear categories, this is equivalent to the endomorphism space of each object being isomorphic to the
underlying field.

58. That is, objects admit finite composition series. A composition series of an object x ∈ C is a filtration

0 = x0 ↪→ x0 ↪→ · · · ↪→ xn = x such that xi/xi−1
def
= coker(xi−1 ↪→ xi) is simple for all i.

59. By [EGNO15, Prop. 4.2.1], the ⊗ in a multitensor category is exact in both slots. Thus a multitensor
category is a rigid multiring category.

60. A multitensor category is indecomposable if it is not equivalent to a direct sum of nonzero multitensor
categories.

61. One can show ∗ linearly extends from an involution on S to an involution ∗ : A→ A.

62. An adjunction of 1-morphisms aF b ⊣ bUa in C with counit ev : U ⊗ F ⇒ 1b and unit coev : 1a ⇒ F ⊗ U has
an associated monad (monoid object in EndC(a)) given by (aF ⊗b Ua, idF ⊗ ev ⊗ idU : F ⊗ U ⊗ F ⊗ U ⇒
F ⊗ U, coev : 1a ⇒ F ⊗ U). Whenever X ⊣ Y is a splitting for A, we say X ⊣ Y splits A, or simply that A
splits.
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